xref: /XiangShan/src/main/scala/xiangshan/backend/rob/Rob.scala (revision eb163ef08fc5ac1da1f32d948699bd6de053e444)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.backend.rob
18
19import chipsalliance.rocketchip.config.Parameters
20import chisel3._
21import chisel3.util._
22import difftest._
23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp}
24import utils._
25import xiangshan._
26import xiangshan.backend.exu.ExuConfig
27import xiangshan.frontend.FtqPtr
28
29class RobPtr(implicit p: Parameters) extends CircularQueuePtr[RobPtr](
30  p => p(XSCoreParamsKey).RobSize
31) with HasCircularQueuePtrHelper {
32
33  def needFlush(redirect: Valid[Redirect]): Bool = {
34    val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx
35    redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx))
36  }
37
38  def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR
39}
40
41object RobPtr {
42  def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = {
43    val ptr = Wire(new RobPtr)
44    ptr.flag := f
45    ptr.value := v
46    ptr
47  }
48}
49
50class RobCSRIO(implicit p: Parameters) extends XSBundle {
51  val intrBitSet = Input(Bool())
52  val trapTarget = Input(UInt(VAddrBits.W))
53  val isXRet     = Input(Bool())
54  val wfiEvent   = Input(Bool())
55
56  val fflags     = Output(Valid(UInt(5.W)))
57  val dirty_fs   = Output(Bool())
58  val perfinfo   = new Bundle {
59    val retiredInstr = Output(UInt(3.W))
60  }
61}
62
63class RobLsqIO(implicit p: Parameters) extends XSBundle {
64  val lcommit = Output(UInt(log2Up(CommitWidth + 1).W))
65  val scommit = Output(UInt(log2Up(CommitWidth + 1).W))
66  val pendingld = Output(Bool())
67  val pendingst = Output(Bool())
68  val commit = Output(Bool())
69}
70
71class RobEnqIO(implicit p: Parameters) extends XSBundle {
72  val canAccept = Output(Bool())
73  val isEmpty = Output(Bool())
74  // valid vector, for robIdx gen and walk
75  val needAlloc = Vec(RenameWidth, Input(Bool()))
76  val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp)))
77  val resp = Vec(RenameWidth, Output(new RobPtr))
78}
79
80class RobDispatchData(implicit p: Parameters) extends RobCommitInfo
81
82class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
83  val io = IO(new Bundle {
84    // for commits/flush
85    val state = Input(UInt(2.W))
86    val deq_v = Vec(CommitWidth, Input(Bool()))
87    val deq_w = Vec(CommitWidth, Input(Bool()))
88    val exception_state = Flipped(ValidIO(new RobExceptionInfo))
89    // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth)
90    val intrBitSetReg = Input(Bool())
91    val hasNoSpecExec = Input(Bool())
92    val interrupt_safe = Input(Bool())
93    val blockCommit = Input(Bool())
94    // output: the CommitWidth deqPtr
95    val out = Vec(CommitWidth, Output(new RobPtr))
96    val next_out = Vec(CommitWidth, Output(new RobPtr))
97  })
98
99  val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr))))
100
101  // for exceptions (flushPipe included) and interrupts:
102  // only consider the first instruction
103  val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe
104  val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0)
105  val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable)
106
107  // for normal commits: only to consider when there're no exceptions
108  // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions.
109  val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last)
110  val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i)))
111  val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B)
112  // when io.intrBitSetReg or there're possible exceptions in these instructions,
113  // only one instruction is allowed to commit
114  val allowOnlyOne = commit_exception || io.intrBitSetReg
115  val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt)
116
117  val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt))
118  val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec)
119
120  deqPtrVec := deqPtrVec_next
121
122  io.next_out := deqPtrVec_next
123  io.out      := deqPtrVec
124
125  when (io.state === 0.U) {
126    XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt)
127  }
128
129}
130
131class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
132  val io = IO(new Bundle {
133    // for input redirect
134    val redirect = Input(Valid(new Redirect))
135    // for enqueue
136    val allowEnqueue = Input(Bool())
137    val hasBlockBackward = Input(Bool())
138    val enq = Vec(RenameWidth, Input(Bool()))
139    val out = Output(Vec(RenameWidth, new RobPtr))
140  })
141
142  val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr)))
143
144  // enqueue
145  val canAccept = io.allowEnqueue && !io.hasBlockBackward
146  val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U)
147
148  for ((ptr, i) <- enqPtrVec.zipWithIndex) {
149    when(io.redirect.valid) {
150      ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
151    }.otherwise {
152      ptr := ptr + dispatchNum
153    }
154  }
155
156  io.out := enqPtrVec
157
158}
159
160class RobExceptionInfo(implicit p: Parameters) extends XSBundle {
161  // val valid = Bool()
162  val robIdx = new RobPtr
163  val exceptionVec = ExceptionVec()
164  val flushPipe = Bool()
165  val replayInst = Bool() // redirect to that inst itself
166  val singleStep = Bool() // TODO add frontend hit beneath
167  val crossPageIPFFix = Bool()
168  val trigger = new TriggerCf
169
170//  def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend
171//  def trigger_after = trigger.getTimingBackend && trigger.getHitBackend
172  def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit
173  def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit
174  // only exceptions are allowed to writeback when enqueue
175  def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit
176}
177
178class ExceptionGen(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
179  val io = IO(new Bundle {
180    val redirect = Input(Valid(new Redirect))
181    val flush = Input(Bool())
182    val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo)))
183    val wb = Vec(1 + LoadPipelineWidth + StorePipelineWidth, Flipped(ValidIO(new RobExceptionInfo)))
184    val out = ValidIO(new RobExceptionInfo)
185    val state = ValidIO(new RobExceptionInfo)
186  })
187
188  def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = {
189    assert(valid.length == bits.length)
190    assert(isPow2(valid.length))
191    if (valid.length == 1) {
192      (valid, bits)
193    } else if (valid.length == 2) {
194      val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0)))))
195      for (i <- res.indices) {
196        res(i).valid := valid(i)
