xref: /XiangShan/src/main/scala/xiangshan/backend/rob/Rob.scala (revision e13d224a171ca31556118081225ebfc4b6018142)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.backend.rob
18
19import chipsalliance.rocketchip.config.Parameters
20import chisel3._
21import chisel3.util._
22import difftest._
23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp}
24import utils._
25import xiangshan._
26import xiangshan.backend.exu.ExuConfig
27import xiangshan.frontend.FtqPtr
28
29class RobPtr(implicit p: Parameters) extends CircularQueuePtr[RobPtr](
30  p => p(XSCoreParamsKey).RobSize
31) with HasCircularQueuePtrHelper {
32
33  def needFlush(redirect: Valid[Redirect]): Bool = {
34    val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx
35    redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx))
36  }
37
38  override def cloneType = (new RobPtr).asInstanceOf[this.type]
39}
40
41object RobPtr {
42  def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = {
43    val ptr = Wire(new RobPtr)
44    ptr.flag := f
45    ptr.value := v
46    ptr
47  }
48}
49
50class RobCSRIO(implicit p: Parameters) extends XSBundle {
51  val intrBitSet = Input(Bool())
52  val trapTarget = Input(UInt(VAddrBits.W))
53  val isXRet = Input(Bool())
54
55  val fflags = Output(Valid(UInt(5.W)))
56  val dirty_fs = Output(Bool())
57  val perfinfo = new Bundle {
58    val retiredInstr = Output(UInt(3.W))
59  }
60}
61
62class RobLsqIO(implicit p: Parameters) extends XSBundle {
63  val lcommit = Output(UInt(log2Up(CommitWidth + 1).W))
64  val scommit = Output(UInt(log2Up(CommitWidth + 1).W))
65  val pendingld = Output(Bool())
66  val pendingst = Output(Bool())
67  val commit = Output(Bool())
68}
69
70class RobEnqIO(implicit p: Parameters) extends XSBundle {
71  val canAccept = Output(Bool())
72  val isEmpty = Output(Bool())
73  // valid vector, for robIdx gen and walk
74  val needAlloc = Vec(RenameWidth, Input(Bool()))
75  val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp)))
76  val resp = Vec(RenameWidth, Output(new RobPtr))
77}
78
79class RobDispatchData(implicit p: Parameters) extends RobCommitInfo
80
81class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
82  val io = IO(new Bundle {
83    // for commits/flush
84    val state = Input(UInt(2.W))
85    val deq_v = Vec(CommitWidth, Input(Bool()))
86    val deq_w = Vec(CommitWidth, Input(Bool()))
87    val exception_state = Flipped(ValidIO(new RobExceptionInfo))
88    // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth)
89    val intrBitSetReg = Input(Bool())
90    val hasNoSpecExec = Input(Bool())
91    val interrupt_safe = Input(Bool())
92    val misPredBlock = Input(Bool())
93    val isReplaying = Input(Bool())
94    // output: the CommitWidth deqPtr
95    val out = Vec(CommitWidth, Output(new RobPtr))
96    val next_out = Vec(CommitWidth, Output(new RobPtr))
97  })
98
99  val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr))))
100
101  // for exceptions (flushPipe included) and interrupts:
102  // only consider the first instruction
103  val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe
104  val exceptionEnable = io.deq_w(0) && io.exception_state.valid && !io.exception_state.bits.flushPipe && io.exception_state.bits.robIdx === deqPtrVec(0)
105  val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable)
106
107  // for normal commits: only to consider when there're no exceptions
108  // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions.
109  val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last)
110  val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i) && !io.misPredBlock && !io.isReplaying))
111  val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B)
112  // when io.intrBitSetReg or there're possible exceptions in these instructions,
113  // only one instruction is allowed to commit
114  val allowOnlyOne = commit_exception || io.intrBitSetReg
115  val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt)
116
117  val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt))
118  val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid, commitDeqPtrVec, deqPtrVec)
119
120  deqPtrVec := deqPtrVec_next
121
122  io.next_out := deqPtrVec_next
123  io.out      := deqPtrVec
124
125  when (io.state === 0.U) {
126    XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt)
127  }
128
129}
130
131class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
132  val io = IO(new Bundle {
133    // for input redirect
134    val redirect = Input(Valid(new Redirect))
135    // for enqueue
136    val allowEnqueue = Input(Bool())
137    val hasBlockBackward = Input(Bool())
138    val enq = Vec(RenameWidth, Input(Bool()))
139    val out = Output(new RobPtr)
140  })
141
142  val enqPtr = RegInit(0.U.asTypeOf(new RobPtr))
143
144  // enqueue
145  val canAccept = io.allowEnqueue && !io.hasBlockBackward
146  val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U)
147
148  when (io.redirect.valid) {
149    enqPtr := io.redirect.bits.robIdx + Mux(io.redirect.bits.flushItself(), 0.U, 1.U)
150  }.otherwise {
151    enqPtr := enqPtr + dispatchNum
152  }
153
154  io.out := enqPtr
155
156}
157
158class RobExceptionInfo(implicit p: Parameters) extends XSBundle {
159  // val valid = Bool()
160  val robIdx = new RobPtr
161  val exceptionVec = ExceptionVec()
162  val flushPipe = Bool()
163  val replayInst = Bool() // redirect to that inst itself
164  val singleStep = Bool()
165  val crossPageIPFFix = Bool()
166  val trigger = new TriggerCf
167
168  // make sure chains are fired at same timing
169  def trigger_vec_fix = VecInit(trigger.triggerHitVec.zipWithIndex.map{ case (hit, i) =>
170    def chain = trigger.triggerChainVec(i / 2)
171    if (i % 2 == 0)
172      Mux(chain, (trigger.triggerHitVec(i ) && trigger.triggerHitVec(i + 1)), trigger.triggerHitVec(i))
173    else
174      Mux(chain, (trigger.triggerHitVec(i ) && trigger.triggerHitVec(i - 1)), trigger.triggerHitVec(i))
175  })
176
177  def trigger_before = trigger_vec_fix.zip(trigger.triggerTiming).map{ case (hit, timing) => hit && !timing}.reduce(_ | _)
178  def trigger_after = trigger_vec_fix.zip(trigger.triggerTiming).map{ case (hit, timing) => hit && timing}.reduce(_ | _)
179
180  def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger_vec_fix.asUInt.orR
181  // only exceptions are allowed to writeback when enqueue
182  def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger_before
183}
184
