1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.rob 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 24import utils._ 25import utility._ 26import xiangshan._ 27import xiangshan.backend.SnapshotGenerator 28import xiangshan.backend.exu.ExuConfig 29import xiangshan.frontend.FtqPtr 30import xiangshan.mem.{LsqEnqIO, LqPtr} 31 32class DebugMdpInfo(implicit p: Parameters) extends XSBundle{ 33 val ssid = UInt(SSIDWidth.W) 34 val waitAllStore = Bool() 35} 36 37class DebugLsInfo(implicit p: Parameters) extends XSBundle { 38 val s1 = new Bundle { 39 val isTlbFirstMiss = Bool() // in s1 40 val isBankConflict = Bool() // in s1 41 val isLoadToLoadForward = Bool() 42 val isReplayFast = Bool() 43 } 44 val s2 = new Bundle{ 45 val isDcacheFirstMiss = Bool() // in s2 (predicted result is in s1 when using WPU, real result is in s2) 46 val isForwardFail = Bool() // in s2 47 val isReplaySlow = Bool() 48 val isLoadReplayTLBMiss = Bool() 49 val isLoadReplayCacheMiss = Bool() 50 } 51 val replayCnt = UInt(XLEN.W) 52 53 def s1SignalEnable(ena: DebugLsInfo) = { 54 when(ena.s1.isTlbFirstMiss) { s1.isTlbFirstMiss := true.B } 55 when(ena.s1.isBankConflict) { s1.isBankConflict := true.B } 56 when(ena.s1.isLoadToLoadForward) { s1.isLoadToLoadForward := true.B } 57 when(ena.s1.isReplayFast) { 58 s1.isReplayFast := true.B 59 replayCnt := replayCnt + 1.U 60 } 61 } 62 63 def s2SignalEnable(ena: DebugLsInfo) = { 64 when(ena.s2.isDcacheFirstMiss) { s2.isDcacheFirstMiss := true.B } 65 when(ena.s2.isForwardFail) { s2.isForwardFail := true.B } 66 when(ena.s2.isLoadReplayTLBMiss) { s2.isLoadReplayTLBMiss := true.B } 67 when(ena.s2.isLoadReplayCacheMiss) { s2.isLoadReplayCacheMiss := true.B } 68 when(ena.s2.isReplaySlow) { 69 s2.isReplaySlow := true.B 70 replayCnt := replayCnt + 1.U 71 } 72 } 73 74} 75object DebugLsInfo { 76 def init(implicit p: Parameters): DebugLsInfo = { 77 val lsInfo = Wire(new DebugLsInfo) 78 lsInfo.s1.isTlbFirstMiss := false.B 79 lsInfo.s1.isBankConflict := false.B 80 lsInfo.s1.isLoadToLoadForward := false.B 81 lsInfo.s1.isReplayFast := false.B 82 lsInfo.s2.isDcacheFirstMiss := false.B 83 lsInfo.s2.isForwardFail := false.B 84 lsInfo.s2.isReplaySlow := false.B 85 lsInfo.s2.isLoadReplayTLBMiss := false.B 86 lsInfo.s2.isLoadReplayCacheMiss := false.B 87 lsInfo.replayCnt := 0.U 88 lsInfo 89 } 90 91} 92class DebugLsInfoBundle(implicit p: Parameters) extends DebugLsInfo { 93 // unified processing at the end stage of load/store ==> s2 ==> bug that will write error robIdx data 94 val s1_robIdx = UInt(log2Ceil(RobSize).W) 95 val s2_robIdx = UInt(log2Ceil(RobSize).W) 96} 97class DebugLSIO(implicit p: Parameters) extends XSBundle { 98 val debugLsInfo = Vec(exuParameters.LduCnt + exuParameters.StuCnt, Output(new DebugLsInfoBundle)) 99} 100 101class LsTopdownInfo(implicit p: Parameters) extends XSBundle { 102 val s1 = new Bundle { 103 val robIdx = UInt(log2Ceil(RobSize).W) 104 val vaddr_valid = Bool() 105 val vaddr_bits = UInt(VAddrBits.W) 106 } 107 val s2 = new Bundle { 108 val robIdx = UInt(log2Ceil(RobSize).W) 109 val paddr_valid = Bool() 110 val paddr_bits = UInt(PAddrBits.W) 111 val cache_miss_en = Bool() 112 val first_real_miss = Bool() 113 } 114 115 def s1SignalEnable(ena: LsTopdownInfo) = { 116 when(ena.s1.vaddr_valid) { 117 s1.vaddr_valid := true.B 118 s1.vaddr_bits := ena.s1.vaddr_bits 119 } 120 } 121 122 def s2SignalEnable(ena: LsTopdownInfo) = { 123 when(ena.s2.paddr_valid) { 124 s2.paddr_valid := true.B 125 s2.paddr_bits := ena.s2.paddr_bits 126 } 127 when(ena.s2.cache_miss_en) { 128 s2.first_real_miss := ena.s2.first_real_miss 129 } 130 } 131} 132 133object LsTopdownInfo { 134 def init(implicit p: Parameters): LsTopdownInfo = 0.U.asTypeOf(new LsTopdownInfo) 135} 136 137class RobPtr(implicit p: Parameters) extends CircularQueuePtr[RobPtr]( 138 p => p(XSCoreParamsKey).RobSize 139) with HasCircularQueuePtrHelper { 140 141 def needFlush(redirect: Valid[Redirect]): Bool = { 142 val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx 143 redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx)) 144 } 145 146 def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR 147} 148 149object RobPtr { 150 def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = { 151 val ptr = Wire(new RobPtr) 152 ptr.flag := f 153 ptr.value := v 154 ptr 155 } 156} 157 158class RobCSRIO(implicit p: Parameters) extends XSBundle { 159 val intrBitSet = Input(Bool()) 160 val trapTarget = Input(UInt(VAddrBits.W)) 161 val isXRet = Input(Bool()) 162 val wfiEvent = Input(Bool()) 163 164 val fflags = Output(Valid(UInt(5.W))) 165 val dirty_fs = Output(Bool()) 166 val perfinfo = new Bundle { 167 val retiredInstr = Output(UInt(3.W)) 168 } 169} 170 171class RobLsqIO(implicit p: Parameters) extends XSBundle { 172 val lcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 173 val scommit = Output(UInt(log2Up(CommitWidth + 1).W)) 174 val pendingld = Output(Bool()) 175 val pendingst = Output(Bool()) 176 val commit = Output(Bool()) 177 val pendingPtr = Output(new RobPtr) 178 179 val mmio = Input(Vec(LoadPipelineWidth, Bool())) 180 val uop = Input(Vec(LoadPipelineWidth, new MicroOp)) 181} 182 183class RobEnqIO(implicit p: Parameters) extends XSBundle { 184 val canAccept = Output(Bool()) 185 val isEmpty = Output(Bool()) 186 // valid vector, for robIdx gen and walk 187 val needAlloc = Vec(RenameWidth, Input(Bool())) 188 val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp))) 189 val resp = Vec(RenameWidth, Output(new RobPtr)) 190} 191 192class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 193 val io = IO(new Bundle { 194 // for commits/flush 195 val state = Input(UInt(2.W)) 196 val deq_v = Vec(CommitWidth, Input(Bool())) 197 val deq_w = Vec(CommitWidth, Input(Bool())) 198 val exception_state = Flipped(ValidIO(new RobExceptionInfo)) 199 // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth) 200 val intrBitSetReg = Input(Bool()) 201 val hasNoSpecExec = Input(Bool()) 202 val interrupt_safe = Input(Bool()) 203 val blockCommit = Input(Bool()) 204 // output: the CommitWidth deqPtr 205 val out = Vec(CommitWidth, Output(new RobPtr)) 206 val next_out = Vec(CommitWidth, Output(new RobPtr)) 207 }) 208 209 val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr)))) 210 211 // for exceptions (flushPipe included) and interrupts: 212 // only consider the first instruction 213 val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe 214 val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0) 215 val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable) 216 217 // for normal commits: only to consider when there're no exceptions 218 // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions. 219 val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last) 220 val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i))) 221 val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B) 222 // when io.intrBitSetReg or there're possible exceptions in these instructions, 223 // only one instruction is allowed to commit 224 val allowOnlyOne = commit_exception || io.intrBitSetReg 225 