197        res(i).bits := bits(i)
198      }
199      val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1))
200      (Seq(oldest.valid), Seq(oldest.bits))
201    } else {
202      val left = getOldest(valid.take(valid.length / 2), bits.take(valid.length / 2))
203      val right = getOldest(valid.takeRight(valid.length / 2), bits.takeRight(valid.length / 2))
204      getOldest(left._1 ++ right._1, left._2 ++ right._2)
205    }
206  }
207
208  val current = Reg(Valid(new RobExceptionInfo))
209
210  // orR the exceptionVec
211  val lastCycleFlush = RegNext(io.flush)
212  val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush))
213  val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush)
214
215  // s0: compare wb(1)~wb(LoadPipelineWidth) and wb(1 + LoadPipelineWidth)~wb(LoadPipelineWidth + StorePipelineWidth)
216  val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }
217  val csr_wb_bits = io.wb(0).bits
218  val load_wb_bits = getOldest(in_wb_valid.slice(1, 1 + LoadPipelineWidth), io.wb.map(_.bits).slice(1, 1 + LoadPipelineWidth))._2(0)
219  val store_wb_bits = getOldest(in_wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth), io.wb.map(_.bits).slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth))._2(0)
220  val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid.slice(1, 1 + LoadPipelineWidth).reduce(_ || _), wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth).reduce(_ || _))))
221  val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits)))
222
223  // s1: compare last four and current flush
224  val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) })
225  val compare_01_valid = s0_out_valid(0) || s0_out_valid(1)
226  val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0))
227  val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2))
228  val s1_out_bits = RegNext(compare_bits)
229  val s1_out_valid = RegNext(s1_valid.asUInt.orR)
230
231  val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush)
232  val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits)))
233
234  // s2: compare the input exception with the current one
235  // priorities:
236  // (1) system reset
237  // (2) current is valid: flush, remain, merge, update
238  // (3) current is not valid: s1 or enq
239  val current_flush = current.bits.robIdx.needFlush(io.redirect) || io.flush
240  val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush
241  when (reset.asBool) {
242    current.valid := false.B
243  }.elsewhen (current.valid) {
244    when (current_flush) {
245      current.valid := Mux(s1_flush, false.B, s1_out_valid)
246    }
247    when (s1_out_valid && !s1_flush) {
248      when (isAfter(current.bits.robIdx, s1_out_bits.robIdx)) {
249        current.bits := s1_out_bits
250      }.elsewhen (current.bits.robIdx === s1_out_bits.robIdx) {
251        current.bits.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.bits.exceptionVec.asUInt).asTypeOf(ExceptionVec())
252        current.bits.flushPipe := s1_out_bits.flushPipe || current.bits.flushPipe
253        current.bits.replayInst := s1_out_bits.replayInst || current.bits.replayInst
254        current.bits.singleStep := s1_out_bits.singleStep || current.bits.singleStep
255        current.bits.trigger := (s1_out_bits.trigger.asUInt | current.bits.trigger.asUInt).asTypeOf(new TriggerCf)
256      }
257    }
258  }.elsewhen (s1_out_valid && !s1_flush) {
259    current.valid := true.B
260    current.bits := s1_out_bits
261  }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) {
262    current.valid := true.B
263    current.bits := enq_bits
264  }
265
266  io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback
267  io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits)
268  io.state := current
269
270}
271
272class RobFlushInfo(implicit p: Parameters) extends XSBundle {
273  val ftqIdx = new FtqPtr
274  val robIdx = new RobPtr
275  val ftqOffset = UInt(log2Up(PredictWidth).W)
276  val replayInst = Bool()
277}
278
279class Rob(implicit p: Parameters) extends LazyModule with HasWritebackSink with HasXSParameter {
280
281  lazy val module = new RobImp(this)
282
283  override def generateWritebackIO(
284    thisMod: Option[HasWritebackSource] = None,
285    thisModImp: Option[HasWritebackSourceImp] = None
286  ): Unit = {
287    val sources = writebackSinksImp(thisMod, thisModImp)
288    module.io.writeback.zip(sources).foreach(x => x._1 := x._2)
289  }
290}
291
292class RobImp(outer: Rob)(implicit p: Parameters) extends LazyModuleImp(outer)
293  with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents {
294  val wbExuConfigs = outer.writebackSinksParams.map(_.exuConfigs)
295  val numWbPorts = wbExuConfigs.map(_.length)
296
297  val io = IO(new Bundle() {
298    val hartId = Input(UInt(8.W))
299    val redirect = Input(Valid(new Redirect))
300    val enq = new RobEnqIO
301    val flushOut = ValidIO(new Redirect)
302    val exception = ValidIO(new ExceptionInfo)
303    // exu + brq
304    val writeback = MixedVec(numWbPorts.map(num => Vec(num, Flipped(ValidIO(new ExuOutput)))))
305    val commits = Output(new RobCommitIO)
306    val lsq = new RobLsqIO
307    val robDeqPtr = Output(new RobPtr)
308    val csr = new RobCSRIO
309    val robFull = Output(Bool())
310    val cpu_halt = Output(Bool())
311  })
312
313  def selectWb(index: Int, func: Seq[ExuConfig] => Boolean): Seq[(Seq[ExuConfig], ValidIO[ExuOutput])] = {
314    wbExuConfigs(index).zip(io.writeback(index)).filter(x => func(x._1))
315  }
316  val exeWbSel = outer.selWritebackSinks(_.exuConfigs.length)
317  val fflagsWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.writeFflags)))
318  val fflagsPorts = selectWb(fflagsWbSel, _.exists(_.writeFflags))
319  val exceptionWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.needExceptionGen)))
320  val exceptionPorts = selectWb(fflagsWbSel, _.exists(_.needExceptionGen))
321  val exuWbPorts = selectWb(exeWbSel, _.forall(_ != StdExeUnitCfg))
322  val stdWbPorts = selectWb(exeWbSel, _.contains(StdExeUnitCfg))
323  println(s"Rob: size $RobSize, numWbPorts: $numWbPorts, commitwidth: $CommitWidth")
324  println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}")
325  println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}")
326  println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}")
327
328
329  val exuWriteback = exuWbPorts.map(_._2)
330  val stdWriteback = stdWbPorts.map(_._2)
331
332  // instvalid field
333  val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
334  // writeback status
335  val writebacked = Mem(RobSize, Bool())
336  val store_data_writebacked = Mem(RobSize, Bool())
337  // data for redirect, exception, etc.