185class ExceptionGen(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
186  val io = IO(new Bundle {
187    val redirect = Input(Valid(new Redirect))
188    val flush = Input(Bool())
189    val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo)))
190    val wb = Vec(5, Flipped(ValidIO(new RobExceptionInfo)))
191    val out = ValidIO(new RobExceptionInfo)
192    val state = ValidIO(new RobExceptionInfo)
193  })
194
195  val current = Reg(Valid(new RobExceptionInfo))
196
197  // orR the exceptionVec
198  val lastCycleFlush = RegNext(io.flush)
199  val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush))
200  val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush)
201
202  // s0: compare wb(1),wb(2) and wb(3),wb(4)
203  val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }
204  val csr_wb_bits = io.wb(0).bits
205  val load_wb_bits = Mux(!in_wb_valid(2) || in_wb_valid(1) && isAfter(io.wb(2).bits.robIdx, io.wb(1).bits.robIdx), io.wb(1).bits, io.wb(2).bits)
206  val store_wb_bits = Mux(!in_wb_valid(4) || in_wb_valid(3) && isAfter(io.wb(4).bits.robIdx, io.wb(3).bits.robIdx), io.wb(3).bits, io.wb(4).bits)
207  val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid(1) || wb_valid(2), wb_valid(3) || wb_valid(4))))
208  val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits)))
209
210  // s1: compare last four and current flush
211  val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) })
212  val compare_01_valid = s0_out_valid(0) || s0_out_valid(1)
213  val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0))
214  val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2))
215  val s1_out_bits = RegNext(compare_bits)
216  val s1_out_valid = RegNext(s1_valid.asUInt.orR)
217
218  val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush)
219  val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits)))
220
221  // s2: compare the input exception with the current one
222  // priorities:
223  // (1) system reset
224  // (2) current is valid: flush, remain, merge, update
225  // (3) current is not valid: s1 or enq
226  val current_flush = current.bits.robIdx.needFlush(io.redirect) || io.flush
227  val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush
228  when (reset.asBool) {
229    current.valid := false.B
230  }.elsewhen (current.valid) {
231    when (current_flush) {
232      current.valid := Mux(s1_flush, false.B, s1_out_valid)
233    }
234    when (s1_out_valid && !s1_flush) {
235      when (isAfter(current.bits.robIdx, s1_out_bits.robIdx)) {
236        current.bits := s1_out_bits
237      }.elsewhen (current.bits.robIdx === s1_out_bits.robIdx) {
238        current.bits.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.bits.exceptionVec.asUInt).asTypeOf(ExceptionVec())
239        current.bits.flushPipe := s1_out_bits.flushPipe || current.bits.flushPipe
240        current.bits.replayInst := s1_out_bits.replayInst || current.bits.replayInst
241        current.bits.singleStep := s1_out_bits.singleStep || current.bits.singleStep
242//        current.bits.trigger := (s1_out_bits.trigger.asUInt | current.bits.trigger.asUInt).asTypeOf(new TriggerCf)
243      }
244    }
245  }.elsewhen (s1_out_valid && !s1_flush) {
246    current.valid := true.B
247    current.bits := s1_out_bits
248  }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) {
249    current.valid := true.B
250    current.bits := enq_bits
251  }
252
253  io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback
254  io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits)
255  io.state := current
256
257}
258
259class RobFlushInfo(implicit p: Parameters) extends XSBundle {
260  val ftqIdx = new FtqPtr
261  val robIdx = new RobPtr
262  val ftqOffset = UInt(log2Up(PredictWidth).W)
263  val replayInst = Bool()
264}
265
266class Rob(implicit p: Parameters) extends LazyModule with HasWritebackSink with HasXSParameter {
267
268  lazy val module = new RobImp(this)
269
270  override def generateWritebackIO(
271    thisMod: Option[HasWritebackSource] = None,
272    thisModImp: Option[HasWritebackSourceImp] = None
273  ): Unit = {
274    val sources = writebackSinksImp(thisMod, thisModImp)
275    module.io.writeback.zip(sources).foreach(x => x._1 := x._2)
276  }
277}
278
279class RobImp(outer: Rob)(implicit p: Parameters) extends LazyModuleImp(outer)
280  with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents {
281  val wbExuConfigs = outer.writebackSinksParams.map(_.exuConfigs)
282  val numWbPorts = wbExuConfigs.map(_.length)
283
284  val io = IO(new Bundle() {
285    val hartId = Input(UInt(8.W))
286    val redirect = Input(Valid(new Redirect))
287    val enq = new RobEnqIO
288    val flushOut = ValidIO(new Redirect)
289    val exception = ValidIO(new ExceptionInfo)
290    // exu + brq
291    val writeback = MixedVec(numWbPorts.map(num => Vec(num, Flipped(ValidIO(new ExuOutput)))))
292    val commits = new RobCommitIO
293    val lsq = new RobLsqIO
294    val bcommit = Output(UInt(log2Up(CommitWidth + 1).W))
295    val robDeqPtr = Output(new RobPtr)
296    val csr = new RobCSRIO
297    val robFull = Output(Bool())
298  })
299
300  def selectWb(index: Int, func: Seq[ExuConfig] => Boolean): Seq[(Seq[ExuConfig], ValidIO[ExuOutput])] = {
301    wbExuConfigs(index).zip(io.writeback(index)).filter(x => func(x._1))
302  }
303  val exeWbSel = outer.selWritebackSinks(_.exuConfigs.length)
304  val fflagsWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.writeFflags)))
305  val fflagsPorts = selectWb(fflagsWbSel, _.exists(_.writeFflags))
306  val exceptionWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.needExceptionGen)))
307  val exceptionPorts = selectWb(fflagsWbSel, _.exists(_.needExceptionGen))
308  val exuWbPorts = selectWb(exeWbSel, _.forall(_ != StdExeUnitCfg))
309  val stdWbPorts = selectWb(exeWbSel, _.contains(StdExeUnitCfg))
310  println(s"Rob: size $RobSize, numWbPorts: $numWbPorts, commitwidth: $CommitWidth")
311  println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}")
312  println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}")
313  println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}")
314
315
316  val exuWriteback = exuWbPorts.map(_._2)
317  val stdWriteback = stdWbPorts.map(_._2)
318
319  // instvalid field
320  val valid = Mem(RobSize, Bool())
321  // writeback status
322  val writebacked = Mem(RobSize, Bool())
323  val store_data_writebacked = Mem(RobSize, Bool())
324  // data for redirect, exception, etc.
