xref: /XiangShan/src/main/scala/xiangshan/backend/rob/Rob.scala (revision e836c7705c53f8360816d56db7f6d37725aad2a6)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15*
16*
17* Acknowledgement
18*
19* This implementation is inspired by several key papers:
20* [1] James E. Smith, and Andrew R. Pleszkun. "[Implementation of precise interrupts in pipelined processors.]
21* (https://dl.acm.org/doi/10.5555/327010.327125)" 12th Annual International Symposium on Computer Architecture (ISCA).
22* 1985.
23***************************************************************************************/
24
25package xiangshan.backend.rob
26
27import org.chipsalliance.cde.config.Parameters
28import chisel3._
29import chisel3.util._
30import chisel3.experimental.BundleLiterals._
31import difftest._
32import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp}
33import utility._
34import utils._
35import xiangshan._
36import xiangshan.backend.GPAMemEntry
37import xiangshan.backend.{BackendParams, RatToVecExcpMod, RegWriteFromRab, VecExcpInfo}
38import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput}
39import xiangshan.backend.fu.{FuConfig, FuType}
40import xiangshan.frontend.FtqPtr
41import xiangshan.mem.{LqPtr, LsqEnqIO, SqPtr}
42import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput}
43import xiangshan.backend.ctrlblock.{DebugLSIO, DebugLsInfo, LsTopdownInfo}
44import xiangshan.backend.fu.vector.Bundles.VType
45import xiangshan.backend.rename.SnapshotGenerator
46import yunsuan.VfaluType
47import xiangshan.backend.rob.RobBundles._
48import xiangshan.backend.trace._
49import chisel3.experimental.BundleLiterals._
50
51class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter {
52  override def shouldBeInlined: Boolean = false
53
54  lazy val module = new RobImp(this)(p, params)
55}
56
57class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper)
58  with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents with HasCriticalErrors {
59
60  private val LduCnt = params.LduCnt
61  private val StaCnt = params.StaCnt
62  private val HyuCnt = params.HyuCnt
63
64  val io = IO(new Bundle() {
65    val hartId = Input(UInt(hartIdLen.W))
66    val redirect = Input(Valid(new Redirect))
67    val enq = new RobEnqIO
68    val flushOut = ValidIO(new Redirect)
69    val exception = ValidIO(new ExceptionInfo)
70    // exu + brq
71    val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles)
72    val exuWriteback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles)
73    val writebackNums = Flipped(Vec(writeback.size - params.StdCnt, ValidIO(UInt(writeback.size.U.getWidth.W))))
74    val writebackNeedFlush = Input(Vec(params.allExuParams.filter(_.needExceptionGen).length, Bool()))
75    val commits = Output(new RobCommitIO)
76    val trace = new Bundle {
77      val blockCommit = Input(Bool())
78      val traceCommitInfo = new TraceBundle(hasIaddr = false, CommitWidth, IretireWidthInPipe)
79    }
80    val rabCommits = Output(new RabCommitIO)
81    val diffCommits = if (backendParams.basicDebugEn) Some(Output(new DiffCommitIO)) else None
82    val isVsetFlushPipe = Output(Bool())
83    val lsq = new RobLsqIO
84    val robDeqPtr = Output(new RobPtr)
85    val csr = new RobCSRIO
86    val snpt = Input(new SnapshotPort)
87    val robFull = Output(Bool())
88    val headNotReady = Output(Bool())
89    val cpu_halt = Output(Bool())
90    val wfi_enable = Input(Bool())
91    val toDecode = new Bundle {
92      val isResumeVType = Output(Bool())
93      val walkToArchVType = Output(Bool())
94      val walkVType = ValidIO(VType())
95      val commitVType = new Bundle {
96        val vtype = ValidIO(VType())
97        val hasVsetvl = Output(Bool())
98      }
99    }
100    val fromVecExcpMod = Input(new Bundle {
101      val busy = Bool()
102    })
103    val readGPAMemAddr = ValidIO(new Bundle {
104      val ftqPtr = new FtqPtr()
105      val ftqOffset = UInt(log2Up(PredictWidth).W)
106    })
107    val readGPAMemData = Input(new GPAMemEntry)
108    val vstartIsZero = Input(Bool())
109
110    val toVecExcpMod = Output(new Bundle {
111      val logicPhyRegMap = Vec(RabCommitWidth, ValidIO(new RegWriteFromRab))
112      val excpInfo = ValidIO(new VecExcpInfo)
113    })
114    val debug_ls = Flipped(new DebugLSIO)
115    val debugRobHead = Output(new DynInst)
116    val debugEnqLsq = Input(new LsqEnqIO)
117    val debugHeadLsIssue = Input(Bool())
118    val lsTopdownInfo = Vec(LduCnt + HyuCnt, Input(new LsTopdownInfo))
119    val debugTopDown = new Bundle {
120      val toCore = new RobCoreTopDownIO
121      val toDispatch = new RobDispatchTopDownIO
122      val robHeadLqIdx = Valid(new LqPtr)
123    }
124    val debugRolling = new RobDebugRollingIO
125
126    // store event difftest information
127    val storeDebugInfo = Vec(EnsbufferWidth, new Bundle {
128      val robidx = Input(new RobPtr)
129      val pc     = Output(UInt(VAddrBits.W))
130    })
131  })
132
133  val exuWBs: Seq[ValidIO[ExuOutput]] = io.exuWriteback.filter(!_.bits.params.hasStdFu).toSeq
134  val stdWBs: Seq[ValidIO[ExuOutput]] = io.exuWriteback.filter(_.bits.params.hasStdFu).toSeq
135  val fflagsWBs = io.exuWriteback.filter(x => x.bits.fflags.nonEmpty).toSeq
136  val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty).toSeq
137  val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty).toSeq
138  val vxsatWBs = io.exuWriteback.filter(x => x.bits.vxsat.nonEmpty).toSeq
139  val branchWBs = io.exuWriteback.filter(_.bits.params.hasBrhFu).toSeq
140  val jmpWBs = io.exuWriteback.filter(_.bits.params.hasJmpFu).toSeq
141  val csrWBs = io.exuWriteback.filter(x => x.bits.params.hasCSR).toSeq
142
143  val numExuWbPorts = exuWBs.length
144  val numStdWbPorts = stdWBs.length
145  val bankAddrWidth = log2Up(CommitWidth)
146
147  println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth")
148
149  val rab = Module(new RenameBuffer(RabSize))
150  val vtypeBuffer = Module(new VTypeBuffer(VTypeBufferSize))
151  val bankNum = 8
152  assert(RobSize % bankNum == 0, "RobSize % bankNum must be 0")
153  val robEntries = RegInit(VecInit.fill(RobSize)((new RobEntryBundle).Lit(_.valid -> false.B)))
154  // pointers
155  // For enqueue ptr, we don't duplicate it since only enqueue needs it.
156  val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr))
157  val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr))
158  val deqPtrVec_next = Wire(Vec(CommitWidth, Output(new RobPtr)))
159  val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr))
160  val walkPtrTrue = Reg(new RobPtr)
161  val lastWalkPtr = Reg(new RobPtr)
162  val allowEnqueue = RegInit(true.B)
163  val allowEnqueueForDispatch = RegInit(true.B)
164  val vecExcpInfo = RegInit(ValidIO(new VecExcpInfo).Lit(
165    _.valid -> false.B,
166  ))
167
168  /**
169   * Enqueue (from dispatch)
170   */
171  // special cases
172  val hasBlockBackward = RegInit(false.B)
173  val hasWaitForward = RegInit(false.B)
174  val doingSvinval = RegInit(false.B)
175  val enqPtr = enqPtrVec(0)
176  val deqPtr = deqPtrVec(0)
177  val walkPtr = walkPtrVec(0)
178  val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.req.take(i).map(req => req.valid && req.bits.firstUop)))))
179  io.enq.canAccept := allowEnqueue && !hasBlockBackward && rab.io.canEnq && vtypeBuffer.io.canEnq && !io.fromVecExcpMod.busy
180  io.enq.canAcceptForDispatch := allowEnqueueForDispatch && !hasBlockBackward && rab.io.canEnqForDispatch && vtypeBuffer.io.canEnqForDispatch && !io.fromVecExcpMod.busy
181  io.enq.resp := allocatePtrVec
182  val canEnqueue = VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop && io.enq.canAccept))
183  val timer = GTimer()
184  // robEntries enqueue
185  for (i <- 0 until RobSize) {
186    val enqOH = VecInit(canEnqueue.zip(allocatePtrVec.map(_.value === i.U)).map(x => x._1 && x._2))
187    assert(PopCount(enqOH) < 2.U, s"robEntries$i enqOH is not one hot")
188    when(enqOH.asUInt.orR && !io.redirect.valid){
189      connectEnq(robEntries(i), Mux1H(enqOH, io.enq.req.map(_.bits)))
190    }
191  }
192  // robBanks0 include robidx : 0 8 16 24 32 ...
193  val robBanks = VecInit((0 until bankNum).map(i => VecInit(robEntries.zipWithIndex.filter(_._2 % bankNum == i).map(_._1))))
194  // each Bank has 20 Entries, read addr is one hot
195  // all banks use same raddr
196  val eachBankEntrieNum = robBanks(0).length
197  val robBanksRaddrThisLine = RegInit(1.U(eachBankEntrieNum.W))
198  val robBanksRaddrNextLine = Wire(UInt(eachBankEntrieNum.W))
199  robBanksRaddrThisLine := robBanksRaddrNextLine
200  val bankNumWidth = log2Up(bankNum)
201  val deqPtrWidth = deqPtr.value.getWidth
202  val robIdxThisLine = VecInit((0 until bankNum).map(i => Cat(deqPtr.value(deqPtrWidth - 1, bankNumWidth), i.U(bankNumWidth.W))))
203  val robIdxNextLine = VecInit((0 until bankNum).map(i => Cat(deqPtr.value(deqPtrWidth - 1, bankNumWidth) + 1.U, i.U(bankNumWidth.W))))
204  // robBanks read
205  val robBanksRdataThisLine = VecInit(robBanks.map{ case bank =>
206    Mux1H(robBanksRaddrThisLine, bank)
207  })
208  val robBanksRdataNextLine = VecInit(robBanks.map{ case bank =>
209    val shiftBank = bank.drop(1) :+ bank(0)
210    Mux1H(robBanksRaddrThisLine, shiftBank)
211  })
212  val robBanksRdataThisLineUpdate = Wire(Vec(CommitWidth, new RobEntryBundle))
213  val robBanksRdataNextLineUpdate = Wire(Vec(CommitWidth, new RobEntryBundle))
214  val commitValidThisLine = Wire(Vec(CommitWidth, Bool()))
215  val hasCommitted = RegInit(VecInit(Seq.fill(CommitWidth)(false.B)))
216  val donotNeedWalk = RegInit(VecInit(Seq.fill(CommitWidth)(false.B)))
217  val allCommitted = Wire(Bool())
218
219  when(allCommitted) {
220    hasCommitted := 0.U.asTypeOf(hasCommitted)
221  }.elsewhen(io.commits.isCommit){
222    for (i <- 0 until CommitWidth){
223      hasCommitted(i) := commitValidThisLine(i) || hasCommitted(i)
224    }
225  }
226  allCommitted := io.commits.isCommit && commitValidThisLine.last
227  val walkPtrHead = Wire(new RobPtr)
228  val changeBankAddrToDeqPtr = (walkPtrVec.head + CommitWidth.U) > lastWalkPtr
229  when(io.redirect.valid){
230    robBanksRaddrNextLine := UIntToOH(walkPtrHead.value(walkPtrHead.value.getWidth-1, bankAddrWidth))
231  }.elsewhen(allCommitted || io.commits.isWalk && !changeBankAddrToDeqPtr){
232    robBanksRaddrNextLine := Mux(robBanksRaddrThisLine.head(1) === 1.U, 1.U, robBanksRaddrThisLine << 1)
233  }.elsewhen(io.commits.isWalk && changeBankAddrToDeqPtr){
234    robBanksRaddrNextLine := UIntToOH(deqPtr.value(deqPtr.value.getWidth-1, bankAddrWidth))
235  }.otherwise(
236    robBanksRaddrNextLine := robBanksRaddrThisLine
237  )
238  val robDeqGroup = Reg(Vec(bankNum, new RobCommitEntryBundle))
239  val rawInfo = VecInit((0 until CommitWidth).map(i => robDeqGroup(deqPtrVec(i).value(bankAddrWidth-1, 0)))).toSeq
240  val commitInfo = VecInit((0 until CommitWidth).map(i => robDeqGroup(deqPtrVec(i).value(bankAddrWidth-1,0)))).toSeq
241  val walkInfo = VecInit((0 until CommitWidth).map(i => robDeqGroup(walkPtrVec(i).value(bankAddrWidth-1, 0)))).toSeq
242  for (i <- 0 until CommitWidth) {
243    connectCommitEntry(robDeqGroup(i), robBanksRdataThisLineUpdate(i))
244    when(allCommitted){
245      connectCommitEntry(robDeqGroup(i), robBanksRdataNextLineUpdate(i))
246    }
247  }
248
249  // In each robentry, the ftqIdx and ftqOffset belong to the first instruction that was compressed,
250  // That is Necessary when exceptions happen.
