1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.rob 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 24import utils._ 25import xiangshan._ 26import xiangshan.backend.exu.ExuConfig 27import xiangshan.frontend.FtqPtr 28 29class RobPtr(implicit p: Parameters) extends CircularQueuePtr[RobPtr]( 30 p => p(XSCoreParamsKey).RobSize 31) with HasCircularQueuePtrHelper { 32 33 def needFlush(redirect: Valid[Redirect]): Bool = { 34 val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx 35 redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx)) 36 } 37 38 def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR 39} 40 41object RobPtr { 42 def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = { 43 val ptr = Wire(new RobPtr) 44 ptr.flag := f 45 ptr.value := v 46 ptr 47 } 48} 49 50class RobCSRIO(implicit p: Parameters) extends XSBundle { 51 val intrBitSet = Input(Bool()) 52 val trapTarget = Input(UInt(VAddrBits.W)) 53 val isXRet = Input(Bool()) 54 val wfiEvent = Input(Bool()) 55 56 val fflags = Output(Valid(UInt(5.W))) 57 val dirty_fs = Output(Bool()) 58 val perfinfo = new Bundle { 59 val retiredInstr = Output(UInt(3.W)) 60 } 61} 62 63class RobLsqIO(implicit p: Parameters) extends XSBundle { 64 val lcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 65 val scommit = Output(UInt(log2Up(CommitWidth + 1).W)) 66 val pendingld = Output(Bool()) 67 val pendingst = Output(Bool()) 68 val commit = Output(Bool()) 69} 70 71class RobEnqIO(implicit p: Parameters) extends XSBundle { 72 val canAccept = Output(Bool()) 73 val isEmpty = Output(Bool()) 74 // valid vector, for robIdx gen and walk 75 val needAlloc = Vec(RenameWidth, Input(Bool())) 76 val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp))) 77 val resp = Vec(RenameWidth, Output(new RobPtr)) 78} 79 80class RobDispatchData(implicit p: Parameters) extends RobCommitInfo 81 82class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 83 val io = IO(new Bundle { 84 // for commits/flush 85 val state = Input(UInt(2.W)) 86 val deq_v = Vec(CommitWidth, Input(Bool())) 87 val deq_w = Vec(CommitWidth, Input(Bool())) 88 val exception_state = Flipped(ValidIO(new RobExceptionInfo)) 89 // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth) 90 val intrBitSetReg = Input(Bool()) 91 val hasNoSpecExec = Input(Bool()) 92 val interrupt_safe = Input(Bool()) 93 val blockCommit = Input(Bool()) 94 // output: the CommitWidth deqPtr 95 val out = Vec(CommitWidth, Output(new RobPtr)) 96 val next_out = Vec(CommitWidth, Output(new RobPtr)) 97 }) 98 99 val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr)))) 100 101 // for exceptions (flushPipe included) and interrupts: 102 // only consider the first instruction 103 val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe 104 val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0) 105 val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable) 106 107 // for normal commits: only to consider when there're no exceptions 108 // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions. 109 val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last) 110 val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i))) 111 val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B) 112 // when io.intrBitSetReg or there're possible exceptions in these instructions, 113 // only one instruction is allowed to commit 114 val allowOnlyOne = commit_exception || io.intrBitSetReg 115 val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt) 116 117 val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt)) 118 val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec) 119 120 deqPtrVec := deqPtrVec_next 121 122 io.next_out := deqPtrVec_next 123 io.out := deqPtrVec 124 125 when (io.state === 0.U) { 126 XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt) 127 } 128 129} 130 131class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 132 val io = IO(new Bundle { 133 // for input redirect 134 val redirect = Input(Valid(new Redirect)) 135 // for enqueue 136 val allowEnqueue = Input(Bool()) 137 val hasBlockBackward = Input(Bool()) 138 val enq = Vec(RenameWidth, Input(Bool())) 139 val out = Output(Vec(RenameWidth, new RobPtr)) 140 }) 141 142 val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr))) 143 144 // enqueue 145 val canAccept = io.allowEnqueue && !io.hasBlockBackward 146 val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U) 147 148 for ((ptr, i) <- enqPtrVec.zipWithIndex) { 149 when(io.redirect.valid) { 150 ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 151 }.otherwise { 152 ptr := ptr + dispatchNum 153 } 154 } 155 156 io.out := enqPtrVec 157 158} 159 160class RobExceptionInfo(implicit p: Parameters) extends XSBundle { 161 // val valid = Bool() 162 val robIdx = new RobPtr 163 val exceptionVec = ExceptionVec() 164 val flushPipe = Bool() 165 val replayInst = Bool() // redirect to that inst itself 166 val singleStep = Bool() // TODO add frontend hit beneath 167 val crossPageIPFFix = Bool() 168 val trigger = new TriggerCf 169 170// def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend 171// def trigger_after = trigger.getTimingBackend && trigger.getHitBackend 172 def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit 173 def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit 174 // only exceptions are allowed to writeback when enqueue 175 def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit 176} 177 178class ExceptionGen(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 179 val io = IO(new Bundle { 180 val redirect = Input(Valid(new Redirect)) 181 val flush = Input(Bool()) 182 val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo))) 183 val wb = Vec(1 + LoadPipelineWidth + StorePipelineWidth, Flipped(ValidIO(new RobExceptionInfo))) 184 val out = ValidIO(new RobExceptionInfo) 185 val state = ValidIO(new RobExceptionInfo) 186 }) 187 188 def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = { 189 assert(valid.length == bits.length) 190 