1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.rob 18 19import org.chipsalliance.cde.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 24import utility._ 25import utils._ 26import xiangshan._ 27import xiangshan.backend.BackendParams 28import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 29import xiangshan.backend.fu.{FuConfig, FuType} 30import xiangshan.frontend.FtqPtr 31import xiangshan.mem.{LqPtr, LsqEnqIO, SqPtr} 32import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 33import xiangshan.backend.ctrlblock.{DebugLSIO, DebugLsInfo, LsTopdownInfo} 34import xiangshan.backend.fu.vector.Bundles.VType 35import xiangshan.backend.rename.SnapshotGenerator 36import yunsuan.VfaluType 37import xiangshan.backend.rob.RobBundles._ 38 39class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter { 40 override def shouldBeInlined: Boolean = false 41 42 lazy val module = new RobImp(this)(p, params) 43} 44 45class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper) 46 with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents { 47 48 private val LduCnt = params.LduCnt 49 private val StaCnt = params.StaCnt 50 private val HyuCnt = params.HyuCnt 51 52 val io = IO(new Bundle() { 53 val hartId = Input(UInt(hartIdLen.W)) 54 val redirect = Input(Valid(new Redirect)) 55 val enq = new RobEnqIO 56 val flushOut = ValidIO(new Redirect) 57 val exception = ValidIO(new ExceptionInfo) 58 // exu + brq 59 val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles) 60 val writebackNums = Flipped(Vec(writeback.size - params.StdCnt, ValidIO(UInt(writeback.size.U.getWidth.W)))) 61 val writebackNeedFlush = Input(Vec(params.allExuParams.filter(_.needExceptionGen).length, Bool())) 62 val commits = Output(new RobCommitIO) 63 val rabCommits = Output(new RabCommitIO) 64 val diffCommits = if (backendParams.debugEn) Some(Output(new DiffCommitIO)) else None 65 val isVsetFlushPipe = Output(Bool()) 66 val lsq = new RobLsqIO 67 val robDeqPtr = Output(new RobPtr) 68 val csr = new RobCSRIO 69 val snpt = Input(new SnapshotPort) 70 val robFull = Output(Bool()) 71 val headNotReady = Output(Bool()) 72 val cpu_halt = Output(Bool()) 73 val wfi_enable = Input(Bool()) 74 val toDecode = new Bundle { 75 val isResumeVType = Output(Bool()) 76 val walkVType = ValidIO(VType()) 77 val commitVType = new Bundle { 78 val vtype = ValidIO(VType()) 79 val hasVsetvl = Output(Bool()) 80 } 81 } 82 val fromDecode = new Bundle { 83 val lastSpecVType = Flipped(Valid(new VType)) 84 val specVtype = Input(new VType) 85 } 86 val readGPAMemAddr = ValidIO(new Bundle { 87 val ftqPtr = new FtqPtr() 88 val ftqOffset = UInt(log2Up(PredictWidth).W) 89 }) 90 val readGPAMemData = Input(UInt(GPAddrBits.W)) 91 val vstartIsZero = Input(Bool()) 92 93 val debug_ls = Flipped(new DebugLSIO) 94 val debugRobHead = Output(new DynInst) 95 val debugEnqLsq = Input(new LsqEnqIO) 96 val debugHeadLsIssue = Input(Bool()) 97 val lsTopdownInfo = Vec(LduCnt + HyuCnt, Input(new LsTopdownInfo)) 98 val debugTopDown = new Bundle { 99 val toCore = new RobCoreTopDownIO 100 val toDispatch = new RobDispatchTopDownIO 101 val robHeadLqIdx = Valid(new LqPtr) 102 } 103 val debugRolling = new RobDebugRollingIO 104 }) 105 106 val exuWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(!_.bits.params.hasStdFu).toSeq 107 val stdWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(_.bits.params.hasStdFu).toSeq 108 val fflagsWBs = io.writeback.filter(x => x.bits.fflags.nonEmpty) 109 val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty) 110 val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty) 111 val vxsatWBs = io.writeback.filter(x => x.bits.vxsat.nonEmpty) 112 113 val numExuWbPorts = exuWBs.length 114 val numStdWbPorts = stdWBs.length 115 val bankAddrWidth = log2Up(CommitWidth) 116 117 println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth") 118 119 val rab = Module(new RenameBuffer(RabSize)) 120 val vtypeBuffer = Module(new VTypeBuffer(VTypeBufferSize)) 121 val bankNum = 8 122 assert(RobSize % bankNum == 0, "RobSize % bankNum must be 0") 123 val robEntries = Reg(Vec(RobSize, new RobEntryBundle)) 124 // pointers 125 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 126 val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr)) 127 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 128 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 129 val walkPtrTrue = Reg(new RobPtr) 130 val lastWalkPtr = Reg(new RobPtr) 131 val allowEnqueue = RegInit(true.B) 132 133 /** 134 * Enqueue (from dispatch) 135 */ 136 // special cases 137 val hasBlockBackward = RegInit(false.B) 138 val hasWaitForward = RegInit(false.B) 139 val doingSvinval = RegInit(false.B) 140 val enqPtr = enqPtrVec(0) 141 val deqPtr = deqPtrVec(0) 142 val walkPtr = walkPtrVec(0) 143 val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.req.take(i).map(req => req.valid && req.bits.firstUop))))) 144 io.enq.canAccept := allowEnqueue && !hasBlockBackward && rab.io.canEnq && vtypeBuffer.io.canEnq 145 io.enq.resp := allocatePtrVec 146 val canEnqueue = VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop && io.enq.canAccept)) 147 val timer = GTimer() 148 // robEntries enqueue 149 for (i <- 0 until RobSize) { 150 val enqOH = VecInit(canEnqueue.zip(allocatePtrVec.map(_.value === i.U)).map(x => x._1 && x._2)) 151 assert(PopCount(enqOH) < 2.U, s"robEntries$i enqOH is not one hot") 152 when(enqOH.asUInt.orR && !io.redirect.valid){ 153 connectEnq(robEntries(i), Mux1H(enqOH, io.enq.req.map(_.bits))) 154 } 155 } 156 // robBanks0 include robidx : 0 8 16 24 32 ... 157 val robBanks = VecInit((0 until bankNum).map(i => VecInit(robEntries.zipWithIndex.filter(_._2 % bankNum == i).map(_._1)))) 158 // each Bank has 20 Entries, read addr is one hot 159 // all banks use same raddr 160 val eachBankEntrieNum = robBanks(0).length 161 val robBanksRaddrThisLine = RegInit(1.U(eachBankEntrieNum.W)) 162 val robBanksRaddrNextLine = Wire(UInt(eachBankEntrieNum.W)) 163 robBanksRaddrThisLine := robBanksRaddrNextLine 164 val bankNumWidth = log2Up(bankNum) 165 val deqPtrWidth = deqPtr.value.getWidth 166 val robIdxThisLine = VecInit((0 until bankNum).map(i => Cat(deqPtr.value(deqPtrWidth - 1, bankNumWidth), i.U(bankNumWidth.W)))) 167 val robIdxNextLine = VecInit((0 until bankNum).map(i => Cat(deqPtr.value(deqPtrWidth - 1, bankNumWidth) + 1.U, i.U(bankNumWidth.W)))) 168 // robBanks read 169 val robBanksRdataThisLine = VecInit(robBanks.map{ case bank => 170 Mux1H(robBanksRaddrThisLine, bank) 171 }) 172 val robBanksRdataNextLine = VecInit(robBanks.map{ case bank => 173 val shiftBank = bank.drop(1) :+ bank(0) 174 Mux1H(robBanksRaddrThisLine, shiftBank) 175 }) 176 val robBanksRdataThisLineUpdate = Wire(Vec(CommitWidth, new RobEntryBundle)) 177 val robBanksRdataNextLineUpdate = Wire(Vec(CommitWidth, new RobEntryBundle)) 178 val commitValidThisLine = Wire(Vec(CommitWidth, Bool())) 179 val hasCommitted = RegInit(VecInit(Seq.fill(CommitWidth)(false.B))) 180 val donotNeedWalk = RegInit(VecInit(Seq.fill(CommitWidth)(false.B))) 181 val allCommitted = Wire(Bool()) 182 183 when(allCommitted) { 184 hasCommitted := 0.U.asTypeOf(hasCommitted) 185 }.elsewhen(io.commits.isCommit){ 186 for (i <- 0 until CommitWidth){ 187 hasCommitted(i) := commitValidThisLine(i) || hasCommitted(i) 188 } 189 } 190 allCommitted := io.commits.isCommit && commitValidThisLine.last 191 val walkPtrHead = Wire(new RobPtr) 192 val changeBankAddrToDeqPtr = (walkPtrVec.head + CommitWidth.U) > lastWalkPtr 193 when(io.redirect.valid){ 194 robBanksRaddrNextLine := UIntToOH(walkPtrHead.value(walkPtrHead.value.getWidth-1, bankAddrWidth)) 195 }.elsewhen(allCommitted || io.commits.isWalk && !changeBankAddrToDeqPtr){ 196 robBanksRaddrNextLine := Mux(robBanksRaddrThisLine.head(1) === 1.U, 1.U, robBanksRaddrThisLine << 1) 197 }.elsewhen(io.commits.isWalk && changeBankAddrToDeqPtr){ 198 robBanksRaddrNextLine := UIntToOH(deqPtr.value(deqPtr.value.getWidth-1, bankAddrWidth)) 199 }.otherwise( 200 robBanksRaddrNextLine := robBanksRaddrThisLine 201 ) 202 val robDeqGroup = Reg(Vec(bankNum, new RobCommitEntryBundle)) 203 val commitInfo = VecInit((0 until CommitWidth).map(i => robDeqGroup(deqPtrVec(i).value(bankAddrWidth-1,0)))).toSeq 204 val walkInfo = VecInit((0 until CommitWidth).map(i => robDeqGroup(walkPtrVec(i).value(bankAddrWidth-1, 0)))).toSeq 205 for (i <- 0 until CommitWidth) { 206 connectCommitEntry(robDeqGroup(i), robBanksRdataThisLineUpdate(i)) 207 when(allCommitted){ 208 connectCommitEntry(robDeqGroup(i), robBanksRdataNextLineUpdate(i)) 209 } 210 } 211 // data for debug 212 // Warn: debug_* prefix should not exist in generated verilog. 