251  // Update the ftqOffset to correctly notify the frontend which instructions have been committed.
252  // Instructions in multiple Ftq entries compressed to one RobEntry do not occur.
253  for (i <- 0 until CommitWidth) {
254    val lastOffset = (rawInfo(i).traceBlockInPipe.iretire - (1.U << rawInfo(i).traceBlockInPipe.ilastsize.asUInt).asUInt) + rawInfo(i).ftqOffset
255    commitInfo(i).ftqOffset := Mux(CommitType.isFused(rawInfo(i).commitType), rawInfo(i).ftqOffset, lastOffset)
256  }
257
258  // data for debug
259  // Warn: debug_* prefix should not exist in generated verilog.
260  val debug_microOp = DebugMem(RobSize, new DynInst)
261  val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W))) //for debug
262  val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle)) //for debug
263  val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init)))
264  val debug_lsTopdownInfo = RegInit(VecInit(Seq.fill(RobSize)(LsTopdownInfo.init)))
265  val debug_lqIdxValid = RegInit(VecInit.fill(RobSize)(false.B))
266  val debug_lsIssued = RegInit(VecInit.fill(RobSize)(false.B))
267
268  val isEmpty = enqPtr === deqPtr
269  val snptEnq = io.enq.canAccept && io.enq.req.map(x => x.valid && x.bits.snapshot).reduce(_ || _)
270  val snapshotPtrVec = Wire(Vec(CommitWidth, new RobPtr))
271  snapshotPtrVec(0) := io.enq.req(0).bits.robIdx
272  for (i <- 1 until CommitWidth) {
273    snapshotPtrVec(i) := snapshotPtrVec(0) + i.U
274  }
275  val snapshots = SnapshotGenerator(snapshotPtrVec, snptEnq, io.snpt.snptDeq, io.redirect.valid, io.snpt.flushVec)
276  val debug_lsIssue = WireDefault(debug_lsIssued)
277  debug_lsIssue(deqPtr.value) := io.debugHeadLsIssue
278
279  /**
280   * states of Rob
281   */
282  val s_idle :: s_walk :: Nil = Enum(2)
283  val state = RegInit(s_idle)
284  val state_next = Wire(chiselTypeOf(state))
285
286  val tip_computing :: tip_stalled :: tip_walk :: tip_drained :: Nil = Enum(4)
287  val tip_state = WireInit(0.U(4.W))
288  when(!isEmpty) {  // One or more inst in ROB
289    when(state === s_walk || io.redirect.valid) {
290      tip_state := tip_walk
291    }.elsewhen(io.commits.isCommit && PopCount(io.commits.commitValid) =/= 0.U) {
292      tip_state := tip_computing
293    }.otherwise {
294      tip_state := tip_stalled
295    }
296  }.otherwise {
297    tip_state := tip_drained
298  }
299  class TipEntry()(implicit p: Parameters) extends XSBundle {
300    val state = UInt(4.W)
301    val commits = new RobCommitIO()      // info of commit
302    val redirect = Valid(new Redirect)   // info of redirect
303    val redirect_pc = UInt(VAddrBits.W)  // PC of the redirect uop
304    val debugLsInfo = new DebugLsInfo()
305  }
306  val tip_table = ChiselDB.createTable("Tip_" + p(XSCoreParamsKey).HartId.toString, new TipEntry)
307  val tip_data = Wire(new TipEntry())
308  tip_data.state := tip_state
309  tip_data.commits := io.commits
310  tip_data.redirect := io.redirect
311  tip_data.redirect_pc := debug_microOp(io.redirect.bits.robIdx.value).pc
312  tip_data.debugLsInfo := debug_lsInfo(io.commits.robIdx(0).value)
313  tip_table.log(tip_data, true.B, "", clock, reset)
314
315  val exceptionGen = Module(new ExceptionGen(params))
316  val exceptionDataRead = exceptionGen.io.state
317  val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W)))
318  val vxsatDataRead = Wire(Vec(CommitWidth, Bool()))
319  io.robDeqPtr := deqPtr
320  io.debugRobHead := debug_microOp(deqPtr.value)
321
322  /**
323   * connection of [[rab]]
324   */
325  rab.io.redirect.valid := io.redirect.valid
326
327  rab.io.req.zip(io.enq.req).map { case (dest, src) =>
328    dest.bits := src.bits
329    dest.valid := src.valid && io.enq.canAccept
330  }
331
332  val walkDestSizeDeqGroup = RegInit(VecInit(Seq.fill(CommitWidth)(0.U(log2Up(MaxUopSize + 1).W))))
333  val realDestSizeSeq = VecInit(robDeqGroup.zip(hasCommitted).map{case (r, h) => Mux(h, 0.U, r.realDestSize)})
334  val walkDestSizeSeq = VecInit(robDeqGroup.zip(donotNeedWalk).map{case (r, d) => Mux(d, 0.U, r.realDestSize)})
335  val commitSizeSumSeq = VecInit((0 until CommitWidth).map(i => realDestSizeSeq.take(i + 1).reduce(_ +& _)))
336  val walkSizeSumSeq   = VecInit((0 until CommitWidth).map(i => walkDestSizeSeq.take(i + 1).reduce(_ +& _)))
337  val commitSizeSumCond = VecInit(commitValidThisLine.zip(hasCommitted).map{case (c,h) => (c || h) && io.commits.isCommit})
338  val walkSizeSumCond   = VecInit(io.commits.walkValid.zip(donotNeedWalk).map{case (w,d) => (w || d) && io.commits.isWalk})
339  val commitSizeSum = PriorityMuxDefault(commitSizeSumCond.reverse.zip(commitSizeSumSeq.reverse), 0.U)
340  val walkSizeSum   = PriorityMuxDefault(walkSizeSumCond.reverse.zip(walkSizeSumSeq.reverse), 0.U)
341
342  val deqVlsExceptionNeedCommit = RegInit(false.B)
343  val deqVlsExceptionCommitSize = RegInit(0.U(log2Up(MaxUopSize + 1).W))
344  val deqVlsCanCommit= RegInit(false.B)
345  rab.io.fromRob.commitSize := Mux(deqVlsExceptionNeedCommit, deqVlsExceptionCommitSize, commitSizeSum)
346  rab.io.fromRob.walkSize := walkSizeSum
347  rab.io.fromRob.vecLoadExcp.valid := RegNext(exceptionDataRead.valid && exceptionDataRead.bits.isVecLoad)
348  rab.io.fromRob.vecLoadExcp.bits.isStrided := RegEnable(exceptionDataRead.bits.isStrided, exceptionDataRead.valid)
349  rab.io.fromRob.vecLoadExcp.bits.isVlm := RegEnable(exceptionDataRead.bits.isVlm, exceptionDataRead.valid)
350  rab.io.snpt := io.snpt
351  rab.io.snpt.snptEnq := snptEnq
352
353  // pipe rab commits for better timing and area
354  io.rabCommits := RegNext(rab.io.commits)
355  io.diffCommits.foreach(_ := rab.io.diffCommits.get)
356
357  /**
358   * connection of [[vtypeBuffer]]
359   */
360
361  vtypeBuffer.io.redirect.valid := io.redirect.valid
362
363  vtypeBuffer.io.req.zip(io.enq.req).map { case (sink, source) =>
364    sink.valid := source.valid && io.enq.canAccept
365    sink.bits := source.bits
366  }
367
368  private val commitIsVTypeVec = VecInit(io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => io.commits.isCommit && valid && info.isVset })
369  private val walkIsVTypeVec = VecInit(io.commits.walkValid.zip(walkInfo).map { case (valid, info) => io.commits.isWalk && valid && info.isVset })
370  vtypeBuffer.io.fromRob.commitSize := PopCount(commitIsVTypeVec)
371  vtypeBuffer.io.fromRob.walkSize := PopCount(walkIsVTypeVec)
372  vtypeBuffer.io.snpt := io.snpt
373  vtypeBuffer.io.snpt.snptEnq := snptEnq
374  io.toDecode.isResumeVType := vtypeBuffer.io.toDecode.isResumeVType
375  io.toDecode.walkToArchVType := vtypeBuffer.io.toDecode.walkToArchVType
376  io.toDecode.commitVType := vtypeBuffer.io.toDecode.commitVType
377  io.toDecode.walkVType := vtypeBuffer.io.toDecode.walkVType
378
379  // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B
380  // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty.
381  when(isEmpty) {
382    hasBlockBackward := false.B
383  }
384  // When any instruction commits, hasNoSpecExec should be set to false.B
385  when(io.commits.hasWalkInstr || io.commits.hasCommitInstr) {
386    hasWaitForward := false.B
387  }
388
389  // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing.
390  // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle.
391  // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts.