val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt) 226 227 val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt)) 228 val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec) 229 230 deqPtrVec := deqPtrVec_next 231 232 io.next_out := deqPtrVec_next 233 io.out := deqPtrVec 234 235 when (io.state === 0.U) { 236 XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt) 237 } 238 239} 240 241class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 242 val io = IO(new Bundle { 243 // for input redirect 244 val redirect = Input(Valid(new Redirect)) 245 // for enqueue 246 val allowEnqueue = Input(Bool()) 247 val hasBlockBackward = Input(Bool()) 248 val enq = Vec(RenameWidth, Input(Bool())) 249 val out = Output(Vec(RenameWidth, new RobPtr)) 250 }) 251 252 val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr))) 253 254 // enqueue 255 val canAccept = io.allowEnqueue && !io.hasBlockBackward 256 val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U) 257 258 for ((ptr, i) <- enqPtrVec.zipWithIndex) { 259 when(io.redirect.valid) { 260 ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 261 }.otherwise { 262 ptr := ptr + dispatchNum 263 } 264 } 265 266 io.out := enqPtrVec 267 268} 269 270class RobExceptionInfo(implicit p: Parameters) extends XSBundle { 271 // val valid = Bool() 272 val robIdx = new RobPtr 273 val exceptionVec = ExceptionVec() 274 val flushPipe = Bool() 275 val replayInst = Bool() // redirect to that inst itself 276 val singleStep = Bool() // TODO add frontend hit beneath 277 val crossPageIPFFix = Bool() 278 val trigger = new TriggerCf 279 280// def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend 281// def trigger_after = trigger.getTimingBackend && trigger.getHitBackend 282 def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit 283 def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit 284 // only exceptions are allowed to writeback when enqueue 285 def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit 286} 287 288class ExceptionGen(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 289 val io = IO(new Bundle { 290 val redirect = Input(Valid(new Redirect)) 291 val flush = Input(Bool()) 292 val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo))) 293 val wb = Vec(1 + LoadPipelineWidth + StorePipelineWidth, Flipped(ValidIO(new RobExceptionInfo))) 294 val out = ValidIO(new RobExceptionInfo) 295 val state = ValidIO(new RobExceptionInfo) 296 }) 297 298 def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = { 299 assert(valid.length == bits.length) 300 assert(isPow2(valid.length)) 301 if (valid.length == 1) { 302 (valid, bits) 303 } else if (valid.length == 2) { 304 val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0))))) 305 for (i <- res.indices) { 306 res(i).valid := valid(i) 307 res(i).bits := bits(i) 308 } 309 val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1)) 310 (Seq(oldest.valid), Seq(oldest.bits)) 311 } else { 312 val left = getOldest(valid.take(valid.length / 2), bits.take(valid.length / 2)) 313 val right = getOldest(valid.takeRight(valid.length / 2), bits.takeRight(valid.length / 2)) 314 getOldest(left._1 ++ right._1, left._2 ++ right._2) 315 } 316 } 317 318 val currentValid = RegInit(false.B) 319 val current = Reg(new RobExceptionInfo) 320 321 // orR the exceptionVec 322 val lastCycleFlush = RegNext(io.flush) 323 val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush)) 324 val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush) 325 326 // s0: compare wb(1)~wb(LoadPipelineWidth) and wb(1 + LoadPipelineWidth)~wb(LoadPipelineWidth + StorePipelineWidth) 327 val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) } 328 val csr_wb_bits = io.wb(0).bits 329 val load_wb_bits = getOldest(in_wb_valid.slice(1, 1 + LoadPipelineWidth), io.wb.map(_.bits).slice(1, 1 + LoadPipelineWidth))._2(0) 330 val store_wb_bits = getOldest(in_wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth), io.wb.map(_.bits).slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth))._2(0) 331 val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid.slice(1, 1 + LoadPipelineWidth).reduce(_ || _), wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth).reduce(_ || _)))) 332 val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits))) 333 334 // s1: compare last four and current flush 335 val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) }) 336 val compare_01_valid = s0_out_valid(0) || s0_out_valid(1) 337 val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0)) 338 val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2)) 339 val s1_out_bits = RegNext(compare_bits) 340 val s1_out_valid = RegNext(s1_valid.asUInt.orR) 341 342 val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 343 val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits))) 344 345 // s2: compare the input exception with the current one 346 // priorities: 347 // (1) system reset 348 // (2) current is valid: flush, remain, merge, update 349 // (3) current is not valid: s1 or enq 350 val current_flush = current.robIdx.needFlush(io.redirect) || io.flush 351 val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush 352 when (currentValid) { 353 when (current_flush) { 354 currentValid := Mux(s1_flush, false.B, s1_out_valid) 355 } 356 when (s1_out_valid && !s1_flush) { 357 when (isAfter(current.robIdx, s1_out_bits.robIdx)) { 358 current := s1_out_bits 359 }.elsewhen (current.robIdx === s1_out_bits.robIdx) { 360 current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec()) 361 current.flushPipe := s1_out_bits.flushPipe || current.flushPipe 362 current.replayInst := s1_out_bits.replayInst || current.replayInst 363 current.singleStep := s1_out_bits.singleStep || current.singleStep 364 current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf) 365 } 366 } 367 }.elsewhen (s1_out_valid && !s1_flush) { 368 currentValid := true.B 369 current := s1_out_bits 370 }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) { 371 currentValid := true.B 372 current := enq_bits 373 } 374 375 io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback 376 io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits) 377 io.state.valid := currentValid 378 io.state.bits := current 379 380} 381 382class RobFlushInfo(implicit p: Parameters) extends XSBundle { 383 val ftqIdx = new FtqPtr 384 val robIdx = new RobPtr 385 val ftqOffset = UInt(log2Up(PredictWidth).W) 386 val replayInst = Bool() 387} 388 389class Rob(implicit p: Parameters) extends LazyModule with HasWritebackSink with HasXSParameter { 390 391 lazy val module = new RobImp(this) 392 393 override def generateWritebackIO( 394 thisMod: Option[HasWritebackSource] = None, 395 thisModImp: Option[HasWritebackSourceImp] = None 396 ): Unit = { 397 val sources = writebackSinksImp(thisMod, thisModImp) 398 module.io.writeback.zip(sources).foreach(x => x._1 := x._2) 399 } 400} 401 402class RobImp(outer: Rob)(implicit p: Parameters) extends LazyModuleImp(outer) 403 with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents { 404 val wbExuConfigs = outer.writebackSinksParams.map(_.exuConfigs) 