assert(isPow2(valid.length)) 191 if (valid.length == 1) { 192 (valid, bits) 193 } else if (valid.length == 2) { 194 val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0))))) 195 for (i <- res.indices) { 196 res(i).valid := valid(i) 197 res(i).bits := bits(i) 198 } 199 val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1)) 200 (Seq(oldest.valid), Seq(oldest.bits)) 201 } else { 202 val left = getOldest(valid.take(valid.length / 2), bits.take(valid.length / 2)) 203 val right = getOldest(valid.takeRight(valid.length / 2), bits.takeRight(valid.length / 2)) 204 getOldest(left._1 ++ right._1, left._2 ++ right._2) 205 } 206 } 207 208 val current = Reg(Valid(new RobExceptionInfo)) 209 210 // orR the exceptionVec 211 val lastCycleFlush = RegNext(io.flush) 212 val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush)) 213 val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush) 214 215 // s0: compare wb(1)~wb(LoadPipelineWidth) and wb(1 + LoadPipelineWidth)~wb(LoadPipelineWidth + StorePipelineWidth) 216 val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) } 217 val csr_wb_bits = io.wb(0).bits 218 val load_wb_bits = getOldest(in_wb_valid.slice(1, 1 + LoadPipelineWidth), io.wb.map(_.bits).slice(1, 1 + LoadPipelineWidth))._2(0) 219 val store_wb_bits = getOldest(in_wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth), io.wb.map(_.bits).slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth))._2(0) 220 val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid.slice(1, 1 + LoadPipelineWidth).reduce(_ || _), wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth).reduce(_ || _)))) 221 val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits))) 222 223 // s1: compare last four and current flush 224 val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) }) 225 val compare_01_valid = s0_out_valid(0) || s0_out_valid(1) 226 val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0)) 227 val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2)) 228 val s1_out_bits = RegNext(compare_bits) 229 val s1_out_valid = RegNext(s1_valid.asUInt.orR) 230 231 val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 232 val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits))) 233 234 // s2: compare the input exception with the current one 235 // priorities: 236 // (1) system reset 237 // (2) current is valid: flush, remain, merge, update 238 // (3) current is not valid: s1 or enq 239 val current_flush = current.bits.robIdx.needFlush(io.redirect) || io.flush 240 val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush 241 when (reset.asBool) { 242 current.valid := false.B 243 }.elsewhen (current.valid) { 244 when (current_flush) { 245 current.valid := Mux(s1_flush, false.B, s1_out_valid) 246 } 247 when (s1_out_valid && !s1_flush) { 248 when (isAfter(current.bits.robIdx, s1_out_bits.robIdx)) { 249 current.bits := s1_out_bits 250 }.elsewhen (current.bits.robIdx === s1_out_bits.robIdx) { 251 current.bits.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.bits.exceptionVec.asUInt).asTypeOf(ExceptionVec()) 252 current.bits.flushPipe := s1_out_bits.flushPipe || current.bits.flushPipe 253 current.bits.replayInst := s1_out_bits.replayInst || current.bits.replayInst 254 current.bits.singleStep := s1_out_bits.singleStep || current.bits.singleStep 255 current.bits.trigger := (s1_out_bits.trigger.asUInt | current.bits.trigger.asUInt).asTypeOf(new TriggerCf) 256 } 257 } 258 }.elsewhen (s1_out_valid && !s1_flush) { 259 current.valid := true.B 260 current.bits := s1_out_bits 261 }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) { 262 current.valid := true.B 263 current.bits := enq_bits 264 } 265 266 io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback 267 io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits) 268 io.state := current 269 270} 271 272class RobFlushInfo(implicit p: Parameters) extends XSBundle { 273 val ftqIdx = new FtqPtr 274 val robIdx = new RobPtr 275 val ftqOffset = UInt(log2Up(PredictWidth).W) 276 val replayInst = Bool() 277} 278 279class Rob(implicit p: Parameters) extends LazyModule with HasWritebackSink with HasXSParameter { 280 281 lazy val module = new RobImp(this) 282 283 override def generateWritebackIO( 284 thisMod: Option[HasWritebackSource] = None, 285 thisModImp: Option[HasWritebackSourceImp] = None 286 ): Unit = { 287 val sources = writebackSinksImp(thisMod, thisModImp) 288 module.io.writeback.zip(sources).foreach(x => x._1 := x._2) 289 } 290} 291 292class RobImp(outer: Rob)(implicit p: Parameters) extends LazyModuleImp(outer) 293 with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents { 294 val wbExuConfigs = outer.writebackSinksParams.map(_.exuConfigs) 295 val numWbPorts = wbExuConfigs.map(_.length) 296 297 val io = IO(new Bundle() { 298 val hartId = Input(UInt(8.W)) 299 val redirect = Input(Valid(new Redirect)) 300 val enq = new RobEnqIO 301 val flushOut = ValidIO(new Redirect) 302 val exception = ValidIO(new ExceptionInfo) 303 // exu + brq 304 val writeback = MixedVec(numWbPorts.map(num => Vec(num, Flipped(ValidIO(new ExuOutput))))) 305 val commits = Output(new RobCommitIO) 306 val lsq = new RobLsqIO 307 val robDeqPtr = Output(new RobPtr) 308 val csr = new RobCSRIO 309 val robFull = Output(Bool()) 310 val cpu_halt = Output(Bool()) 311 }) 312 313 def selectWb(index: Int, func: Seq[ExuConfig] => Boolean): Seq[(Seq[ExuConfig], ValidIO[ExuOutput])] = { 314 wbExuConfigs(index).zip(io.writeback(index)).filter(x => func(x._1)) 315 } 316 val exeWbSel = outer.selWritebackSinks(_.exuConfigs.length) 317 val fflagsWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.writeFflags))) 318 val fflagsPorts = selectWb(fflagsWbSel, _.exists(_.writeFflags)) 319 val exceptionWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.needExceptionGen))) 320 val exceptionPorts = selectWb(fflagsWbSel, _.exists(_.needExceptionGen)) 321 val exuWbPorts = selectWb(exeWbSel, _.forall(_ != StdExeUnitCfg)) 322 val stdWbPorts = selectWb(exeWbSel, _.contains(StdExeUnitCfg)) 323 println(s"Rob: size $RobSize, numWbPorts: $numWbPorts, commitwidth: $CommitWidth") 324 println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}") 325 println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}") 326 println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}") 327 328 329 val exuWriteback = exuWbPorts.map(_._2) 330 val stdWriteback = stdWbPorts.map(_._2) 331 332 // instvalid field 333 val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 334 // writeback status 335 val writebacked = Mem(RobSize, Bool()) 336 val store_data_writebacked = Mem(RobSize, Bool()) 337 // data for redirect, exception, etc. 338 val flagBkup = Mem(RobSize, Bool()) 339 // some instructions are not allowed to trigger interrupts 340 // They have side effects on the states of the processor before they write back 341 val interrupt_safe = Mem(RobSize, Bool()) 342 343 // data for debug 344 // Warn: debug_* prefix should not exist in generated verilog. 345 val debug_microOp = Mem(RobSize, new MicroOp) 346 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug 347 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug 348 349 // pointers 350 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 351 val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr)) 352 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 353 354 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 355 val allowEnqueue = RegInit(true.B) 356 357 val enqPtr = enqPtrVec.head 358 val deqPtr = deqPtrVec(0) 359 val walkPtr = walkPtrVec(0) 360 361 val isEmpty = enqPtr === deqPtr 362 val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level) 363 364 /** 365 * states of Rob 366 */ 367 val s_idle :: s_walk :: Nil = Enum(2) 368 val state = RegInit(s_idle) 369 370 /** 371 * Data Modules 372 * 373 * CommitDataModule: data from dispatch 374 * (1) read: commits/walk/exception 375 * (2) write: enqueue 376 * 377 * WritebackData: data from writeback 378 * (1) read: commits/walk/exception 379 * (2) write: write back from exe units 380 */ 381 val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth)) 382 val dispatchDataRead = dispatchData.io.rdata 383 384 val exceptionGen = Module(new ExceptionGen) 385 val exceptionDataRead = exceptionGen.io.state 386 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 387 388 io.robDeqPtr := deqPtr 389 390 /** 391 * Enqueue (from dispatch) 392 */ 393 // special cases 394 val hasBlockBackward = RegInit(false.B) 395 val hasNoSpecExec = RegInit(false.B) 396 val doingSvinval = RegInit(false.B) 397 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 398 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 399 when (isEmpty) { hasBlockBackward:= false.B } 400 // When any instruction commits, hasNoSpecExec should be set to false.B 401 when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasNoSpecExec:= false.B } 402 403 // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing. 404 // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle. 405 // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts. 406 val hasWFI = RegInit(false.B) 407 io.cpu_halt := hasWFI 408 when (RegNext(RegNext(io.csr.wfiEvent))) { 409 hasWFI := false.B 410 } 411 412 val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.needAlloc.take(i))))) 413 io.enq.canAccept := allowEnqueue && !hasBlockBackward 414 io.enq.resp := allocatePtrVec 415 val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept)) 416 val timer = GTimer() 417 for (i <- 0 until RenameWidth) { 418 // we don't check whether io.redirect is valid here since redirect has higher priority 419 when (canEnqueue(i)) { 420 val enqUop = io.enq.req(i).bits 421 val enqIndex = allocatePtrVec(i).value 422 // store uop in data module and debug_microOp Vec 423 debug_microOp(enqIndex) := enqUop 424 debug_microOp(enqIndex).debugInfo.dispatchTime := timer 425 debug_microOp(enqIndex).debugInfo.enqRsTime := timer 426 debug_microOp(enqIndex).debugInfo.selectTime := timer 427 debug_microOp(enqIndex).debugInfo.issueTime := timer 428 debug_microOp(enqIndex).debugInfo.writebackTime := timer 429 when (enqUop.ctrl.blockBackward) { 430 hasBlockBackward := true.B 431 } 432 when (enqUop.ctrl.noSpecExec) { 433 hasNoSpecExec := true.B 434 } 435 val enqHasTriggerHit = io.enq.req(i).bits.cf.trigger.getHitFrontend 436 val enqHasException = ExceptionNO.selectFrontend(enqUop.cf.exceptionVec).asUInt.orR 437 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 438 when(!enqHasTriggerHit && !enqHasException && FuType.isSvinvalBegin(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe)) 439 { 440 doingSvinval := true.B 441 } 442 // the end instruction of Svinval enqs so clear doingSvinval 443 when(!enqHasTriggerHit && !enqHasException && FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe)) 444 { 445 doingSvinval := false.B 446 } 447 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 448 assert(!doingSvinval || (FuType.isSvinval(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe) || 449 FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe))) 450 when (enqUop.ctrl.isWFI && !enqHasException && !enqHasTriggerHit) { 451 hasWFI := true.B 452 } 453 } 454 } 455 val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(_.valid)), 0.U) 456 io.enq.isEmpty := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR) 457 458 /** 459 * Writeback (from execution units) 460 */ 461 for (wb <- exuWriteback) { 462 when (wb.valid) { 463 val wbIdx = wb.bits.uop.robIdx.value 464 debug_exuData(wbIdx) := wb.bits.data 465 debug_exuDebug(wbIdx) := wb.bits.debug 466 debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.uop.debugInfo.enqRsTime 467 debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.uop.debugInfo.selectTime 468 debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.uop.debugInfo.issueTime 469 debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.uop.debugInfo.writebackTime 470 471 val debug_Uop = debug_microOp(wbIdx) 472 XSInfo(true.B, 473 p"writebacked pc 0x${Hexadecimal(debug_Uop.cf.pc)} wen ${debug_Uop.ctrl.rfWen} " + 474 p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ctrl.ldest} pdst ${debug_Uop.pdest} " + 475 p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.uop.robIdx}\n" 476 ) 477 } 478 } 479 val writebackNum = PopCount(exuWriteback.map(_.valid)) 480 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 481 482 483 /** 484 * RedirectOut: Interrupt and Exceptions 485 */ 486 val deqDispatchData = dispatchDataRead(0) 487 val debug_deqUop = debug_microOp(deqPtr.value) 488 489 val intrBitSetReg = RegNext(io.csr.intrBitSet) 490 val intrEnable = intrBitSetReg && !hasNoSpecExec && interrupt_safe(deqPtr.value) 491 val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 492 val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR || 493 exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit) 494 val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe 495 val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst 496 val exceptionEnable = writebacked(deqPtr.value) && deqHasException 497 498 XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n") 499 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n") 500 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n") 501 502 val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst) 503 504 // io.flushOut will trigger redirect at the next cycle. 505 // Block any redirect or commit at the next cycle. 506 val lastCycleFlush = RegNext(io.flushOut.valid) 507 508 io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush 509 io.flushOut.bits := DontCare 510 io.flushOut.bits.robIdx := deqPtr 511 io.flushOut.bits.ftqIdx := deqDispatchData.ftqIdx 512 io.flushOut.bits.ftqOffset := deqDispatchData.ftqOffset 513 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next" 514 io.flushOut.bits.interrupt := true.B 515 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 516 XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable) 517 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 518 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 519 520 val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush 521 io.exception.valid := RegNext(exceptionHappen) 522 io.exception.bits.uop := RegEnable(debug_deqUop, exceptionHappen) 523 io.exception.bits.uop.ctrl.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 524 io.exception.bits.uop.cf.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 525 io.exception.bits.uop.ctrl.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 526 io.exception.bits.uop.cf.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 527 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 528 io.exception.bits.uop.cf.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen) 529 530 XSDebug(io.flushOut.valid, 531 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.uop.cf.pc)} intr $intrEnable " + 532 p"excp $exceptionEnable flushPipe $isFlushPipe " + 533 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 534 535 536 /** 537 * Commits (and walk) 538 * They share the same width. 539 */ 540 val walkCounter = Reg(UInt(log2Up(RobSize + 1).W)) 541 val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter)) 542 val walkFinished = walkCounter <= CommitWidth.U 543 544 require(RenameWidth <= CommitWidth) 545 546 // wiring to csr 547 val (wflags, fpWen) = (0 until CommitWidth).map(i => { 548 val v = io.commits.commitValid(i) 549 val info = io.commits.info(i) 550 (v & info.wflags, v & info.fpWen) 551 }).unzip 552 val fflags = Wire(Valid(UInt(5.W))) 553 fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR 554 fflags.bits := wflags.zip(fflagsDataRead).map({ 555 case (w, f) => Mux(w, f, 0.U) 556 }).reduce(_|_) 557 val dirty_fs = io.commits.isCommit && VecInit(fpWen).asUInt.orR 558 559 // when mispredict branches writeback, stop commit in the next 2 cycles 560 // TODO: don't check all exu write back 561 val misPredWb = Cat(VecInit(exuWriteback.map(wb => 562 wb.bits.redirect.cfiUpdate.isMisPred && wb.bits.redirectValid 563 ))).orR 564 val misPredBlockCounter = Reg(UInt(3.W)) 565 misPredBlockCounter := Mux(misPredWb, 566 "b111".U, 567 misPredBlockCounter >> 1.U 568 ) 569 val misPredBlock = misPredBlockCounter(0) 570 val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI 571 572 io.commits.isWalk := state === s_walk 573 io.commits.isCommit := state === s_idle && !blockCommit 574 val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value))) 575 val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value))) 576 // store will be commited iff both sta & std have been writebacked 577 val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value))) 578 val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last) 579 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i))) 580 val allowOnlyOneCommit = commit_exception || intrBitSetReg 581 // for instructions that may block others, we don't allow them to commit 582 for (i <- 0 until CommitWidth) { 583 // defaults: state === s_idle and instructions commit 584 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 585 val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst 586 io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked 587 io.commits.info(i) := dispatchDataRead(i) 588 589 when (state === s_walk) { 590 io.commits.walkValid(i) := shouldWalkVec(i) 591 when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) { 592 XSError(!walk_v(i), s"why not $i???