392  val hasWFI = RegInit(false.B)
393  io.cpu_halt := hasWFI
394  // WFI Timeout: 2^20 = 1M cycles
395  val wfi_cycles = RegInit(0.U(20.W))
396  when(hasWFI) {
397    wfi_cycles := wfi_cycles + 1.U
398  }.elsewhen(!hasWFI && RegNext(hasWFI)) {
399    wfi_cycles := 0.U
400  }
401  val wfi_timeout = wfi_cycles.andR
402  when(RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) {
403    hasWFI := false.B
404  }
405
406  for (i <- 0 until RenameWidth) {
407    // we don't check whether io.redirect is valid here since redirect has higher priority
408    when(canEnqueue(i)) {
409      val enqUop = io.enq.req(i).bits
410      val enqIndex = allocatePtrVec(i).value
411      // store uop in data module and debug_microOp Vec
412      debug_microOp(enqIndex) := enqUop
413      debug_microOp(enqIndex).debugInfo.dispatchTime := timer
414      debug_microOp(enqIndex).debugInfo.enqRsTime := timer
415      debug_microOp(enqIndex).debugInfo.selectTime := timer
416      debug_microOp(enqIndex).debugInfo.issueTime := timer
417      debug_microOp(enqIndex).debugInfo.writebackTime := timer
418      debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer
419      debug_microOp(enqIndex).debugInfo.tlbRespTime := timer
420      debug_lsInfo(enqIndex) := DebugLsInfo.init
421      debug_lsTopdownInfo(enqIndex) := LsTopdownInfo.init
422      debug_lqIdxValid(enqIndex) := false.B
423      debug_lsIssued(enqIndex) := false.B
424      when (enqUop.waitForward) {
425        hasWaitForward := true.B
426      }
427      val enqTriggerActionIsDebugMode = TriggerAction.isDmode(io.enq.req(i).bits.trigger)
428      val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR
429      // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process
430      when(!enqTriggerActionIsDebugMode && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe)) {
431        doingSvinval := true.B
432      }
433      // the end instruction of Svinval enqs so clear doingSvinval
434      when(!enqTriggerActionIsDebugMode && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe)) {
435        doingSvinval := false.B
436      }
437      // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear
438      assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe) || enqUop.isNotSvinval))
439      when(enqUop.isWFI && !enqHasException && !enqTriggerActionIsDebugMode) {
440        hasWFI := true.B
441      }
442
443      robEntries(enqIndex).mmio := false.B
444      robEntries(enqIndex).vls := enqUop.vlsInstr
445    }
446  }
447
448  for (i <- 0 until RenameWidth) {
449    val enqUop = io.enq.req(i)
450    when(enqUop.valid && enqUop.bits.blockBackward && io.enq.canAccept) {
451      hasBlockBackward := true.B
452    }
453  }
454
455  val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(req => req.valid && req.bits.firstUop)), 0.U)
456  io.enq.isEmpty := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR)
457
458  when(!io.wfi_enable) {
459    hasWFI := false.B
460  }
461  // sel vsetvl's flush position
462  val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3)
463  val vsetvlState = RegInit(vs_idle)
464
465  val firstVInstrFtqPtr = RegInit(0.U.asTypeOf(new FtqPtr))
466  val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W)))
467  val firstVInstrRobIdx = RegInit(0.U.asTypeOf(new RobPtr))
468
469  val enq0 = io.enq.req(0)
470  val enq0IsVset = enq0.bits.isVset && enq0.bits.lastUop && canEnqueue(0)
471  val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe
472  val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map { case (req, fire) => FuType.isVArith(req.bits.fuType) && fire }
473  // for vs_idle
474  val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType)))
475  // for vs_waitVinstr
476  val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1)
477  val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req)
478  when(vsetvlState === vs_idle) {
479    firstVInstrFtqPtr := firstVInstrIdle.bits.ftqPtr
480    firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset
481    firstVInstrRobIdx := firstVInstrIdle.bits.robIdx
482  }.elsewhen(vsetvlState === vs_waitVinstr) {
483    when(Cat(enqIsVInstrOrVset).orR) {
484      firstVInstrFtqPtr := firstVInstrWait.bits.ftqPtr
485      firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset
486      firstVInstrRobIdx := firstVInstrWait.bits.robIdx
487    }
488  }
489
490  val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR
491  when(vsetvlState === vs_idle && !io.redirect.valid) {
492    when(enq0IsVsetFlush) {
493      vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr)
494    }
495  }.elsewhen(vsetvlState === vs_waitVinstr) {
496    when(io.redirect.valid) {
497      vsetvlState := vs_idle
498    }.elsewhen(Cat(enqIsVInstrOrVset).orR) {
499      vsetvlState := vs_waitFlush
500    }
501  }.elsewhen(vsetvlState === vs_waitFlush) {
502    when(io.redirect.valid) {
503      vsetvlState := vs_idle
504    }
505  }
506
507  // lqEnq
508  io.debugEnqLsq.needAlloc.map(_(0)).zip(io.debugEnqLsq.req).foreach { case (alloc, req) =>
509    when(io.debugEnqLsq.canAccept && alloc && req.valid) {
510      debug_microOp(req.bits.robIdx.value).lqIdx := req.bits.lqIdx
511      debug_lqIdxValid(req.bits.robIdx.value) := true.B
512    }
513  }
514
515  // lsIssue
516  when(io.debugHeadLsIssue) {
517    debug_lsIssued(deqPtr.value) := true.B
518  }
519
520  /**
521   * Writeback (from execution units)
522   */
523  for (wb <- exuWBs) {
524    val wbIdx = wb.bits.robIdx.value
525    val debug_Uop = debug_microOp(wbIdx)
526    when(wb.valid) {
527      debug_exuData(wbIdx) := wb.bits.data(0)
528      debug_exuDebug(wbIdx) := wb.bits.debug
529      debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime
530      debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime
531      debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime
532      debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime
533
534      // debug for lqidx and sqidx
535      debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr))
536      debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr))
537    }
538    XSInfo(wb.valid,
539      p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " +
540        p"data 0x${Hexadecimal(wb.bits.data(0))} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " +
541        p"skip ${wb.bits.debug.isSkipDiff} robIdx: ${wb.bits.robIdx}\n"
542    )
543  }
544
545  val writebackNum = PopCount(exuWBs.map(_.valid))
546  XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum)
547
548  for (i <- 0 until LoadPipelineWidth) {
549    when(RegNext(io.lsq.mmio(i))) {
550      robEntries(RegEnable(io.lsq.uop(i).robIdx, io.lsq.mmio(i)).value).mmio := true.B
551    }
552  }
553
554
555  /**
556   * RedirectOut: Interrupt and Exceptions
557   */
558  val debug_deqUop = debug_microOp(deqPtr.value)
559
560  val deqPtrEntry = rawInfo(0)
561  val deqPtrEntryValid = deqPtrEntry.commit_v
562  val deqHasFlushed = RegInit(false.B)
563  val intrBitSetReg = RegNext(io.csr.intrBitSet)
564  val intrEnable = intrBitSetReg && !hasWaitForward && deqPtrEntry.interrupt_safe && !deqHasFlushed
565  val deqNeedFlush = deqPtrEntry.needFlush && deqPtrEntry.commit_v && deqPtrEntry.commit_w
566  val deqHitExceptionGenState = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr
567  val deqNeedFlushAndHitExceptionGenState = deqNeedFlush && deqHitExceptionGenState
568  val exceptionGenStateIsException = exceptionDataRead.bits.exceptionVec.asUInt.orR || exceptionDataRead.bits.singleStep || TriggerAction.isDmode(exceptionDataRead.bits.trigger)
569  val deqHasException = deqNeedFlushAndHitExceptionGenState && exceptionGenStateIsException && (!deqPtrEntry.isVls || RegNext(RegNext(deqPtrEntry.commit_w)))
570  val deqHasFlushPipe = deqNeedFlushAndHitExceptionGenState && exceptionDataRead.bits.flushPipe && !deqHasException && (!deqPtrEntry.isVls || RegNext(RegNext(deqPtrEntry.commit_w)))
571  val deqHasReplayInst = deqNeedFlushAndHitExceptionGenState && exceptionDataRead.bits.replayInst
572  val deqIsVlsException = deqHasException && deqPtrEntry.isVls && !exceptionDataRead.bits.isEnqExcp
573  // delay 2 cycle wait exceptionGen out
574  // vls exception can be committed only when RAB commit all its reg pairs
575  deqVlsCanCommit := RegNext(RegNext(deqIsVlsException && deqPtrEntry.commit_w)) && rab.io.status.commitEnd
576
577  // lock at assertion of deqVlsExceptionNeedCommit until condition not assert
578  val deqVlsExcpLock = RegInit(false.B)
579  val handleVlsExcp = deqIsVlsException && deqVlsCanCommit && !deqVlsExcpLock && state === s_idle
580  when(handleVlsExcp) {
581    deqVlsExcpLock := true.B
582  }.elsewhen(deqPtrVec.head =/= deqPtrVec_next.head) {
583    deqVlsExcpLock := false.B
584  }
585
586  // Only assert once when deqVlsExcp occurs until condition not assert to avoid multi message passed to RAB
587  when (deqVlsExceptionNeedCommit) {
588    deqVlsExceptionNeedCommit := false.B
589  }.elsewhen(handleVlsExcp){
590    deqVlsExceptionCommitSize := deqPtrEntry.realDestSize
591    deqVlsExceptionNeedCommit := true.B
592  }
593
594  XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n")
595  XSDebug(deqHasException && TriggerAction.isDmode(exceptionDataRead.bits.trigger), "Debug Mode: Deq has trigger entry debug Mode\n")
596
597  val isFlushPipe = deqPtrEntry.commit_w && (deqHasFlushPipe || deqHasReplayInst)
598
599  val isVsetFlushPipe = deqPtrEntry.commit_w && deqHasFlushPipe && exceptionDataRead.bits.isVset
600  //  val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush)
601  val needModifyFtqIdxOffset = false.B
602  io.isVsetFlushPipe := isVsetFlushPipe
603  // io.flushOut will trigger redirect at the next cycle.
604  // Block any redirect or commit at the next cycle.
605  val lastCycleFlush = RegNext(io.flushOut.valid)
606
607  io.flushOut.valid := (state === s_idle) && deqPtrEntryValid && (intrEnable || deqHasException && (!deqIsVlsException || deqVlsCanCommit) || isFlushPipe) && !lastCycleFlush
608  io.flushOut.bits := DontCare
609  io.flushOut.bits.isRVC := deqPtrEntry.isRVC
610  io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr)
611  io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqPtrEntry.ftqIdx)
612  io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqPtrEntry.ftqOffset)
613  io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || deqHasException || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next"
614  io.flushOut.bits.interrupt := true.B
615  XSPerfAccumulate("flush_num", io.flushOut.valid)
616  XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable)
617  XSPerfAccumulate("exception_num", io.flushOut.valid && deqHasException)
618  XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe)
619  XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst)
620
621  val exceptionHappen = (state === s_idle) && deqPtrEntryValid && (intrEnable || deqHasException && (!deqIsVlsException || deqVlsCanCommit)) && !lastCycleFlush
622  io.exception.valid := RegNext(exceptionHappen)
623  io.exception.bits.pc := RegEnable(debug_deqUop.pc, exceptionHappen)
624  io.exception.bits.gpaddr := io.readGPAMemData.gpaddr
625  io.exception.bits.isForVSnonLeafPTE := io.readGPAMemData.isForVSnonLeafPTE
626  io.exception.bits.instr := RegEnable(debug_deqUop.instr, exceptionHappen)
627  io.exception.bits.commitType := RegEnable(deqPtrEntry.commitType, exceptionHappen)
628  io.exception.bits.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen)
629  // fetch trigger fire or execute ebreak
630  io.exception.bits.isPcBkpt := RegEnable(
631    exceptionDataRead.bits.exceptionVec(ExceptionNO.EX_BP) && (
632      exceptionDataRead.bits.isEnqExcp ||
633      exceptionDataRead.bits.trigger === TriggerAction.None
634    ),
635    exceptionHappen,
636  )
637  io.exception.bits.isFetchMalAddr := RegEnable(exceptionDataRead.bits.isFetchMalAddr && deqHasException, exceptionHappen)
638  io.exception.bits.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen)
639  io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen)
640  io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen)
641  io.exception.bits.isHls := RegEnable(deqPtrEntry.isHls, exceptionHappen)
642  io.exception.bits.vls := RegEnable(deqPtrEntry.vls, exceptionHappen)
643  io.exception.bits.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen)
644
645  // data will be one cycle after valid
646  io.readGPAMemAddr.valid := exceptionHappen
647  io.readGPAMemAddr.bits.ftqPtr := exceptionDataRead.bits.ftqPtr
648  io.readGPAMemAddr.bits.ftqOffset := exceptionDataRead.bits.ftqOffset
649
650  XSDebug(io.flushOut.valid,
651    p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " +
652      p"excp $deqHasException flushPipe $isFlushPipe " +
653      p"Trap_target 0x${Hexadecimal(io.csr.trapTarget.pc)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n")
654
655
656  /**
657   * Commits (and walk)
658   * They share the same width.