338  val flagBkup = Mem(RobSize, Bool())
339  // some instructions are not allowed to trigger interrupts
340  // They have side effects on the states of the processor before they write back
341  val interrupt_safe = Mem(RobSize, Bool())
342
343  // data for debug
344  // Warn: debug_* prefix should not exist in generated verilog.
345  val debug_microOp = Mem(RobSize, new MicroOp)
346  val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug
347  val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug
348
349  // pointers
350  // For enqueue ptr, we don't duplicate it since only enqueue needs it.
351  val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr))
352  val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr))
353
354  val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr))
355  val allowEnqueue = RegInit(true.B)
356
357  val enqPtr = enqPtrVec.head
358  val deqPtr = deqPtrVec(0)
359  val walkPtr = walkPtrVec(0)
360
361  val isEmpty = enqPtr === deqPtr
362  val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level)
363
364  /**
365    * states of Rob
366    */
367  val s_idle :: s_walk :: Nil = Enum(2)
368  val state = RegInit(s_idle)
369
370  /**
371    * Data Modules
372    *
373    * CommitDataModule: data from dispatch
374    * (1) read: commits/walk/exception
375    * (2) write: enqueue
376    *
377    * WritebackData: data from writeback
378    * (1) read: commits/walk/exception
379    * (2) write: write back from exe units
380    */
381  val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth))
382  val dispatchDataRead = dispatchData.io.rdata
383
384  val exceptionGen = Module(new ExceptionGen)
385  val exceptionDataRead = exceptionGen.io.state
386  val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W)))
387
388  io.robDeqPtr := deqPtr
389
390  /**
391    * Enqueue (from dispatch)
392    */
393  // special cases
394  val hasBlockBackward = RegInit(false.B)
395  val hasNoSpecExec = RegInit(false.B)
396  val doingSvinval = RegInit(false.B)
397  // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B
398  // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty.
399  when (isEmpty) { hasBlockBackward:= false.B }
400  // When any instruction commits, hasNoSpecExec should be set to false.B
401  when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasNoSpecExec:= false.B }
402
403  // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing.
404  // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle.
405  // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts.
406  val hasWFI = RegInit(false.B)
407  io.cpu_halt := hasWFI
408  when (RegNext(RegNext(io.csr.wfiEvent))) {
409    hasWFI := false.B
410  }
411
412  val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.needAlloc.take(i)))))
413  io.enq.canAccept := allowEnqueue && !hasBlockBackward
414  io.enq.resp      := allocatePtrVec
415  val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept))
416  val timer = GTimer()
417  for (i <- 0 until RenameWidth) {
418    // we don't check whether io.redirect is valid here since redirect has higher priority
419    when (canEnqueue(i)) {
420      val enqUop = io.enq.req(i).bits
421      val enqIndex = allocatePtrVec(i).value
422      // store uop in data module and debug_microOp Vec
423      debug_microOp(enqIndex) := enqUop
424      debug_microOp(enqIndex).debugInfo.dispatchTime := timer
425      debug_microOp(enqIndex).debugInfo.enqRsTime := timer
426      debug_microOp(enqIndex).debugInfo.selectTime := timer
427      debug_microOp(enqIndex).debugInfo.issueTime := timer
428      debug_microOp(enqIndex).debugInfo.writebackTime := timer
429      when (enqUop.ctrl.blockBackward) {
430        hasBlockBackward := true.B
431      }
432      when (enqUop.ctrl.noSpecExec) {
433        hasNoSpecExec := true.B
434      }
435      val enqHasTriggerHit = io.enq.req(i).bits.cf.trigger.getHitFrontend
436      val enqHasException = ExceptionNO.selectFrontend(enqUop.cf.exceptionVec).asUInt.orR
437      // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process
438      when(!enqHasTriggerHit && !enqHasException && FuType.isSvinvalBegin(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe))
439      {
440        doingSvinval := true.B
441      }
442      // the end instruction of Svinval enqs so clear doingSvinval
443      when(!enqHasTriggerHit && !enqHasException && FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe))
444      {
445        doingSvinval := false.B
446      }
447      // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear
448      assert(!doingSvinval || (FuType.isSvinval(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe) ||
449        FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe)))
450      when (enqUop.ctrl.isWFI && !enqHasException && !enqHasTriggerHit) {
451        hasWFI := true.B
452      }
453    }
454  }
455  val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(_.valid)), 0.U)
456  io.enq.isEmpty   := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR)
457
458  /**
459    * Writeback (from execution units)
460    */
461  for (wb <- exuWriteback) {
462    when (wb.valid) {
463      val wbIdx = wb.bits.uop.robIdx.value
464      debug_exuData(wbIdx) := wb.bits.data
465      debug_exuDebug(wbIdx) := wb.bits.debug
466      debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.uop.debugInfo.enqRsTime
467      debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.uop.debugInfo.selectTime
468      debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.uop.debugInfo.issueTime
469      debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.uop.debugInfo.writebackTime
470
471      val debug_Uop = debug_microOp(wbIdx)
472      XSInfo(true.B,
473        p"writebacked pc 0x${Hexadecimal(debug_Uop.cf.pc)} wen ${debug_Uop.ctrl.rfWen} " +
474        p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ctrl.ldest} pdst ${debug_Uop.pdest} " +
475        p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.uop.robIdx}\n"
476      )
477    }
478  }
479  val writebackNum = PopCount(exuWriteback.map(_.valid))
480  XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum)
481
482
483  /**
484    * RedirectOut: Interrupt and Exceptions
485    */
486  val deqDispatchData = dispatchDataRead(0)
487  val debug_deqUop = debug_microOp(deqPtr.value)
488
489  val intrBitSetReg = RegNext(io.csr.intrBitSet)
490  val intrEnable = intrBitSetReg && !hasNoSpecExec && interrupt_safe(deqPtr.value)
491  val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr
492  val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR ||
493    exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit)
494  val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe
495  val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst
496  val exceptionEnable = writebacked(deqPtr.value) && deqHasException
497
498  XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n")
499  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n")
500  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n")
501
502  val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst)
503
504  // io.flushOut will trigger redirect at the next cycle.