325  val flagBkup = Mem(RobSize, Bool())
326  // some instructions are not allowed to trigger interrupts
327  // They have side effects on the states of the processor before they write back
328  val interrupt_safe = Mem(RobSize, Bool())
329
330  // data for debug
331  // Warn: debug_* prefix should not exist in generated verilog.
332  val debug_microOp = Mem(RobSize, new MicroOp)
333  val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug
334  val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug
335
336  // pointers
337  // For enqueue ptr, we don't duplicate it since only enqueue needs it.
338  val enqPtr = Wire(new RobPtr)
339  val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr))
340
341  val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr))
342  val validCounter = RegInit(0.U(log2Ceil(RobSize + 1).W))
343  val allowEnqueue = RegInit(true.B)
344
345  val enqPtrVec = VecInit((0 until RenameWidth).map(i => enqPtr + PopCount(io.enq.needAlloc.take(i))))
346  val deqPtr = deqPtrVec(0)
347  val walkPtr = walkPtrVec(0)
348
349  val isEmpty = enqPtr === deqPtr
350  val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level)
351
352  /**
353    * states of Rob
354    */
355  val s_idle :: s_walk :: s_extrawalk :: Nil = Enum(3)
356  val state = RegInit(s_idle)
357
358  /**
359    * Data Modules
360    *
361    * CommitDataModule: data from dispatch
362    * (1) read: commits/walk/exception
363    * (2) write: enqueue
364    *
365    * WritebackData: data from writeback
366    * (1) read: commits/walk/exception
367    * (2) write: write back from exe units
368    */
369  val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth))
370  val dispatchDataRead = dispatchData.io.rdata
371
372  val exceptionGen = Module(new ExceptionGen)
373  val exceptionDataRead = exceptionGen.io.state
374  val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W)))
375
376  io.robDeqPtr := deqPtr
377
378  /**
379    * Enqueue (from dispatch)
380    */
381  // special cases
382  val hasBlockBackward = RegInit(false.B)
383  val hasNoSpecExec = RegInit(false.B)
384  val doingSvinval = RegInit(false.B)
385  // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B
386  // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty.
387  when (isEmpty) { hasBlockBackward:= false.B }
388  // When any instruction commits, hasNoSpecExec should be set to false.B
389  when (io.commits.valid.asUInt.orR  && state =/= s_extrawalk) { hasNoSpecExec:= false.B }
390
391  io.enq.canAccept := allowEnqueue && !hasBlockBackward
392  io.enq.resp      := enqPtrVec
393  val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept))
394  val timer = GTimer()
395  for (i <- 0 until RenameWidth) {
396    // we don't check whether io.redirect is valid here since redirect has higher priority
397    when (canEnqueue(i)) {
398      val enqUop = io.enq.req(i).bits
399      // store uop in data module and debug_microOp Vec
400      debug_microOp(enqPtrVec(i).value) := enqUop
401      debug_microOp(enqPtrVec(i).value).debugInfo.dispatchTime := timer
402      debug_microOp(enqPtrVec(i).value).debugInfo.enqRsTime := timer
403      debug_microOp(enqPtrVec(i).value).debugInfo.selectTime := timer
404      debug_microOp(enqPtrVec(i).value).debugInfo.issueTime := timer
405      debug_microOp(enqPtrVec(i).value).debugInfo.writebackTime := timer
406      when (enqUop.ctrl.blockBackward) {
407        hasBlockBackward := true.B
408      }
409      when (enqUop.ctrl.noSpecExec) {
410        hasNoSpecExec := true.B
411      }
412      val enqHasException = ExceptionNO.selectFrontend(enqUop.cf.exceptionVec).asUInt.orR
413      // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process
414      when(!enqHasException && FuType.isSvinvalBegin(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe))
415      {
416        doingSvinval := true.B
417      }
418      // the end instruction of Svinval enqs so clear doingSvinval
419      when(!enqHasException && FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe))
420      {
421        doingSvinval := false.B
422      }
423      // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear
424      assert(!doingSvinval || (FuType.isSvinval(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe) ||
425        FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe)))
426    }
427  }
428  val dispatchNum = Mux(io.enq.canAccept, PopCount(Cat(io.enq.req.map(_.valid))), 0.U)
429  io.enq.isEmpty   := RegNext(isEmpty && dispatchNum === 0.U)
430
431  // debug info for enqueue (dispatch)
432  XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n")
433  XSInfo(dispatchNum =/= 0.U, p"dispatched $dispatchNum insts\n")
434
435
436  /**
437    * Writeback (from execution units)
438    */
439  for (wb <- exuWriteback) {
440    when (wb.valid) {
441      val wbIdx = wb.bits.uop.robIdx.value
442      debug_exuData(wbIdx) := wb.bits.data
443      debug_exuDebug(wbIdx) := wb.bits.debug
444      debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.uop.debugInfo.enqRsTime
445      debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.uop.debugInfo.selectTime
446      debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.uop.debugInfo.issueTime
447      debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.uop.debugInfo.writebackTime
448
449      val debug_Uop = debug_microOp(wbIdx)
450      XSInfo(true.B,
451        p"writebacked pc 0x${Hexadecimal(debug_Uop.cf.pc)} wen ${debug_Uop.ctrl.rfWen} " +
452        p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ctrl.ldest} pdst ${debug_Uop.pdest} " +
453        p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.uop.robIdx}\n"
454      )
455    }
456  }
457  val writebackNum = PopCount(exuWriteback.map(_.valid))
458  XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum)
459
460
461  /**
462    * RedirectOut: Interrupt and Exceptions
463    */
464  val deqDispatchData = dispatchDataRead(0)
465  val debug_deqUop = debug_microOp(deqPtr.value)
466
467  val intrBitSetReg = RegNext(io.csr.intrBitSet)
468  val intrEnable = intrBitSetReg && !hasNoSpecExec && interrupt_safe(deqPtr.value)
469  val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr
470  val triggerBefore = deqHasExceptionOrFlush && exceptionDataRead.bits.trigger_before
471  val triggerAfter = deqHasExceptionOrFlush && exceptionDataRead.bits.trigger_after && !exceptionDataRead.bits.trigger_before
472  val deqHasException = deqHasExceptionOrFlush && exceptionDataRead.bits.exceptionVec.asUInt.orR
473  val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe
474  val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst
475  val exceptionEnable = writebacked(deqPtr.value) && deqHasException// && triggerBefore
476
477  val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst || triggerAfter)
478
479  // io.flushOut will trigger redirect at the next cycle.