405 val numWbPorts = wbExuConfigs.map(_.length) 406 407 val io = IO(new Bundle() { 408 val hartId = Input(UInt(8.W)) 409 val redirect = Input(Valid(new Redirect)) 410 val enq = new RobEnqIO 411 val flushOut = ValidIO(new Redirect) 412 val exception = ValidIO(new ExceptionInfo) 413 // exu + brq 414 val writeback = MixedVec(numWbPorts.map(num => Vec(num, Flipped(ValidIO(new ExuOutput))))) 415 val commits = Output(new RobCommitIO) 416 val lsq = new RobLsqIO 417 val robDeqPtr = Output(new RobPtr) 418 val csr = new RobCSRIO 419 val snpt = Input(new SnapshotPort) 420 val robFull = Output(Bool()) 421 val headNotReady = Output(Bool()) 422 val cpu_halt = Output(Bool()) 423 val wfi_enable = Input(Bool()) 424 val debug_ls = Flipped(new DebugLSIO) 425 val debugRobHead = Output(new MicroOp) 426 val debugEnqLsq = Input(new LsqEnqIO) 427 val debugHeadLsIssue = Input(Bool()) 428 val lsTopdownInfo = Vec(exuParameters.LduCnt, Input(new LsTopdownInfo)) 429 }) 430 431 def selectWb(index: Int, func: Seq[ExuConfig] => Boolean): Seq[(Seq[ExuConfig], ValidIO[ExuOutput])] = { 432 wbExuConfigs(index).zip(io.writeback(index)).filter(x => func(x._1)) 433 } 434 val exeWbSel = outer.selWritebackSinks(_.exuConfigs.length) 435 val fflagsWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.writeFflags))) 436 val fflagsPorts = selectWb(fflagsWbSel, _.exists(_.writeFflags)) 437 val exceptionWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.needExceptionGen))) 438 val exceptionPorts = selectWb(fflagsWbSel, _.exists(_.needExceptionGen)) 439 val exuWbPorts = selectWb(exeWbSel, _.forall(_ != StdExeUnitCfg)) 440 val stdWbPorts = selectWb(exeWbSel, _.contains(StdExeUnitCfg)) 441 println(s"Rob: size $RobSize, numWbPorts: $numWbPorts, commitwidth: $CommitWidth") 442 println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}") 443 println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}") 444 println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}") 445 446 447 val exuWriteback = exuWbPorts.map(_._2) 448 val stdWriteback = stdWbPorts.map(_._2) 449 450 // instvalid field 451 val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 452 // writeback status 453 val writebacked = Mem(RobSize, Bool()) 454 val store_data_writebacked = Mem(RobSize, Bool()) 455 val mmio = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 456 // data for redirect, exception, etc. 457 val flagBkup = Mem(RobSize, Bool()) 458 // some instructions are not allowed to trigger interrupts 459 // They have side effects on the states of the processor before they write back 460 val interrupt_safe = Mem(RobSize, Bool()) 461 462 // data for debug 463 // Warn: debug_* prefix should not exist in generated verilog. 464 val debug_microOp = Mem(RobSize, new MicroOp) 465 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug 466 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug 467 val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init))) 468 val debug_lsTopdownInfo = RegInit(VecInit(Seq.fill(RobSize)(LsTopdownInfo.init))) 469 val debug_lqIdxValid = RegInit(VecInit.fill(RobSize)(false.B)) 470 val debug_lsIssued = RegInit(VecInit.fill(RobSize)(false.B)) 471 472 // pointers 473 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 474 val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr)) 475 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 476 477 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 478 val lastWalkPtr = Reg(new RobPtr) 479 val allowEnqueue = RegInit(true.B) 480 481 val enqPtr = enqPtrVec.head 482 val deqPtr = deqPtrVec(0) 483 val walkPtr = walkPtrVec(0) 484 485 val isEmpty = enqPtr === deqPtr 486 val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level) 487 488 val snptEnq = io.enq.canAccept && io.enq.req.head.valid && io.enq.req.head.bits.snapshot 489 val snapshots = SnapshotGenerator(enqPtrVec, snptEnq, io.snpt.snptDeq, io.redirect.valid) 490 491 val debug_lsIssue = WireDefault(debug_lsIssued) 492 debug_lsIssue(deqPtr.value) := io.debugHeadLsIssue 493 494 /** 495 * states of Rob 496 */ 497 val s_idle :: s_walk :: Nil = Enum(2) 498 val state = RegInit(s_idle) 499 500 /** 501 * Data Modules 502 * 503 * CommitDataModule: data from dispatch 504 * (1) read: commits/walk/exception 505 * (2) write: enqueue 506 * 507 * WritebackData: data from writeback 508 * (1) read: commits/walk/exception 509 * (2) write: write back from exe units 510 */ 511 val dispatchData = Module(new SyncDataModuleTemplate(new RobCommitInfo, RobSize, CommitWidth, RenameWidth)) 512 val dispatchDataRead = dispatchData.io.rdata 513 514 val exceptionGen = Module(new ExceptionGen) 515 val exceptionDataRead = exceptionGen.io.state 516 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 517 518 io.robDeqPtr := deqPtr 519 io.debugRobHead := debug_microOp(deqPtr.value) 520 521 /** 522 * Enqueue (from dispatch) 523 */ 524 // special cases 525 val hasBlockBackward = RegInit(false.B) 526 val hasNoSpecExec = RegInit(false.B) 527 val doingSvinval = RegInit(false.B) 528 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 529 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 530 when (isEmpty) { hasBlockBackward:= false.B } 531 // When any instruction commits, hasNoSpecExec should be set to false.B 532 when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasNoSpecExec:= false.B } 533 534 // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing. 535 // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle. 536 // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts. 537 val hasWFI = RegInit(false.B) 538 io.cpu_halt := hasWFI 539 // WFI Timeout: 2^20 = 1M cycles 540 val wfi_cycles = RegInit(0.U(20.W)) 541 when (hasWFI) { 542 wfi_cycles := wfi_cycles + 1.U 543 }.elsewhen (!hasWFI && RegNext(hasWFI)) { 544 wfi_cycles := 0.U 545 } 546 val wfi_timeout = wfi_cycles.andR 547 when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) { 548 hasWFI := false.B 549 } 550 551 val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.needAlloc.take(i))))) 552 io.enq.canAccept := allowEnqueue && !hasBlockBackward 553 io.enq.resp := allocatePtrVec 554 val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept)) 555 val timer = GTimer() 556 for (i <- 0 until RenameWidth) { 557 // we don't check whether io.redirect is valid here since redirect has higher priority 558 when (canEnqueue(i)) { 559 val enqUop = io.enq.req(i).bits 560 val enqIndex = allocatePtrVec(i).value 561 // store uop in data module and debug_microOp Vec 562 debug_microOp(enqIndex) := enqUop 563 debug_microOp(enqIndex).debugInfo.dispatchTime := timer 564 debug_microOp(enqIndex).debugInfo.enqRsTime := timer 565 debug_microOp(enqIndex).debugInfo.selectTime := timer 566 debug_microOp(enqIndex).debugInfo.issueTime := timer 567 debug_microOp(enqIndex).debugInfo.writebackTime := timer 568 debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer 569 debug_microOp(enqIndex).debugInfo.tlbRespTime := timer 570 debug_lsInfo(enqIndex) := DebugLsInfo.init 571 debug_lsTopdownInfo(enqIndex) := LsTopdownInfo.init 572 