659   */
660  // T redirect.valid, T+1 use walkPtrVec read robEntries, T+2 start walk, shouldWalkVec used in T+2
661  val shouldWalkVec = Wire(Vec(CommitWidth,Bool()))
662  val walkingPtrVec = RegNext(walkPtrVec)
663  when(io.redirect.valid){
664    shouldWalkVec := 0.U.asTypeOf(shouldWalkVec)
665  }.elsewhen(RegNext(io.redirect.valid)){
666    shouldWalkVec := 0.U.asTypeOf(shouldWalkVec)
667  }.elsewhen(state === s_walk){
668    shouldWalkVec := VecInit(walkingPtrVec.map(_ <= lastWalkPtr).zip(donotNeedWalk).map(x => x._1 && !x._2))
669  }.otherwise(
670    shouldWalkVec := 0.U.asTypeOf(shouldWalkVec)
671  )
672  val walkFinished = walkPtrTrue > lastWalkPtr
673  rab.io.fromRob.walkEnd := state === s_walk && walkFinished
674  vtypeBuffer.io.fromRob.walkEnd := state === s_walk && walkFinished
675
676  require(RenameWidth <= CommitWidth)
677
678  // wiring to csr
679  val (wflags, dirtyFs) = (0 until CommitWidth).map(i => {
680    val v = io.commits.commitValid(i)
681    val info = io.commits.info(i)
682    (v & info.wflags, v & info.dirtyFs)
683  }).unzip
684  val fflags = Wire(Valid(UInt(5.W)))
685  fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR
686  fflags.bits := wflags.zip(fflagsDataRead).map({
687    case (w, f) => Mux(w, f, 0.U)
688  }).reduce(_ | _)
689  val dirtyVs = (0 until CommitWidth).map(i => {
690    val v = io.commits.commitValid(i)
691    val info = io.commits.info(i)
692    v & info.dirtyVs
693  })
694  val dirty_fs = io.commits.isCommit && VecInit(dirtyFs).asUInt.orR
695  val dirty_vs = io.commits.isCommit && VecInit(dirtyVs).asUInt.orR
696
697  val resetVstart = dirty_vs && !io.vstartIsZero
698
699  vecExcpInfo.valid := exceptionHappen && !intrEnable && exceptionDataRead.bits.vstartEn && exceptionDataRead.bits.isVecLoad && !exceptionDataRead.bits.isEnqExcp
700  when (exceptionHappen) {
701    vecExcpInfo.bits.nf := exceptionDataRead.bits.nf
702    vecExcpInfo.bits.vsew := exceptionDataRead.bits.vsew
703    vecExcpInfo.bits.veew := exceptionDataRead.bits.veew
704    vecExcpInfo.bits.vlmul := exceptionDataRead.bits.vlmul
705    vecExcpInfo.bits.isStride := exceptionDataRead.bits.isStrided
706    vecExcpInfo.bits.isIndexed := exceptionDataRead.bits.isIndexed
707    vecExcpInfo.bits.isWhole := exceptionDataRead.bits.isWhole
708    vecExcpInfo.bits.isVlm := exceptionDataRead.bits.isVlm
709    vecExcpInfo.bits.vstart := exceptionDataRead.bits.vstart
710  }
711
712  io.csr.vstart.valid := RegNext(Mux(exceptionHappen && deqHasException, exceptionDataRead.bits.vstartEn, resetVstart))
713  io.csr.vstart.bits := RegNext(Mux(exceptionHappen && deqHasException, exceptionDataRead.bits.vstart, 0.U))
714
715  val vxsat = Wire(Valid(Bool()))
716  vxsat.valid := io.commits.isCommit && vxsat.bits
717  vxsat.bits := io.commits.commitValid.zip(vxsatDataRead).map {
718    case (valid, vxsat) => valid & vxsat
719  }.reduce(_ | _)
720
721  // when mispredict branches writeback, stop commit in the next 2 cycles
722  // TODO: don't check all exu write back
723  val misPredWb = Cat(VecInit(redirectWBs.map(wb =>
724    wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid
725  ).toSeq)).orR
726  val misPredBlockCounter = Reg(UInt(3.W))
727  misPredBlockCounter := Mux(misPredWb,
728    "b111".U,
729    misPredBlockCounter >> 1.U
730  )
731  val misPredBlock = misPredBlockCounter(0)
732  val deqFlushBlockCounter = Reg(UInt(3.W))
733  val deqFlushBlock = deqFlushBlockCounter(0)
734  val deqHasCommitted = io.commits.isCommit && io.commits.commitValid(0)
735  // TODO *** WARNING ***
736  // Blocking commit. Don't change this before we fully understand the logic.
737  val deqHitRedirectReg = RegNext(io.redirect.valid && io.redirect.bits.robIdx === deqPtr) || RegNext(RegNext(io.redirect.valid && io.redirect.bits.robIdx === deqPtr))
738  val criticalErrorState = io.csr.criticalErrorState
739  when(deqNeedFlush && deqHitRedirectReg){
740    deqFlushBlockCounter := "b111".U
741  }.otherwise{
742    deqFlushBlockCounter := deqFlushBlockCounter >> 1.U
743  }
744  when(deqHasCommitted){
745    deqHasFlushed := false.B
746  }.elsewhen(deqNeedFlush && io.flushOut.valid && !io.flushOut.bits.flushItself()){
747    deqHasFlushed := true.B
748  }
749  val traceBlock = io.trace.blockCommit
750  val blockCommit = misPredBlock || lastCycleFlush || hasWFI || io.redirect.valid ||
751    (deqNeedFlush && !deqHasFlushed) || deqFlushBlock || criticalErrorState || traceBlock
752
753  io.commits.isWalk := state === s_walk
754  io.commits.isCommit := state === s_idle && !blockCommit
755
756  val walk_v = VecInit(walkingPtrVec.map(ptr => robEntries(ptr.value).valid))
757  val commit_vDeqGroup = VecInit(robDeqGroup.map(_.commit_v))
758  val commit_wDeqGroup = VecInit(robDeqGroup.map(_.commit_w))
759  val realCommitLast = deqPtrVec(0).lineHeadPtr + Fill(bankAddrWidth, 1.U)
760  val commit_block = VecInit((0 until CommitWidth).map(i => !commit_wDeqGroup(i) && !hasCommitted(i)))
761  val allowOnlyOneCommit = VecInit(robDeqGroup.map(x => x.commit_v && x.needFlush)).asUInt.orR || intrBitSetReg
762  // for instructions that may block others, we don't allow them to commit
763  io.commits.commitValid := PriorityMux(commitValidThisLine, (0 until CommitWidth).map(i => (commitValidThisLine.asUInt >> i).asUInt.asTypeOf(io.commits.commitValid)))
764
765  for (i <- 0 until CommitWidth) {
766    // defaults: state === s_idle and instructions commit
767    // when intrBitSetReg, allow only one instruction to commit at each clock cycle
768    val isBlocked = intrEnable || (deqNeedFlush && !deqHasFlushed)
769    val isBlockedByOlder = if (i != 0) commit_block.asUInt(i, 0).orR || allowOnlyOneCommit && !hasCommitted.asUInt(i - 1, 0).andR else false.B
770    commitValidThisLine(i) := commit_vDeqGroup(i) && commit_wDeqGroup(i) && !isBlocked && !isBlockedByOlder && !hasCommitted(i)
771    io.commits.info(i) := commitInfo(i)
772    io.commits.robIdx(i) := deqPtrVec(i)
773
774    io.commits.walkValid(i) := shouldWalkVec(i)
775    XSError(
776      state === s_walk &&
777      io.commits.isWalk && state === s_walk && shouldWalkVec(i) &&
778      !walk_v(i),
779      s"The walking entry($i) should be valid\n")
780
781    XSInfo(io.commits.isCommit && io.commits.commitValid(i),
782      "retired pc %x wen %d ldest %d pdest %x data %x fflags: %b vxsat: %b\n",
783      debug_microOp(deqPtrVec(i).value).pc,
784      io.commits.info(i).rfWen,
785      io.commits.info(i).debug_ldest.getOrElse(0.U),
786      io.commits.info(i).debug_pdest.getOrElse(0.U),
787      debug_exuData(deqPtrVec(i).value),
788      fflagsDataRead(i),
789      vxsatDataRead(i)
790    )
791    XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n",
792      debug_microOp(walkPtrVec(i).value).pc,
793      io.commits.info(i).rfWen,
794      io.commits.info(i).debug_ldest.getOrElse(0.U),
795      debug_exuData(walkPtrVec(i).value)
796    )
797  }
798
799  // sync fflags/dirty_fs/vxsat to csr
800  io.csr.fflags   := RegNextWithEnable(fflags)
801  io.csr.dirty_fs := GatedValidRegNext(dirty_fs)
802  io.csr.dirty_vs := GatedValidRegNext(dirty_vs)
803  io.csr.vxsat    := RegNextWithEnable(vxsat)
804
805  // commit load/store to lsq
806  val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD))
807  // TODO: Check if meet the require that only set scommit when commit scala store uop
808  val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE && !robEntries(deqPtrVec(i).value).vls ))
809  io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U))
810  io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U))
811  // indicate a pending load or store
812  io.lsq.pendingMMIOld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && deqPtrEntryValid && deqPtrEntry.mmio)
813  io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && deqPtrEntryValid)
814  // TODO: Check if need deassert pendingst when it is vst
815  io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && deqPtrEntryValid)
816  // TODO: Check if set correctly when vector store is at the head of ROB
817  io.lsq.pendingVst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && deqPtrEntryValid && deqPtrEntry.vls)
818  io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0))
819  io.lsq.pendingPtr := RegNext(deqPtr)
820  io.lsq.pendingPtrNext := RegNext(deqPtrVec_next.head)
821
822  /**
823   * state changes
824   * (1) redirect: switch to s_walk
825   * (2) walk: when walking comes to the end, switch to s_idle
826   */
827  state_next := Mux(
828    io.redirect.valid || RegNext(io.redirect.valid), s_walk,
829    Mux(
830      state === s_walk && walkFinished && rab.io.status.walkEnd && vtypeBuffer.io.status.walkEnd, s_idle,
831      state
832    )
833  )
834  XSPerfAccumulate("s_idle_to_idle", state === s_idle && state_next === s_idle)
835  XSPerfAccumulate("s_idle_to_walk", state === s_idle && state_next === s_walk)
836  XSPerfAccumulate("s_walk_to_idle", state === s_walk && state_next === s_idle)
837  XSPerfAccumulate("s_walk_to_walk", state === s_walk && state_next === s_walk)
838  state := state_next
839
840  /**
841   * pointers and counters
842   */
843  val deqPtrGenModule = Module(new NewRobDeqPtrWrapper)
844  deqPtrGenModule.io.state := state
845  deqPtrGenModule.io.deq_v := commit_vDeqGroup
846  deqPtrGenModule.io.deq_w := commit_wDeqGroup
847  deqPtrGenModule.io.exception_state := exceptionDataRead
848  deqPtrGenModule.io.intrBitSetReg := intrBitSetReg
849  deqPtrGenModule.io.hasNoSpecExec := hasWaitForward
850  deqPtrGenModule.io.allowOnlyOneCommit := allowOnlyOneCommit
851  deqPtrGenModule.io.interrupt_safe := robDeqGroup(deqPtr.value(bankAddrWidth-1,0)).interrupt_safe
852  deqPtrGenModule.io.blockCommit := blockCommit
853  deqPtrGenModule.io.hasCommitted := hasCommitted
854  deqPtrGenModule.io.allCommitted := allCommitted
855  deqPtrVec := deqPtrGenModule.io.out
856  deqPtrVec_next := deqPtrGenModule.io.next_out
857
858  val enqPtrGenModule = Module(new RobEnqPtrWrapper)
859  enqPtrGenModule.io.redirect := io.redirect
860  enqPtrGenModule.io.allowEnqueue := allowEnqueue && rab.io.canEnq && !io.fromVecExcpMod.busy
861  enqPtrGenModule.io.hasBlockBackward := hasBlockBackward
862  enqPtrGenModule.io.enq := VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop))
863  enqPtrVec := enqPtrGenModule.io.out
864
865  // next walkPtrVec:
866  // (1) redirect occurs: update according to state
867  // (2) walk: move forwards
868  val deqPtrReadBank = deqPtrVec_next(0).lineHeadPtr
869  val deqPtrVecForWalk = VecInit((0 until CommitWidth).map(i => deqPtrReadBank + i.U))
870  val snapPtrReadBank = snapshots(io.snpt.snptSelect)(0).lineHeadPtr
871  val snapPtrVecForWalk = VecInit((0 until CommitWidth).map(i => snapPtrReadBank + i.U))
872  val walkPtrVec_next: Vec[RobPtr] = Mux(io.redirect.valid,
873    Mux(io.snpt.useSnpt, snapPtrVecForWalk, deqPtrVecForWalk),
874    Mux((state === s_walk) && !walkFinished, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec)
875  )
876  val walkPtrTrue_next: RobPtr = Mux(io.redirect.valid,
877    Mux(io.snpt.useSnpt, snapshots(io.snpt.snptSelect)(0), deqPtrVec_next(0)),
878    Mux((state === s_walk) && !walkFinished, walkPtrVec_next.head, walkPtrTrue)
879  )
880  walkPtrHead := walkPtrVec_next.head
881  walkPtrVec := walkPtrVec_next
882  walkPtrTrue := walkPtrTrue_next
883  // T io.redirect.valid, T+1 walkPtrLowBits update, T+2 donotNeedWalk update
884  val walkPtrLowBits = Reg(UInt(bankAddrWidth.W))
885  when(io.redirect.valid){
886    walkPtrLowBits := Mux(io.snpt.useSnpt, snapshots(io.snpt.snptSelect)(0).value(bankAddrWidth-1, 0), deqPtrVec_next(0).value(bankAddrWidth-1, 0))
887  }
888  when(io.redirect.valid) {
889    donotNeedWalk := Fill(donotNeedWalk.length, true.B).asTypeOf(donotNeedWalk)
890  }.elsewhen(RegNext(io.redirect.valid)){
891    donotNeedWalk := (0 until CommitWidth).map(i => (i.U < walkPtrLowBits))
892  }.otherwise{
893    donotNeedWalk := 0.U.asTypeOf(donotNeedWalk)
894  }
895  walkDestSizeDeqGroup.zip(walkPtrVec_next).map {
896    case (reg, ptrNext) => reg := deqPtrEntry.realDestSize
897  }
898  val numValidEntries = distanceBetween(enqPtr, deqPtr)
899  val commitCnt = PopCount(io.commits.commitValid)
900
901  allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U
902  allowEnqueueForDispatch := numValidEntries + dispatchNum <= (RobSize - 2 * RenameWidth).U
903
904  val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0))
905  when(io.redirect.valid) {
906    lastWalkPtr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx - 1.U, io.redirect.bits.robIdx)
907  }
908
909
910  /**
911   * States
912   * We put all the stage bits changes here.