505  // Block any redirect or commit at the next cycle.
506  val lastCycleFlush = RegNext(io.flushOut.valid)
507
508  io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush
509  io.flushOut.bits := DontCare
510  io.flushOut.bits.robIdx := deqPtr
511  io.flushOut.bits.ftqIdx := deqDispatchData.ftqIdx
512  io.flushOut.bits.ftqOffset := deqDispatchData.ftqOffset
513  io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next"
514  io.flushOut.bits.interrupt := true.B
515  XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable)
516  XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable)
517  XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe)
518  XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst)
519
520  val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush
521  io.exception.valid := RegNext(exceptionHappen)
522  io.exception.bits.uop := RegEnable(debug_deqUop, exceptionHappen)
523  io.exception.bits.uop.ctrl.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen)
524  io.exception.bits.uop.cf.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen)
525  io.exception.bits.uop.ctrl.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen)
526  io.exception.bits.uop.cf.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen)
527  io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen)
528  io.exception.bits.uop.cf.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen)
529
530  XSDebug(io.flushOut.valid,
531    p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.uop.cf.pc)} intr $intrEnable " +
532    p"excp $exceptionEnable flushPipe $isFlushPipe " +
533    p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n")
534
535
536  /**
537    * Commits (and walk)
538    * They share the same width.
539    */
540  val walkCounter = Reg(UInt(log2Up(RobSize + 1).W))
541  val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter))
542  val walkFinished = walkCounter <= CommitWidth.U
543
544  require(RenameWidth <= CommitWidth)
545
546  // wiring to csr
547  val (wflags, fpWen) = (0 until CommitWidth).map(i => {
548    val v = io.commits.commitValid(i)
549    val info = io.commits.info(i)
550    (v & info.wflags, v & info.fpWen)
551  }).unzip
552  val fflags = Wire(Valid(UInt(5.W)))
553  fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR
554  fflags.bits := wflags.zip(fflagsDataRead).map({
555    case (w, f) => Mux(w, f, 0.U)
556  }).reduce(_|_)
557  val dirty_fs = io.commits.isCommit && VecInit(fpWen).asUInt.orR
558
559  // when mispredict branches writeback, stop commit in the next 2 cycles
560  // TODO: don't check all exu write back
561  val misPredWb = Cat(VecInit(exuWriteback.map(wb =>
562    wb.bits.redirect.cfiUpdate.isMisPred && wb.bits.redirectValid
563  ))).orR
564  val misPredBlockCounter = Reg(UInt(3.W))
565  misPredBlockCounter := Mux(misPredWb,
566    "b111".U,
567    misPredBlockCounter >> 1.U
568  )
569  val misPredBlock = misPredBlockCounter(0)
570  val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI
571
572  io.commits.isWalk := state === s_walk
573  io.commits.isCommit := state === s_idle && !blockCommit
574  val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value)))
575  val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value)))
576  // store will be commited iff both sta & std have been writebacked
577  val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value)))
578  val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last)
579  val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i)))
580  val allowOnlyOneCommit = commit_exception || intrBitSetReg
581  // for instructions that may block others, we don't allow them to commit
582  for (i <- 0 until CommitWidth) {
583    // defaults: state === s_idle and instructions commit
584    // when intrBitSetReg, allow only one instruction to commit at each clock cycle
585    val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst
586    io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked
587    io.commits.info(i)  := dispatchDataRead(i)
588
589    when (state === s_walk) {
590      io.commits.walkValid(i) := shouldWalkVec(i)
591      when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) {
592        XSError(!walk_v(i), s"why not $i???\n")
593      }
594    }
595
596    XSInfo(io.commits.isCommit && io.commits.commitValid(i),
597      "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b\n",
598      debug_microOp(deqPtrVec(i).value).cf.pc,
599      io.commits.info(i).rfWen,
600      io.commits.info(i).ldest,
601      io.commits.info(i).pdest,
602      io.commits.info(i).old_pdest,
603      debug_exuData(deqPtrVec(i).value),
604      fflagsDataRead(i)
605    )
606    XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n",
607      debug_microOp(walkPtrVec(i).value).cf.pc,
608      io.commits.info(i).rfWen,
609      io.commits.info(i).ldest,
610      debug_exuData(walkPtrVec(i).value)
611    )
612  }
613  if (env.EnableDifftest) {
614    io.commits.info.map(info => dontTouch(info.pc))
615  }
616
617  // sync fflags/dirty_fs to csr
618  io.csr.fflags := RegNext(fflags)
619  io.csr.dirty_fs := RegNext(dirty_fs)
620
621  // commit load/store to lsq
622  val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD))
623  val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE))
624  io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U))
625  io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U))
626  // indicate a pending load or store
627  io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value))
628  io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value))
629  io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0))
630
631  /**
632    * state changes
633    * (1) redirect: switch to s_walk
634    * (2) walk: when walking comes to the end, switch to s_idle
635    */
636  val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished, s_idle, state))
637  XSPerfAccumulate("s_idle_to_idle",            state === s_idle && state_next === s_idle)
638  XSPerfAccumulate("s_idle_to_walk",            state === s_idle && state_next === s_walk)
639  XSPerfAccumulate("s_walk_to_idle",            state === s_walk && state_next === s_idle)
640  XSPerfAccumulate("s_walk_to_walk",            state === s_walk && state_next === s_walk)
641  state := state_next
642
643  /**
644    * pointers and counters
645    */
646  val deqPtrGenModule = Module(new RobDeqPtrWrapper)
647  deqPtrGenModule.io.state := state
648  deqPtrGenModule.io.deq_v := commit_v