debug_lqIdxValid(enqIndex) := false.B 573 debug_lsIssued(enqIndex) := false.B 574 when (enqUop.ctrl.blockBackward) { 575 hasBlockBackward := true.B 576 } 577 when (enqUop.ctrl.noSpecExec) { 578 hasNoSpecExec := true.B 579 } 580 val enqHasTriggerHit = io.enq.req(i).bits.cf.trigger.getHitFrontend 581 val enqHasException = ExceptionNO.selectFrontend(enqUop.cf.exceptionVec).asUInt.orR 582 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 583 when(!enqHasTriggerHit && !enqHasException && FuType.isSvinvalBegin(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe)) 584 { 585 doingSvinval := true.B 586 } 587 // the end instruction of Svinval enqs so clear doingSvinval 588 when(!enqHasTriggerHit && !enqHasException && FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe)) 589 { 590 doingSvinval := false.B 591 } 592 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 593 assert(!doingSvinval || (FuType.isSvinval(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe) || 594 FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe))) 595 when (enqUop.ctrl.isWFI && !enqHasException && !enqHasTriggerHit) { 596 hasWFI := true.B 597 } 598 599 mmio(enqIndex) := false.B 600 } 601 } 602 val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(_.valid)), 0.U) 603 io.enq.isEmpty := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR) 604 605 when (!io.wfi_enable) { 606 hasWFI := false.B 607 } 608 609 // lqEnq 610 io.debugEnqLsq.needAlloc.map(_(0)).zip(io.debugEnqLsq.req).foreach { case (alloc, req) => 611 when(io.debugEnqLsq.canAccept && alloc && req.valid) { 612 debug_microOp(req.bits.robIdx.value).lqIdx := req.bits.lqIdx 613 debug_lqIdxValid(req.bits.robIdx.value) := true.B 614 } 615 } 616 617 // lsIssue 618 when(io.debugHeadLsIssue) { 619 debug_lsIssued(deqPtr.value) := true.B 620 } 621 622 /** 623 * Writeback (from execution units) 624 */ 625 for (wb <- exuWriteback) { 626 when (wb.valid) { 627 val wbIdx = wb.bits.uop.robIdx.value 628 debug_exuData(wbIdx) := wb.bits.data 629 debug_exuDebug(wbIdx) := wb.bits.debug 630 debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.uop.debugInfo.enqRsTime 631 debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.uop.debugInfo.selectTime 632 debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.uop.debugInfo.issueTime 633 debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.uop.debugInfo.writebackTime 634 debug_microOp(wbIdx).debugInfo.tlbFirstReqTime := wb.bits.uop.debugInfo.tlbFirstReqTime 635 debug_microOp(wbIdx).debugInfo.tlbRespTime := wb.bits.uop.debugInfo.tlbRespTime 636 637 // debug for lqidx and sqidx 638 debug_microOp(wbIdx).lqIdx := wb.bits.uop.lqIdx 639 debug_microOp(wbIdx).sqIdx := wb.bits.uop.sqIdx 640 641 val debug_Uop = debug_microOp(wbIdx) 642 XSInfo(true.B, 643 p"writebacked pc 0x${Hexadecimal(debug_Uop.cf.pc)} wen ${debug_Uop.ctrl.rfWen} " + 644 p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ctrl.ldest} pdst ${debug_Uop.pdest} " + 645 p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.uop.robIdx}\n" 646 ) 647 } 648 } 649 val writebackNum = PopCount(exuWriteback.map(_.valid)) 650 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 651 652 for (i <- 0 until LoadPipelineWidth) { 653 when (RegNext(io.lsq.mmio(i))) { 654 mmio(RegNext(io.lsq.uop(i).robIdx).value) := true.B 655 } 656 } 657 658 /** 659 * RedirectOut: Interrupt and Exceptions 660 */ 661 val deqDispatchData = dispatchDataRead(0) 662 val debug_deqUop = debug_microOp(deqPtr.value) 663 664 val intrBitSetReg = RegNext(io.csr.intrBitSet) 665 val intrEnable = intrBitSetReg && !hasNoSpecExec && interrupt_safe(deqPtr.value) 666 val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 667 val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR || 668 exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit) 669 val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe 670 val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst 671 val exceptionEnable = writebacked(deqPtr.value) && deqHasException 672 673 XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n") 674 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n") 675 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n") 676 677 val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst) 678 679 // io.flushOut will trigger redirect at the next cycle. 680 // Block any redirect or commit at the next cycle. 681 val lastCycleFlush = RegNext(io.flushOut.valid) 682 683 io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush 684 io.flushOut.bits := DontCare 685 io.flushOut.bits.isRVC := deqDispatchData.isRVC 686 io.flushOut.bits.robIdx := deqPtr 687 io.flushOut.bits.ftqIdx := deqDispatchData.ftqIdx 688 io.flushOut.bits.ftqOffset := deqDispatchData.ftqOffset 689 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next" 690 io.flushOut.bits.interrupt := true.B 691 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 692 XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable) 693 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 694 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 695 696 val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush 697 io.exception.valid := RegNext(exceptionHappen) 698 io.exception.bits.uop := RegEnable(debug_deqUop, exceptionHappen) 699 io.exception.bits.uop.ctrl.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 700 io.exception.bits.uop.cf.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 701 io.exception.bits.uop.ctrl.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 702 io.exception.bits.uop.cf.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 703 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 704 io.exception.bits.uop.cf.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen) 705 706 XSDebug(io.flushOut.valid, 707 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.uop.cf.pc)} intr $intrEnable " + 708 p"excp $exceptionEnable flushPipe $isFlushPipe " + 709 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 710 711 712 /** 713 * Commits (and walk) 714 * They share the same width. 