\n") 593 } 594 } 595 596 XSInfo(io.commits.isCommit && io.commits.commitValid(i), 597 "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b\n", 598 debug_microOp(deqPtrVec(i).value).cf.pc, 599 io.commits.info(i).rfWen, 600 io.commits.info(i).ldest, 601 io.commits.info(i).pdest, 602 io.commits.info(i).old_pdest, 603 debug_exuData(deqPtrVec(i).value), 604 fflagsDataRead(i) 605 ) 606 XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n", 607 debug_microOp(walkPtrVec(i).value).cf.pc, 608 io.commits.info(i).rfWen, 609 io.commits.info(i).ldest, 610 debug_exuData(walkPtrVec(i).value) 611 ) 612 } 613 if (env.EnableDifftest) { 614 io.commits.info.map(info => dontTouch(info.pc)) 615 } 616 617 // sync fflags/dirty_fs to csr 618 io.csr.fflags := RegNext(fflags) 619 io.csr.dirty_fs := RegNext(dirty_fs) 620 621 // commit load/store to lsq 622 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 623 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE)) 624 io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U)) 625 io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U)) 626 // indicate a pending load or store 627 io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value)) 628 io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value)) 629 io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0)) 630 631 /** 632 * state changes 633 * (1) redirect: switch to s_walk 634 * (2) walk: when walking comes to the end, switch to s_idle 635 */ 636 val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished, s_idle, state)) 637 XSPerfAccumulate("s_idle_to_idle", state === s_idle && state_next === s_idle) 638 XSPerfAccumulate("s_idle_to_walk", state === s_idle && state_next === s_walk) 639 XSPerfAccumulate("s_walk_to_idle", state === s_walk && state_next === s_idle) 640 XSPerfAccumulate("s_walk_to_walk", state === s_walk && state_next === s_walk) 641 state := state_next 642 643 /** 644 * pointers and counters 645 */ 646 val deqPtrGenModule = Module(new RobDeqPtrWrapper) 647 deqPtrGenModule.io.state := state 648 deqPtrGenModule.io.deq_v := commit_v 649 deqPtrGenModule.io.deq_w := commit_w 650 deqPtrGenModule.io.exception_state := exceptionDataRead 651 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 652 deqPtrGenModule.io.hasNoSpecExec := hasNoSpecExec 653 deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value) 654 deqPtrGenModule.io.blockCommit := blockCommit 655 deqPtrVec := deqPtrGenModule.io.out 656 val deqPtrVec_next = deqPtrGenModule.io.next_out 657 658 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 659 enqPtrGenModule.io.redirect := io.redirect 660 enqPtrGenModule.io.allowEnqueue := allowEnqueue 661 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 662 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid)) 663 enqPtrVec := enqPtrGenModule.io.out 664 665 val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U) 666 // next walkPtrVec: 667 // (1) redirect occurs: update according to state 668 // (2) walk: move forwards 669 val walkPtrVec_next = Mux(io.redirect.valid, 670 deqPtrVec_next, 671 Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec) 672 ) 673 walkPtrVec := walkPtrVec_next 674 675 val numValidEntries = distanceBetween(enqPtr, deqPtr) 676 val commitCnt = PopCount(io.commits.commitValid) 677 678 allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U 679 680 val currentWalkPtr = Mux(state === s_walk, walkPtr, deqPtrVec_next(0)) 681 val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0)) 682 when (io.redirect.valid) { 683 // full condition: 684 // +& is used here because: 685 // When rob is full and the tail instruction causes a misprediction, 686 // the redirect robIdx is the deqPtr - 1. In this case, redirectWalkDistance 687 // is RobSize - 1. 688 // Since misprediction does not flush the instruction itself, flushItSelf is false.B. 689 // Previously we use `+` to count the walk distance and it causes overflows 690 // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize. 691 // The width of walkCounter also needs to be changed. 692 // empty condition: 693 // When the last instruction in ROB commits and causes a flush, a redirect 694 // will be raised later. In such circumstances, the redirect robIdx is before 695 // the deqPtrVec_next(0) and will cause underflow. 696 walkCounter := Mux(isBefore(io.redirect.bits.robIdx, deqPtrVec_next(0)), 0.U, 697 redirectWalkDistance +& !io.redirect.bits.flushItself()) 698 }.elsewhen (state === s_walk) { 699 walkCounter := walkCounter - thisCycleWalkCount 700 XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n") 701 } 702 703 704 /** 705 * States 706 * We put all the stage bits changes here. 707 708 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 709 * All states: (1) valid; (2) writebacked; (3) flagBkup 710 */ 711 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 712 713 // redirect logic writes 6 valid 714 val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr)) 715 val redirectTail = Reg(new RobPtr) 716 val redirectIdle :: redirectBusy :: Nil = Enum(2) 717 val redirectState = RegInit(redirectIdle) 718 val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail)) 719 when(redirectState === redirectBusy) { 720 redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U) 721 redirectHeadVec zip invMask foreach { 722 case (redirectHead, inv) => when(inv) { 723 valid(redirectHead.value) := false.B 724 } 725 } 726 when(!invMask.last) { 727 redirectState := redirectIdle 728 } 729 } 730 when(io.redirect.valid) { 731 redirectState := redirectBusy 732 when(redirectState === redirectIdle) { 733 redirectTail := enqPtr 734 } 735 redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) => 736 redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 737 } 738 } 739 // enqueue logic writes 6 valid 740 for (i <- 0 until RenameWidth) { 741 when (canEnqueue(i) && !io.redirect.valid) { 742 valid(allocatePtrVec(i).value) := true.B 743 } 744 } 745 // dequeue logic writes 6 valid 746 for (i <- 0 until CommitWidth) { 747 val commitValid = io.commits.isCommit && io.commits.commitValid(i) 748 when (commitValid) { 749 valid(commitReadAddr(i)) := false.B 750 } 751 } 752 // reset: when exception, reset all valid to false 753 when (reset.asBool) { 754 for (i <- 0 until RobSize) { 755 valid(i) := false.B 756 } 757 } 758 759 // status field: writebacked 760 // enqueue logic set 6 writebacked to false 761 for (i <- 0 until RenameWidth) { 762 when (canEnqueue(i)) { 