480  // Block any redirect or commit at the next cycle.
481  val lastCycleFlush = RegNext(io.flushOut.valid)
482
483  io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush
484  io.flushOut.bits := DontCare
485  io.flushOut.bits.robIdx := deqPtr
486  io.flushOut.bits.ftqIdx := deqDispatchData.ftqIdx
487  io.flushOut.bits.ftqOffset := deqDispatchData.ftqOffset
488  io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable, RedirectLevel.flush, RedirectLevel.flushAfter)
489  io.flushOut.bits.interrupt := true.B
490  XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable)
491  XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable)
492  XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe)
493  XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst)
494
495  val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush
496  io.exception.valid := RegNext(exceptionHappen)
497  io.exception.bits.uop := RegEnable(debug_deqUop, exceptionHappen)
498  io.exception.bits.uop.ctrl.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen)
499  io.exception.bits.uop.cf.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen)
500  io.exception.bits.uop.ctrl.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen)
501  io.exception.bits.uop.cf.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen)
502  io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen)
503  io.exception.bits.uop.cf.trigger.triggerHitVec := RegEnable(exceptionDataRead.bits.trigger_vec_fix, exceptionHappen)
504
505  XSDebug(io.flushOut.valid,
506    p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.uop.cf.pc)} intr $intrEnable " +
507    p"excp $exceptionEnable flushPipe $isFlushPipe " +
508    p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n")
509
510
511  /**
512    * Commits (and walk)
513    * They share the same width.
514    */
515  val walkCounter = Reg(UInt(log2Up(RobSize + 1).W))
516  val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter))
517  val walkFinished = walkCounter <= CommitWidth.U
518
519  // extra space is used when rob has no enough space, but mispredict recovery needs such info to walk regmap
520  require(RenameWidth <= CommitWidth)
521  val extraSpaceForMPR = Reg(Vec(RenameWidth, new RobDispatchData))
522  val usedSpaceForMPR = Reg(Vec(RenameWidth, Bool()))
523  when (io.enq.needAlloc.asUInt.orR && io.redirect.valid) {
524    usedSpaceForMPR := io.enq.needAlloc
525    extraSpaceForMPR := dispatchData.io.wdata
526    XSDebug("rob full, switched to s_extrawalk. needExtraSpaceForMPR: %b\n", io.enq.needAlloc.asUInt)
527  }
528
529  // wiring to csr
530  val (wflags, fpWen) = (0 until CommitWidth).map(i => {
531    val v = io.commits.valid(i)
532    val info = io.commits.info(i)
533    (v & info.wflags, v & info.fpWen)
534  }).unzip
535  val fflags = Wire(Valid(UInt(5.W)))
536  fflags.valid := Mux(io.commits.isWalk, false.B, Cat(wflags).orR())
537  fflags.bits := wflags.zip(fflagsDataRead).map({
538    case (w, f) => Mux(w, f, 0.U)
539  }).reduce(_|_)
540  val dirty_fs = Mux(io.commits.isWalk, false.B, Cat(fpWen).orR())
541
542  // when mispredict branches writeback, stop commit in the next 2 cycles
543  // TODO: don't check all exu write back
544  val misPredWb = Cat(VecInit(exuWriteback.map(wb =>
545    wb.bits.redirect.cfiUpdate.isMisPred && wb.bits.redirectValid
546  ))).orR()
547  val misPredBlockCounter = Reg(UInt(3.W))
548  misPredBlockCounter := Mux(misPredWb,
549    "b111".U,
550    misPredBlockCounter >> 1.U
551  )
552  val misPredBlock = misPredBlockCounter(0)
553
554  io.commits.isWalk := state =/= s_idle
555  val commit_v = Mux(state === s_idle, VecInit(deqPtrVec.map(ptr => valid(ptr.value))), VecInit(walkPtrVec.map(ptr => valid(ptr.value))))
556  // store will be commited iff both sta & std have been writebacked
557  val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value)))
558  val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last)
559  val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i)))
560  val allowOnlyOneCommit = commit_exception || intrBitSetReg
561  // for instructions that may block others, we don't allow them to commit
562  for (i <- 0 until CommitWidth) {
563    // defaults: state === s_idle and instructions commit
564    // when intrBitSetReg, allow only one instruction to commit at each clock cycle
565    val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst
566    io.commits.valid(i) := commit_v(i) && commit_w(i) && !isBlocked && !misPredBlock && !isReplaying && !lastCycleFlush
567    io.commits.info(i)  := dispatchDataRead(i)
568
569    when (state === s_walk) {
570      io.commits.valid(i) := commit_v(i) && shouldWalkVec(i)
571    }.elsewhen(state === s_extrawalk) {
572      io.commits.valid(i) := (if (i < RenameWidth) usedSpaceForMPR(RenameWidth-i-1) else false.B)
573      io.commits.info(i)  := (if (i < RenameWidth) extraSpaceForMPR(RenameWidth-i-1) else DontCare)
574    }
575
576    XSInfo(state === s_idle && io.commits.valid(i),
577      "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b\n",
578      debug_microOp(deqPtrVec(i).value).cf.pc,
579      io.commits.info(i).rfWen,
580      io.commits.info(i).ldest,
581      io.commits.info(i).pdest,
582      io.commits.info(i).old_pdest,
583      debug_exuData(deqPtrVec(i).value),
584      fflagsDataRead(i)
585    )