913   *
914   * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit);
915   * All states: (1) valid; (2) writebacked; (3) flagBkup
916   */
917
918  val deqPtrGroup = Wire(Vec(2 * CommitWidth, new RobPtr))
919  deqPtrGroup.zipWithIndex.map { case (deq, i) => deq := deqPtrVec(0) + i.U }
920  val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value)))
921
922  val redirectValidReg = RegNext(io.redirect.valid)
923  val redirectBegin = Reg(UInt(log2Up(RobSize).W))
924  val redirectEnd = Reg(UInt(log2Up(RobSize).W))
925  val redirectAll = RegInit(false.B)
926  when(io.redirect.valid){
927    redirectBegin := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx.value - 1.U, io.redirect.bits.robIdx.value)
928    redirectEnd := enqPtr.value
929    redirectAll := io.redirect.bits.flushItself() && (io.redirect.bits.robIdx.value === enqPtr.value) && (io.redirect.bits.robIdx.flag ^ enqPtr.flag)
930  }
931
932  // update robEntries valid
933  for (i <- 0 until RobSize) {
934    val enqOH = VecInit(canEnqueue.zip(allocatePtrVec.map(_.value === i.U)).map(x => x._1 && x._2))
935    val commitCond = io.commits.isCommit && io.commits.commitValid.zip(deqPtrVec.map(_.value === i.U)).map(x => x._1 && x._2).reduce(_ || _)
936    assert(PopCount(enqOH) < 2.U, s"robEntries$i enqOH is not one hot")
937    val needFlush = redirectValidReg && (Mux(
938      redirectEnd > redirectBegin,
939      (i.U > redirectBegin) && (i.U < redirectEnd),
940      (i.U > redirectBegin) || (i.U < redirectEnd)
941    ) || redirectAll)
942    when(commitCond) {
943      robEntries(i).valid := false.B
944    }.elsewhen(enqOH.asUInt.orR && !io.redirect.valid) {
945      robEntries(i).valid := true.B
946    }.elsewhen(needFlush){
947      robEntries(i).valid := false.B
948    }
949  }
950
951  // debug_inst update
952  for (i <- 0 until (LduCnt + StaCnt)) {
953    debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i))
954    debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i))
955    debug_lsInfo(io.debug_ls.debugLsInfo(i).s3_robIdx).s3SignalEnable(io.debug_ls.debugLsInfo(i))
956  }
957  for (i <- 0 until LduCnt) {
958    debug_lsTopdownInfo(io.lsTopdownInfo(i).s1.robIdx).s1SignalEnable(io.lsTopdownInfo(i))
959    debug_lsTopdownInfo(io.lsTopdownInfo(i).s2.robIdx).s2SignalEnable(io.lsTopdownInfo(i))
960  }
961
962  // status field: writebacked
963  // enqueue logic set 6 writebacked to false
964
965  // writeback logic set numWbPorts writebacked to true
966
967  // if the first uop of an instruction is valid , write writebackedCounter
968  val uopEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid)
969  val instEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid && req.bits.firstUop)
970  val enqNeedWriteRFSeq = io.enq.req.map(_.bits.needWriteRf)
971  val enqHasExcpSeq = io.enq.req.map(_.bits.hasException)
972  val enqRobIdxSeq = io.enq.req.map(req => req.bits.robIdx.value)
973  val enqUopNumVec = VecInit(io.enq.req.map(req => req.bits.numUops))
974  val enqWBNumVec = VecInit(io.enq.req.map(req => req.bits.numWB))
975
976  private val enqWriteStdVec: Vec[Bool] = VecInit(io.enq.req.map {
977    req => FuType.isStore(req.bits.fuType)
978  })
979  val fflags_wb = fflagsWBs
980  val vxsat_wb = vxsatWBs
981  for (i <- 0 until RobSize) {
982
983    val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === i.U)
984    val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map { case (valid, isMatch) => valid && isMatch }
985    val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map { case (valid, isMatch) => valid && isMatch }
986    val instCanEnqFlag = Cat(instCanEnqSeq).orR
987    val hasExcpSeq = enqHasExcpSeq.lazyZip(robIdxMatchSeq).lazyZip(uopEnqValidSeq).map { case (excp, isMatch, valid) => excp && isMatch && valid }
988    val hasExcpFlag = Cat(hasExcpSeq).orR
989    val isFirstEnq = !robEntries(i).valid && instCanEnqFlag
990    val realDestEnqNum = PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map { case (writeFlag, valid) => writeFlag && valid })
991    when(isFirstEnq){
992      robEntries(i).realDestSize := realDestEnqNum //Mux(hasExcpFlag, 0.U, realDestEnqNum)
993    }.elsewhen(robEntries(i).valid && Cat(uopCanEnqSeq).orR){
994      robEntries(i).realDestSize := robEntries(i).realDestSize + realDestEnqNum
995    }
996    val enqUopNum = PriorityMux(instCanEnqSeq, enqUopNumVec)
997    val enqWBNum = PriorityMux(instCanEnqSeq, enqWBNumVec)
998    val enqWriteStd = PriorityMux(instCanEnqSeq, enqWriteStdVec)
999
1000    val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)
1001    val canStdWbSeq = VecInit(stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U))
1002    val wbCnt = Mux1H(canWbSeq, io.writebackNums.map(_.bits))
1003
1004    val canWbExceptionSeq = exceptionWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)
1005    val needFlush = robEntries(i).needFlush
1006    val needFlushWriteBack = Wire(Bool())
1007    needFlushWriteBack := Mux1H(canWbExceptionSeq, io.writebackNeedFlush)
1008    when(robEntries(i).valid){
1009      needFlush := needFlush || needFlushWriteBack
1010    }
1011
1012    when(robEntries(i).valid && (needFlush || needFlushWriteBack)) {
1013      // exception flush
1014      robEntries(i).uopNum := robEntries(i).uopNum - wbCnt
1015      robEntries(i).stdWritebacked := true.B
1016    }.elsewhen(!robEntries(i).valid && instCanEnqFlag) {
1017      // enq set num of uops
1018      robEntries(i).uopNum := enqWBNum
1019      robEntries(i).stdWritebacked := Mux(enqWriteStd, false.B, true.B)
1020    }.elsewhen(robEntries(i).valid) {
1021      // update by writing back
1022      robEntries(i).uopNum := robEntries(i).uopNum - wbCnt
1023      assert(!(robEntries(i).uopNum - wbCnt > robEntries(i).uopNum), s"robEntries $i uopNum is overflow!")
1024      when(canStdWbSeq.asUInt.orR) {
1025        robEntries(i).stdWritebacked := true.B
1026      }
1027    }
1028
1029    val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U && writeback.bits.wflags.getOrElse(false.B))
1030    val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.fold(false.B)(_ | _)
1031    when(isFirstEnq) {
1032      robEntries(i).fflags := 0.U
1033    }.elsewhen(fflagsRes.orR) {
1034      robEntries(i).fflags := robEntries(i).fflags | fflagsRes
1035    }
1036
1037    val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)
1038    val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.fold(false.B)(_ | _)
1039    when(isFirstEnq) {
1040      robEntries(i).vxsat := 0.U
1041    }.elsewhen(vxsatRes.orR) {
1042      robEntries(i).vxsat := robEntries(i).vxsat | vxsatRes
1043    }
1044
1045    // trace
1046    val taken = branchWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U && writeback.bits.redirect.get.bits.cfiUpdate.taken).reduce(_ || _)
1047    when(robEntries(i).valid && Itype.isBranchType(robEntries(i).traceBlockInPipe.itype) && taken){
1048      // BranchType code(notaken itype = 4) must be correctly replaced!