649  deqPtrGenModule.io.deq_w := commit_w
650  deqPtrGenModule.io.exception_state := exceptionDataRead
651  deqPtrGenModule.io.intrBitSetReg := intrBitSetReg
652  deqPtrGenModule.io.hasNoSpecExec := hasNoSpecExec
653  deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value)
654  deqPtrGenModule.io.blockCommit := blockCommit
655  deqPtrVec := deqPtrGenModule.io.out
656  val deqPtrVec_next = deqPtrGenModule.io.next_out
657
658  val enqPtrGenModule = Module(new RobEnqPtrWrapper)
659  enqPtrGenModule.io.redirect := io.redirect
660  enqPtrGenModule.io.allowEnqueue := allowEnqueue
661  enqPtrGenModule.io.hasBlockBackward := hasBlockBackward
662  enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid))
663  enqPtrVec := enqPtrGenModule.io.out
664
665  val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U)
666  // next walkPtrVec:
667  // (1) redirect occurs: update according to state
668  // (2) walk: move forwards
669  val walkPtrVec_next = Mux(io.redirect.valid,
670    deqPtrVec_next,
671    Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec)
672  )
673  walkPtrVec := walkPtrVec_next
674
675  val numValidEntries = distanceBetween(enqPtr, deqPtr)
676  val commitCnt = PopCount(io.commits.commitValid)
677
678  allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U
679
680  val currentWalkPtr = Mux(state === s_walk, walkPtr, deqPtrVec_next(0))
681  val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0))
682  when (io.redirect.valid) {
683    // full condition:
684    // +& is used here because:
685    // When rob is full and the tail instruction causes a misprediction,
686    // the redirect robIdx is the deqPtr - 1. In this case, redirectWalkDistance
687    // is RobSize - 1.
688    // Since misprediction does not flush the instruction itself, flushItSelf is false.B.
689    // Previously we use `+` to count the walk distance and it causes overflows
690    // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize.
691    // The width of walkCounter also needs to be changed.
692    // empty condition:
693    // When the last instruction in ROB commits and causes a flush, a redirect
694    // will be raised later. In such circumstances, the redirect robIdx is before
695    // the deqPtrVec_next(0) and will cause underflow.
696    walkCounter := Mux(isBefore(io.redirect.bits.robIdx, deqPtrVec_next(0)), 0.U,
697                       redirectWalkDistance +& !io.redirect.bits.flushItself())
698  }.elsewhen (state === s_walk) {
699    walkCounter := walkCounter - thisCycleWalkCount
700    XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n")
701  }
702
703
704  /**
705    * States
706    * We put all the stage bits changes here.
707
708    * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit);
709    * All states: (1) valid; (2) writebacked; (3) flagBkup
710    */
711  val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value)))
712
713  // redirect logic writes 6 valid
714  val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr))
715  val redirectTail = Reg(new RobPtr)
716  val redirectIdle :: redirectBusy :: Nil = Enum(2)
717  val redirectState = RegInit(redirectIdle)
718  val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail))
719  when(redirectState === redirectBusy) {
720    redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U)
721    redirectHeadVec zip invMask foreach {
722      case (redirectHead, inv) => when(inv) {
723        valid(redirectHead.value) := false.B
724      }
725    }
726    when(!invMask.last) {
727      redirectState := redirectIdle
728    }
729  }
730  when(io.redirect.valid) {
731    redirectState := redirectBusy
732    when(redirectState === redirectIdle) {
733      redirectTail := enqPtr
734    }
735    redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) =>
736      redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
737    }
738  }
739  // enqueue logic writes 6 valid
740  for (i <- 0 until RenameWidth) {
741    when (canEnqueue(i) && !io.redirect.valid) {
742      valid(allocatePtrVec(i).value) := true.B
743    }
744  }
745  // dequeue logic writes 6 valid
746  for (i <- 0 until CommitWidth) {
747    val commitValid = io.commits.isCommit && io.commits.commitValid(i)
748    when (commitValid) {
749      valid(commitReadAddr(i)) := false.B
750    }
751  }
752  // reset: when exception, reset all valid to false
753  when (reset.asBool) {
754    for (i <- 0 until RobSize) {
755      valid(i) := false.B
756    }
757  }
758
759  // status field: writebacked
760  // enqueue logic set 6 writebacked to false
761  for (i <- 0 until RenameWidth) {
762    when (canEnqueue(i)) {
763      val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec).asUInt.orR
764      val enqHasTriggerHit = io.enq.req(i).bits.cf.trigger.getHitFrontend
765      val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove
766      writebacked(allocatePtrVec(i).value) := enqIsWritebacked && !enqHasException && !enqHasTriggerHit
767      val isStu = io.enq.req(i).bits.ctrl.fuType === FuType.stu
768      store_data_writebacked(allocatePtrVec(i).value) := !isStu
769    }
770  }
771  when (exceptionGen.io.out.valid) {
772    val wbIdx = exceptionGen.io.out.bits.robIdx.value
773    writebacked(wbIdx) := true.B
774    store_data_writebacked(wbIdx) := true.B
775  }
776  // writeback logic set numWbPorts writebacked to true
777  for ((wb, cfgs) <- exuWriteback.zip(wbExuConfigs(exeWbSel))) {
778    when (wb.valid) {
779      val wbIdx = wb.bits.uop.robIdx.value
780      val wbHasException = ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, cfgs).asUInt.orR
781      val wbHasTriggerHit = wb.bits.uop.cf.trigger.getHitBackend
782      val wbHasFlushPipe = cfgs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe
783      val wbHasReplayInst = cfgs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst
784      val block_wb = wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit
785      writebacked(wbIdx) := !block_wb
786    }
787  }
788  // store data writeback logic mark store as data_writebacked
789  for (wb <- stdWriteback) {
790    when(RegNext(wb.valid)) {
791      store_data_writebacked(RegNext(wb.bits.uop.robIdx.value)) := true.B
792    }
793  }
794
795  // flagBkup
796  // enqueue logic set 6 flagBkup at most
797  for (i <- 0 until RenameWidth) {
798    when (canEnqueue(i)) {
799      flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag
800    }
801  }
802
803  // interrupt_safe
804  for (i <- 0 until RenameWidth) {
805    // We RegNext the updates for better timing.