213 val debug_microOp = DebugMem(RobSize, new DynInst) 214 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W))) //for debug 215 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle)) //for debug 216 val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init))) 217 val debug_lsTopdownInfo = RegInit(VecInit(Seq.fill(RobSize)(LsTopdownInfo.init))) 218 val debug_lqIdxValid = RegInit(VecInit.fill(RobSize)(false.B)) 219 val debug_lsIssued = RegInit(VecInit.fill(RobSize)(false.B)) 220 221 val isEmpty = enqPtr === deqPtr 222 val snptEnq = io.enq.canAccept && io.enq.req.map(x => x.valid && x.bits.snapshot).reduce(_ || _) 223 val snapshotPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 224 snapshotPtrVec(0) := io.enq.req(0).bits.robIdx 225 for (i <- 1 until CommitWidth) { 226 snapshotPtrVec(i) := snapshotPtrVec(0) + i.U 227 } 228 val snapshots = SnapshotGenerator(snapshotPtrVec, snptEnq, io.snpt.snptDeq, io.redirect.valid, io.snpt.flushVec) 229 val debug_lsIssue = WireDefault(debug_lsIssued) 230 debug_lsIssue(deqPtr.value) := io.debugHeadLsIssue 231 232 /** 233 * states of Rob 234 */ 235 val s_idle :: s_walk :: Nil = Enum(2) 236 val state = RegInit(s_idle) 237 238 val exceptionGen = Module(new ExceptionGen(params)) 239 val exceptionDataRead = exceptionGen.io.state 240 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 241 val vxsatDataRead = Wire(Vec(CommitWidth, Bool())) 242 io.robDeqPtr := deqPtr 243 io.debugRobHead := debug_microOp(deqPtr.value) 244 245 /** 246 * connection of [[rab]] 247 */ 248 rab.io.redirect.valid := io.redirect.valid 249 250 rab.io.req.zip(io.enq.req).map { case (dest, src) => 251 dest.bits := src.bits 252 dest.valid := src.valid && io.enq.canAccept 253 } 254 255 val walkDestSizeDeqGroup = RegInit(VecInit(Seq.fill(CommitWidth)(0.U(log2Up(MaxUopSize + 1).W)))) 256 val realDestSizeSeq = VecInit(robDeqGroup.zip(hasCommitted).map{case (r, h) => Mux(h, 0.U, r.realDestSize)}) 257 val walkDestSizeSeq = VecInit(robDeqGroup.zip(donotNeedWalk).map{case (r, d) => Mux(d, 0.U, r.realDestSize)}) 258 val commitSizeSumSeq = VecInit((0 until CommitWidth).map(i => realDestSizeSeq.take(i + 1).reduce(_ +& _))) 259 val walkSizeSumSeq = VecInit((0 until CommitWidth).map(i => walkDestSizeSeq.take(i + 1).reduce(_ +& _))) 260 val commitSizeSumCond = VecInit(commitValidThisLine.zip(hasCommitted).map{case (c,h) => (c || h) && io.commits.isCommit}) 261 val walkSizeSumCond = VecInit(io.commits.walkValid.zip(donotNeedWalk).map{case (w,d) => (w || d) && io.commits.isWalk}) 262 val commitSizeSum = PriorityMuxDefault(commitSizeSumCond.reverse.zip(commitSizeSumSeq.reverse), 0.U) 263 val walkSizeSum = PriorityMuxDefault(walkSizeSumCond.reverse.zip(walkSizeSumSeq.reverse), 0.U) 264 265 rab.io.fromRob.commitSize := commitSizeSum 266 rab.io.fromRob.walkSize := walkSizeSum 267 rab.io.snpt := io.snpt 268 rab.io.snpt.snptEnq := snptEnq 269 270 io.rabCommits := rab.io.commits 271 io.diffCommits.foreach(_ := rab.io.diffCommits.get) 272 273 /** 274 * connection of [[vtypeBuffer]] 275 */ 276 277 vtypeBuffer.io.redirect.valid := io.redirect.valid 278 279 vtypeBuffer.io.req.zip(io.enq.req).map { case (sink, source) => 280 sink.valid := source.valid && io.enq.canAccept 281 sink.bits := source.bits 282 } 283 284 private val commitIsVTypeVec = VecInit(io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => io.commits.isCommit && valid && info.isVset }) 285 private val walkIsVTypeVec = VecInit(io.commits.walkValid.zip(walkInfo).map { case (valid, info) => io.commits.isWalk && valid && info.isVset }) 286 vtypeBuffer.io.fromRob.commitSize := PopCount(commitIsVTypeVec) 287 vtypeBuffer.io.fromRob.walkSize := PopCount(walkIsVTypeVec) 288 vtypeBuffer.io.snpt := io.snpt 289 vtypeBuffer.io.snpt.snptEnq := snptEnq 290 io.toDecode.isResumeVType := vtypeBuffer.io.toDecode.isResumeVType 291 io.toDecode.commitVType := vtypeBuffer.io.toDecode.commitVType 292 io.toDecode.walkVType := vtypeBuffer.io.toDecode.walkVType 293 vtypeBuffer.io.fromDecode.lastSpecVType := io.fromDecode.lastSpecVType 294 vtypeBuffer.io.fromDecode.specVtype := io.fromDecode.specVtype 295 296 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 297 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 298 when(isEmpty) { 299 hasBlockBackward := false.B 300 } 301 // When any instruction commits, hasNoSpecExec should be set to false.B 302 when(io.commits.hasWalkInstr || io.commits.hasCommitInstr) { 303 hasWaitForward := false.B 304 } 305 306 // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing. 307 // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle. 308 // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts. 309 val hasWFI = RegInit(false.B) 310 io.cpu_halt := hasWFI 311 // WFI Timeout: 2^20 = 1M cycles 312 val wfi_cycles = RegInit(0.U(20.W)) 313 when(hasWFI) { 314 wfi_cycles := wfi_cycles + 1.U 315 }.elsewhen(!hasWFI && RegNext(hasWFI)) { 316 wfi_cycles := 0.U 317 } 318 val wfi_timeout = wfi_cycles.andR 319 when(RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) { 320 hasWFI := false.B 321 } 322 323 for (i <- 0 until RenameWidth) { 324 // we don't check whether io.redirect is valid here since redirect has higher priority 325 when(canEnqueue(i)) { 326 val enqUop = io.enq.req(i).bits 327 val enqIndex = allocatePtrVec(i).value 328 // store uop in data module and debug_microOp Vec 329 debug_microOp(enqIndex) := enqUop 330 debug_microOp(enqIndex).debugInfo.dispatchTime := timer 331 debug_microOp(enqIndex).debugInfo.enqRsTime := timer 332 debug_microOp(enqIndex).debugInfo.selectTime := timer 333 debug_microOp(enqIndex).debugInfo.issueTime := timer 334 debug_microOp(enqIndex).debugInfo.writebackTime := timer 335 debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer 336 debug_microOp(enqIndex).debugInfo.tlbRespTime := timer 337 debug_lsInfo(enqIndex) := DebugLsInfo.init 338 debug_lsTopdownInfo(enqIndex) := LsTopdownInfo.init 339 debug_lqIdxValid(enqIndex) := false.B 340 debug_lsIssued(enqIndex) := false.B 341 when (enqUop.waitForward) { 342 hasWaitForward := true.B 343 } 344 val enqHasTriggerCanFire = io.enq.req(i).bits.trigger.getFrontendCanFire 345 val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR 346 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 347 when(!enqHasTriggerCanFire && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe)) { 348 doingSvinval := true.B 349 } 350 // the end instruction of Svinval enqs so clear doingSvinval 351 when(!enqHasTriggerCanFire && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe)) { 352 doingSvinval := false.B 353 } 354 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 355 assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe))) 356 when(enqUop.isWFI && !enqHasException && !enqHasTriggerCanFire) { 357 hasWFI := true.B 358 } 359 360 robEntries(enqIndex).mmio := false.B 361 robEntries(enqIndex).vls := enqUop.vlsInstr 362 } 363 } 364 365 for (i <- 0 until RenameWidth) { 366 val enqUop = io.enq.req(i) 367 when(enqUop.valid && enqUop.bits.blockBackward && io.enq.canAccept) { 368 hasBlockBackward := true.B 369 } 370 } 371 372 val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(req => req.valid && req.bits.firstUop)), 0.U) 373 io.enq.isEmpty := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR) 374 375 when(!io.wfi_enable) { 376 hasWFI := false.B 377 } 378 // sel vsetvl's flush position 379 val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3) 380 val vsetvlState = RegInit(vs_idle) 381 382 val firstVInstrFtqPtr = RegInit(0.U.asTypeOf(new FtqPtr)) 383 val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W))) 384 val firstVInstrRobIdx = RegInit(0.U.asTypeOf(new RobPtr)) 385 386 val enq0 = io.enq.req(0) 387 val enq0IsVset = enq0.bits.isVset && enq0.bits.lastUop && canEnqueue(0) 388 val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe 389 val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map { case (req, fire) => FuType.isVArith(req.bits.fuType) && fire } 390 // for vs_idle 391 val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType))) 392 // for vs_waitVinstr 393 val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1) 394 val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req) 395 when(vsetvlState === vs_idle) { 396 