586    XSInfo(state === s_walk && io.commits.valid(i), "walked pc %x wen %d ldst %d data %x\n",
587      debug_microOp(walkPtrVec(i).value).cf.pc,
588      io.commits.info(i).rfWen,
589      io.commits.info(i).ldest,
590      debug_exuData(walkPtrVec(i).value)
591    )
592    XSInfo(state === s_extrawalk && io.commits.valid(i), "use extra space walked wen %d ldst %d\n",
593      io.commits.info(i).rfWen,
594      io.commits.info(i).ldest
595    )
596  }
597  if (env.EnableDifftest) {
598    io.commits.info.map(info => dontTouch(info.pc))
599  }
600
601  // sync fflags/dirty_fs to csr
602  io.csr.fflags := RegNext(fflags)
603  io.csr.dirty_fs := RegNext(dirty_fs)
604
605  // commit branch to brq
606  val cfiCommitVec = VecInit(io.commits.valid.zip(io.commits.info.map(_.commitType)).map{case(v, t) => v && CommitType.isBranch(t)})
607  io.bcommit := Mux(io.commits.isWalk, 0.U, PopCount(cfiCommitVec))
608
609  // commit load/store to lsq
610  val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.LOAD))
611  val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.STORE))
612  io.lsq.lcommit := RegNext(Mux(io.commits.isWalk, 0.U, PopCount(ldCommitVec)))
613  io.lsq.scommit := RegNext(Mux(io.commits.isWalk, 0.U, PopCount(stCommitVec)))
614  io.lsq.pendingld := RegNext(!io.commits.isWalk && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value))
615  io.lsq.pendingst := RegNext(!io.commits.isWalk && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value))
616  io.lsq.commit := RegNext(!io.commits.isWalk && io.commits.valid(0))
617
618  /**
619    * state changes
620    * (1) exceptions: when exception occurs, cancels all and switch to s_idle
621    * (2) redirect: switch to s_walk or s_extrawalk (depends on whether there're pending instructions in dispatch1)
622    * (3) walk: when walking comes to the end, switch to s_walk
623    * (4) s_extrawalk to s_walk
624    */
625  val state_next = Mux(io.redirect.valid,
626    Mux(io.enq.needAlloc.asUInt.orR, s_extrawalk, s_walk),
627    Mux(state === s_walk && walkFinished,
628      s_idle,
629      Mux(state === s_extrawalk, s_walk, state)
630    )
631  )
632  state := state_next
633
634  /**
635    * pointers and counters
636    */
637  val deqPtrGenModule = Module(new RobDeqPtrWrapper)
638  deqPtrGenModule.io.state := state
639  deqPtrGenModule.io.deq_v := commit_v
640  deqPtrGenModule.io.deq_w := commit_w
641  deqPtrGenModule.io.exception_state := exceptionDataRead
642  deqPtrGenModule.io.intrBitSetReg := intrBitSetReg
643  deqPtrGenModule.io.hasNoSpecExec := hasNoSpecExec
644  deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value)
645
646  deqPtrGenModule.io.misPredBlock := misPredBlock
647  deqPtrGenModule.io.isReplaying := isReplaying
648  deqPtrVec := deqPtrGenModule.io.out
649  val deqPtrVec_next = deqPtrGenModule.io.next_out
650
651  val enqPtrGenModule = Module(new RobEnqPtrWrapper)
652  enqPtrGenModule.io.redirect := io.redirect
653  enqPtrGenModule.io.allowEnqueue := allowEnqueue
654  enqPtrGenModule.io.hasBlockBackward := hasBlockBackward
655  enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid))
656  enqPtr := enqPtrGenModule.io.out
657
658  val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U)
659  // next walkPtrVec:
660  // (1) redirect occurs: update according to state
661  // (2) walk: move backwards
662  val walkPtrVec_next = Mux(io.redirect.valid && state =/= s_extrawalk,
663    Mux(state === s_walk,
664      VecInit(walkPtrVec.map(_ - thisCycleWalkCount)),
665      VecInit((0 until CommitWidth).map(i => enqPtr - (i+1).U))
666    ),
667    Mux(state === s_walk, VecInit(walkPtrVec.map(_ - CommitWidth.U)), walkPtrVec)
668  )
669  walkPtrVec := walkPtrVec_next
670
671  val lastCycleRedirect = RegNext(io.redirect.valid)
672  val trueValidCounter = Mux(lastCycleRedirect, distanceBetween(enqPtr, deqPtr), validCounter)
673  val commitCnt = PopCount(io.commits.valid)
674  validCounter := Mux(state === s_idle,
675    (validCounter - commitCnt) + dispatchNum,
676    trueValidCounter
677  )
678
679  allowEnqueue := Mux(state === s_idle,
680    validCounter + dispatchNum <= (RobSize - RenameWidth).U,
681    trueValidCounter <= (RobSize - RenameWidth).U
682  )
683
684  val currentWalkPtr = Mux(state === s_walk || state === s_extrawalk, walkPtr, enqPtr - 1.U)
685  val redirectWalkDistance = distanceBetween(currentWalkPtr, io.redirect.bits.robIdx)
686  when (io.redirect.valid) {
687    walkCounter := Mux(state === s_walk,
688      // NOTE: +& is used here because:
689      // When rob is full and the head instruction causes an exception,
690      // the redirect robIdx is the deqPtr. In this case, currentWalkPtr is
691      // enqPtr - 1.U and redirectWalkDistance is RobSize - 1.
692      // Since exceptions flush the instruction itself, flushItSelf is true.B.
693      // Previously we use `+` to count the walk distance and it causes overflows
694      // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize.
695      // The width of walkCounter also needs to be changed.
696      redirectWalkDistance +& io.redirect.bits.flushItself() - commitCnt,
697      redirectWalkDistance +& io.redirect.bits.flushItself()
698    )
699  }.elsewhen (state === s_walk) {
700    walkCounter := walkCounter - commitCnt
701    XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n")
702  }
703
704
705  /**
706    * States
707    * We put all the stage bits changes here.