806    // Note that instructions won't change the system's states in this cycle.
807    when (RegNext(canEnqueue(i))) {
808      // For now, we allow non-load-store instructions to trigger interrupts
809      // For MMIO instructions, they should not trigger interrupts since they may
810      // be sent to lower level before it writes back.
811      // However, we cannot determine whether a load/store instruction is MMIO.
812      // Thus, we don't allow load/store instructions to trigger an interrupt.
813      // TODO: support non-MMIO load-store instructions to trigger interrupts
814      val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.ctrl.commitType)
815      interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts)
816    }
817  }
818
819  /**
820    * read and write of data modules
821    */
822  val commitReadAddr_next = Mux(state_next === s_idle,
823    VecInit(deqPtrVec_next.map(_.value)),
824    VecInit(walkPtrVec_next.map(_.value))
825  )
826  dispatchData.io.wen := canEnqueue
827  dispatchData.io.waddr := allocatePtrVec.map(_.value)
828  dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) =>
829    wdata.ldest := req.ctrl.ldest
830    wdata.rfWen := req.ctrl.rfWen
831    wdata.fpWen := req.ctrl.fpWen
832    wdata.wflags := req.ctrl.fpu.wflags
833    wdata.commitType := req.ctrl.commitType
834    wdata.pdest := req.pdest
835    wdata.old_pdest := req.old_pdest
836    wdata.ftqIdx := req.cf.ftqPtr
837    wdata.ftqOffset := req.cf.ftqOffset
838    wdata.isMove := req.eliminatedMove
839    wdata.pc := req.cf.pc
840  }
841  dispatchData.io.raddr := commitReadAddr_next
842
843  exceptionGen.io.redirect <> io.redirect
844  exceptionGen.io.flush := io.flushOut.valid
845  for (i <- 0 until RenameWidth) {
846    exceptionGen.io.enq(i).valid := canEnqueue(i)
847    exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx
848    exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec)
849    exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.ctrl.flushPipe
850    exceptionGen.io.enq(i).bits.replayInst := false.B
851    XSError(canEnqueue(i) && io.enq.req(i).bits.ctrl.replayInst, "enq should not set replayInst")
852    exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.ctrl.singleStep
853    exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.cf.crossPageIPFFix
854    exceptionGen.io.enq(i).bits.trigger.clear()
855    exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.cf.trigger.frontendHit
856  }
857
858  println(s"ExceptionGen:")
859  val exceptionCases = exceptionPorts.map(_._1.flatMap(_.exceptionOut).distinct.sorted)
860  require(exceptionCases.length == exceptionGen.io.wb.length)
861  for ((((configs, wb), exc_wb), i) <- exceptionPorts.zip(exceptionGen.io.wb).zipWithIndex) {
862    exc_wb.valid                := wb.valid
863    exc_wb.bits.robIdx          := wb.bits.uop.robIdx
864    exc_wb.bits.exceptionVec    := ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, configs)
865    exc_wb.bits.flushPipe       := configs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe
866    exc_wb.bits.replayInst      := configs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst
867    exc_wb.bits.singleStep      := false.B
868    exc_wb.bits.crossPageIPFFix := false.B
869    // TODO: make trigger configurable
870    exc_wb.bits.trigger.clear()
871    exc_wb.bits.trigger.backendHit := wb.bits.uop.cf.trigger.backendHit
872    println(s"  [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " +
873      s"flushPipe ${configs.exists(_.flushPipe)}, " +
874      s"replayInst ${configs.exists(_.replayInst)}")
875  }
876
877  val fflags_wb = fflagsPorts.map(_._2)
878  val fflagsDataModule = Module(new SyncDataModuleTemplate(
879    UInt(5.W), RobSize, CommitWidth, fflags_wb.size)
880  )
881  for(i <- fflags_wb.indices){
882    fflagsDataModule.io.wen  (i) := fflags_wb(i).valid
883    fflagsDataModule.io.waddr(i) := fflags_wb(i).bits.uop.robIdx.value
884    fflagsDataModule.io.wdata(i) := fflags_wb(i).bits.fflags
885  }
886  fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value))
887  fflagsDataRead := fflagsDataModule.io.rdata
888
889
890  val instrCntReg = RegInit(0.U(64.W))
891  val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) })
892  val trueCommitCnt = RegNext(commitCnt) +& fuseCommitCnt
893  val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U)
894  val instrCnt = instrCntReg + retireCounter
895  instrCntReg := instrCnt
896  io.csr.perfinfo.retiredInstr := retireCounter
897  io.robFull := !allowEnqueue
898
899  /**
900    * debug info
901    */
902  XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n")
903  XSDebug("")
904  for(i <- 0 until RobSize){
905    XSDebug(false, !valid(i), "-")
906    XSDebug(false, valid(i) && writebacked(i), "w")
907    XSDebug(false, valid(i) && !writebacked(i), "v")
908  }
909  XSDebug(false, true.B, "\n")
910
911  for(i <- 0 until RobSize) {
912    if(i % 4 == 0) XSDebug("")
913    XSDebug(false, true.B, "%x ", debug_microOp(i).cf.pc)
914    XSDebug(false, !valid(i), "- ")
915    XSDebug(false, valid(i) && writebacked(i), "w ")
916    XSDebug(false, valid(i) && !writebacked(i), "v ")
917    if(i % 4 == 3) XSDebug(false, true.B, "\n")
918  }
919
920  def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U)
921  def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U)
922
923  val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_))
924  XSPerfAccumulate("clock_cycle", 1.U)
925  QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue)
926  XSPerfAccumulate("commitUop", ifCommit(commitCnt))
927  XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt))
928  val commitIsMove = commitDebugUop.map(_.ctrl.isMove)
929  XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })))
930  val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove)
931  XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e })))
932  XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt))
933  val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD)
934  val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t }