715 */ 716 val shouldWalkVec = VecInit(walkPtrVec.map(_ <= lastWalkPtr)) 717 val walkFinished = VecInit(walkPtrVec.map(_ >= lastWalkPtr)).asUInt.orR 718 719 require(RenameWidth <= CommitWidth) 720 721 // wiring to csr 722 val (wflags, fpWen) = (0 until CommitWidth).map(i => { 723 val v = io.commits.commitValid(i) 724 val info = io.commits.info(i) 725 (v & info.wflags, v & info.fpWen) 726 }).unzip 727 val fflags = Wire(Valid(UInt(5.W))) 728 fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR 729 fflags.bits := wflags.zip(fflagsDataRead).map({ 730 case (w, f) => Mux(w, f, 0.U) 731 }).reduce(_|_) 732 val dirty_fs = io.commits.isCommit && VecInit(fpWen).asUInt.orR 733 734 // when mispredict branches writeback, stop commit in the next 2 cycles 735 // TODO: don't check all exu write back 736 val misPredWb = Cat(VecInit(exuWriteback.map(wb => 737 wb.bits.redirect.cfiUpdate.isMisPred && wb.bits.redirectValid 738 ))).orR 739 val misPredBlockCounter = Reg(UInt(3.W)) 740 misPredBlockCounter := Mux(misPredWb, 741 "b111".U, 742 misPredBlockCounter >> 1.U 743 ) 744 val misPredBlock = misPredBlockCounter(0) 745 val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI || io.redirect.valid 746 747 io.commits.isWalk := state === s_walk 748 io.commits.isCommit := state === s_idle && !blockCommit 749 val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value))) 750 val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value))) 751 // store will be commited iff both sta & std have been writebacked 752 val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value))) 753 val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last) 754 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i))) 755 val allowOnlyOneCommit = commit_exception || intrBitSetReg 756 // for instructions that may block others, we don't allow them to commit 757 for (i <- 0 until CommitWidth) { 758 // defaults: state === s_idle and instructions commit 759 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 760 val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst 761 io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked 762 io.commits.info(i) := dispatchDataRead(i) 763 io.commits.robIdx(i) := deqPtrVec(i) 764 765 when (state === s_walk) { 766 io.commits.walkValid(i) := shouldWalkVec(i) 767 when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) { 768 XSError(!walk_v(i), s"why not $i???\n") 769 } 770 } 771 772 XSInfo(io.commits.isCommit && io.commits.commitValid(i), 773 "retired pc %x wen %d ldest %d pdest %x data %x fflags: %b\n", 774 debug_microOp(deqPtrVec(i).value).cf.pc, 775 io.commits.info(i).rfWen, 776 io.commits.info(i).ldest, 777 io.commits.info(i).pdest, 778 debug_exuData(deqPtrVec(i).value), 779 fflagsDataRead(i) 780 ) 781 XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n", 782 debug_microOp(walkPtrVec(i).value).cf.pc, 783 io.commits.info(i).rfWen, 784 io.commits.info(i).ldest, 785 debug_exuData(walkPtrVec(i).value) 786 ) 787 } 788 if (env.EnableDifftest) { 789 io.commits.info.map(info => dontTouch(info.pc)) 790 } 791 792 // sync fflags/dirty_fs to csr 793 io.csr.fflags := RegNext(fflags) 794 io.csr.dirty_fs := RegNext(dirty_fs) 795 796 // commit load/store to lsq 797 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 798 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE)) 799 io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U)) 800 io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U)) 801 // indicate a pending load or store 802 io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value) && mmio(deqPtr.value)) 803 io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value)) 804 io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0)) 805 io.lsq.pendingPtr := RegNext(deqPtr) 806 807 /** 808 * state changes 809 * (1) redirect: switch to s_walk 810 * (2) walk: when walking comes to the end, switch to s_idle 811 */ 812 val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished, s_idle, state)) 813 XSPerfAccumulate("s_idle_to_idle", state === s_idle && state_next === s_idle) 814 XSPerfAccumulate("s_idle_to_walk", state === s_idle && state_next === s_walk) 815 XSPerfAccumulate("s_walk_to_idle", state === s_walk && state_next === s_idle) 816 XSPerfAccumulate("s_walk_to_walk", state === s_walk && state_next === s_walk) 817 state := state_next 818 819 /** 820 * pointers and counters 821 */ 822 val deqPtrGenModule = Module(new RobDeqPtrWrapper) 823 deqPtrGenModule.io.state := state 824 deqPtrGenModule.io.deq_v := commit_v 825 deqPtrGenModule.io.deq_w := commit_w 826 deqPtrGenModule.io.exception_state := exceptionDataRead 827 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 828 deqPtrGenModule.io.hasNoSpecExec := hasNoSpecExec 829 deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value) 830 deqPtrGenModule.io.blockCommit := blockCommit 831 deqPtrVec := deqPtrGenModule.io.out 832 val deqPtrVec_next = deqPtrGenModule.io.next_out 833 834 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 835 enqPtrGenModule.io.redirect := io.redirect 836 enqPtrGenModule.io.allowEnqueue := allowEnqueue 837 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 838 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid)) 839 enqPtrVec := enqPtrGenModule.io.out 840 841 // next walkPtrVec: 842 // (1) redirect occurs: update according to state 843 // (2) walk: move forwards 844 val walkPtrVec_next = Mux(io.redirect.valid, 845 Mux(io.snpt.useSnpt, snapshots(io.snpt.snptSelect), deqPtrVec_next), 846 Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec) 847 ) 848 walkPtrVec := walkPtrVec_next 849 850 val numValidEntries = distanceBetween(enqPtr, deqPtr) 851 val commitCnt = PopCount(io.commits.commitValid) 852 853 allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U 854 855 val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0)) 856 when (io.redirect.valid) { 857 lastWalkPtr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx - 1.U, io.redirect.bits.robIdx) 858 } 859 860 861 /** 862 * States 863 * We put all the stage bits changes here. 864 865 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 866 * All states: (1) valid; (2) writebacked; (3) flagBkup 867 */ 868 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 869 870 // redirect logic writes 6 valid 871 val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr)) 872 val redirectTail = Reg(new RobPtr) 873 val redirectIdle :: redirectBusy :: Nil = Enum(2) 874 val redirectState = RegInit(redirectIdle) 875 val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail)) 876 when(redirectState === redirectBusy) { 877 redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U) 878 redirectHeadVec zip invMask foreach { 879 case (redirectHead, inv) => when(inv) { 880 valid(redirectHead.value) := false.B 881 } 882 } 883 when(!invMask.last) { 884 redirectState := redirectIdle 885 } 886 } 887 when(io.redirect.valid) { 888 redirectState := redirectBusy 889 when(redirectState === redirectIdle) { 890 redirectTail := enqPtr 891 } 892 redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) => 893 redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 894 } 895 } 896 // enqueue logic writes 6 valid 897 for (i <- 0 until RenameWidth) { 898 when (canEnqueue(i) && !io.redirect.valid) { 899 valid(allocatePtrVec(i).value) := true.B 900 } 901 } 902 // dequeue logic writes 6 valid 903 for (i <- 0 until CommitWidth) { 904 val commitValid = io.commits.isCommit && io.commits.commitValid(i) 905 when (commitValid) { 906 valid(commitReadAddr(i)) := false.B 907 } 908 } 909 910 // debug_inst update 911 for(i <- 0 until (exuParameters.LduCnt + exuParameters.StuCnt)) { 912 debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i)) 913 debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i)) 914 } 915 for (i <- 0 until exuParameters.LduCnt) { 916 debug_lsTopdownInfo(io.lsTopdownInfo(i).s1.robIdx).s1SignalEnable(io.lsTopdownInfo(i)) 917 debug_lsTopdownInfo(io.lsTopdownInfo(i).s2.robIdx).s2SignalEnable(io.lsTopdownInfo(i)) 918 } 919 920 // status field: writebacked 921 // enqueue logic set 6 writebacked to false 