1049      robEntries(i).traceBlockInPipe.itype := Itype.Taken
1050    }
1051  }
1052
1053  // begin update robBanksRdata
1054  val robBanksRdata = VecInit(robBanksRdataThisLine ++ robBanksRdataNextLine)
1055  val needUpdate = Wire(Vec(2 * CommitWidth, new RobEntryBundle))
1056  needUpdate := VecInit(robBanksRdataThisLine ++ robBanksRdataNextLine)
1057  val needUpdateRobIdx = robIdxThisLine ++ robIdxNextLine
1058  for (i <- 0 until 2 * CommitWidth) {
1059    val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === needUpdateRobIdx(i))
1060    val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map { case (valid, isMatch) => valid && isMatch }
1061    val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map { case (valid, isMatch) => valid && isMatch }
1062    val instCanEnqFlag = Cat(instCanEnqSeq).orR
1063    val realDestEnqNum = PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map { case (writeFlag, valid) => writeFlag && valid })
1064    when(!needUpdate(i).valid && instCanEnqFlag) {
1065      needUpdate(i).realDestSize := realDestEnqNum
1066    }.elsewhen(needUpdate(i).valid && instCanEnqFlag) {
1067      needUpdate(i).realDestSize := robBanksRdata(i).realDestSize + realDestEnqNum
1068    }
1069    val enqUopNum = PriorityMux(instCanEnqSeq, enqUopNumVec)
1070    val enqWBNum = PriorityMux(instCanEnqSeq, enqWBNumVec)
1071    val enqWriteStd = PriorityMux(instCanEnqSeq, enqWriteStdVec)
1072
1073    val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === needUpdateRobIdx(i))
1074    val canStdWbSeq = VecInit(stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === needUpdateRobIdx(i)))
1075    val wbCnt = Mux1H(canWbSeq, io.writebackNums.map(_.bits))
1076
1077    val canWbExceptionSeq = exceptionWBs.map(writeback => writeback.valid && (writeback.bits.robIdx.value === needUpdateRobIdx(i)))
1078    val needFlush = robBanksRdata(i).needFlush
1079    val needFlushWriteBack = Wire(Bool())
1080    needFlushWriteBack := Mux1H(canWbExceptionSeq, io.writebackNeedFlush)
1081    when(needUpdate(i).valid) {
1082      needUpdate(i).needFlush := needFlush || needFlushWriteBack
1083    }
1084
1085    when(needUpdate(i).valid && (needFlush || needFlushWriteBack)) {
1086      // exception flush
1087      needUpdate(i).uopNum := robBanksRdata(i).uopNum - wbCnt
1088      needUpdate(i).stdWritebacked := true.B
1089    }.elsewhen(!needUpdate(i).valid && instCanEnqFlag) {
1090      // enq set num of uops
1091      needUpdate(i).uopNum := enqWBNum
1092      needUpdate(i).stdWritebacked := Mux(enqWriteStd, false.B, true.B)
1093    }.elsewhen(needUpdate(i).valid) {
1094      // update by writing back
1095      needUpdate(i).uopNum := robBanksRdata(i).uopNum - wbCnt
1096      when(canStdWbSeq.asUInt.orR) {
1097        needUpdate(i).stdWritebacked := true.B
1098      }
1099    }
1100
1101    val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === needUpdateRobIdx(i) && writeback.bits.wflags.getOrElse(false.B))
1102    val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.fold(false.B)(_ | _)
1103    needUpdate(i).fflags := Mux(!robBanksRdata(i).valid && instCanEnqFlag, 0.U, robBanksRdata(i).fflags | fflagsRes)
1104
1105    val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === needUpdateRobIdx(i))
1106    val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.fold(false.B)(_ | _)
1107    needUpdate(i).vxsat := Mux(!robBanksRdata(i).valid && instCanEnqFlag, 0.U, robBanksRdata(i).vxsat | vxsatRes)
1108
1109    // trace
1110    val taken = branchWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === needUpdateRobIdx(i) && writeback.bits.redirect.get.bits.cfiUpdate.taken).reduce(_ || _)
1111    when(robBanksRdata(i).valid && Itype.isBranchType(robBanksRdata(i).traceBlockInPipe.itype) && taken){
1112      // BranchType code(notaken itype = 4) must be correctly replaced!
1113      needUpdate(i).traceBlockInPipe.itype := Itype.Taken
1114    }
1115  }
1116  robBanksRdataThisLineUpdate := VecInit(needUpdate.take(8))
1117  robBanksRdataNextLineUpdate := VecInit(needUpdate.drop(8))
1118  // end update robBanksRdata
1119
1120  // interrupt_safe
1121  for (i <- 0 until RenameWidth) {
1122    when(canEnqueue(i)) {
1123      // For now, we allow non-load-store instructions to trigger interrupts
1124      // For MMIO instructions, they should not trigger interrupts since they may
1125      // be sent to lower level before it writes back.
1126      // However, we cannot determine whether a load/store instruction is MMIO.
1127      // Thus, we don't allow load/store instructions to trigger an interrupt.
1128      // TODO: support non-MMIO load-store instructions to trigger interrupts
1129      val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType) && !FuType.isFence(io.enq.req(i).bits.fuType) && !FuType.isCsr(io.enq.req(i).bits.fuType) && !FuType.isVset(io.enq.req(i).bits.fuType)
1130      robEntries(allocatePtrVec(i).value).interrupt_safe := allow_interrupts
1131    }
1132  }
1133
1134  /**
1135   * read and write of data modules
1136   */
1137  val commitReadAddr_next = Mux(state_next === s_idle,
1138    VecInit(deqPtrVec_next.map(_.value)),
1139    VecInit(walkPtrVec_next.map(_.value))
1140  )
1141
1142  exceptionGen.io.redirect <> io.redirect
1143  exceptionGen.io.flush := io.flushOut.valid
1144
1145  val canEnqueueEG = VecInit(io.enq.req.map(req => req.valid && io.enq.canAccept))
1146  for (i <- 0 until RenameWidth) {
1147    exceptionGen.io.enq(i).valid := canEnqueueEG(i)
1148    exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx
1149    exceptionGen.io.enq(i).bits.ftqPtr := io.enq.req(i).bits.ftqPtr
1150    exceptionGen.io.enq(i).bits.ftqOffset := io.enq.req(i).bits.ftqOffset
1151    exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec)
1152    exceptionGen.io.enq(i).bits.hasException := io.enq.req(i).bits.hasException
1153    exceptionGen.io.enq(i).bits.isEnqExcp := io.enq.req(i).bits.hasException
1154    exceptionGen.io.enq(i).bits.isFetchMalAddr := io.enq.req(i).bits.isFetchMalAddr
1155    exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe
1156    exceptionGen.io.enq(i).bits.isVset := io.enq.req(i).bits.isVset
1157    exceptionGen.io.enq(i).bits.replayInst := false.B
1158    XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst")
1159    exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep
1160    exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix
1161    exceptionGen.io.enq(i).bits.trigger := io.enq.req(i).bits.trigger
1162    exceptionGen.io.enq(i).bits.vstartEn := false.B //DontCare
1163    exceptionGen.io.enq(i).bits.vstart := 0.U //DontCare
1164    exceptionGen.io.enq(i).bits.vuopIdx := 0.U
1165    exceptionGen.io.enq(i).bits.isVecLoad := false.B
1166    exceptionGen.io.enq(i).bits.isVlm := false.B
1167    exceptionGen.io.enq(i).bits.isStrided := false.B
1168    exceptionGen.io.enq(i).bits.isIndexed := false.B
1169    exceptionGen.io.enq(i).bits.isWhole := false.B
1170    exceptionGen.io.enq(i).bits.nf := 0.U
1171    exceptionGen.io.enq(i).bits.vsew := 0.U
1172    exceptionGen.io.enq(i).bits.veew := 0.U
1173    exceptionGen.io.enq(i).bits.vlmul := 0.U
1174  }
1175
1176  println(s"ExceptionGen:")
1177  println(s"num of exceptions: ${params.numException}")
1178  require(exceptionWBs.length == exceptionGen.io.wb.length,
1179    f"exceptionWBs.length: ${exceptionWBs.length}, " +
1180      f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}")
1181  for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) {
1182    exc_wb.valid       := wb.valid
1183    exc_wb.bits.robIdx := wb.bits.robIdx
1184    // only enq inst use ftqPtr to read gpa
1185    exc_wb.bits.ftqPtr          := 0.U.asTypeOf(exc_wb.bits.ftqPtr)
1186    exc_wb.bits.ftqOffset       := 0.U.asTypeOf(exc_wb.bits.ftqOffset)
1187    exc_wb.bits.exceptionVec    := wb.bits.exceptionVec.get
1188    exc_wb.bits.hasException    := wb.bits.exceptionVec.get.asUInt.orR // Todo: use io.writebackNeedFlush(i) instead
1189    exc_wb.bits.isEnqExcp       := false.B
1190    exc_wb.bits.isFetchMalAddr  := false.B
1191    exc_wb.bits.flushPipe       := wb.bits.flushPipe.getOrElse(false.B)
1192    exc_wb.bits.isVset          := false.B
1193    exc_wb.bits.replayInst      := wb.bits.replay.getOrElse(false.B)
1194    exc_wb.bits.singleStep      := false.B
1195    exc_wb.bits.crossPageIPFFix := false.B
1196    val trigger = wb.bits.trigger.getOrElse(TriggerAction.None).asTypeOf(exc_wb.bits.trigger)
1197    exc_wb.bits.trigger := trigger
1198    exc_wb.bits.vstartEn := (if (wb.bits.vls.nonEmpty) wb.bits.exceptionVec.get.asUInt.orR || TriggerAction.isDmode(trigger) else 0.U)
1199    exc_wb.bits.vstart := (if (wb.bits.vls.nonEmpty) wb.bits.vls.get.vpu.vstart else 0.U)
1200    exc_wb.bits.vuopIdx := (if (wb.bits.vls.nonEmpty) wb.bits.vls.get.vpu.vuopIdx else 0.U)
1201    exc_wb.bits.isVecLoad := wb.bits.vls.map(_.isVecLoad).getOrElse(false.B)
1202    exc_wb.bits.isVlm := wb.bits.vls.map(_.isVlm).getOrElse(false.B)
1203    exc_wb.bits.isStrided := wb.bits.vls.map(_.isStrided).getOrElse(false.B) // strided need two mode tmp vreg
1204    exc_wb.bits.isIndexed := wb.bits.vls.map(_.isIndexed).getOrElse(false.B) // indexed and nf=0 need non-sequential uopidx -> vdidx
1205    exc_wb.bits.isWhole := wb.bits.vls.map(_.isWhole).getOrElse(false.B) // indexed and nf=0 need non-sequential uopidx -> vdidx
1206    exc_wb.bits.nf := wb.bits.vls.map(_.vpu.nf).getOrElse(0.U)
1207    exc_wb.bits.vsew := wb.bits.vls.map(_.vpu.vsew).getOrElse(0.U)
1208    exc_wb.bits.veew := wb.bits.vls.map(_.vpu.veew).getOrElse(0.U)
1209    exc_wb.bits.vlmul := wb.bits.vls.map(_.vpu.vlmul).getOrElse(0.U)
1210  }
1211
1212  fflagsDataRead := (0 until CommitWidth).map(i => robEntries(deqPtrVec(i).value).fflags)
1213  vxsatDataRead := (0 until CommitWidth).map(i => robEntries(deqPtrVec(i).value).vxsat)
1214
1215  val isCommit = io.commits.isCommit
1216  val isCommitReg = GatedValidRegNext(io.commits.isCommit)
1217  val instrCntReg = RegInit(0.U(64.W))
1218  val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map { case (v, i) => RegEnable(v && CommitType.isFused(i.commitType), isCommit) })
1219  val trueCommitCnt = RegEnable(io.commits.commitValid.zip(io.commits.info).map { case (v, i) => Mux(v, i.instrSize, 0.U) }.reduce(_ +& _), isCommit) +& fuseCommitCnt
1220  val retireCounter = Mux(isCommitReg, trueCommitCnt, 0.U)
1221  val instrCnt = instrCntReg + retireCounter
1222  when(isCommitReg){
1223    instrCntReg := instrCnt
1224  }
1225  io.csr.perfinfo.retiredInstr := retireCounter
1226  io.robFull := !allowEnqueue
1227  io.headNotReady := commit_vDeqGroup(deqPtr.value(bankNumWidth-1, 0)) && !commit_wDeqGroup(deqPtr.value(bankNumWidth-1, 0))
1228
1229  io.toVecExcpMod.logicPhyRegMap := rab.io.toVecExcpMod.logicPhyRegMap
1230  io.toVecExcpMod.excpInfo := vecExcpInfo
1231
1232  /**
1233   * trace
1234   */
1235
1236  // trace output
1237  val traceValids = io.trace.traceCommitInfo.blocks.map(_.valid)
1238  val traceBlocks = io.trace.traceCommitInfo.blocks
1239  val traceBlockInPipe = io.trace.traceCommitInfo.blocks.map(_.bits.tracePipe)
1240
1241  // The reg 'isTraceXret' only for trace xret instructions. xret only occur in block(0).