935  XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid)))
936  val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH)
937  val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t }
938  XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid)))
939  val commitLoadWaitBit = commitDebugUop.map(_.cf.loadWaitBit)
940  XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })))
941  val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE)
942  XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })))
943  XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i))))
944  // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire)))
945  // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready)))
946  XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U))
947  XSPerfAccumulate("walkCycle", state === s_walk)
948  val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value)
949  val deqUopCommitType = io.commits.info(0).commitType
950  XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL)
951  XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH)
952  XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD)
953  XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE)
954  XSPerfAccumulate("robHeadPC", io.commits.info(0).pc)
955  val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime)
956  val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime)
957  val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime)
958  val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime)
959  val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime)
960  val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime)
961  val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime)
962  def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = {
963    cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _)
964  }
965  for (fuType <- FuType.functionNameMap.keys) {
966    val fuName = FuType.functionNameMap(fuType)
967    val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fuType === fuType.U )
968    XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType)))
969    XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency)))
970    XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency)))
971    XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency)))
972    XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency)))
973    XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency)))
974    XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency)))
975    XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency)))
976    if (fuType == FuType.fmac.litValue) {
977      val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fpu.ren3 )
978      XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma)))
979      XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency)))
980      XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency)))
981    }
982  }
983
984  //difftest signals
985  val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U)))).value
986
987  val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W)))
988  val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W)))
989
990  for(i <- 0 until CommitWidth) {
991    val idx = deqPtrVec(i).value
992    wdata(i) := debug_exuData(idx)
993    wpc(i) := SignExt(commitDebugUop(i).cf.pc, XLEN)
994  }
995
996  if (env.EnableDifftest) {
997    for (i <- 0 until CommitWidth) {
998      val difftest = Module(new DifftestInstrCommit)
999      difftest.io.clock    := clock
1000      difftest.io.coreid   := io.hartId
1001      difftest.io.index    := i.U
1002
1003      val ptr = deqPtrVec(i).value
1004      val uop = commitDebugUop(i)
1005      val exuOut = debug_exuDebug(ptr)
1006      val exuData = debug_exuData(ptr)
1007      difftest.io.valid    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1008      difftest.io.pc       := RegNext(RegNext(RegNext(SignExt(uop.cf.pc, XLEN))))
1009      difftest.io.instr    := RegNext(RegNext(RegNext(uop.cf.instr)))
1010      difftest.io.special  := RegNext(RegNext(RegNext(CommitType.isFused(io.commits.info(i).commitType))))
1011      // when committing an eliminated move instruction,
1012      // we must make sure that skip is properly set to false (output from EXU is random value)
1013      difftest.io.skip     := RegNext(RegNext(RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))))
1014      difftest.io.isRVC    := RegNext(RegNext(RegNext(uop.cf.pd.isRVC)))
1015      difftest.io.rfwen    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U)))
1016      difftest.io.fpwen    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).fpWen)))
1017      difftest.io.wpdest   := RegNext(RegNext(RegNext(io.commits.info(i).pdest)))
1018      difftest.io.wdest    := RegNext(RegNext(RegNext(io.commits.info(i).ldest)))
1019
1020      // // runahead commit hint
1021      // val runahead_commit = Module(new DifftestRunaheadCommitEvent)
1022      // runahead_commit.io.clock := clock
1023      // runahead_commit.io.coreid := io.hartId
1024      // runahead_commit.io.index := i.U
1025      // runahead_commit.io.valid := difftest.io.valid &&
1026      //   (commitBranchValid(i) || commitIsStore(i))
1027      // // TODO: is branch or store
1028      // runahead_commit.io.pc    := difftest.io.pc
1029    }
1030  }
1031  else if (env.AlwaysBasicDiff) {
1032    // These are the structures used by difftest only and should be optimized after synthesis.
1033    val dt_eliminatedMove = Mem(RobSize, Bool())
1034    val dt_isRVC = Mem(RobSize, Bool())
1035    val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle))
1036    for (i <- 0 until RenameWidth) {
1037      when (canEnqueue(i)) {
1038        dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove
1039        dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.cf.pd.isRVC
1040      }
1041    }
1042    for (wb <- exuWriteback) {
1043      when (wb.valid) {
1044        val wbIdx = wb.bits.uop.robIdx.value
1045        dt_exuDebug(wbIdx) := wb.bits.debug
1046      }
1047    }
1048    // Always instantiate basic difftest modules.