firstVInstrFtqPtr := firstVInstrIdle.bits.ftqPtr 397 firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset 398 firstVInstrRobIdx := firstVInstrIdle.bits.robIdx 399 }.elsewhen(vsetvlState === vs_waitVinstr) { 400 when(Cat(enqIsVInstrOrVset).orR) { 401 firstVInstrFtqPtr := firstVInstrWait.bits.ftqPtr 402 firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset 403 firstVInstrRobIdx := firstVInstrWait.bits.robIdx 404 } 405 } 406 407 val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR 408 when(vsetvlState === vs_idle && !io.redirect.valid) { 409 when(enq0IsVsetFlush) { 410 vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr) 411 } 412 }.elsewhen(vsetvlState === vs_waitVinstr) { 413 when(io.redirect.valid) { 414 vsetvlState := vs_idle 415 }.elsewhen(Cat(enqIsVInstrOrVset).orR) { 416 vsetvlState := vs_waitFlush 417 } 418 }.elsewhen(vsetvlState === vs_waitFlush) { 419 when(io.redirect.valid) { 420 vsetvlState := vs_idle 421 } 422 } 423 424 // lqEnq 425 io.debugEnqLsq.needAlloc.map(_(0)).zip(io.debugEnqLsq.req).foreach { case (alloc, req) => 426 when(io.debugEnqLsq.canAccept && alloc && req.valid) { 427 debug_microOp(req.bits.robIdx.value).lqIdx := req.bits.lqIdx 428 debug_lqIdxValid(req.bits.robIdx.value) := true.B 429 } 430 } 431 432 // lsIssue 433 when(io.debugHeadLsIssue) { 434 debug_lsIssued(deqPtr.value) := true.B 435 } 436 437 /** 438 * Writeback (from execution units) 439 */ 440 for (wb <- exuWBs) { 441 when(wb.valid) { 442 val wbIdx = wb.bits.robIdx.value 443 debug_exuData(wbIdx) := wb.bits.data(0) 444 debug_exuDebug(wbIdx) := wb.bits.debug 445 debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime 446 debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime 447 debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime 448 debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime 449 450 // debug for lqidx and sqidx 451 debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr)) 452 debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr)) 453 454 val debug_Uop = debug_microOp(wbIdx) 455 XSInfo(true.B, 456 p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " + 457 p"data 0x${Hexadecimal(wb.bits.data(0))} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " + 458 p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.robIdx}\n" 459 ) 460 } 461 } 462 463 val writebackNum = PopCount(exuWBs.map(_.valid)) 464 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 465 466 for (i <- 0 until LoadPipelineWidth) { 467 when(RegNext(io.lsq.mmio(i))) { 468 robEntries(RegEnable(io.lsq.uop(i).robIdx, io.lsq.mmio(i)).value).mmio := true.B 469 } 470 } 471 472 473 /** 474 * RedirectOut: Interrupt and Exceptions 475 */ 476 val deqDispatchData = robEntries(deqPtr.value) 477 val debug_deqUop = debug_microOp(deqPtr.value) 478 479 val deqPtrEntry = robDeqGroup(deqPtr.value(bankAddrWidth-1,0)) 480 val deqPtrEntryValid = deqPtrEntry.commit_v 481 val intrBitSetReg = RegNext(io.csr.intrBitSet) 482 val intrEnable = intrBitSetReg && !hasWaitForward && deqPtrEntry.interrupt_safe 483 val deqNeedFlush = deqPtrEntry.needFlush && deqPtrEntry.commit_v && deqPtrEntry.commit_w 484 val deqHitExceptionGenState = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 485 val deqNeedFlushAndHitExceptionGenState = deqNeedFlush && deqHitExceptionGenState 486 val exceptionGenStateIsException = exceptionDataRead.bits.exceptionVec.asUInt.orR || exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.canFire 487 val deqHasException = deqNeedFlushAndHitExceptionGenState && exceptionGenStateIsException 488 val deqHasFlushPipe = deqNeedFlushAndHitExceptionGenState && exceptionDataRead.bits.flushPipe 489 val deqHasReplayInst = deqNeedFlushAndHitExceptionGenState && exceptionDataRead.bits.replayInst 490 491 XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n") 492 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getFrontendCanFire, "Debug Mode: Deq has frontend trigger exception\n") 493 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getBackendCanFire, "Debug Mode: Deq has backend trigger exception\n") 494 495 val isFlushPipe = deqPtrEntry.commit_w && (deqHasFlushPipe || deqHasReplayInst) 496 497 val isVsetFlushPipe = deqPtrEntry.commit_w && deqHasFlushPipe && exceptionDataRead.bits.isVset 498 // val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush) 499 val needModifyFtqIdxOffset = false.B 500 io.isVsetFlushPipe := isVsetFlushPipe 501 // io.flushOut will trigger redirect at the next cycle. 502 // Block any redirect or commit at the next cycle. 503 val lastCycleFlush = RegNext(io.flushOut.valid) 504 505 io.flushOut.valid := (state === s_idle) && deqPtrEntryValid && (intrEnable || deqHasException || isFlushPipe) && !lastCycleFlush 506 io.flushOut.bits := DontCare 507 io.flushOut.bits.isRVC := deqDispatchData.isRVC 508 io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr) 509 io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx) 510 io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset) 511 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || deqHasException || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next" 512 io.flushOut.bits.interrupt := true.B 513 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 514 XSPerfAccumulate("exception_num", io.flushOut.valid && deqHasException) 515 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 516 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 517 518 val exceptionHappen = (state === s_idle) && deqPtrEntryValid && (intrEnable || deqHasException) && !lastCycleFlush 519 io.exception.valid := RegNext(exceptionHappen) 520 io.exception.bits.pc := RegEnable(debug_deqUop.pc, exceptionHappen) 521 io.exception.bits.gpaddr := io.readGPAMemData 522 io.exception.bits.instr := RegEnable(debug_deqUop.instr, exceptionHappen) 523 io.exception.bits.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 524 io.exception.bits.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 525 io.exception.bits.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 526 io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 527 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 528 io.exception.bits.isHls := RegEnable(deqDispatchData.isHls, exceptionHappen) 529 io.exception.bits.vls := RegEnable(robEntries(deqPtr.value).vls, exceptionHappen) 530 io.exception.bits.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen) 531 532 // data will be one cycle after valid 533 io.readGPAMemAddr.valid := exceptionHappen 534 io.readGPAMemAddr.bits.ftqPtr := exceptionDataRead.bits.ftqPtr 535 io.readGPAMemAddr.bits.ftqOffset := exceptionDataRead.bits.ftqOffset 536 537 XSDebug(io.flushOut.valid, 538 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " + 539 p"excp $deqHasException flushPipe $isFlushPipe " + 540 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 541 542 543 /** 544 * Commits (and walk) 545 * They share the same width. 546 */ 547 // T redirect.valid, T+1 use walkPtrVec read robEntries, T+2 start walk, shouldWalkVec used in T+2 548 val shouldWalkVec = Wire(Vec(CommitWidth,Bool())) 549 val walkingPtrVec = RegNext(walkPtrVec) 550 when(io.redirect.valid){ 551 shouldWalkVec := 0.U.asTypeOf(shouldWalkVec) 552 }.elsewhen(RegNext(io.redirect.valid)){ 553 shouldWalkVec := 0.U.asTypeOf(shouldWalkVec) 554 }.elsewhen(state === s_walk){ 555 shouldWalkVec := VecInit(walkingPtrVec.map(_ <= lastWalkPtr).zip(donotNeedWalk).map(x => x._1 && !x._2)) 556 }.otherwise( 557 shouldWalkVec := 0.U.asTypeOf(shouldWalkVec) 558 ) 559 val walkFinished = walkPtrTrue > lastWalkPtr 560 rab.io.fromRob.walkEnd := state === s_walk && walkFinished 561 vtypeBuffer.io.fromRob.walkEnd := state === s_walk && walkFinished 562 563 require(RenameWidth <= CommitWidth) 564 565 // wiring to csr 566 val (wflags, dirtyFs) = (0 until CommitWidth).map(i => { 567 val v = io.commits.commitValid(i) 568 val info = io.commits.info(i) 569 (v & info.wflags, v & info.dirtyFs) 570 }).unzip 571 val fflags = Wire(Valid(UInt(5.W))) 572 fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR 573 fflags.bits := wflags.zip(fflagsDataRead).map({ 574 case (w, f) => Mux(w, f, 0.U) 575 }).reduce(_ | _) 576 val dirtyVs = (0 until CommitWidth).map(i => { 577 val v = io.commits.commitValid(i) 578 val info = io.commits.info(i) 579 v & info.dirtyVs 580 }) 581 val dirty_fs = io.commits.isCommit && VecInit(dirtyFs).asUInt.orR 582 val dirty_vs = io.commits.isCommit && VecInit(dirtyVs).asUInt.orR 