1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.rob 18 19import org.chipsalliance.cde.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 24import utility._ 25import utils._ 26import xiangshan._ 27import xiangshan.backend.GPAMemEntry 28import xiangshan.backend.BackendParams 29import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 30import xiangshan.backend.fu.{FuConfig, FuType} 31import xiangshan.frontend.FtqPtr 32import xiangshan.mem.{LqPtr, LsqEnqIO, SqPtr} 33import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 34import xiangshan.backend.ctrlblock.{DebugLSIO, DebugLsInfo, LsTopdownInfo} 35import xiangshan.backend.fu.vector.Bundles.VType 36import xiangshan.backend.rename.SnapshotGenerator 37import yunsuan.VfaluType 38import xiangshan.backend.rob.RobBundles._ 39import xiangshan.backend.trace._ 40import chisel3.experimental.BundleLiterals._ 41 42class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter { 43 override def shouldBeInlined: Boolean = false 44 45 lazy val module = new RobImp(this)(p, params) 46} 47 48class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper) 49 with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents { 50 51 private val LduCnt = params.LduCnt 52 private val StaCnt = params.StaCnt 53 private val HyuCnt = params.HyuCnt 54 55 val io = IO(new Bundle() { 56 val hartId = Input(UInt(hartIdLen.W)) 57 val redirect = Input(Valid(new Redirect)) 58 val enq = new RobEnqIO 59 val flushOut = ValidIO(new Redirect) 60 val exception = ValidIO(new ExceptionInfo) 61 // exu + brq 62 val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles) 63 val exuWriteback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles) 64 val writebackNums = Flipped(Vec(writeback.size - params.StdCnt, ValidIO(UInt(writeback.size.U.getWidth.W)))) 65 val writebackNeedFlush = Input(Vec(params.allExuParams.filter(_.needExceptionGen).length, Bool())) 66 val commits = Output(new RobCommitIO) 67 val rabCommits = Output(new RabCommitIO) 68 val diffCommits = if (backendParams.basicDebugEn) Some(Output(new DiffCommitIO)) else None 69 val isVsetFlushPipe = Output(Bool()) 70 val lsq = new RobLsqIO 71 val robDeqPtr = Output(new RobPtr) 72 val csr = new RobCSRIO 73 val snpt = Input(new SnapshotPort) 74 val robFull = Output(Bool()) 75 val headNotReady = Output(Bool()) 76 val cpu_halt = Output(Bool()) 77 val wfi_enable = Input(Bool()) 78 val toDecode = new Bundle { 79 val isResumeVType = Output(Bool()) 80 val walkToArchVType = Output(Bool()) 81 val walkVType = ValidIO(VType()) 82 val commitVType = new Bundle { 83 val vtype = ValidIO(VType()) 84 val hasVsetvl = Output(Bool()) 85 } 86 } 87 val readGPAMemAddr = ValidIO(new Bundle { 88 val ftqPtr = new FtqPtr() 89 val ftqOffset = UInt(log2Up(PredictWidth).W) 90 }) 91 val readGPAMemData = Input(new GPAMemEntry) 92 val vstartIsZero = Input(Bool()) 93 94 val debug_ls = Flipped(new DebugLSIO) 95 val debugRobHead = Output(new DynInst) 96 val debugEnqLsq = Input(new LsqEnqIO) 97 val debugHeadLsIssue = Input(Bool()) 98 val lsTopdownInfo = Vec(LduCnt + HyuCnt, Input(new LsTopdownInfo)) 99 val debugTopDown = new Bundle { 100 val toCore = new RobCoreTopDownIO 101 val toDispatch = new RobDispatchTopDownIO 102 val robHeadLqIdx = Valid(new LqPtr) 103 } 104 val debugRolling = new RobDebugRollingIO 105 }) 106 107 val exuWBs: Seq[ValidIO[ExuOutput]] = io.exuWriteback.filter(!_.bits.params.hasStdFu).toSeq 108 val stdWBs: Seq[ValidIO[ExuOutput]] = io.exuWriteback.filter(_.bits.params.hasStdFu).toSeq 109 val fflagsWBs = io.exuWriteback.filter(x => x.bits.fflags.nonEmpty).toSeq 110 val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty).toSeq 111 val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty).toSeq 112 val vxsatWBs = io.exuWriteback.filter(x => x.bits.vxsat.nonEmpty).toSeq 113 val branchWBs = io.exuWriteback.filter(_.bits.params.hasBrhFu).toSeq 114 val csrWBs = io.exuWriteback.filter(x => x.bits.params.hasCSR).toSeq 115 116 val numExuWbPorts = exuWBs.length 117 val numStdWbPorts = stdWBs.length 118 val bankAddrWidth = log2Up(CommitWidth) 119 120 