1242  val isTraceXret = RegInit(false.B)
1243  when(io.csr.isXRet){
1244    isTraceXret := true.B
1245  }.elsewhen(isTraceXret && io.commits.isCommit && io.commits.commitValid(0)){
1246    isTraceXret := false.B
1247  }
1248
1249  for (i <- 0 until CommitWidth) {
1250    traceBlocks(i).bits.ftqIdx.foreach(_ := rawInfo(i).ftqIdx)
1251    traceBlocks(i).bits.ftqOffset.foreach(_ := rawInfo(i).ftqOffset)
1252    traceBlockInPipe(i).itype := rawInfo(i).traceBlockInPipe.itype
1253    traceBlockInPipe(i).iretire := rawInfo(i).traceBlockInPipe.iretire
1254    traceBlockInPipe(i).ilastsize := rawInfo(i).traceBlockInPipe.ilastsize
1255    traceValids(i) := io.commits.isCommit && io.commits.commitValid(i)
1256    // exception/xret only occur in block(0).
1257    if(i == 0) {
1258      when(isTraceXret && io.commits.isCommit && io.commits.commitValid(0)){ // trace xret
1259        traceBlocks(i).bits.tracePipe.itype := Itype.ExpIntReturn
1260      }.elsewhen(io.exception.valid){ // trace exception
1261        traceBlocks(i).bits.tracePipe.itype := Mux(io.exception.bits.isInterrupt,
1262          Itype.Interrupt,
1263          Itype.Exception
1264        )
1265        traceValids(i) := true.B
1266        traceBlockInPipe(i).iretire := 0.U
1267      }
1268    }
1269  }
1270
1271  /**
1272   * debug info
1273   */
1274  XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n")
1275  XSDebug("")
1276  XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n")
1277  for (i <- 0 until RobSize) {
1278    XSDebug(false, !robEntries(i).valid, "-")
1279    XSDebug(false, robEntries(i).valid && robEntries(i).isWritebacked, "w")
1280    XSDebug(false, robEntries(i).valid && !robEntries(i).isWritebacked, "v")
1281  }
1282  XSDebug(false, true.B, "\n")
1283
1284  for (i <- 0 until RobSize) {
1285    if (i % 4 == 0) XSDebug("")
1286    XSDebug(false, true.B, "%x ", debug_microOp(i).pc)
1287    XSDebug(false, !robEntries(i).valid, "- ")
1288    XSDebug(false, robEntries(i).valid && robEntries(i).isWritebacked, "w ")
1289    XSDebug(false, robEntries(i).valid && !robEntries(i).isWritebacked, "v ")
1290    if (i % 4 == 3) XSDebug(false, true.B, "\n")
1291  }
1292
1293  def ifCommit(counter: UInt): UInt = Mux(isCommit, counter, 0.U)
1294
1295  def ifCommitReg(counter: UInt): UInt = Mux(isCommitReg, counter, 0.U)
1296
1297  val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_))
1298  XSPerfAccumulate("clock_cycle", 1.U)
1299  QueuePerf(RobSize, numValidEntries, numValidEntries === RobSize.U)
1300  XSPerfAccumulate("commitUop", ifCommit(commitCnt))
1301  XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt))
1302  XSPerfRolling("ipc", ifCommitReg(trueCommitCnt), 1000, clock, reset)
1303  XSPerfRolling("cpi", perfCnt = 1.U /*Cycle*/ , eventTrigger = ifCommitReg(trueCommitCnt), granularity = 1000, clock, reset)
1304  XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt))
1305  val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD)
1306  val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map { case (v, t) => v && t }
1307  XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid)))
1308  val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH)
1309  val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map { case (v, t) => v && t }
1310  XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid)))
1311  val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE)
1312  XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map { case (v, t) => v && t })))
1313  XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => robEntries(i).valid && robEntries(i).isWritebacked)))
1314  // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire)))
1315  // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready)))
1316  XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U))
1317  XSPerfAccumulate("walkCycleTotal", state === s_walk)
1318  XSPerfAccumulate("waitRabWalkEnd", state === s_walk && walkFinished && !rab.io.status.walkEnd)
1319  private val walkCycle = RegInit(0.U(8.W))
1320  private val waitRabWalkCycle = RegInit(0.U(8.W))
1321  walkCycle := Mux(io.redirect.valid, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U))
1322  waitRabWalkCycle := Mux(state === s_walk && walkFinished, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U))
1323
1324  XSPerfHistogram("walkRobCycleHist", walkCycle, state === s_walk && walkFinished, 0, 32)
1325  XSPerfHistogram("walkRabExtraCycleHist", waitRabWalkCycle, state === s_walk && walkFinished && rab.io.status.walkEnd, 0, 32)
1326  XSPerfHistogram("walkTotalCycleHist", walkCycle, state === s_walk && state_next === s_idle, 0, 32)
1327
1328  private val deqNotWritebacked = robEntries(deqPtr.value).valid && !robEntries(deqPtr.value).isWritebacked
1329  private val deqStdNotWritebacked = robEntries(deqPtr.value).valid && !robEntries(deqPtr.value).stdWritebacked
1330  private val deqUopNotWritebacked = robEntries(deqPtr.value).valid && !robEntries(deqPtr.value).isUopWritebacked
1331  private val deqHeadInfo = debug_microOp(deqPtr.value)
1332  val deqUopCommitType = debug_microOp(deqPtr.value).commitType
1333
1334  XSPerfAccumulate("waitAluCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.alu.U)
1335  XSPerfAccumulate("waitMulCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.mul.U)
1336  XSPerfAccumulate("waitDivCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.div.U)
1337  XSPerfAccumulate("waitBrhCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.brh.U)
1338  XSPerfAccumulate("waitJmpCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.jmp.U)
1339  XSPerfAccumulate("waitCsrCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.csr.U)
1340  XSPerfAccumulate("waitFenCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.fence.U)
1341  XSPerfAccumulate("waitBkuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.bku.U)
1342  XSPerfAccumulate("waitLduCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.ldu.U)
1343  XSPerfAccumulate("waitStuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.stu.U)
1344  XSPerfAccumulate("waitStaCycle", deqUopNotWritebacked && deqHeadInfo.fuType === FuType.stu.U)
1345  XSPerfAccumulate("waitStdCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.stu.U)
1346  XSPerfAccumulate("waitAtmCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.mou.U)
1347
1348  XSPerfAccumulate("waitVfaluCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.vfalu.U)
1349  XSPerfAccumulate("waitVfmaCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.vfma.U)
1350  XSPerfAccumulate("waitVfdivCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.vfdiv.U)
1351
1352  val vfalufuop = Seq(VfaluType.vfadd, VfaluType.vfwadd, VfaluType.vfwadd_w, VfaluType.vfsub, VfaluType.vfwsub, VfaluType.vfwsub_w, VfaluType.vfmin, VfaluType.vfmax,
1353    VfaluType.vfmerge, VfaluType.vfmv, VfaluType.vfsgnj, VfaluType.vfsgnjn, VfaluType.vfsgnjx, VfaluType.vfeq, VfaluType.vfne, VfaluType.vflt, VfaluType.vfle, VfaluType.vfgt,
1354    VfaluType.vfge, VfaluType.vfclass, VfaluType.vfmv_f_s, VfaluType.vfmv_s_f, VfaluType.vfredusum, VfaluType.vfredmax, VfaluType.vfredmin, VfaluType.vfredosum, VfaluType.vfwredosum)
1355
1356  vfalufuop.zipWithIndex.map{
1357    case(fuoptype,i) =>  XSPerfAccumulate(s"waitVfalu_${i}Cycle", deqStdNotWritebacked && deqHeadInfo.fuOpType === fuoptype && deqHeadInfo.fuType === FuType.vfalu.U)
1358  }
1359
1360
1361
1362  XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL)
1363  XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH)
1364  XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD)
1365  XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE)
1366  XSPerfAccumulate("robHeadPC", io.commits.info(0).debug_pc.getOrElse(0.U))
1367  XSPerfAccumulate("commitCompressCntAll", PopCount(io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => io.commits.isCommit && valid && info.instrSize > 1.U }))
1368  (2 to RenameWidth).foreach(i =>
1369    XSPerfAccumulate(s"commitCompressCnt${i}", PopCount(io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => io.commits.isCommit && valid && info.instrSize === i.U }))
1370  )
1371  XSPerfAccumulate("compressSize", io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => Mux(io.commits.isCommit && valid && info.instrSize > 1.U, info.instrSize, 0.U) }.reduce(_ +& _))
1372  val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime)
1373  val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime)
1374  val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime)
1375  val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime)
1376  val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime)
1377  val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime)
1378  val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime)
1379
1380  def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = {
1381    cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _)
1382  }
1383
1384  for (fuType <- FuType.functionNameMap.keys) {
1385    val fuName = FuType.functionNameMap(fuType)
1386    val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U)
1387    XSPerfRolling(s"ipc_futype_${fuName}", ifCommit(PopCount(commitIsFuType)), 1000, clock, reset)
1388    XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType)))
1389    XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency)))
1390    XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency)))
1391    XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency)))
1392    XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency)))
1393    XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency)))
1394    XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency)))
1395    XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency)))
1396  }
1397  XSPerfAccumulate(s"redirect_use_snapshot", io.redirect.valid && io.snpt.useSnpt)
1398
1399  // top-down info
1400  io.debugTopDown.toCore.robHeadVaddr.valid := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_valid
1401  io.debugTopDown.toCore.robHeadVaddr.bits := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_bits
1402  io.debugTopDown.toCore.robHeadPaddr.valid := debug_lsTopdownInfo(deqPtr.value).s2.paddr_valid
1403  io.debugTopDown.toCore.robHeadPaddr.bits := debug_lsTopdownInfo(deqPtr.value).s2.paddr_bits
1404  io.debugTopDown.toDispatch.robTrueCommit := ifCommitReg(trueCommitCnt)
1405  io.debugTopDown.toDispatch.robHeadLsIssue := debug_lsIssue(deqPtr.value)
1406  io.debugTopDown.robHeadLqIdx.valid := debug_lqIdxValid(deqPtr.value)
1407  io.debugTopDown.robHeadLqIdx.bits := debug_microOp(deqPtr.value).lqIdx
1408
1409  // rolling
1410  io.debugRolling.robTrueCommit := ifCommitReg(trueCommitCnt)
1411
1412  /**
1413   * DataBase info:
1414   * log trigger is at writeback valid
1415   * */
1416  if (!env.FPGAPlatform) {
1417    val instTableName = "InstTable" + p(XSCoreParamsKey).HartId.toString
1418    val instSiteName = "Rob" + p(XSCoreParamsKey).HartId.toString
1419    val debug_instTable = ChiselDB.createTable(instTableName, new InstInfoEntry)
1420    for (wb <- exuWBs) {
1421      when(wb.valid) {
1422        val debug_instData = Wire(new InstInfoEntry)
1423        val idx = wb.bits.robIdx.value
1424        debug_instData.robIdx := idx
1425        debug_instData.dvaddr := wb.bits.debug.vaddr
1426        debug_instData.dpaddr := wb.bits.debug.paddr
1427        debug_instData.issueTime := wb.bits.debugInfo.issueTime
1428        debug_instData.writebackTime := wb.bits.debugInfo.writebackTime
1429        debug_instData.dispatchLatency := wb.bits.debugInfo.dispatchTime - wb.bits.debugInfo.renameTime
1430        debug_instData.enqRsLatency := wb.bits.debugInfo.enqRsTime - wb.bits.debugInfo.dispatchTime
1431        debug_instData.selectLatency := wb.bits.debugInfo.selectTime - wb.bits.debugInfo.enqRsTime
1432        debug_instData.issueLatency := wb.bits.debugInfo.issueTime - wb.bits.debugInfo.selectTime
1433        debug_instData.executeLatency := wb.bits.debugInfo.writebackTime - wb.bits.debugInfo.issueTime
1434        debug_instData.rsFuLatency := wb.bits.debugInfo.writebackTime - wb.bits.debugInfo.enqRsTime
1435        debug_instData.tlbLatency := wb.bits.debugInfo.tlbRespTime - wb.bits.debugInfo.tlbFirstReqTime
1436        debug_instData.exceptType := Cat(wb.bits.exceptionVec.getOrElse(ExceptionVec(false.B)))
1437        debug_instData.lsInfo := debug_lsInfo(idx)
1438        // debug_instData.globalID := wb.bits.uop.ctrl.debug_globalID
1439        // debug_instData.instType := wb.bits.uop.ctrl.fuType
1440        // debug_instData.ivaddr := wb.bits.uop.cf.pc
1441        // debug_instData.mdpInfo.ssid := wb.bits.uop.cf.ssid
1442        // debug_instData.mdpInfo.waitAllStore := wb.bits.uop.cf.loadWaitStrict && wb.bits.uop.cf.loadWaitBit
1443        debug_instTable.log(
1444          data = debug_instData,
1445          en = wb.valid,
1446          site = instSiteName,
1447          clock = clock,
1448          reset = reset
1449        )
1450      }
1451    }
1452  }
1453
1454
1455  //difftest signals
1456  val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value
1457
1458  val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1459  val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1460
1461  for (i <- 0 until CommitWidth) {
1462    val idx = deqPtrVec(i).value
1463    wdata(i) := debug_exuData(idx)
1464    wpc(i) := SignExt(commitDebugUop(i).pc, XLEN)
1465  }
1466
1467  if (env.EnableDifftest || env.AlwaysBasicDiff) {
1468    // These are the structures used by difftest only and should be optimized after synthesis.