583 584 val resetVstart = dirty_vs && !io.vstartIsZero 585 586 io.csr.vstart.valid := RegNext(Mux(exceptionHappen, exceptionDataRead.bits.vstartEn, resetVstart)) 587 io.csr.vstart.bits := RegNext(Mux(exceptionHappen, exceptionDataRead.bits.vstart, 0.U)) 588 589 val vxsat = Wire(Valid(Bool())) 590 vxsat.valid := io.commits.isCommit && vxsat.bits 591 vxsat.bits := io.commits.commitValid.zip(vxsatDataRead).map { 592 case (valid, vxsat) => valid & vxsat 593 }.reduce(_ | _) 594 595 // when mispredict branches writeback, stop commit in the next 2 cycles 596 // TODO: don't check all exu write back 597 val misPredWb = Cat(VecInit(redirectWBs.map(wb => 598 wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid 599 ).toSeq)).orR 600 val misPredBlockCounter = Reg(UInt(3.W)) 601 misPredBlockCounter := Mux(misPredWb, 602 "b111".U, 603 misPredBlockCounter >> 1.U 604 ) 605 val misPredBlock = misPredBlockCounter(0) 606 val deqFlushBlockCounter = Reg(UInt(3.W)) 607 val deqFlushBlock = deqFlushBlockCounter(0) 608 val deqHasFlushed = Reg(Bool()) 609 val deqHitRedirectReg = RegNext(io.redirect.valid && io.redirect.bits.robIdx === deqPtr) 610 when(deqNeedFlush && deqHitRedirectReg){ 611 deqFlushBlockCounter := "b111".U 612 }.otherwise{ 613 deqFlushBlockCounter := deqFlushBlockCounter >> 1.U 614 } 615 when(deqNeedFlush && io.flushOut.valid){ 616 deqHasFlushed := true.B 617 }.elsewhen(!deqNeedFlush){ 618 deqHasFlushed := false.B 619 } 620 val blockCommit = misPredBlock || lastCycleFlush || hasWFI || io.redirect.valid || (deqNeedFlush && !deqHasFlushed && !deqHasFlushPipe) || deqFlushBlock 621 622 io.commits.isWalk := state === s_walk 623 io.commits.isCommit := state === s_idle && !blockCommit 624 625 val walk_v = VecInit(walkingPtrVec.map(ptr => robEntries(ptr.value).valid)) 626 val commit_vDeqGroup = VecInit(robDeqGroup.map(_.commit_v)) 627 val commit_wDeqGroup = VecInit(robDeqGroup.map(_.commit_w)) 628 val realCommitLast = deqPtrVec(0).lineHeadPtr + Fill(bankAddrWidth, 1.U) 629 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_wDeqGroup(i) && !hasCommitted(i))) 630 val allowOnlyOneCommit = VecInit(robDeqGroup.map(x => x.commit_v && x.needFlush)).asUInt.orR || intrBitSetReg 631 // for instructions that may block others, we don't allow them to commit 632 io.commits.commitValid := PriorityMux(commitValidThisLine, (0 until CommitWidth).map(i => (commitValidThisLine.asUInt >> i).asUInt.asTypeOf(io.commits.commitValid))) 633 634 for (i <- 0 until CommitWidth) { 635 // defaults: state === s_idle and instructions commit 636 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 637 val isBlocked = intrEnable || (deqNeedFlush && !deqHasFlushed && !deqHasFlushPipe) 638 val isBlockedByOlder = if (i != 0) commit_block.asUInt(i, 0).orR || allowOnlyOneCommit && !hasCommitted.asUInt(i - 1, 0).andR else false.B 639 commitValidThisLine(i) := commit_vDeqGroup(i) && commit_wDeqGroup(i) && !isBlocked && !isBlockedByOlder && !hasCommitted(i) 640 io.commits.info(i) := commitInfo(i) 641 io.commits.robIdx(i) := deqPtrVec(i) 642 643 io.commits.walkValid(i) := shouldWalkVec(i) 644 when(state === s_walk) { 645 when(io.commits.isWalk && state === s_walk && shouldWalkVec(i)) { 646 XSError(!walk_v(i), s"The walking entry($i) should be valid\n") 647 } 648 } 649 650 XSInfo(io.commits.isCommit && io.commits.commitValid(i), 651 "retired pc %x wen %d ldest %d pdest %x data %x fflags: %b vxsat: %b\n", 652 debug_microOp(deqPtrVec(i).value).pc, 653 io.commits.info(i).rfWen, 654 io.commits.info(i).debug_ldest.getOrElse(0.U), 655 io.commits.info(i).debug_pdest.getOrElse(0.U), 656 debug_exuData(deqPtrVec(i).value), 657 fflagsDataRead(i), 658 vxsatDataRead(i) 659 ) 660 XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n", 661 debug_microOp(walkPtrVec(i).value).pc, 662 io.commits.info(i).rfWen, 663 io.commits.info(i).debug_ldest.getOrElse(0.U), 664 debug_exuData(walkPtrVec(i).value) 665 ) 666 } 667 668 // sync fflags/dirty_fs/vxsat to csr 669 io.csr.fflags := RegNext(fflags) 670 io.csr.dirty_fs := RegNext(dirty_fs) 671 io.csr.dirty_vs := RegNext(dirty_vs) 672 io.csr.vxsat := RegNext(vxsat) 673 674 // commit load/store to lsq 675 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 676 // TODO: Check if meet the require that only set scommit when commit scala store uop 677 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE && !robEntries(deqPtrVec(i).value).vls )) 678 val deqPtrVec_next = Wire(Vec(CommitWidth, Output(new RobPtr))) 679 io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U)) 680 io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U)) 681 // indicate a pending load or store 682 io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && robEntries(deqPtr.value).valid && robEntries(deqPtr.value).mmio) 683 // TODO: Check if need deassert pendingst when it is vst 684 io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && robEntries(deqPtr.value).valid) 685 // TODO: Check if set correctly when vector store is at the head of ROB 686 io.lsq.pendingVst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && robEntries(deqPtr.value).valid && robEntries(deqPtr.value).vls) 687 io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0)) 688 io.lsq.pendingPtr := RegNext(deqPtr) 689 io.lsq.pendingPtrNext := RegNext(deqPtrVec_next.head) 690 691 /** 692 * state changes 693 * (1) redirect: switch to s_walk 694 * (2) walk: when walking comes to the end, switch to s_idle 695 */ 696 val state_next = Mux( 697 io.redirect.valid || RegNext(io.redirect.valid), s_walk, 698 Mux( 699 state === s_walk && walkFinished && rab.io.status.walkEnd && vtypeBuffer.io.status.walkEnd, s_idle, 700 state 701 ) 702 ) 703 XSPerfAccumulate("s_idle_to_idle", state === s_idle && state_next === s_idle) 704 XSPerfAccumulate("s_idle_to_walk", state === s_idle && state_next === s_walk) 705 XSPerfAccumulate("s_walk_to_idle", state === s_walk && state_next === s_idle) 706 XSPerfAccumulate("s_walk_to_walk", state === s_walk && state_next === s_walk) 707 state := state_next 708 709 /** 710 * pointers and counters 711 */ 712 val deqPtrGenModule = Module(new NewRobDeqPtrWrapper) 713 deqPtrGenModule.io.state := state 714 deqPtrGenModule.io.deq_v := commit_vDeqGroup 715 deqPtrGenModule.io.deq_w := commit_wDeqGroup 716 deqPtrGenModule.io.exception_state := exceptionDataRead 717 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 718 deqPtrGenModule.io.hasNoSpecExec := hasWaitForward 719 deqPtrGenModule.io.allowOnlyOneCommit := allowOnlyOneCommit 720 deqPtrGenModule.io.interrupt_safe := robDeqGroup(deqPtr.value(bankAddrWidth-1,0)).interrupt_safe 721 deqPtrGenModule.io.blockCommit := blockCommit 722 deqPtrGenModule.io.hasCommitted := hasCommitted 723 deqPtrGenModule.io.allCommitted := allCommitted 724 deqPtrVec := deqPtrGenModule.io.out 725 deqPtrVec_next := deqPtrGenModule.io.next_out 726 727 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 728 enqPtrGenModule.io.redirect := io.redirect 729 enqPtrGenModule.io.allowEnqueue := allowEnqueue && rab.io.canEnq 730 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 731 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop)) 732 enqPtrVec := enqPtrGenModule.io.out 733 734 // next walkPtrVec: 735 // (1) redirect occurs: update according to state 736 // (2) walk: move forwards 737 val deqPtrReadBank = deqPtrVec_next(0).lineHeadPtr 738 val deqPtrVecForWalk = VecInit((0 until CommitWidth).map(i => deqPtrReadBank + i.U)) 739 val snapPtrReadBank = snapshots(io.snpt.snptSelect)(0).lineHeadPtr 740 val snapPtrVecForWalk = VecInit((0 until CommitWidth).map(i => snapPtrReadBank + i.U)) 741 val walkPtrVec_next: Vec[RobPtr] = Mux(io.redirect.valid, 742 Mux(io.snpt.useSnpt, snapPtrVecForWalk, deqPtrVecForWalk), 743 Mux((state === s_walk) && !walkFinished, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec) 744 ) 745 val walkPtrTrue_next: RobPtr = Mux(io.redirect.valid, 746 Mux(io.snpt.useSnpt, snapshots(io.snpt.snptSelect)(0), deqPtrVec_next(0)), 747 Mux((state === s_walk) && !walkFinished, walkPtrVec_next.head, walkPtrTrue) 748 ) 749 walkPtrHead := walkPtrVec_next.head 750 walkPtrVec := walkPtrVec_next 751 walkPtrTrue := walkPtrTrue_next 752 // T io.redirect.valid, T+1 walkPtrLowBits update, T+2 donotNeedWalk update 753 val walkPtrLowBits = Reg(UInt(bankAddrWidth.W)) 754 when(io.redirect.valid){ 755 walkPtrLowBits := Mux(io.snpt.useSnpt, snapshots(io.snpt.snptSelect)(0).value(bankAddrWidth-1, 