922 for (i <- 0 until RenameWidth) { 923 when (canEnqueue(i)) { 924 val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec).asUInt.orR 925 val enqHasTriggerHit = io.enq.req(i).bits.cf.trigger.getHitFrontend 926 val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove 927 writebacked(allocatePtrVec(i).value) := enqIsWritebacked && !enqHasException && !enqHasTriggerHit 928 val isStu = io.enq.req(i).bits.ctrl.fuType === FuType.stu 929 store_data_writebacked(allocatePtrVec(i).value) := !isStu 930 } 931 } 932 when (exceptionGen.io.out.valid) { 933 val wbIdx = exceptionGen.io.out.bits.robIdx.value 934 writebacked(wbIdx) := true.B 935 store_data_writebacked(wbIdx) := true.B 936 } 937 // writeback logic set numWbPorts writebacked to true 938 for ((wb, cfgs) <- exuWriteback.zip(wbExuConfigs(exeWbSel))) { 939 when (wb.valid) { 940 val wbIdx = wb.bits.uop.robIdx.value 941 val wbHasException = ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, cfgs).asUInt.orR 942 val wbHasTriggerHit = wb.bits.uop.cf.trigger.getHitBackend 943 val wbHasFlushPipe = cfgs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe 944 val wbHasReplayInst = cfgs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst 945 val block_wb = wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit 946 writebacked(wbIdx) := !block_wb 947 } 948 } 949 // store data writeback logic mark store as data_writebacked 950 for (wb <- stdWriteback) { 951 when(RegNext(wb.valid)) { 952 store_data_writebacked(RegNext(wb.bits.uop.robIdx.value)) := true.B 953 } 954 } 955 956 // flagBkup 957 // enqueue logic set 6 flagBkup at most 958 for (i <- 0 until RenameWidth) { 959 when (canEnqueue(i)) { 960 flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag 961 } 962 } 963 964 // interrupt_safe 965 for (i <- 0 until RenameWidth) { 966 // We RegNext the updates for better timing. 967 // Note that instructions won't change the system's states in this cycle. 968 when (RegNext(canEnqueue(i))) { 969 // For now, we allow non-load-store instructions to trigger interrupts 970 // For MMIO instructions, they should not trigger interrupts since they may 971 // be sent to lower level before it writes back. 972 // However, we cannot determine whether a load/store instruction is MMIO. 973 // Thus, we don't allow load/store instructions to trigger an interrupt. 974 // TODO: support non-MMIO load-store instructions to trigger interrupts 975 val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.ctrl.commitType) 976 interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts) 977 } 978 } 979 980 /** 981 * read and write of data modules 982 */ 983 val commitReadAddr_next = Mux(state_next === s_idle, 984 VecInit(deqPtrVec_next.map(_.value)), 985 VecInit(walkPtrVec_next.map(_.value)) 986 ) 987 // NOTE: dispatch info will record the uop of inst 988 dispatchData.io.wen := canEnqueue 989 dispatchData.io.waddr := allocatePtrVec.map(_.value) 990 dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) => 991 wdata.ldest := req.ctrl.ldest 992 wdata.rfWen := req.ctrl.rfWen 993 wdata.fpWen := req.ctrl.fpWen 994 wdata.wflags := req.ctrl.fpu.wflags 995 wdata.commitType := req.ctrl.commitType 996 wdata.pdest := req.pdest 997 wdata.ftqIdx := req.cf.ftqPtr 998 wdata.ftqOffset := req.cf.ftqOffset 999 wdata.isMove := req.eliminatedMove 1000 wdata.isRVC := req.cf.pd.isRVC 1001 wdata.pc := req.cf.pc 1002 } 1003 dispatchData.io.raddr := commitReadAddr_next 1004 1005 exceptionGen.io.redirect <> io.redirect 1006 exceptionGen.io.flush := io.flushOut.valid 1007 for (i <- 0 until RenameWidth) { 1008 exceptionGen.io.enq(i).valid := canEnqueue(i) 1009 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 1010 exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec) 1011 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.ctrl.flushPipe 1012 exceptionGen.io.enq(i).bits.replayInst := false.B 1013 XSError(canEnqueue(i) && io.enq.req(i).bits.ctrl.replayInst, "enq should not set replayInst") 1014 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.ctrl.singleStep 1015 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.cf.crossPageIPFFix 1016 exceptionGen.io.enq(i).bits.trigger.clear() 1017 exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.cf.trigger.frontendHit 1018 } 1019 1020 println(s"ExceptionGen:") 1021 val exceptionCases = exceptionPorts.map(_._1.flatMap(_.exceptionOut).distinct.sorted) 1022 require(exceptionCases.length == exceptionGen.io.wb.length) 1023 for ((((configs, wb), exc_wb), i) <- exceptionPorts.zip(exceptionGen.io.wb).zipWithIndex) { 1024 exc_wb.valid := wb.valid 1025 exc_wb.bits.robIdx := wb.bits.uop.robIdx 1026 exc_wb.bits.exceptionVec := ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, configs) 1027 exc_wb.bits.flushPipe := configs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe 1028 exc_wb.bits.replayInst := configs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst 1029 exc_wb.bits.singleStep := false.B 1030 exc_wb.bits.crossPageIPFFix := false.B 1031 // TODO: make trigger configurable 1032 exc_wb.bits.trigger.clear() 1033 exc_wb.bits.trigger.backendHit := wb.bits.uop.cf.trigger.backendHit 1034 println(s" [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " + 1035 s"flushPipe ${configs.exists(_.flushPipe)}, " + 1036 s"replayInst ${configs.exists(_.replayInst)}") 1037 } 1038 1039 val fflags_wb = fflagsPorts.map(_._2) 1040 val fflagsDataModule = Module(new SyncDataModuleTemplate( 1041 UInt(5.W), RobSize, CommitWidth, fflags_wb.size) 1042 ) 1043 for(i <- fflags_wb.indices){ 1044 fflagsDataModule.io.wen (i) := fflags_wb(i).valid 1045 fflagsDataModule.io.waddr(i) := fflags_wb(i).bits.uop.robIdx.value 1046 fflagsDataModule.io.wdata(i) := fflags_wb(i).bits.fflags 1047 } 1048 fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value)) 1049 fflagsDataRead := fflagsDataModule.io.rdata 1050 1051 val instrCntReg = RegInit(0.U(64.W)) 1052 val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) }) 1053 val trueCommitCnt = RegNext(commitCnt) +& fuseCommitCnt 1054 val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U) 1055 val instrCnt = instrCntReg + retireCounter 1056 instrCntReg := instrCnt 1057 io.csr.perfinfo.retiredInstr := retireCounter 1058 io.robFull := !allowEnqueue 1059 io.headNotReady := commit_v.head && !commit_w.head 1060 1061 /** 1062 * debug info 1063 */ 1064 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 1065 XSDebug("") 1066 for(i <- 0 until RobSize){ 1067 XSDebug(false, !valid(i), "-") 1068 XSDebug(false, valid(i) && writebacked(i), "w") 1069 XSDebug(false, valid(i) && !writebacked(i), "v") 1070 } 1071 XSDebug(false, true.B, "\n") 1072 1073 for(i <- 0 until RobSize) { 1074 if(i % 4 == 0) XSDebug("") 1075 XSDebug(false, true.B, "%x ", debug_microOp(i).cf.pc) 1076 XSDebug(false, !valid(i), "- ") 1077 XSDebug(false, valid(i) && writebacked(i), "w ") 1078 XSDebug(false, valid(i) && !writebacked(i), "v ") 1079 if(i % 4 == 3) XSDebug(false, true.B, "\n") 1080 } 1081 1082 def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U) 1083 def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U) 