1049    for (i <- 0 until CommitWidth) {
1050      val commitInfo = io.commits.info(i)
1051      val ptr = deqPtrVec(i).value
1052      val exuOut = dt_exuDebug(ptr)
1053      val eliminatedMove = dt_eliminatedMove(ptr)
1054      val isRVC = dt_isRVC(ptr)
1055
1056      val difftest = Module(new DifftestBasicInstrCommit)
1057      difftest.io.clock   := clock
1058      difftest.io.coreid  := io.hartId
1059      difftest.io.index   := i.U
1060      difftest.io.valid   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1061      difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(commitInfo.commitType))))
1062      difftest.io.skip    := RegNext(RegNext(RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))))
1063      difftest.io.isRVC   := RegNext(RegNext(RegNext(isRVC)))
1064      difftest.io.rfwen   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U)))
1065      difftest.io.fpwen   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.fpWen)))
1066      difftest.io.wpdest  := RegNext(RegNext(RegNext(commitInfo.pdest)))
1067      difftest.io.wdest   := RegNext(RegNext(RegNext(commitInfo.ldest)))
1068    }
1069  }
1070
1071  if (env.EnableDifftest) {
1072    for (i <- 0 until CommitWidth) {
1073      val difftest = Module(new DifftestLoadEvent)
1074      difftest.io.clock  := clock
1075      difftest.io.coreid := io.hartId
1076      difftest.io.index  := i.U
1077
1078      val ptr = deqPtrVec(i).value
1079      val uop = commitDebugUop(i)
1080      val exuOut = debug_exuDebug(ptr)
1081      difftest.io.valid  := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1082      difftest.io.paddr  := RegNext(RegNext(RegNext(exuOut.paddr)))
1083      difftest.io.opType := RegNext(RegNext(RegNext(uop.ctrl.fuOpType)))
1084      difftest.io.fuType := RegNext(RegNext(RegNext(uop.ctrl.fuType)))
1085    }
1086  }
1087
1088  // Always instantiate basic difftest modules.
1089  if (env.EnableDifftest) {
1090    val dt_isXSTrap = Mem(RobSize, Bool())
1091    for (i <- 0 until RenameWidth) {
1092      when (canEnqueue(i)) {
1093        dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap
1094      }
1095    }
1096    val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) }
1097    val hitTrap = trapVec.reduce(_||_)
1098    val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1))
1099    val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN)
1100    val difftest = Module(new DifftestTrapEvent)
1101    difftest.io.clock    := clock
1102    difftest.io.coreid   := io.hartId
1103    difftest.io.valid    := hitTrap
1104    difftest.io.code     := trapCode
1105    difftest.io.pc       := trapPC
1106    difftest.io.cycleCnt := timer
1107    difftest.io.instrCnt := instrCnt
1108    difftest.io.hasWFI   := hasWFI
1109  }
1110  else if (env.AlwaysBasicDiff) {
1111    val dt_isXSTrap = Mem(RobSize, Bool())
1112    for (i <- 0 until RenameWidth) {
1113      when (canEnqueue(i)) {
1114        dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap
1115      }
1116    }
1117    val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) }
1118    val hitTrap = trapVec.reduce(_||_)
1119    val difftest = Module(new DifftestBasicTrapEvent)
1120    difftest.io.clock    := clock
1121    difftest.io.coreid   := io.hartId
1122    difftest.io.valid    := hitTrap
1123    difftest.io.cycleCnt := timer
1124    difftest.io.instrCnt := instrCnt
1125  }
1126
1127  val validEntriesBanks = (0 until (RobSize + 63) / 64).map(i => RegNext(PopCount(valid.drop(i * 64).take(64))))
1128  val validEntries = RegNext(ParallelOperation(validEntriesBanks, (a: UInt, b: UInt) => a +& b))
1129  val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })
1130  val commitLoadVec = VecInit(commitLoadValid)
1131  val commitBranchVec = VecInit(commitBranchValid)
1132  val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })
1133  val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })
1134  val perfEvents = Seq(
1135    ("rob_interrupt_num      ", io.flushOut.valid && intrEnable                                       ),
1136    ("rob_exception_num      ", io.flushOut.valid && exceptionEnable                                  ),
1137    ("rob_flush_pipe_num     ", io.flushOut.valid && isFlushPipe                                      ),
1138    ("rob_replay_inst_num    ", io.flushOut.valid && isFlushPipe && deqHasReplayInst                  ),
1139    ("rob_commitUop          ", ifCommit(commitCnt)                                                   ),
1140    ("rob_commitInstr        ", ifCommitReg(trueCommitCnt)                                            ),
1141    ("rob_commitInstrMove    ", ifCommitReg(PopCount(RegNext(commitMoveVec)))                         ),
1142    ("rob_commitInstrFused   ", ifCommitReg(fuseCommitCnt)                                            ),
1143    ("rob_commitInstrLoad    ", ifCommitReg(PopCount(RegNext(commitLoadVec)))                         ),
1144    ("rob_commitInstrBranch  ", ifCommitReg(PopCount(RegNext(commitBranchVec)))                       ),
1145    ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec)))                     ),
1146    ("rob_commitInstrStore   ", ifCommitReg(PopCount(RegNext(commitStoreVec)))                        ),
1147    ("rob_walkInstr          ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)           ),
1148    ("rob_walkCycle          ", (state === s_walk)                                                    ),
1149    ("rob_1_4_valid          ", validEntries <= (RobSize / 4).U                                       ),
1150    ("rob_2_4_valid          ", validEntries >  (RobSize / 4).U && validEntries <= (RobSize / 2).U    ),
1151    ("rob_3_4_valid          ", validEntries >  (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U),
1152    ("rob_4_4_valid          ", validEntries >  (RobSize * 3 / 4).U                                   ),
1153  )
1154  generatePerfEvent()
1155}
1156