0), deqPtrVec_next(0).value(bankAddrWidth-1, 0)) 756 } 757 when(io.redirect.valid) { 758 donotNeedWalk := Fill(donotNeedWalk.length, true.B).asTypeOf(donotNeedWalk) 759 }.elsewhen(RegNext(io.redirect.valid)){ 760 donotNeedWalk := (0 until CommitWidth).map(i => (i.U < walkPtrLowBits)) 761 }.otherwise{ 762 donotNeedWalk := 0.U.asTypeOf(donotNeedWalk) 763 } 764 walkDestSizeDeqGroup.zip(walkPtrVec_next).map { 765 case (reg, ptrNext) => reg := robEntries(deqPtr.value).realDestSize 766 } 767 val numValidEntries = distanceBetween(enqPtr, deqPtr) 768 val commitCnt = PopCount(io.commits.commitValid) 769 770 allowEnqueue := numValidEntries + dispatchNum <= (RobSize - CommitWidth).U 771 772 val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0)) 773 when(io.redirect.valid) { 774 lastWalkPtr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx - 1.U, io.redirect.bits.robIdx) 775 } 776 777 778 /** 779 * States 780 * We put all the stage bits changes here. 781 * 782 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 783 * All states: (1) valid; (2) writebacked; (3) flagBkup 784 */ 785 786 val deqPtrGroup = Wire(Vec(2 * CommitWidth, new RobPtr)) 787 deqPtrGroup.zipWithIndex.map { case (deq, i) => deq := deqPtrVec(0) + i.U } 788 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 789 790 val redirectValidReg = RegNext(io.redirect.valid) 791 val redirectBegin = Reg(UInt(log2Up(RobSize).W)) 792 val redirectEnd = Reg(UInt(log2Up(RobSize).W)) 793 when(io.redirect.valid){ 794 redirectBegin := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx.value - 1.U, io.redirect.bits.robIdx.value) 795 redirectEnd := enqPtr.value 796 } 797 798 // update robEntries valid 799 for (i <- 0 until RobSize) { 800 val enqOH = VecInit(canEnqueue.zip(allocatePtrVec.map(_.value === i.U)).map(x => x._1 && x._2)) 801 val commitCond = io.commits.isCommit && io.commits.commitValid.zip(deqPtrVec.map(_.value === i.U)).map(x => x._1 && x._2).reduce(_ || _) 802 assert(PopCount(enqOH) < 2.U, s"robEntries$i enqOH is not one hot") 803 val needFlush = redirectValidReg && Mux( 804 redirectEnd > redirectBegin, 805 (i.U > redirectBegin) && (i.U < redirectEnd), 806 (i.U > redirectBegin) || (i.U < redirectEnd) 807 ) 808 when(reset.asBool) { 809 robEntries(i).valid := false.B 810 }.elsewhen(commitCond) { 811 robEntries(i).valid := false.B 812 }.elsewhen(enqOH.asUInt.orR && !io.redirect.valid) { 813 robEntries(i).valid := true.B 814 }.elsewhen(needFlush){ 815 robEntries(i).valid := false.B 816 } 817 } 818 819 // debug_inst update 820 for (i <- 0 until (LduCnt + StaCnt)) { 821 debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i)) 822 debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i)) 823 debug_lsInfo(io.debug_ls.debugLsInfo(i).s3_robIdx).s3SignalEnable(io.debug_ls.debugLsInfo(i)) 824 } 825 for (i <- 0 until LduCnt) { 826 debug_lsTopdownInfo(io.lsTopdownInfo(i).s1.robIdx).s1SignalEnable(io.lsTopdownInfo(i)) 827 debug_lsTopdownInfo(io.lsTopdownInfo(i).s2.robIdx).s2SignalEnable(io.lsTopdownInfo(i)) 828 } 829 830 // status field: writebacked 831 // enqueue logic set 6 writebacked to false 832 for (i <- 0 until RenameWidth) { 833 when(canEnqueue(i)) { 834 val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec).asUInt.orR 835 val enqHasTriggerCanFire = io.enq.req(i).bits.trigger.getFrontendCanFire 836 val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove 837 val isStu = FuType.isStore(io.enq.req(i).bits.fuType) 838 robEntries(allocatePtrVec(i).value).commitTrigger := enqIsWritebacked && !enqHasException && !enqHasTriggerCanFire && !isStu 839 } 840 } 841 when(exceptionGen.io.out.valid) { 842 val wbIdx = exceptionGen.io.out.bits.robIdx.value 843 robEntries(wbIdx).commitTrigger := true.B 844 } 845 846 // writeback logic set numWbPorts writebacked to true 847 val blockWbSeq = Wire(Vec(exuWBs.length, Bool())) 848 blockWbSeq.map(_ := false.B) 849 for ((wb, blockWb) <- exuWBs.zip(blockWbSeq)) { 850 when(wb.valid) { 851 val wbIdx = wb.bits.robIdx.value 852 val wbHasException = wb.bits.exceptionVec.getOrElse(0.U).asUInt.orR 853 val wbHasTriggerCanFire = wb.bits.trigger.getOrElse(0.U).asTypeOf(io.enq.req(0).bits.trigger).getBackendCanFire //Todo: wb.bits.trigger.getHitBackend 854 val wbHasFlushPipe = wb.bits.flushPipe.getOrElse(false.B) 855 val wbHasReplayInst = wb.bits.replay.getOrElse(false.B) //Todo: && wb.bits.replayInst 856 blockWb := wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerCanFire 857 robEntries(wbIdx).commitTrigger := !blockWb 858 } 859 } 860 861 // if the first uop of an instruction is valid , write writebackedCounter 862 val uopEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid) 863 val instEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid && req.bits.firstUop) 864 val enqNeedWriteRFSeq = io.enq.req.map(_.bits.needWriteRf) 865 val enqRobIdxSeq = io.enq.req.map(req => req.bits.robIdx.value) 866 val enqUopNumVec = VecInit(io.enq.req.map(req => req.bits.numUops)) 867 val enqWBNumVec = VecInit(io.enq.req.map(req => req.bits.numWB)) 868 val enqEliminatedMoveVec = VecInit(io.enq.req.map(req => req.bits.eliminatedMove)) 869 870 private val enqWriteStdVec: Vec[Bool] = VecInit(io.enq.req.map { 871 req => FuType.isAMO(req.bits.fuType) || FuType.isStore(req.bits.fuType) 872 }) 873 val fflags_wb = fflagsWBs 874 val vxsat_wb = vxsatWBs 875 for (i <- 0 until RobSize) { 876 877 val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === i.U) 878 val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map { case (valid, isMatch) => valid && isMatch } 879 val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map { case (valid, isMatch) => valid && isMatch } 880 val instCanEnqFlag = Cat(instCanEnqSeq).orR 881 val realDestEnqNum = PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map { case (writeFlag, valid) => writeFlag && valid }) 882 when(!robEntries(i).valid && instCanEnqFlag){ 883 robEntries(i).realDestSize := realDestEnqNum 884 }.elsewhen(robEntries(i).valid && Cat(uopCanEnqSeq).orR){ 885 robEntries(i).realDestSize := robEntries(i).realDestSize + realDestEnqNum 886 } 887 val enqUopNum = PriorityMux(instCanEnqSeq, enqUopNumVec) 888 val enqWBNum = PriorityMux(instCanEnqSeq, enqWBNumVec) 889 val enqEliminatedMove = PriorityMux(instCanEnqSeq, enqEliminatedMoveVec) 890 val enqWriteStd = PriorityMux(instCanEnqSeq, enqWriteStdVec) 891 892 val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 893 val canWbNoBlockSeq = canWbSeq.zip(blockWbSeq).map { case (canWb, blockWb) => canWb && !blockWb } 894 val canStdWbSeq = VecInit(stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)) 895 val wbCnt = Mux1H(canWbSeq, io.writebackNums.map(_.bits)) 896 897 val canWbExceptionSeq = exceptionWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 898 val needFlush = robEntries(i).needFlush 899 val needFlushWriteBack = Wire(Bool()) 900 needFlushWriteBack := Mux1H(canWbExceptionSeq, io.writebackNeedFlush) 901 when(robEntries(i).valid){ 902 needFlush := needFlush || needFlushWriteBack 903 } 904 905 when(robEntries(i).valid && (needFlush || needFlushWriteBack)) { 906 // exception flush 907 robEntries(i).uopNum := robEntries(i).uopNum - wbCnt 908 robEntries(i).stdWritebacked := true.B 909 }.elsewhen(!robEntries(i).valid && instCanEnqFlag) { 910 // enq set num of uops 911 robEntries(i).uopNum := enqWBNum 912 robEntries(i).stdWritebacked := Mux(enqWriteStd, false.B, true.B) 913 }.elsewhen(robEntries(i).valid) { 914 // update by writing back 915 robEntries(i).uopNum := robEntries(i).uopNum - wbCnt 916 assert(!(robEntries(i).uopNum - wbCnt > robEntries(i).uopNum), s"robEntries $i uopNum is overflow!") 