1084 1085 val commitDebugExu = deqPtrVec.map(_.value).map(debug_exuDebug(_)) 1086 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 1087 val commitDebugLsInfo = deqPtrVec.map(_.value).map(debug_lsInfo(_)) 1088 ExcitingUtils.addSource(ifCommitReg(trueCommitCnt), "ROBTrueCommit_hart" + p(XSCoreParamsKey).HartId.toString, ExcitingUtils.Perf) 1089 XSPerfAccumulate("clock_cycle", 1.U) 1090 QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue) 1091 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 1092 XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt)) 1093 XSPerfRolling("ipc", ifCommitReg(trueCommitCnt), 1000, clock, reset) 1094 XSPerfRolling("cpi", perfCnt = 1.U/*Cycle*/, eventTrigger = ifCommitReg(trueCommitCnt), granularity = 1000, clock, reset) 1095 val commitIsMove = commitDebugUop.map(_.ctrl.isMove) 1096 XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }))) 1097 val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) 1098 XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e }))) 1099 XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt)) 1100 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 1101 val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t } 1102 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 1103 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 1104 val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t } 1105 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 1106 val commitLoadWaitBit = commitDebugUop.map(_.cf.loadWaitBit) 1107 XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))) 1108 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 1109 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }))) 1110 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i)))) 1111 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire))) 1112 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 1113 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)) 1114 XSPerfAccumulate("walkCycle", state === s_walk) 1115 val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value) 1116 val deqUopCommitType = io.commits.info(0).commitType 1117 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 1118 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 1119 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 1120 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 1121 XSPerfAccumulate("robHeadPC", io.commits.info(0).pc) 1122 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 1123 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 1124 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 1125 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 1126 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 1127 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 1128 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 1129 val accessLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 1130 val tlbLatency = commitDebugUop.map(uop => uop.debugInfo.tlbRespTime - uop.debugInfo.tlbFirstReqTime) 1131 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 1132 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 1133 } 1134 for (fuType <- FuType.functionNameMap.keys) { 1135 val fuName = FuType.functionNameMap(fuType) 1136 val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fuType === fuType.U ) 1137 XSPerfRolling(s"ipc_futype_${fuName}", ifCommit(PopCount(commitIsFuType)), 1000, clock, reset) 1138 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 1139 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 1140 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 1141 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 1142 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 1143 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 1144 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 1145 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 1146 if (fuType == FuType.fmac.litValue) { 1147 val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fpu.ren3 ) 1148 XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma))) 1149 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency))) 1150 XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency))) 1151 } 1152 } 1153 1154 val sourceVaddr = Wire(Valid(UInt(VAddrBits.W))) 1155 sourceVaddr.valid := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_valid 1156 sourceVaddr.bits := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_bits 1157 val sourcePaddr = Wire(Valid(UInt(PAddrBits.W))) 1158 sourcePaddr.valid := debug_lsTopdownInfo(deqPtr.value).s2.paddr_valid 1159 sourcePaddr.bits := debug_lsTopdownInfo(deqPtr.value).s2.paddr_bits 1160 val sourceLqIdx = Wire(Valid(new LqPtr)) 1161 sourceLqIdx.valid := debug_lqIdxValid(deqPtr.value) 1162 sourceLqIdx.bits := debug_microOp(deqPtr.value).lqIdx 1163 val sourceHeadLsIssue = WireDefault(debug_lsIssue(deqPtr.value)) 1164 ExcitingUtils.addSource(sourceVaddr, s"rob_head_vaddr_${coreParams.HartId}", ExcitingUtils.Perf, true) 1165 ExcitingUtils.addSource(sourcePaddr, s"rob_head_paddr_${coreParams.HartId}", ExcitingUtils.Perf, true) 1166 ExcitingUtils.addSource(sourceLqIdx, s"rob_head_lqIdx_${coreParams.HartId}", ExcitingUtils.Perf, true) 1167 ExcitingUtils.addSource(sourceHeadLsIssue, s"rob_head_ls_issue_${coreParams.HartId}", ExcitingUtils.Perf, true) 1168 // dummy sink 1169 ExcitingUtils.addSink(WireDefault(sourceLqIdx), s"rob_head_lqIdx_${coreParams.HartId}", ExcitingUtils.Perf) 1170 1171 /** 1172 * DataBase info: 1173 * log trigger is at writeback valid 1174 * */ 1175 if(!env.FPGAPlatform){ 1176 val isWriteInstInfoTable = WireInit(Constantin.createRecord("isWriteInstInfoTable" + p(XSCoreParamsKey).HartId.toString)) 1177 val instTableName = "InstTable" + p(XSCoreParamsKey).HartId.toString 1178 val instSiteName = "Rob" + p(XSCoreParamsKey).HartId.toString 1179 val debug_instTable = ChiselDB.createTable(instTableName, new InstInfoEntry) 1180 // FIXME lyq: only get inst (alu, bj, ls) in exuWriteback 1181 for (wb <- exuWriteback) { 1182 when(wb.valid) { 1183 val debug_instData = Wire(new InstInfoEntry) 1184 val idx = wb.bits.uop.robIdx.value 1185 debug_instData.globalID := wb.bits.uop.ctrl.debug_globalID 1186 debug_instData.robIdx := idx 1187 debug_instData.instType := wb.bits.uop.ctrl.fuType 1188 debug_instData.ivaddr := wb.bits.uop.cf.pc 1189 debug_instData.dvaddr := wb.bits.debug.vaddr 1190 debug_instData.dpaddr := wb.bits.debug.paddr 1191 debug_instData.tlbLatency := wb.bits.uop.debugInfo.tlbRespTime - wb.bits.uop.debugInfo.tlbFirstReqTime 1192 debug_instData.accessLatency := wb.bits.uop.debugInfo.writebackTime - wb.bits.uop.debugInfo.issueTime 1193 debug_instData.executeLatency := wb.bits.uop.debugInfo.writebackTime - wb.bits.uop.debugInfo.issueTime 1194 debug_instData.issueLatency := wb.bits.uop.debugInfo.issueTime - wb.bits.uop.debugInfo.selectTime 1195 debug_instData.exceptType := Cat(wb.bits.uop.cf.exceptionVec) 1196 debug_instData.lsInfo := debug_lsInfo(idx) 1197 debug_instData.mdpInfo.ssid := wb.bits.uop.cf.ssid 1198 