708
709    * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit);
710    * All states: (1) valid; (2) writebacked; (3) flagBkup
711    */
712  val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value)))
713
714  // enqueue logic writes 6 valid
715  for (i <- 0 until RenameWidth) {
716    when (canEnqueue(i) && !io.redirect.valid) {
717      valid(enqPtrVec(i).value) := true.B
718    }
719  }
720  // dequeue/walk logic writes 6 valid, dequeue and walk will not happen at the same time
721  for (i <- 0 until CommitWidth) {
722    when (io.commits.valid(i) && state =/= s_extrawalk) {
723      valid(commitReadAddr(i)) := false.B
724    }
725  }
726  // reset: when exception, reset all valid to false
727  when (reset.asBool) {
728    for (i <- 0 until RobSize) {
729      valid(i) := false.B
730    }
731  }
732
733  // status field: writebacked
734  // enqueue logic set 6 writebacked to false
735  for (i <- 0 until RenameWidth) {
736    when (canEnqueue(i)) {
737      val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec)
738      writebacked(enqPtrVec(i).value) := io.enq.req(i).bits.eliminatedMove && !enqHasException.asUInt.orR
739      val isStu = io.enq.req(i).bits.ctrl.fuType === FuType.stu
740      store_data_writebacked(enqPtrVec(i).value) := !isStu
741    }
742  }
743  when (exceptionGen.io.out.valid) {
744    val wbIdx = exceptionGen.io.out.bits.robIdx.value
745    writebacked(wbIdx) := true.B
746    store_data_writebacked(wbIdx) := true.B
747  }
748  // writeback logic set numWbPorts writebacked to true
749  for ((wb, cfgs) <- exuWriteback.zip(wbExuConfigs(exeWbSel))) {
750    when (wb.valid) {
751      val wbIdx = wb.bits.uop.robIdx.value
752      val wbHasException = ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, cfgs).asUInt.orR
753      val wbHasFlushPipe = cfgs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe
754      val wbHasReplayInst = cfgs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst
755      val block_wb = wbHasException || wbHasFlushPipe || wbHasReplayInst
756      writebacked(wbIdx) := !block_wb
757    }
758  }
759  // store data writeback logic mark store as data_writebacked
760  for (wb <- stdWriteback) {
761    when(RegNext(wb.valid)) {
762      store_data_writebacked(RegNext(wb.bits.uop.robIdx.value)) := true.B
763    }
764  }
765
766  // flagBkup
767  // enqueue logic set 6 flagBkup at most
768  for (i <- 0 until RenameWidth) {
769    when (canEnqueue(i)) {
770      flagBkup(enqPtrVec(i).value) := enqPtrVec(i).flag
771    }
772  }
773
774  // interrupt_safe
775  for (i <- 0 until RenameWidth) {
776    // We RegNext the updates for better timing.
777    // Note that instructions won't change the system's states in this cycle.
778    when (RegNext(canEnqueue(i))) {
779      // For now, we allow non-load-store instructions to trigger interrupts
780      // For MMIO instructions, they should not trigger interrupts since they may
781      // be sent to lower level before it writes back.
782      // However, we cannot determine whether a load/store instruction is MMIO.
783      // Thus, we don't allow load/store instructions to trigger an interrupt.
784      // TODO: support non-MMIO load-store instructions to trigger interrupts
785      val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.ctrl.commitType)
786      interrupt_safe(RegNext(enqPtrVec(i).value)) := RegNext(allow_interrupts)
787    }
788  }
789
790  /**
791    * read and write of data modules
792    */
793  val commitReadAddr_next = Mux(state_next === s_idle,
794    VecInit(deqPtrVec_next.map(_.value)),
795    VecInit(walkPtrVec_next.map(_.value))
796  )
797  dispatchData.io.wen := canEnqueue
798  dispatchData.io.waddr := enqPtrVec.map(_.value)
799  dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) =>
800    wdata.ldest := req.ctrl.ldest
801    wdata.rfWen := req.ctrl.rfWen
802    wdata.fpWen := req.ctrl.fpWen
803    wdata.wflags := req.ctrl.fpu.wflags
804    wdata.commitType := req.ctrl.commitType
805    wdata.pdest := req.pdest
806    wdata.old_pdest := req.old_pdest
807    wdata.ftqIdx := req.cf.ftqPtr
808    wdata.ftqOffset := req.cf.ftqOffset
809    wdata.pc := req.cf.pc
810  }
811  dispatchData.io.raddr := commitReadAddr_next
812
813  exceptionGen.io.redirect <> io.redirect
814  exceptionGen.io.flush := io.flushOut.valid
815  for (i <- 0 until RenameWidth) {
816    exceptionGen.io.enq(i).valid := canEnqueue(i)
817    exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx
818    exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec)
819    exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.ctrl.flushPipe
820    exceptionGen.io.enq(i).bits.replayInst := io.enq.req(i).bits.ctrl.replayInst
821    assert(exceptionGen.io.enq(i).bits.replayInst === false.B)
822    exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.ctrl.singleStep
823    exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.cf.crossPageIPFFix
824    exceptionGen.io.enq(i).bits.trigger := io.enq.req(i).bits.cf.trigger
825  }
826
827  println(s"ExceptionGen:")
828  val exceptionCases = exceptionPorts.map(_._1.flatMap(_.exceptionOut).distinct.sorted)
829  require(exceptionCases.length == exceptionGen.io.wb.length)
830  for ((((configs, wb), exc_wb), i) <- exceptionPorts.zip(exceptionGen.io.wb).zipWithIndex) {
831    exc_wb.valid                := wb.valid
832    exc_wb.bits.robIdx          := wb.bits.uop.robIdx
833    exc_wb.bits.exceptionVec    := ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, configs)
834    exc_wb.bits.flushPipe       := configs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe
835    exc_wb.bits.replayInst      := configs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst
836    exc_wb.bits.singleStep      := false.B
837    exc_wb.bits.crossPageIPFFix := false.B
838    // TODO: make trigger configurable
839    exc_wb.bits.trigger         := wb.bits.uop.cf.trigger
840    println(s"  [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " +
841      s"flushPipe ${configs.exists(_.flushPipe)}, " +
842      s"replayInst ${configs.exists(_.replayInst)}")
843  }
844
845  val fflags_wb = fflagsPorts.map(_._2)
846  val fflagsDataModule = Module(new SyncDataModuleTemplate(
847    UInt(5.W), RobSize, CommitWidth, fflags_wb.size)
848  )
849  for(i <- fflags_wb.indices){
850    fflagsDataModule.io.wen  (i) := fflags_wb(i).valid
851    fflagsDataModule.io.waddr(i) := fflags_wb(i).bits.uop.robIdx.value
852    fflagsDataModule.io.wdata(i) := fflags_wb(i).bits.fflags
853  }
854  fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value))
855  fflagsDataRead := fflagsDataModule.io.rdata
856
857
858  val instrCnt = RegInit(0.U(64.W))
859  val fuseCommitCnt = PopCount(io.commits.valid.zip(io.commits.info).map{ case (v, i) => v && CommitType.isFused(i.commitType) })
860  val trueCommitCnt = commitCnt +& fuseCommitCnt
861  val retireCounter = Mux(state === s_idle, trueCommitCnt, 0.U)
862  instrCnt := instrCnt + retireCounter
863  io.csr.perfinfo.retiredInstr := RegNext(retireCounter)
864  io.robFull := !allowEnqueue
865
866  /**
867    * debug info
868    */
869  XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n")
870  XSDebug("")
871  for(i <- 0 until RobSize){
872    XSDebug(false, !valid(i), "-")
873    XSDebug(false, valid(i) && writebacked(i), "w")
874    XSDebug(false, valid(i) && !writebacked(i), "v")
875  }
876  XSDebug(false, true.B, "\n")
877
878  for(i <- 0 until RobSize) {
879    if(i % 4 == 0) XSDebug("")
880    XSDebug(false, true.B, "%x ", debug_microOp(i).cf.pc)