917 when(canStdWbSeq.asUInt.orR) { 918 robEntries(i).stdWritebacked := true.B 919 } 920 } 921 922 val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U && writeback.bits.wflags.getOrElse(false.B)) 923 val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.fold(false.B)(_ | _) 924 robEntries(i).fflags := Mux(!robEntries(i).valid && instCanEnqFlag, 0.U, robEntries(i).fflags | fflagsRes) 925 926 val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 927 val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.fold(false.B)(_ | _) 928 robEntries(i).vxsat := Mux(!robEntries(i).valid && instCanEnqFlag, 0.U, robEntries(i).vxsat | vxsatRes) 929 } 930 931 // begin update robBanksRdata 932 val robBanksRdata = VecInit(robBanksRdataThisLine ++ robBanksRdataNextLine) 933 val needUpdate = Wire(Vec(2 * CommitWidth, new RobEntryBundle)) 934 needUpdate := VecInit(robBanksRdataThisLine ++ robBanksRdataNextLine) 935 val needUpdateRobIdx = robIdxThisLine ++ robIdxNextLine 936 for (i <- 0 until 2 * CommitWidth) { 937 val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === needUpdateRobIdx(i)) 938 val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map { case (valid, isMatch) => valid && isMatch } 939 val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map { case (valid, isMatch) => valid && isMatch } 940 val instCanEnqFlag = Cat(instCanEnqSeq).orR 941 val realDestEnqNum = PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map { case (writeFlag, valid) => writeFlag && valid }) 942 when(!needUpdate(i).valid && instCanEnqFlag) { 943 needUpdate(i).realDestSize := realDestEnqNum 944 }.elsewhen(needUpdate(i).valid && instCanEnqFlag) { 945 needUpdate(i).realDestSize := robBanksRdata(i).realDestSize + realDestEnqNum 946 } 947 val enqUopNum = PriorityMux(instCanEnqSeq, enqUopNumVec) 948 val enqWBNum = PriorityMux(instCanEnqSeq, enqWBNumVec) 949 val enqEliminatedMove = PriorityMux(instCanEnqSeq, enqEliminatedMoveVec) 950 val enqWriteStd = PriorityMux(instCanEnqSeq, enqWriteStdVec) 951 952 val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === needUpdateRobIdx(i)) 953 val canWbNoBlockSeq = canWbSeq.zip(blockWbSeq).map { case (canWb, blockWb) => canWb && !blockWb } 954 val canStdWbSeq = VecInit(stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === needUpdateRobIdx(i))) 955 val wbCnt = Mux1H(canWbSeq, io.writebackNums.map(_.bits)) 956 957 val canWbExceptionSeq = exceptionWBs.map(writeback => writeback.valid && (writeback.bits.robIdx.value === needUpdateRobIdx(i))) 958 val needFlush = robBanksRdata(i).needFlush 959 val needFlushWriteBack = Wire(Bool()) 960 needFlushWriteBack := Mux1H(canWbExceptionSeq, io.writebackNeedFlush) 961 when(needUpdate(i).valid) { 962 needUpdate(i).needFlush := needFlush || needFlushWriteBack 963 } 964 965 when(needUpdate(i).valid && (needFlush || needFlushWriteBack)) { 966 // exception flush 967 needUpdate(i).uopNum := robBanksRdata(i).uopNum - wbCnt 968 needUpdate(i).stdWritebacked := true.B 969 }.elsewhen(!needUpdate(i).valid && instCanEnqFlag) { 970 // enq set num of uops 971 needUpdate(i).uopNum := enqWBNum 972 needUpdate(i).stdWritebacked := Mux(enqWriteStd, false.B, true.B) 973 }.elsewhen(needUpdate(i).valid) { 974 // update by writing back 975 needUpdate(i).uopNum := robBanksRdata(i).uopNum - wbCnt 976 when(canStdWbSeq.asUInt.orR) { 977 needUpdate(i).stdWritebacked := true.B 978 } 979 } 980 981 val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === needUpdateRobIdx(i) && writeback.bits.wflags.getOrElse(false.B)) 982 val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.fold(false.B)(_ | _) 983 needUpdate(i).fflags := Mux(!robBanksRdata(i).valid && instCanEnqFlag, 0.U, robBanksRdata(i).fflags | fflagsRes) 984 985 val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === needUpdateRobIdx(i)) 986 val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.fold(false.B)(_ | _) 987 needUpdate(i).vxsat := Mux(!robBanksRdata(i).valid && instCanEnqFlag, 0.U, robBanksRdata(i).vxsat | vxsatRes) 988 } 989 robBanksRdataThisLineUpdate := VecInit(needUpdate.take(8)) 990 robBanksRdataNextLineUpdate := VecInit(needUpdate.drop(8)) 991 // end update robBanksRdata 992 993 // interrupt_safe 994 for (i <- 0 until RenameWidth) { 995 // We RegNext the updates for better timing. 996 // Note that instructions won't change the system's states in this cycle. 997 when(RegNext(canEnqueue(i))) { 998 // For now, we allow non-load-store instructions to trigger interrupts 999 // For MMIO instructions, they should not trigger interrupts since they may 1000 // be sent to lower level before it writes back. 1001 // However, we cannot determine whether a load/store instruction is MMIO. 1002 // Thus, we don't allow load/store instructions to trigger an interrupt. 1003 // TODO: support non-MMIO load-store instructions to trigger interrupts 1004 val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType) 1005 robEntries(RegEnable(allocatePtrVec(i).value, canEnqueue(i))).interrupt_safe := RegEnable(allow_interrupts, canEnqueue(i)) 1006 } 1007 } 1008 1009 /** 1010 * read and write of data modules 1011 */ 1012 val commitReadAddr_next = Mux(state_next === s_idle, 1013 VecInit(deqPtrVec_next.map(_.value)), 1014 VecInit(walkPtrVec_next.map(_.value)) 1015 ) 1016 1017 exceptionGen.io.redirect <> io.redirect 1018 exceptionGen.io.flush := io.flushOut.valid 1019 1020 val canEnqueueEG = VecInit(io.enq.req.map(req => req.valid && io.enq.canAccept)) 1021 for (i <- 0 until RenameWidth) { 1022 exceptionGen.io.enq(i).valid := canEnqueueEG(i) 1023 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 1024 exceptionGen.io.enq(i).bits.ftqPtr := io.enq.req(i).bits.ftqPtr 1025 exceptionGen.io.enq(i).bits.ftqOffset := io.enq.req(i).bits.ftqOffset 1026 exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec) 1027 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe 1028 exceptionGen.io.enq(i).bits.isVset := io.enq.req(i).bits.isVset 1029 exceptionGen.io.enq(i).bits.replayInst := false.B 1030 XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst") 1031 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep 1032 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix 1033 exceptionGen.io.enq(i).bits.trigger.clear() 1034 exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.trigger.frontendHit 1035 exceptionGen.io.enq(i).bits.trigger.frontendCanFire := io.enq.req(i).bits.trigger.frontendCanFire 1036 exceptionGen.io.enq(i).bits.vstartEn := false.B //DontCare 1037 exceptionGen.io.enq(i).bits.vstart := 0.U //DontCare 1038 } 1039 1040 println(s"ExceptionGen:") 1041 println(s"num of exceptions: ${params.numException}") 1042 require(exceptionWBs.length == exceptionGen.io.wb.length, 1043 f"exceptionWBs.length: ${exceptionWBs.length}, " + 1044 f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}") 1045 for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) { 1046 exc_wb.valid := wb.valid 1047 exc_wb.bits.robIdx := wb.bits.robIdx 1048 // only enq inst use ftqPtr to read gpa 1049 exc_wb.bits.ftqPtr := 0.U.asTypeOf(exc_wb.bits.ftqPtr) 1050 exc_wb.bits.ftqOffset := 0.U.asTypeOf(exc_wb.bits.ftqOffset) 1051 exc_wb.bits.exceptionVec := wb.bits.exceptionVec.get 1052 exc_wb.bits.flushPipe := wb.bits.flushPipe.getOrElse(false.B) 1053 exc_wb.bits.isVset := false.B 1054 exc_wb.bits.replayInst := wb.bits.replay.getOrElse(false.B) 1055 exc_wb.bits.singleStep := false.B 1056 exc_wb.bits.crossPageIPFFix := false.B 1057 // TODO: make trigger configurable 1058 val trigger = wb.bits.trigger.getOrElse(0.U).asTypeOf(exc_wb.bits.trigger) 1059 exc_wb.bits.trigger.clear() // Don't care frontend timing, chain, hit and canFire 1060 exc_wb.bits.trigger.backendHit := trigger.backendHit 1061 exc_wb.bits.trigger.backendCanFire := trigger.backendCanFire 1062 exc_wb.bits.vstartEn := false.B //wb.bits.vstartEn.getOrElse(false.B) // todo need add vstart in ExuOutput 1063 exc_wb.bits.vstart := 0.U //wb.bits.vstart.getOrElse(0.U) 1064 // println(s" [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " + 1065 // s"flushPipe ${configs.exists(_.flushPipe)}, " + 1066 // s"replayInst ${configs.exists(_.replayInst)}") 1067 } 1068 1069 fflagsDataRead := (0 until CommitWidth).map(i => robEntries(deqPtrVec(i).value).fflags) 1070 vxsatDataRead := (0 until CommitWidth).map(i => robEntries(deqPtrVec(i).value).vxsat) 1071 1072 val instrCntReg = RegInit(0.U(64.W)) 1073 val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map { case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) }) 1074 val trueCommitCnt = RegNext(io.commits.commitValid.zip(io.commits.info).map { case (v, i) => Mux(v, i.instrSize, 0.U) }.reduce(_ +& _)) +& fuseCommitCnt 1075 val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U) 1076 val instrCnt = instrCntReg + retireCounter 1077 instrCntReg := instrCnt 1078 io.csr.perfinfo.retiredInstr := retireCounter 1079 io.robFull := !allowEnqueue 1080 io.headNotReady := commit_vDeqGroup.head && !commit_wDeqGroup.head 1081 1082 /** 1083 * debug info 1084 */ 1085 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 1086 XSDebug("") 1087 XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n") 1088 for (i <- 0 until RobSize) { 1089 XSDebug(false, !robEntries(i).valid, "-") 1090 XSDebug(false, robEntries(i).valid && robEntries(i).isWritebacked, "w") 1091 XSDebug(false, robEntries(i).valid && !robEntries(i).isWritebacked, "v") 1092 } 1093 XSDebug(false, true.B, "\n") 1094 1095 for (i <- 0 until RobSize) { 1096 if (i % 4 == 0) XSDebug("") 1097 XSDebug(false, true.B, "%x ", debug_microOp(i).pc) 1098 XSDebug(false, !robEntries(i).valid, "- ") 1099 XSDebug(false, robEntries(i).valid && robEntries(i).isWritebacked, "w ") 1100 XSDebug(false, robEntries(i).valid && !robEntries(i).isWritebacked, "v ") 1101 if (i % 4 == 3) XSDebug(false, true.B, "\n") 1102 } 1103 1104 def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U) 1105 1106 def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U) 1107 1108 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 1109 XSPerfAccumulate("clock_cycle", 1.U) 1110 QueuePerf(RobSize, numValidEntries, numValidEntries === RobSize.U) 1111 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 1112 XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt)) 1113 XSPerfRolling("ipc", ifCommitReg(trueCommitCnt), 1000, clock, reset) 1114 XSPerfRolling("cpi", perfCnt = 1.U /*Cycle*/ , eventTrigger = ifCommitReg(trueCommitCnt), granularity = 1000, clock, reset) 1115 val commitIsMove = commitInfo.map(_.isMove) 1116 XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map { case (v, m) => v && m }))) 1117 val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) 1118 XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e }))) 1119 XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt)) 1120 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 1121 val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map { case (v, t) => v && t } 1122 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 1123 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 1124 val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map { case (v, t) => v && t } 1125 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 1126 val commitLoadWaitBit = commitInfo.map(_.loadWaitBit) 1127 XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map { case (v, w) => v && w }))) 1128 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 1129 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map { case (v, t) => v && t }))) 1130 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => robEntries(i).valid && robEntries(i).isWritebacked))) 1131 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire))) 1132 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 1133 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)) 1134 XSPerfAccumulate("walkCycleTotal", state === s_walk) 1135 XSPerfAccumulate("waitRabWalkEnd", state === s_walk && walkFinished && !rab.io.status.walkEnd) 1136 private val walkCycle = RegInit(0.U(8.W)) 1137 private val waitRabWalkCycle = RegInit(0.U(8.W)) 1138 walkCycle := Mux(io.redirect.valid, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U)) 1139 waitRabWalkCycle := Mux(state === s_walk && walkFinished, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U)) 1140 1141 XSPerfHistogram("walkRobCycleHist", walkCycle, state === s_walk && walkFinished, 0, 32) 1142 XSPerfHistogram("walkRabExtraCycleHist", waitRabWalkCycle, state === s_walk && walkFinished && rab.io.status.walkEnd, 0, 32) 1143 XSPerfHistogram("walkTotalCycleHist", walkCycle, state === s_walk && state_next === s_idle, 0, 32) 1144 1145 private val deqNotWritebacked = robEntries(deqPtr.value).valid && !robEntries(deqPtr.value).isWritebacked 1146 private val deqStdNotWritebacked = robEntries(deqPtr.value).valid && !robEntries(deqPtr.value).stdWritebacked 1147 private val deqUopNotWritebacked = robEntries(deqPtr.value).valid && !robEntries(deqPtr.value).isUopWritebacked 1148 private val deqHeadInfo = debug_microOp(deqPtr.value) 1149 val deqUopCommitType = debug_microOp(deqPtr.value).commitType 1150 1151 XSPerfAccumulate("waitAluCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.alu.U) 1152 XSPerfAccumulate("waitMulCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.mul.U) 1153 XSPerfAccumulate("waitDivCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.div.U) 1154 XSPerfAccumulate("waitBrhCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.brh.U) 1155 XSPerfAccumulate("waitJmpCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.jmp.U) 1156 XSPerfAccumulate("waitCsrCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.csr.U) 1157 XSPerfAccumulate("waitFenCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.fence.U) 1158 XSPerfAccumulate("waitBkuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.bku.U) 1159 XSPerfAccumulate("waitLduCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.ldu.U) 1160 XSPerfAccumulate("waitStuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1161 XSPerfAccumulate("waitStaCycle", deqUopNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1162 XSPerfAccumulate("waitStdCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1163 XSPerfAccumulate("waitAtmCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.mou.U) 1164 1165 XSPerfAccumulate("waitVfaluCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.vfalu.U) 1166 XSPerfAccumulate("waitVfmaCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.vfma.U) 1167 XSPerfAccumulate("waitVfdivCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.vfdiv.U) 1168 1169 val vfalufuop = Seq(VfaluType.vfadd, VfaluType.vfwadd, VfaluType.vfwadd_w, VfaluType.vfsub, VfaluType.vfwsub, VfaluType.vfwsub_w, VfaluType.vfmin, VfaluType.vfmax, 1170 VfaluType.vfmerge, VfaluType.vfmv, VfaluType.vfsgnj, VfaluType.vfsgnjn, VfaluType.vfsgnjx, VfaluType.vfeq, VfaluType.vfne, VfaluType.vflt, VfaluType.vfle, VfaluType.vfgt, 1171 VfaluType.vfge, VfaluType.vfclass, VfaluType.vfmv_f_s, VfaluType.vfmv_s_f, VfaluType.vfredusum, VfaluType.vfredmax, VfaluType.vfredmin, VfaluType.vfredosum, VfaluType.vfwredosum) 1172 1173 vfalufuop.zipWithIndex.map{ 1174 case(fuoptype,i) => XSPerfAccumulate(s"waitVfalu_${i}Cycle", deqStdNotWritebacked && deqHeadInfo.fuOpType === fuoptype && deqHeadInfo.fuType === FuType.vfalu.U) 1175 } 1176 1177 1178 1179 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 1180 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 1181 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 1182 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 1183 XSPerfAccumulate("robHeadPC", io.commits.info(0).debug_pc.getOrElse(0.U)) 1184 XSPerfAccumulate("commitCompressCntAll", PopCount(io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => io.commits.isCommit && valid && info.instrSize > 1.U })) 1185 (2 to RenameWidth).foreach(i => 1186 XSPerfAccumulate(s"commitCompressCnt${i}", PopCount(io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => io.commits.isCommit && valid && info.instrSize === i.U })) 1187 ) 1188 XSPerfAccumulate("compressSize", io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => Mux(io.commits.isCommit && valid && info.instrSize > 1.U, info.instrSize, 0.U) }.reduce(_ +& _)) 1189 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 1190 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 1191 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 1192 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 1193 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 1194 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 1195 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 1196 1197 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 1198 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 1199 } 1200 1201 for (fuType <- FuType.functionNameMap.keys) { 1202 val fuName = FuType.functionNameMap(fuType) 1203 val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U) 1204 XSPerfRolling(s"ipc_futype_${fuName}", ifCommit(PopCount(commitIsFuType)), 1000, clock, reset) 1205 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 1206 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 1207 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 1208 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 1209 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 1210 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 1211 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 1212 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 1213 } 1214 XSPerfAccumulate(s"redirect_use_snapshot", io.redirect.valid && io.snpt.useSnpt) 1215 1216 // top-down info 1217 io.debugTopDown.toCore.robHeadVaddr.valid := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_valid 1218 io.debugTopDown.toCore.robHeadVaddr.bits := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_bits 1219 io.debugTopDown.toCore.robHeadPaddr.valid := debug_lsTopdownInfo(deqPtr.value).s2.paddr_valid 1220 io.debugTopDown.toCore.robHeadPaddr.bits := debug_lsTopdownInfo(deqPtr.value).s2.paddr_bits 1221 io.debugTopDown.toDispatch.robTrueCommit := ifCommitReg(trueCommitCnt) 1222 io.debugTopDown.toDispatch.robHeadLsIssue := debug_lsIssue(deqPtr.value) 1223 io.debugTopDown.robHeadLqIdx.valid := debug_lqIdxValid(deqPtr.value) 1224 io.debugTopDown.robHeadLqIdx.bits := debug_microOp(deqPtr.value).lqIdx 1225 1226 // rolling 1227 io.debugRolling.robTrueCommit := ifCommitReg(trueCommitCnt) 1228 1229 /** 1230 * DataBase info: 1231 * log trigger is at writeback valid 1232 * */ 1233 1234 /** 1235 * @todo add InstInfoEntry back 1236 * @author Maxpicca-Li 1237 */ 1238 1239 //difftest signals 1240 val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value 1241 1242 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1243 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1244 1245 for (i <- 0 until CommitWidth) { 1246 val idx = deqPtrVec(i).value 1247 wdata(i) := debug_exuData(idx) 1248 wpc(i) := SignExt(commitDebugUop(i).pc, XLEN) 1249 } 1250 1251 if (env.EnableDifftest || env.AlwaysBasicDiff) { 1252 // These are the structures used by difftest only and should be optimized after synthesis. 1253 val dt_eliminatedMove = Mem(RobSize, Bool()) 1254 val dt_isRVC = Mem(RobSize, Bool()) 1255 val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) 1256 for (i <- 0 until RenameWidth) { 1257 when(canEnqueue(i)) { 1258 dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 1259 dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC 1260 } 1261 } 1262 for (wb <- exuWBs) { 1263 when(wb.valid) { 1264 val wbIdx = wb.bits.robIdx.value 1265 dt_exuDebug(wbIdx) := wb.bits.debug 1266 } 1267 } 1268 // Always instantiate basic difftest modules. 1269 for (i <- 0 until CommitWidth) { 1270 val uop = commitDebugUop(i) 1271 val commitInfo = io.commits.info(i) 1272 val ptr = deqPtrVec(i).value 1273 val exuOut = dt_exuDebug(ptr) 1274 val eliminatedMove = dt_eliminatedMove(ptr) 1275 val isRVC = dt_isRVC(ptr) 1276 1277 val difftest = DifftestModule(new DiffInstrCommit(MaxPhyPregs), delay = 3, dontCare = true) 1278 val dt_skip = Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt) 1279 difftest.coreid := io.hartId 1280 difftest.index := i.U 1281 difftest.valid := io.commits.commitValid(i) && io.commits.isCommit 1282 difftest.skip := dt_skip 1283 difftest.isRVC := isRVC 1284 difftest.rfwen := io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.debug_ldest.get =/= 0.U 1285 difftest.fpwen := io.commits.commitValid(i) && uop.fpWen 1286 difftest.wpdest := commitInfo.debug_pdest.get 1287 difftest.wdest := commitInfo.debug_ldest.get 1288 difftest.nFused := CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize - 1.U 1289 when(difftest.valid) { 1290 assert(CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize >= 1.U) 1291 } 1292 if (env.EnableDifftest) { 1293 val uop = commitDebugUop(i) 1294 difftest.pc := SignExt(uop.pc, XLEN) 1295 difftest.instr := uop.instr 1296 difftest.robIdx := ZeroExt(ptr, 10) 1297 difftest.lqIdx := ZeroExt(uop.lqIdx.value, 7) 1298 difftest.sqIdx := ZeroExt(uop.sqIdx.value, 7) 1299 difftest.isLoad := io.commits.info(i).commitType === CommitType.LOAD 1300 difftest.isStore := io.commits.info(i).commitType === CommitType.STORE 1301 // Check LoadEvent only when isAmo or isLoad and skip MMIO 1302 val difftestLoadEvent = DifftestModule(new DiffLoadEvent, delay = 3) 1303 difftestLoadEvent.coreid := io.hartId 1304 difftestLoadEvent.index := i.U 1305 val loadCheck = (FuType.isAMO(uop.fuType) || FuType.isLoad(uop.fuType)) && !dt_skip 1306 difftestLoadEvent.valid := io.commits.commitValid(i) && io.commits.isCommit && loadCheck 1307 difftestLoadEvent.paddr := exuOut.paddr 1308 difftestLoadEvent.opType := uop.fuOpType 1309 difftestLoadEvent.isAtomic := FuType.isAMO(uop.fuType) 1310 difftestLoadEvent.isLoad := FuType.isLoad(uop.fuType) 1311 } 1312 } 1313 } 1314 1315 if (env.EnableDifftest || env.AlwaysBasicDiff) { 1316 val dt_isXSTrap = Mem(RobSize, Bool()) 1317 for (i <- 0 until RenameWidth) { 1318 when(canEnqueue(i)) { 1319 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap 1320 } 1321 } 1322 val trapVec = io.commits.commitValid.zip(deqPtrVec).map { case (v, d) => 1323 io.commits.isCommit && v && dt_isXSTrap(d.value) 1324 } 1325 val hitTrap = trapVec.reduce(_ || _) 1326 val difftest = DifftestModule(new DiffTrapEvent, dontCare = true) 1327 difftest.coreid := io.hartId 1328 difftest.hasTrap := hitTrap 1329 difftest.cycleCnt := timer 1330 difftest.instrCnt := instrCnt 1331 difftest.hasWFI := hasWFI 1332 1333 if (env.EnableDifftest) { 1334 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 1335 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 -> x._1)), XLEN) 1336 difftest.code := trapCode 1337 difftest.pc := trapPC 1338 } 1339 } 1340 1341 val validEntriesBanks = (0 until (RobSize + 31) / 32).map(i => RegNext(PopCount(robEntries.map(_.valid).drop(i * 32).take(32)))) 1342 val validEntries = RegNext(VecInit(validEntriesBanks).reduceTree(_ +& _)) 1343 val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map { case (v, m) => v && m }) 1344 val commitLoadVec = VecInit(commitLoadValid) 1345 val commitBranchVec = VecInit(commitBranchValid) 1346 val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map { case (v, w) => v && w }) 1347 val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map { case (v, t) => v && t }) 1348 val perfEvents = Seq( 1349 ("rob_interrupt_num ", io.flushOut.valid && intrEnable), 1350 ("rob_exception_num ", io.flushOut.valid && deqHasException), 1351 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe), 1352 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst), 1353 ("rob_commitUop ", ifCommit(commitCnt)), 1354 ("rob_commitInstr ", ifCommitReg(trueCommitCnt)), 1355 ("rob_commitInstrMove ", ifCommitReg(PopCount(RegNext(commitMoveVec)))), 1356 ("rob_commitInstrFused ", ifCommitReg(fuseCommitCnt)), 1357 ("rob_commitInstrLoad ", ifCommitReg(PopCount(RegNext(commitLoadVec)))), 1358 ("rob_commitInstrBranch ", ifCommitReg(PopCount(RegNext(commitBranchVec)))), 1359 ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec)))), 1360 ("rob_commitInstrStore ", ifCommitReg(PopCount(RegNext(commitStoreVec)))), 1361 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)), 1362 ("rob_walkCycle ", (state === s_walk)), 1363 ("rob_1_4_valid ", validEntries <= (RobSize / 4).U), 1364 ("rob_2_4_valid ", validEntries > (RobSize / 4).U && validEntries <= (RobSize / 2).U), 1365 ("rob_3_4_valid ", validEntries > (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U), 1366 ("rob_4_4_valid ", validEntries > (RobSize * 3 / 4).U), 1367 ) 1368 generatePerfEvent() 1369 1370 // dontTouch for debug 1371 if (backendParams.debugEn) { 1372 dontTouch(enqPtrVec) 1373 dontTouch(deqPtrVec) 1374 dontTouch(robEntries) 1375 dontTouch(robDeqGroup) 1376 dontTouch(robBanks) 1377 dontTouch(robBanksRaddrThisLine) 1378 dontTouch(robBanksRaddrNextLine) 1379 dontTouch(robBanksRdataThisLine) 1380 dontTouch(robBanksRdataNextLine) 1381 dontTouch(robBanksRdataThisLineUpdate) 1382 dontTouch(robBanksRdataNextLineUpdate) 1383 dontTouch(needUpdate) 1384 val exceptionWBsVec = MixedVecInit(exceptionWBs) 1385 dontTouch(exceptionWBsVec) 1386 dontTouch(commit_wDeqGroup) 1387 dontTouch(commit_vDeqGroup) 1388 dontTouch(commitSizeSumSeq) 1389 dontTouch(walkSizeSumSeq) 1390 dontTouch(commitSizeSumCond) 1391 dontTouch(walkSizeSumCond) 1392 dontTouch(commitSizeSum) 1393 dontTouch(walkSizeSum) 1394 dontTouch(realDestSizeSeq) 1395 dontTouch(walkDestSizeSeq) 1396 dontTouch(io.commits) 1397 dontTouch(commitIsVTypeVec) 1398 dontTouch(walkIsVTypeVec) 1399 dontTouch(commitValidThisLine) 1400 dontTouch(commitReadAddr_next) 1401 dontTouch(donotNeedWalk) 1402 dontTouch(walkPtrVec_next) 1403 dontTouch(walkPtrVec) 1404 dontTouch(deqPtrVec_next) 1405 dontTouch(deqPtrVecForWalk) 1406 dontTouch(snapPtrReadBank) 1407 dontTouch(snapPtrVecForWalk) 1408 dontTouch(shouldWalkVec) 1409 dontTouch(walkFinished) 1410 dontTouch(changeBankAddrToDeqPtr) 1411 } 1412 if (env.EnableDifftest) { 1413 io.commits.info.map(info => dontTouch(info.debug_pc.get)) 1414 } 1415} 1416