763 val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec).asUInt.orR 764 val enqHasTriggerHit = io.enq.req(i).bits.cf.trigger.getHitFrontend 765 val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove 766 writebacked(allocatePtrVec(i).value) := enqIsWritebacked && !enqHasException && !enqHasTriggerHit 767 val isStu = io.enq.req(i).bits.ctrl.fuType === FuType.stu 768 store_data_writebacked(allocatePtrVec(i).value) := !isStu 769 } 770 } 771 when (exceptionGen.io.out.valid) { 772 val wbIdx = exceptionGen.io.out.bits.robIdx.value 773 writebacked(wbIdx) := true.B 774 store_data_writebacked(wbIdx) := true.B 775 } 776 // writeback logic set numWbPorts writebacked to true 777 for ((wb, cfgs) <- exuWriteback.zip(wbExuConfigs(exeWbSel))) { 778 when (wb.valid) { 779 val wbIdx = wb.bits.uop.robIdx.value 780 val wbHasException = ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, cfgs).asUInt.orR 781 val wbHasTriggerHit = wb.bits.uop.cf.trigger.getHitBackend 782 val wbHasFlushPipe = cfgs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe 783 val wbHasReplayInst = cfgs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst 784 val block_wb = wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit 785 writebacked(wbIdx) := !block_wb 786 } 787 } 788 // store data writeback logic mark store as data_writebacked 789 for (wb <- stdWriteback) { 790 when(RegNext(wb.valid)) { 791 store_data_writebacked(RegNext(wb.bits.uop.robIdx.value)) := true.B 792 } 793 } 794 795 // flagBkup 796 // enqueue logic set 6 flagBkup at most 797 for (i <- 0 until RenameWidth) { 798 when (canEnqueue(i)) { 799 flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag 800 } 801 } 802 803 // interrupt_safe 804 for (i <- 0 until RenameWidth) { 805 // We RegNext the updates for better timing. 806 // Note that instructions won't change the system's states in this cycle. 807 when (RegNext(canEnqueue(i))) { 808 // For now, we allow non-load-store instructions to trigger interrupts 809 // For MMIO instructions, they should not trigger interrupts since they may 810 // be sent to lower level before it writes back. 811 // However, we cannot determine whether a load/store instruction is MMIO. 812 // Thus, we don't allow load/store instructions to trigger an interrupt. 813 // TODO: support non-MMIO load-store instructions to trigger interrupts 814 val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.ctrl.commitType) 815 interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts) 816 } 817 } 818 819 /** 820 * read and write of data modules 821 */ 822 val commitReadAddr_next = Mux(state_next === s_idle, 823 VecInit(deqPtrVec_next.map(_.value)), 824 VecInit(walkPtrVec_next.map(_.value)) 825 ) 826 dispatchData.io.wen := canEnqueue 827 dispatchData.io.waddr := allocatePtrVec.map(_.value) 828 dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) => 829 wdata.ldest := req.ctrl.ldest 830 wdata.rfWen := req.ctrl.rfWen 831 wdata.fpWen := req.ctrl.fpWen 832 wdata.wflags := req.ctrl.fpu.wflags 833 wdata.commitType := req.ctrl.commitType 834 wdata.pdest := req.pdest 835 wdata.old_pdest := req.old_pdest 836 wdata.ftqIdx := req.cf.ftqPtr 837 wdata.ftqOffset := req.cf.ftqOffset 838 wdata.isMove := req.eliminatedMove 839 wdata.pc := req.cf.pc 840 } 841 dispatchData.io.raddr := commitReadAddr_next 842 843 exceptionGen.io.redirect <> io.redirect 844 exceptionGen.io.flush := io.flushOut.valid 845 for (i <- 0 until RenameWidth) { 846 exceptionGen.io.enq(i).valid := canEnqueue(i) 847 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 848 exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec) 849 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.ctrl.flushPipe 850 exceptionGen.io.enq(i).bits.replayInst := false.B 851 XSError(canEnqueue(i) && io.enq.req(i).bits.ctrl.replayInst, "enq should not set replayInst") 852 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.ctrl.singleStep 853 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.cf.crossPageIPFFix 854 exceptionGen.io.enq(i).bits.trigger.clear() 855 exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.cf.trigger.frontendHit 856 } 857 858 println(s"ExceptionGen:") 859 val exceptionCases = exceptionPorts.map(_._1.flatMap(_.exceptionOut).distinct.sorted) 860 require(exceptionCases.length == exceptionGen.io.wb.length) 861 for ((((configs, wb), exc_wb), i) <- exceptionPorts.zip(exceptionGen.io.wb).zipWithIndex) { 862 exc_wb.valid := wb.valid 863 exc_wb.bits.robIdx := wb.bits.uop.robIdx 864 exc_wb.bits.exceptionVec := ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, configs) 865 exc_wb.bits.flushPipe := configs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe 866 exc_wb.bits.replayInst := configs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst 867 exc_wb.bits.singleStep := false.B 868 exc_wb.bits.crossPageIPFFix := false.B 869 // TODO: make trigger configurable 870 exc_wb.bits.trigger.clear() 871 exc_wb.bits.trigger.backendHit := wb.bits.uop.cf.trigger.backendHit 872 println(s" [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " + 873 s"flushPipe ${configs.exists(_.flushPipe)}, " + 874 s"replayInst ${configs.exists(_.replayInst)}") 875 } 876 877 val fflags_wb = fflagsPorts.map(_._2) 878 val fflagsDataModule = Module(new SyncDataModuleTemplate( 879 UInt(5.W), RobSize, CommitWidth, fflags_wb.size) 880 ) 881 for(i <- fflags_wb.indices){ 882 fflagsDataModule.io.wen (i) := fflags_wb(i).valid 883 fflagsDataModule.io.waddr(i) := fflags_wb(i).bits.uop.robIdx.value 884 fflagsDataModule.io.wdata(i) := fflags_wb(i).bits.fflags 885 } 886 fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value)) 887 fflagsDataRead := fflagsDataModule.io.rdata 888 889 890 val instrCntReg = RegInit(0.U(64.W)) 891 val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) }) 892 val trueCommitCnt = RegNext(commitCnt) +& fuseCommitCnt 893 val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U) 894 val instrCnt = instrCntReg + retireCounter 895 