881    XSDebug(false, !valid(i), "- ")
882    XSDebug(false, valid(i) && writebacked(i), "w ")
883    XSDebug(false, valid(i) && !writebacked(i), "v ")
884    if(i % 4 == 3) XSDebug(false, true.B, "\n")
885  }
886
887  def ifCommit(counter: UInt): UInt = Mux(io.commits.isWalk, 0.U, counter)
888
889  val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_))
890  XSPerfAccumulate("clock_cycle", 1.U)
891  QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue)
892  XSPerfAccumulate("commitUop", ifCommit(commitCnt))
893  XSPerfAccumulate("commitInstr", ifCommit(trueCommitCnt))
894  val commitIsMove = commitDebugUop.map(_.ctrl.isMove)
895  XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.valid.zip(commitIsMove).map{ case (v, m) => v && m })))
896  val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove)
897  XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.valid zip commitMoveElim map { case (v, e) => v && e })))
898  XSPerfAccumulate("commitInstrFused", ifCommit(fuseCommitCnt))
899  val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD)
900  val commitLoadValid = io.commits.valid.zip(commitIsLoad).map{ case (v, t) => v && t }
901  XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid)))
902  val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH)
903  val commitBranchValid = io.commits.valid.zip(commitIsBranch).map{ case (v, t) => v && t }
904  XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid)))
905  val commitLoadWaitBit = commitDebugUop.map(_.cf.loadWaitBit)
906  XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })))
907  val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE)
908  XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.valid.zip(commitIsStore).map{ case (v, t) => v && t })))
909  XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i))))
910  // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire())))
911  // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready)))
912  XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.valid), 0.U))
913  XSPerfAccumulate("walkCycle", state === s_walk || state === s_extrawalk)
914  val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value)
915  val deqUopCommitType = io.commits.info(0).commitType
916  XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL)
917  XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH)
918  XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD)
919  XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE)
920  XSPerfAccumulate("robHeadPC", io.commits.info(0).pc)
921  val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime)
922  val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime)
923  val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime)
924  val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime)
925  val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime)
926  val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime)
927  val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime)
928  def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = {
929    cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _)
930  }
931  for (fuType <- FuType.functionNameMap.keys) {
932    val fuName = FuType.functionNameMap(fuType)
933    val commitIsFuType = io.commits.valid.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fuType === fuType.U )
934    XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType)))
935    XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency)))
936    XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency)))
937    XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency)))
938    XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency)))
939    XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency)))
940    XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency)))
941    XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency)))
942    if (fuType == FuType.fmac.litValue()) {
943      val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fpu.ren3 )
944      XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma)))
945      XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency)))
946      XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency)))
947    }
948  }
949
950  //difftest signals
951  val firstValidCommit = (deqPtr + PriorityMux(io.commits.valid, VecInit(List.tabulate(CommitWidth)(_.U)))).value
952
953  val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W)))
954  val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W)))
955
956  for(i <- 0 until CommitWidth) {
957    val idx = deqPtrVec(i).value
958    wdata(i) := debug_exuData(idx)
959    wpc(i) := SignExt(commitDebugUop(i).cf.pc, XLEN)
960  }
961  val retireCounterFix = Mux(io.exception.valid, 1.U, retireCounter)
962  val retirePCFix = SignExt(Mux(io.exception.valid, io.exception.bits.uop.cf.pc, debug_microOp(firstValidCommit).cf.pc), XLEN)
963  val retireInstFix = Mux(io.exception.valid, io.exception.bits.uop.cf.instr, debug_microOp(firstValidCommit).cf.instr)
964
965  if (env.EnableDifftest) {
966    for (i <- 0 until CommitWidth) {
967      val difftest = Module(new DifftestInstrCommit)
968      difftest.io.clock    := clock
969      difftest.io.coreid   := io.hartId
970      difftest.io.index    := i.U
971
972      val ptr = deqPtrVec(i).value
973      val uop = commitDebugUop(i)
974      val exuOut = debug_exuDebug(ptr)
975      val exuData = debug_exuData(ptr)
976      difftest.io.valid    := RegNext(io.commits.valid(i) && !io.commits.isWalk)
977      difftest.io.pc       := RegNext(SignExt(uop.cf.pc, XLEN))
978      difftest.io.instr    := RegNext(uop.cf.instr)
979      difftest.io.special  := RegNext(CommitType.isFused(io.commits.info(i).commitType))
980      // when committing an eliminated move instruction,
981      // we must make sure that skip is properly set to false (output from EXU is random value)
982      difftest.io.skip     := RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))
983      difftest.io.isRVC    := RegNext(uop.cf.pd.isRVC)
984      difftest.io.wen      := RegNext(io.commits.valid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U)
985      difftest.io.wpdest   := RegNext(io.commits.info(i).pdest)
986      difftest.io.wdest    := RegNext(io.commits.info(i).ldest)
987
988      // runahead commit hint
989      val runahead_commit = Module(new DifftestRunaheadCommitEvent)
990      runahead_commit.io.clock := clock
991      runahead_commit.io.coreid := io.hartId
992      runahead_commit.io.index := i.U
993      runahead_commit.io.valid := difftest.io.valid &&
994        (commitBranchValid(i) || commitIsStore(i))
995      // TODO: is branch or store
996      runahead_commit.io.pc    := difftest.io.pc
997    }
998  }
999  else if (env.AlwaysBasicDiff) {
1000    // These are the structures used by difftest only and should be optimized after synthesis.
1001    val dt_eliminatedMove = Mem(RobSize, Bool())
1002    val dt_isRVC = Mem(RobSize, Bool())
1003    val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle))
1004    for (i <- 0 until RenameWidth) {
1005      when (canEnqueue(i)) {
1006        dt_eliminatedMove(enqPtrVec(i).value) := io.enq.req(i).bits.eliminatedMove
1007        dt_isRVC(enqPtrVec(i).value) := io.enq.req(i).bits.cf.pd.isRVC
1008      }
1009    }
1010    for (wb <- exuWriteback) {
1011      when (wb.valid) {
1012        val wbIdx = wb.bits.uop.robIdx.value
1013        dt_exuDebug(wbIdx) := wb.bits.debug
1014      }
1015    }
1016    // Always instantiate basic difftest modules.