debug_instData.mdpInfo.waitAllStore := wb.bits.uop.cf.loadWaitStrict && wb.bits.uop.cf.loadWaitBit 1199 debug_instData.issueTime := wb.bits.uop.debugInfo.issueTime 1200 debug_instData.writebackTime := wb.bits.uop.debugInfo.writebackTime 1201 debug_instTable.log( 1202 data = debug_instData, 1203 en = wb.valid, 1204 site = instSiteName, 1205 clock = clock, 1206 reset = reset 1207 ) 1208 } 1209 } 1210 1211 // log when committing 1212 val load_debug_table = ChiselDB.createTable("LoadDebugTable" + p(XSCoreParamsKey).HartId.toString, new LoadInfoEntry, basicDB = false) 1213 for (i <- 0 until CommitWidth) { 1214 val log_enable = io.commits.commitValid(i) && io.commits.isCommit && (io.commits.info(i).commitType === CommitType.LOAD) 1215 val commit_index = deqPtrVec(i).value 1216 val load_debug_data = Wire(new LoadInfoEntry) 1217 1218 load_debug_data.pc := io.commits.info(i).pc 1219 load_debug_data.vaddr := debug_lsTopdownInfo(commit_index).s1.vaddr_bits 1220 load_debug_data.paddr := debug_lsTopdownInfo(commit_index).s2.paddr_bits 1221 load_debug_data.cacheMiss := debug_lsTopdownInfo(commit_index).s2.first_real_miss 1222 load_debug_data.tlbQueryLatency := tlbLatency(i) 1223 load_debug_data.exeLatency := executeLatency(i) 1224 1225 1226 load_debug_table.log( 1227 data = load_debug_data, 1228 en = log_enable, 1229 site = "LoadDebugTable", 1230 clock = clock, 1231 reset = reset 1232 ) 1233 } 1234 } 1235 1236 1237 //difftest signals 1238 val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value 1239 1240 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1241 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1242 1243 for(i <- 0 until CommitWidth) { 1244 val idx = deqPtrVec(i).value 1245 wdata(i) := debug_exuData(idx) 1246 wpc(i) := SignExt(commitDebugUop(i).cf.pc, XLEN) 1247 } 1248 1249 if (env.EnableDifftest || env.AlwaysBasicDiff) { 1250 // These are the structures used by difftest only and should be optimized after synthesis. 1251 val dt_eliminatedMove = Mem(RobSize, Bool()) 1252 val dt_isRVC = Mem(RobSize, Bool()) 1253 val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) 1254 for (i <- 0 until RenameWidth) { 1255 when (canEnqueue(i)) { 1256 dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 1257 dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.cf.pd.isRVC 1258 } 1259 } 1260 for (wb <- exuWriteback) { 1261 when (wb.valid) { 1262 val wbIdx = wb.bits.uop.robIdx.value 1263 dt_exuDebug(wbIdx) := wb.bits.debug 1264 } 1265 } 1266 for (i <- 0 until CommitWidth) { 1267 val commitInfo = io.commits.info(i) 1268 val ptr = deqPtrVec(i).value 1269 val exuOut = dt_exuDebug(ptr) 1270 val eliminatedMove = dt_eliminatedMove(ptr) 1271 val isRVC = dt_isRVC(ptr) 1272 1273 val difftest = DifftestModule(new DiffInstrCommit(NRPhyRegs), delay = 3, dontCare = true) 1274 difftest.clock := clock 1275 difftest.coreid := io.hartId 1276 difftest.index := i.U 1277 difftest.valid := io.commits.commitValid(i) && io.commits.isCommit 1278 difftest.skip := Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt) 1279 difftest.isRVC := isRVC 1280 difftest.rfwen := io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U 1281 difftest.fpwen := io.commits.commitValid(i) && commitInfo.fpWen 1282 difftest.wpdest := commitInfo.pdest 1283 difftest.wdest := commitInfo.ldest 1284 difftest.nFused := Mux(CommitType.isFused(commitInfo.commitType), 1.U, 0.U) 1285 1286 if (env.EnableDifftest) { 1287 val uop = commitDebugUop(i) 1288 difftest.pc := SignExt(uop.cf.pc, XLEN) 1289 difftest.instr := uop.cf.instr 1290 difftest.robIdx := ZeroExt(ptr, 10) 1291 difftest.lqIdx := ZeroExt(uop.lqIdx.value, 7) 1292 difftest.sqIdx := ZeroExt(uop.sqIdx.value, 7) 1293 difftest.isLoad := io.commits.info(i).commitType === CommitType.LOAD 1294 difftest.isStore := io.commits.info(i).commitType === CommitType.STORE 1295 } 1296 } 1297 } 1298 1299 if (env.EnableDifftest) { 1300 for (i <- 0 until CommitWidth) { 1301 val difftest = DifftestModule(new DiffLoadEvent, delay = 3) 1302 difftest.clock := clock 1303 difftest.coreid := io.hartId 1304 difftest.index := i.U 1305 1306 val ptr = deqPtrVec(i).value 1307 val uop = commitDebugUop(i) 1308 val exuOut = debug_exuDebug(ptr) 1309 difftest.valid := io.commits.commitValid(i) && io.commits.isCommit 1310 difftest.paddr := exuOut.paddr 1311 difftest.opType := uop.ctrl.fuOpType 1312 difftest.fuType := uop.ctrl.fuType 1313 } 1314 } 1315 1316 if (env.EnableDifftest || env.AlwaysBasicDiff) { 1317 val dt_isXSTrap = Mem(RobSize, Bool()) 1318 for (i <- 0 until RenameWidth) { 1319 when (canEnqueue(i)) { 1320 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap 1321 } 1322 } 1323 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => 1324 io.commits.isCommit && v && dt_isXSTrap(d.value) 1325 } 1326 val hitTrap = trapVec.reduce(_||_) 1327 val difftest = DifftestModule(new DiffTrapEvent, dontCare = true) 1328 difftest.clock := clock 1329 difftest.coreid := io.hartId 1330 difftest.hasTrap := hitTrap 1331 difftest.cycleCnt := timer 1332 difftest.instrCnt := instrCnt 1333 difftest.hasWFI := hasWFI 1334 1335 if (env.EnableDifftest) { 1336 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 1337 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN) 1338 difftest.code := trapCode 1339 difftest.pc := trapPC 1340 } 1341 } 1342 1343 val validEntriesBanks = (0 until (RobSize + 31) / 32).map(i => RegNext(PopCount(valid.drop(i * 32).take(32)))) 1344 val validEntries = RegNext(VecInit(validEntriesBanks).reduceTree(_ +& _)) 1345 val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }) 1346 val commitLoadVec = VecInit(commitLoadValid) 1347 val commitBranchVec = VecInit(commitBranchValid) 1348 val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }) 1349 val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }) 1350 val perfEvents = Seq( 1351 ("rob_interrupt_num ", io.flushOut.valid && intrEnable ), 1352 ("rob_exception_num ", io.flushOut.valid && exceptionEnable ), 1353 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe ), 1354 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst ), 1355 ("rob_commitUop ", ifCommit(commitCnt) ), 1356 ("rob_commitInstr ", ifCommitReg(trueCommitCnt) ), 1357 ("rob_commitInstrMove ", ifCommitReg(PopCount(RegNext(commitMoveVec))) ), 1358 ("rob_commitInstrFused ", ifCommitReg(fuseCommitCnt) ), 1359 ("rob_commitInstrLoad ", ifCommitReg(PopCount(RegNext(commitLoadVec))) ), 1360 ("rob_commitInstrBranch ", ifCommitReg(PopCount(RegNext(commitBranchVec))) ), 1361 ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec))) ), 1362 ("rob_commitInstrStore ", ifCommitReg(PopCount(RegNext(commitStoreVec))) ), 1363 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U) ), 1364 ("rob_walkCycle ", (state === s_walk) ), 1365 ("rob_1_4_valid ", validEntries <= (RobSize / 4).U ), 1366 ("rob_2_4_valid ", validEntries > (RobSize / 4).U && validEntries <= (RobSize / 2).U ), 1367 ("rob_3_4_valid ", validEntries > (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U), 1368 ("rob_4_4_valid ", validEntries > (RobSize * 3 / 4).U ), 1369 ) 1370 generatePerfEvent() 1371} 1372