instrCntReg := instrCnt 896 io.csr.perfinfo.retiredInstr := retireCounter 897 io.robFull := !allowEnqueue 898 899 /** 900 * debug info 901 */ 902 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 903 XSDebug("") 904 for(i <- 0 until RobSize){ 905 XSDebug(false, !valid(i), "-") 906 XSDebug(false, valid(i) && writebacked(i), "w") 907 XSDebug(false, valid(i) && !writebacked(i), "v") 908 } 909 XSDebug(false, true.B, "\n") 910 911 for(i <- 0 until RobSize) { 912 if(i % 4 == 0) XSDebug("") 913 XSDebug(false, true.B, "%x ", debug_microOp(i).cf.pc) 914 XSDebug(false, !valid(i), "- ") 915 XSDebug(false, valid(i) && writebacked(i), "w ") 916 XSDebug(false, valid(i) && !writebacked(i), "v ") 917 if(i % 4 == 3) XSDebug(false, true.B, "\n") 918 } 919 920 def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U) 921 def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U) 922 923 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 924 XSPerfAccumulate("clock_cycle", 1.U) 925 QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue) 926 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 927 XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt)) 928 val commitIsMove = commitDebugUop.map(_.ctrl.isMove) 929 XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }))) 930 val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) 931 XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e }))) 932 XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt)) 933 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 934 val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t } 935 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 936 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 937 val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t } 938 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 939 val commitLoadWaitBit = commitDebugUop.map(_.cf.loadWaitBit) 940 XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))) 941 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 942 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }))) 943 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i)))) 944 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire))) 945 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 946 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)) 947 XSPerfAccumulate("walkCycle", state === s_walk) 948 val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value) 949 val deqUopCommitType = io.commits.info(0).commitType 950 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 951 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 952 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 953 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 954 XSPerfAccumulate("robHeadPC", io.commits.info(0).pc) 955 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 956 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 957 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 958 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 959 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 960 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 961 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 962 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 963 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 964 } 965 for (fuType <- FuType.functionNameMap.keys) { 966 val fuName = FuType.functionNameMap(fuType) 967 val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fuType === fuType.U ) 968 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 969 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 970 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 971 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 972 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 973 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 974 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 975 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 976 if (fuType == FuType.fmac.litValue) { 977 val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fpu.ren3 ) 978 XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma))) 979 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency))) 980 XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency))) 981 } 982 } 983 984 //difftest signals 985 val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U)))).value 986 987 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 988 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 989 990 for(i <- 0 until CommitWidth) { 991 val idx = deqPtrVec(i).value 992 wdata(i) := debug_exuData(idx) 993 wpc(i) := SignExt(commitDebugUop(i).cf.pc, XLEN) 994 } 995 996 if (env.EnableDifftest) { 997 for (i <- 0 until CommitWidth) { 998 val difftest = Module(new DifftestInstrCommit) 999 difftest.io.clock := clock 1000 difftest.io.coreid := io.hartId 1001 difftest.io.index := i.U 1002 1003 val ptr = deqPtrVec(i).value 1004 val uop = commitDebugUop(i) 1005 val exuOut = debug_exuDebug(ptr) 1006 val exuData = debug_exuData(ptr) 1007 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1008 difftest.io.pc := RegNext(RegNext(RegNext(SignExt(uop.cf.pc, XLEN)))) 1009 difftest.io.instr := RegNext(RegNext(RegNext(uop.cf.instr))) 1010 difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(io.commits.info(i).commitType)))) 1011 // when committing an eliminated move instruction, 1012 // we must make sure that skip is properly set to false (output from EXU is random value) 1013 difftest.io.skip := RegNext(RegNext(RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)))) 1014 difftest.io.isRVC := RegNext(RegNext(RegNext(uop.cf.pd.isRVC))) 1015 difftest.io.rfwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U))) 1016 difftest.io.fpwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).fpWen))) 1017 difftest.io.wpdest := RegNext(RegNext(RegNext(io.commits.info(i).pdest))) 1018 difftest.io.wdest := RegNext(RegNext(RegNext(io.commits.info(i).ldest))) 1019 1020 // // runahead commit hint 1021 // val runahead_commit = Module(new DifftestRunaheadCommitEvent) 1022 // runahead_commit.io.clock := clock 1023 // runahead_commit.io.coreid := io.hartId 1024 // runahead_commit.io.index := i.U 1025 // runahead_commit.io.valid := difftest.io.valid && 1026 // (commitBranchValid(i) || commitIsStore(i)) 1027 // // TODO: is branch or store 1028 // runahead_commit.io.pc := difftest.io.pc 1029 } 1030 } 1031 else if (env.AlwaysBasicDiff) { 1032 // These are the structures used by difftest only and should be optimized after synthesis. 