1017    for (i <- 0 until CommitWidth) {
1018      val commitInfo = io.commits.info(i)
1019      val ptr = deqPtrVec(i).value
1020      val exuOut = dt_exuDebug(ptr)
1021      val eliminatedMove = dt_eliminatedMove(ptr)
1022      val isRVC = dt_isRVC(ptr)
1023
1024      val difftest = Module(new DifftestBasicInstrCommit)
1025      difftest.io.clock   := clock
1026      difftest.io.coreid  := io.hartId
1027      difftest.io.index   := i.U
1028      difftest.io.valid   := RegNext(io.commits.valid(i) && !io.commits.isWalk)
1029      difftest.io.special := RegNext(CommitType.isFused(commitInfo.commitType))
1030      difftest.io.skip    := RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))
1031      difftest.io.isRVC   := RegNext(isRVC)
1032      difftest.io.wen     := RegNext(io.commits.valid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U)
1033      difftest.io.wpdest  := RegNext(commitInfo.pdest)
1034      difftest.io.wdest   := RegNext(commitInfo.ldest)
1035    }
1036  }
1037
1038  if (env.EnableDifftest) {
1039    for (i <- 0 until CommitWidth) {
1040      val difftest = Module(new DifftestLoadEvent)
1041      difftest.io.clock  := clock
1042      difftest.io.coreid := io.hartId
1043      difftest.io.index  := i.U
1044
1045      val ptr = deqPtrVec(i).value
1046      val uop = commitDebugUop(i)
1047      val exuOut = debug_exuDebug(ptr)
1048      difftest.io.valid  := RegNext(io.commits.valid(i) && !io.commits.isWalk)
1049      difftest.io.paddr  := RegNext(exuOut.paddr)
1050      difftest.io.opType := RegNext(uop.ctrl.fuOpType)
1051      difftest.io.fuType := RegNext(uop.ctrl.fuType)
1052    }
1053  }
1054
1055  // Always instantiate basic difftest modules.
1056  if (env.EnableDifftest) {
1057    val dt_isXSTrap = Mem(RobSize, Bool())
1058    for (i <- 0 until RenameWidth) {
1059      when (canEnqueue(i)) {
1060        dt_isXSTrap(enqPtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap
1061      }
1062    }
1063    val trapVec = io.commits.valid.zip(deqPtrVec).map{ case (v, d) => state === s_idle && v && dt_isXSTrap(d.value) }
1064    val hitTrap = trapVec.reduce(_||_)
1065    val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1))
1066    val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN)
1067    val difftest = Module(new DifftestTrapEvent)
1068    difftest.io.clock    := clock
1069    difftest.io.coreid   := io.hartId
1070    difftest.io.valid    := hitTrap
1071    difftest.io.code     := trapCode
1072    difftest.io.pc       := trapPC
1073    difftest.io.cycleCnt := timer
1074    difftest.io.instrCnt := instrCnt
1075  }
1076  else if (env.AlwaysBasicDiff) {
1077    val dt_isXSTrap = Mem(RobSize, Bool())
1078    for (i <- 0 until RenameWidth) {
1079      when (canEnqueue(i)) {
1080        dt_isXSTrap(enqPtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap
1081      }
1082    }
1083    val trapVec = io.commits.valid.zip(deqPtrVec).map{ case (v, d) => state === s_idle && v && dt_isXSTrap(d.value) }
1084    val hitTrap = trapVec.reduce(_||_)
1085    val difftest = Module(new DifftestBasicTrapEvent)
1086    difftest.io.clock    := clock
1087    difftest.io.coreid   := io.hartId
1088    difftest.io.valid    := hitTrap
1089    difftest.io.cycleCnt := timer
1090    difftest.io.instrCnt := instrCnt
1091  }
1092
1093  val perfEvents = Seq(
1094    ("rob_interrupt_num       ", io.flushOut.valid && intrEnable                                                                                                   ),
1095    ("rob_exception_num       ", io.flushOut.valid && exceptionEnable                                                                                              ),
1096    ("rob_flush_pipe_num      ", io.flushOut.valid && isFlushPipe                                                                                                  ),
1097    ("rob_replay_inst_num     ", io.flushOut.valid && isFlushPipe && deqHasReplayInst                                                                              ),
1098    ("rob_commitUop           ", ifCommit(commitCnt)                                                                                                               ),
1099    ("rob_commitInstr         ", ifCommit(trueCommitCnt)                                                                                                           ),
1100    ("rob_commitInstrMove     ", ifCommit(PopCount(io.commits.valid.zip(commitIsMove).map{ case (v, m) => v && m }))                                               ),
1101    ("rob_commitInstrFused    ", ifCommit(fuseCommitCnt)                                                                                                           ),
1102    ("rob_commitInstrLoad     ", ifCommit(PopCount(commitLoadValid))                                                                                               ),
1103    ("rob_commitInstrLoad     ", ifCommit(PopCount(commitBranchValid))                                                                                               ),
1104    ("rob_commitInstrLoadWait ", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))                                           ),
1105    ("rob_commitInstrStore    ", ifCommit(PopCount(io.commits.valid.zip(commitIsStore).map{ case (v, t) => v && t }))                                              ),
1106    ("rob_walkInstr           ", Mux(io.commits.isWalk, PopCount(io.commits.valid), 0.U)                                                                           ),
1107    ("rob_walkCycle           ", (state === s_walk || state === s_extrawalk)                                                                                       ),
1108    ("rob_1_4_valid           ", (PopCount((0 until RobSize).map(valid(_))) < (RobSize.U/4.U))                                                                     ),
1109    ("rob_2_4_valid           ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U/4.U)) & (PopCount((0 until RobSize).map(valid(_))) <= (RobSize.U/2.U))    ),
1110    ("rob_3_4_valid           ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U/2.U)) & (PopCount((0 until RobSize).map(valid(_))) <= (RobSize.U*3.U/4.U))),
1111    ("rob_4_4_valid           ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U*3.U/4.U))                                                                 ),
1112  )
1113  generatePerfEvent()
1114}
1115