1469    val dt_eliminatedMove = Mem(RobSize, Bool())
1470    val dt_isRVC = Mem(RobSize, Bool())
1471    val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle))
1472    for (i <- 0 until RenameWidth) {
1473      when(canEnqueue(i)) {
1474        dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove
1475        dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC
1476      }
1477    }
1478    for (wb <- exuWBs) {
1479      when(wb.valid) {
1480        val wbIdx = wb.bits.robIdx.value
1481        dt_exuDebug(wbIdx) := wb.bits.debug
1482      }
1483    }
1484    // Always instantiate basic difftest modules.
1485    for (i <- 0 until CommitWidth) {
1486      val uop = commitDebugUop(i)
1487      val commitInfo = io.commits.info(i)
1488      val ptr = deqPtrVec(i).value
1489      val exuOut = dt_exuDebug(ptr)
1490      val eliminatedMove = dt_eliminatedMove(ptr)
1491      val isRVC = dt_isRVC(ptr)
1492
1493      val difftest = DifftestModule(new DiffInstrCommit(MaxPhyRegs), delay = 3, dontCare = true)
1494      val dt_skip = Mux(eliminatedMove, false.B, exuOut.isSkipDiff)
1495      difftest.coreid := io.hartId
1496      difftest.index := i.U
1497      difftest.valid := io.commits.commitValid(i) && io.commits.isCommit
1498      difftest.skip := dt_skip
1499      difftest.isRVC := isRVC
1500      difftest.rfwen := io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.debug_ldest.get =/= 0.U
1501      difftest.fpwen := io.commits.commitValid(i) && uop.fpWen
1502      difftest.wpdest := commitInfo.debug_pdest.get
1503      difftest.wdest := commitInfo.debug_ldest.get
1504      difftest.nFused := CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize - 1.U
1505      when(difftest.valid) {
1506        assert(CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize >= 1.U)
1507      }
1508      if (env.EnableDifftest) {
1509        val uop = commitDebugUop(i)
1510        difftest.pc := SignExt(uop.pc, XLEN)
1511        difftest.instr := uop.instr
1512        difftest.robIdx := ZeroExt(ptr, 10)
1513        difftest.lqIdx := ZeroExt(uop.lqIdx.value, 7)
1514        difftest.sqIdx := ZeroExt(uop.sqIdx.value, 7)
1515        difftest.isLoad := io.commits.info(i).commitType === CommitType.LOAD
1516        difftest.isStore := io.commits.info(i).commitType === CommitType.STORE
1517        // Check LoadEvent only when isAmo or isLoad and skip MMIO
1518        val difftestLoadEvent = DifftestModule(new DiffLoadEvent, delay = 3)
1519        difftestLoadEvent.coreid := io.hartId
1520        difftestLoadEvent.index := i.U
1521        val loadCheck = (FuType.isAMO(uop.fuType) || FuType.isLoad(uop.fuType)) && !dt_skip
1522        difftestLoadEvent.valid    := io.commits.commitValid(i) && io.commits.isCommit && loadCheck
1523        difftestLoadEvent.paddr    := exuOut.paddr
1524        difftestLoadEvent.opType   := uop.fuOpType
1525        difftestLoadEvent.isAtomic := FuType.isAMO(uop.fuType)
1526        difftestLoadEvent.isLoad   := FuType.isLoad(uop.fuType)
1527      }
1528    }
1529  }
1530
1531  if (env.EnableDifftest || env.AlwaysBasicDiff) {
1532    val dt_isXSTrap = Mem(RobSize, Bool())
1533    for (i <- 0 until RenameWidth) {
1534      when(canEnqueue(i)) {
1535        dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap
1536      }
1537    }
1538    val trapVec = io.commits.commitValid.zip(deqPtrVec).map { case (v, d) =>
1539      io.commits.isCommit && v && dt_isXSTrap(d.value)
1540    }
1541    val hitTrap = trapVec.reduce(_ || _)
1542    val difftest = DifftestModule(new DiffTrapEvent, dontCare = true)
1543    difftest.coreid := io.hartId
1544    difftest.hasTrap := hitTrap
1545    difftest.cycleCnt := timer
1546    difftest.instrCnt := instrCnt
1547    difftest.hasWFI := hasWFI
1548
1549    if (env.EnableDifftest) {
1550      val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1))
1551      val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 -> x._1)), XLEN)
1552      difftest.code := trapCode
1553      difftest.pc := trapPC
1554    }
1555  }
1556
1557  //store evetn difftest information
1558  io.storeDebugInfo := DontCare
1559  if (env.EnableDifftest) {
1560    io.storeDebugInfo.map{port =>
1561      port.pc := debug_microOp(port.robidx.value).pc
1562    }
1563  }
1564
1565  val brhMispred = PopCount(branchWBs.map(wb => wb.valid & wb.bits.redirect.get.valid))
1566  val jmpMispred = PopCount(jmpWBs.map(wb => wb.valid && wb.bits.redirect.get.valid))
1567  val misPred = brhMispred +& jmpMispred
1568
1569  XSPerfAccumulate("br_mis_pred", misPred)
1570
1571  val commitLoadVec = VecInit(commitLoadValid)
1572  val commitBranchVec = VecInit(commitBranchValid)
1573  val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map { case (v, t) => v && t })
1574  val perfEvents = Seq(
1575    ("rob_interrupt_num      ", io.flushOut.valid && intrEnable),
1576    ("rob_exception_num      ", io.flushOut.valid && deqHasException),
1577    ("rob_flush_pipe_num     ", io.flushOut.valid && isFlushPipe),
1578    ("rob_replay_inst_num    ", io.flushOut.valid && isFlushPipe && deqHasReplayInst),
1579    ("rob_commitUop          ", ifCommit(commitCnt)),
1580    ("rob_commitInstr        ", ifCommitReg(trueCommitCnt)),
1581    ("rob_commitInstrFused   ", ifCommitReg(fuseCommitCnt)),
1582    ("rob_commitInstrLoad    ", ifCommitReg(PopCount(RegEnable(commitLoadVec, isCommit)))),
1583    ("rob_commitInstrBranch  ", ifCommitReg(PopCount(RegEnable(commitBranchVec, isCommit)))),
1584    ("rob_commitInstrStore   ", ifCommitReg(PopCount(RegEnable(commitStoreVec, isCommit)))),
1585    ("rob_walkInstr          ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)),
1586    ("rob_walkCycle          ", (state === s_walk)),
1587    ("rob_1_4_valid          ", numValidEntries <= (RobSize / 4).U),
1588    ("rob_2_4_valid          ", numValidEntries > (RobSize / 4).U && numValidEntries <= (RobSize / 2).U),
1589    ("rob_3_4_valid          ", numValidEntries > (RobSize / 2).U && numValidEntries <= (RobSize * 3 / 4).U),
1590    ("rob_4_4_valid          ", numValidEntries > (RobSize * 3 / 4).U),
1591    ("BR_MIS_PRED            ", misPred),
1592    ("TOTAL_FLUSH            ", io.flushOut.valid)
1593  )
1594  generatePerfEvent()
1595
1596  // max commit-stuck cycle
1597  val deqismmio = Mux(robEntries(deqPtr.value).valid, robEntries(deqPtr.value).mmio, false.B)
1598  val commitStuck = (!io.commits.commitValid.reduce(_ || _) || !io.commits.isCommit) && !deqismmio
1599  val commitStuckCycle = RegInit(0.U(log2Up(maxCommitStuck).W))
1600  when(commitStuck) {
1601    commitStuckCycle := commitStuckCycle + 1.U
1602  }.elsewhen(!commitStuck && RegNext(commitStuck)) {
1603    commitStuckCycle := 0.U
1604  }
1605  // check if stuck > 2^maxCommitStuckCycle
1606  val commitStuck_overflow = commitStuckCycle.andR
1607  val criticalErrors = Seq(
1608    ("rob_commit_stuck  ", commitStuck_overflow),
1609  )
1610  generateCriticalErrors()
1611
1612
1613  // dontTouch for debug
1614  if (backendParams.debugEn) {
1615    dontTouch(enqPtrVec)
1616    dontTouch(deqPtrVec)
1617    dontTouch(robEntries)
1618    dontTouch(robDeqGroup)
1619    dontTouch(robBanks)
1620    dontTouch(robBanksRaddrThisLine)
1621    dontTouch(robBanksRaddrNextLine)
1622    dontTouch(robBanksRdataThisLine)
1623    dontTouch(robBanksRdataNextLine)
1624    dontTouch(robBanksRdataThisLineUpdate)
1625    dontTouch(robBanksRdataNextLineUpdate)
1626    dontTouch(needUpdate)
1627    val exceptionWBsVec = MixedVecInit(exceptionWBs)
1628    dontTouch(exceptionWBsVec)
1629    dontTouch(commit_wDeqGroup)
1630    dontTouch(commit_vDeqGroup)
1631    dontTouch(commitSizeSumSeq)
1632    dontTouch(walkSizeSumSeq)
1633    dontTouch(commitSizeSumCond)
1634    dontTouch(walkSizeSumCond)
1635    dontTouch(commitSizeSum)
1636    dontTouch(walkSizeSum)
1637    dontTouch(realDestSizeSeq)
1638    dontTouch(walkDestSizeSeq)
1639    dontTouch(io.commits)
1640    dontTouch(commitIsVTypeVec)
1641    dontTouch(walkIsVTypeVec)
1642    dontTouch(commitValidThisLine)
1643    dontTouch(commitReadAddr_next)
1644    dontTouch(donotNeedWalk)
1645    dontTouch(walkPtrVec_next)
1646    dontTouch(walkPtrVec)
1647    dontTouch(deqPtrVec_next)
1648    dontTouch(deqPtrVecForWalk)
1649    dontTouch(snapPtrReadBank)
1650    dontTouch(snapPtrVecForWalk)
1651    dontTouch(shouldWalkVec)
1652    dontTouch(walkFinished)
1653    dontTouch(changeBankAddrToDeqPtr)
1654  }
1655  if (env.EnableDifftest) {
1656    io.commits.info.map(info => dontTouch(info.debug_pc.get))
1657  }
1658}
1659