1033 val dt_eliminatedMove = Mem(RobSize, Bool()) 1034 val dt_isRVC = Mem(RobSize, Bool()) 1035 val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) 1036 for (i <- 0 until RenameWidth) { 1037 when (canEnqueue(i)) { 1038 dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 1039 dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.cf.pd.isRVC 1040 } 1041 } 1042 for (wb <- exuWriteback) { 1043 when (wb.valid) { 1044 val wbIdx = wb.bits.uop.robIdx.value 1045 dt_exuDebug(wbIdx) := wb.bits.debug 1046 } 1047 } 1048 // Always instantiate basic difftest modules. 1049 for (i <- 0 until CommitWidth) { 1050 val commitInfo = io.commits.info(i) 1051 val ptr = deqPtrVec(i).value 1052 val exuOut = dt_exuDebug(ptr) 1053 val eliminatedMove = dt_eliminatedMove(ptr) 1054 val isRVC = dt_isRVC(ptr) 1055 1056 val difftest = Module(new DifftestBasicInstrCommit) 1057 difftest.io.clock := clock 1058 difftest.io.coreid := io.hartId 1059 difftest.io.index := i.U 1060 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1061 difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(commitInfo.commitType)))) 1062 difftest.io.skip := RegNext(RegNext(RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)))) 1063 difftest.io.isRVC := RegNext(RegNext(RegNext(isRVC))) 1064 difftest.io.rfwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U))) 1065 difftest.io.fpwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.fpWen))) 1066 difftest.io.wpdest := RegNext(RegNext(RegNext(commitInfo.pdest))) 1067 difftest.io.wdest := RegNext(RegNext(RegNext(commitInfo.ldest))) 1068 } 1069 } 1070 1071 if (env.EnableDifftest) { 1072 for (i <- 0 until CommitWidth) { 1073 val difftest = Module(new DifftestLoadEvent) 1074 difftest.io.clock := clock 1075 difftest.io.coreid := io.hartId 1076 difftest.io.index := i.U 1077 1078 val ptr = deqPtrVec(i).value 1079 val uop = commitDebugUop(i) 1080 val exuOut = debug_exuDebug(ptr) 1081 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1082 difftest.io.paddr := RegNext(RegNext(RegNext(exuOut.paddr))) 1083 difftest.io.opType := RegNext(RegNext(RegNext(uop.ctrl.fuOpType))) 1084 difftest.io.fuType := RegNext(RegNext(RegNext(uop.ctrl.fuType))) 1085 } 1086 } 1087 1088 // Always instantiate basic difftest modules. 1089 if (env.EnableDifftest) { 1090 val dt_isXSTrap = Mem(RobSize, Bool()) 1091 for (i <- 0 until RenameWidth) { 1092 when (canEnqueue(i)) { 1093 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap 1094 } 1095 } 1096 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) } 1097 val hitTrap = trapVec.reduce(_||_) 1098 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 1099 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN) 1100 val difftest = Module(new DifftestTrapEvent) 1101 difftest.io.clock := clock 1102 difftest.io.coreid := io.hartId 1103 difftest.io.valid := hitTrap 1104 difftest.io.code := trapCode 1105 difftest.io.pc := trapPC 1106 difftest.io.cycleCnt := timer 1107 difftest.io.instrCnt := instrCnt 1108 difftest.io.hasWFI := hasWFI 1109 } 1110 else if (env.AlwaysBasicDiff) { 1111 val dt_isXSTrap = Mem(RobSize, Bool()) 1112 for (i <- 0 until RenameWidth) { 1113 when (canEnqueue(i)) { 1114 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap 1115 } 1116 } 1117 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) } 1118 val hitTrap = trapVec.reduce(_||_) 1119 val difftest = Module(new DifftestBasicTrapEvent) 1120 difftest.io.clock := clock 1121 difftest.io.coreid := io.hartId 1122 difftest.io.valid := hitTrap 1123 difftest.io.cycleCnt := timer 1124 difftest.io.instrCnt := instrCnt 1125 } 1126 1127 val validEntriesBanks = (0 until (RobSize + 63) / 64).map(i => RegNext(PopCount(valid.drop(i * 64).take(64)))) 1128 val validEntries = RegNext(ParallelOperation(validEntriesBanks, (a: UInt, b: UInt) => a +& b)) 1129 val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }) 1130 val commitLoadVec = VecInit(commitLoadValid) 1131 val commitBranchVec = VecInit(commitBranchValid) 1132 val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }) 1133 val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }) 1134 val perfEvents = Seq( 1135 ("rob_interrupt_num ", io.flushOut.valid && intrEnable ), 1136 ("rob_exception_num ", io.flushOut.valid && exceptionEnable ), 1137 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe ), 1138 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst ), 1139 ("rob_commitUop ", ifCommit(commitCnt) ), 1140 ("rob_commitInstr ", ifCommitReg(trueCommitCnt) ), 1141 ("rob_commitInstrMove ", ifCommitReg(PopCount(RegNext(commitMoveVec))) ), 1142 ("rob_commitInstrFused ", ifCommitReg(fuseCommitCnt) ), 1143 ("rob_commitInstrLoad ", ifCommitReg(PopCount(RegNext(commitLoadVec))) ), 1144 ("rob_commitInstrBranch ", ifCommitReg(PopCount(RegNext(commitBranchVec))) ), 1145 ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec))) ), 1146 ("rob_commitInstrStore ", ifCommitReg(PopCount(RegNext(commitStoreVec))) ), 1147 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U) ), 1148 ("rob_walkCycle ", (state === s_walk) ), 1149 ("rob_1_4_valid ", validEntries <= (RobSize / 4).U ), 1150 ("rob_2_4_valid ", validEntries > (RobSize / 4).U && validEntries <= (RobSize / 2).U ), 1151 ("rob_3_4_valid ", validEntries > (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U), 1152 ("rob_4_4_valid ", validEntries > (RobSize * 3 / 4).U ), 1153 ) 1154 generatePerfEvent() 1155} 1156