println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth") 121 122 val rab = Module(new RenameBuffer(RabSize)) 123 val vtypeBuffer = Module(new VTypeBuffer(VTypeBufferSize)) 124 val bankNum = 8 125 assert(RobSize % bankNum == 0, "RobSize % bankNum must be 0") 126 val robEntries = RegInit(VecInit.fill(RobSize)((new RobEntryBundle).Lit(_.valid -> false.B))) 127 // pointers 128 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 129 val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr)) 130 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 131 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 132 val walkPtrTrue = Reg(new RobPtr) 133 val lastWalkPtr = Reg(new RobPtr) 134 val allowEnqueue = RegInit(true.B) 135 136 /** 137 * Enqueue (from dispatch) 138 */ 139 // special cases 140 val hasBlockBackward = RegInit(false.B) 141 val hasWaitForward = RegInit(false.B) 142 val doingSvinval = RegInit(false.B) 143 val enqPtr = enqPtrVec(0) 144 val deqPtr = deqPtrVec(0) 145 val walkPtr = walkPtrVec(0) 146 val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.req.take(i).map(req => req.valid && req.bits.firstUop))))) 147 io.enq.canAccept := allowEnqueue && !hasBlockBackward && rab.io.canEnq && vtypeBuffer.io.canEnq 148 io.enq.resp := allocatePtrVec 149 val canEnqueue = VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop && io.enq.canAccept)) 150 val timer = GTimer() 151 // robEntries enqueue 152 for (i <- 0 until RobSize) { 153 val enqOH = VecInit(canEnqueue.zip(allocatePtrVec.map(_.value === i.U)).map(x => x._1 && x._2)) 154 assert(PopCount(enqOH) < 2.U, s"robEntries$i enqOH is not one hot") 155 when(enqOH.asUInt.orR && !io.redirect.valid){ 156 connectEnq(robEntries(i), Mux1H(enqOH, io.enq.req.map(_.bits))) 157 } 158 } 159 // robBanks0 include robidx : 0 8 16 24 32 ... 160 val robBanks = VecInit((0 until bankNum).map(i => VecInit(robEntries.zipWithIndex.filter(_._2 % bankNum == i).map(_._1)))) 161 // each Bank has 20 Entries, read addr is one hot 162 // all banks use same raddr 163 val eachBankEntrieNum = robBanks(0).length 164 val robBanksRaddrThisLine = RegInit(1.U(eachBankEntrieNum.W)) 165 val robBanksRaddrNextLine = Wire(UInt(eachBankEntrieNum.W)) 166 robBanksRaddrThisLine := robBanksRaddrNextLine 167 val bankNumWidth = log2Up(bankNum) 168 val deqPtrWidth = deqPtr.value.getWidth 169 val robIdxThisLine = VecInit((0 until bankNum).map(i => Cat(deqPtr.value(deqPtrWidth - 1, bankNumWidth), i.U(bankNumWidth.W)))) 170 val robIdxNextLine = VecInit((0 until bankNum).map(i => Cat(deqPtr.value(deqPtrWidth - 1, bankNumWidth) + 1.U, i.U(bankNumWidth.W)))) 171 // robBanks read 172 val robBanksRdataThisLine = VecInit(robBanks.map{ case bank => 173 Mux1H(robBanksRaddrThisLine, bank) 174 }) 175 val robBanksRdataNextLine = VecInit(robBanks.map{ case bank => 176 val shiftBank = bank.drop(1) :+ bank(0) 177 Mux1H(robBanksRaddrThisLine, shiftBank) 178 }) 179 val robBanksRdataThisLineUpdate = Wire(Vec(CommitWidth, new RobEntryBundle)) 180 val robBanksRdataNextLineUpdate = Wire(Vec(CommitWidth, new RobEntryBundle)) 181 val commitValidThisLine = Wire(Vec(CommitWidth, Bool())) 182 val hasCommitted = RegInit(VecInit(Seq.fill(CommitWidth)(false.B))) 183 val donotNeedWalk = RegInit(VecInit(Seq.fill(CommitWidth)(false.B))) 184 val allCommitted = Wire(Bool()) 185 186 when(allCommitted) { 187 hasCommitted := 0.U.asTypeOf(hasCommitted) 188 }.elsewhen(io.commits.isCommit){ 189 for (i <- 0 until CommitWidth){ 190 hasCommitted(i) := commitValidThisLine(i) || hasCommitted(i) 191 } 192 } 193 allCommitted := io.commits.isCommit && commitValidThisLine.last 194 val walkPtrHead = Wire(new RobPtr) 195 val changeBankAddrToDeqPtr = (walkPtrVec.head + CommitWidth.U) > lastWalkPtr 196 when(io.redirect.valid){ 197 robBanksRaddrNextLine := UIntToOH(walkPtrHead.value(walkPtrHead.value.getWidth-1, bankAddrWidth)) 198 }.elsewhen(allCommitted || io.commits.isWalk && !changeBankAddrToDeqPtr){ 199 robBanksRaddrNextLine := Mux(robBanksRaddrThisLine.head(1) === 1.U, 1.U, robBanksRaddrThisLine << 1) 200 }.elsewhen(io.commits.isWalk && changeBankAddrToDeqPtr){ 201 robBanksRaddrNextLine := UIntToOH(deqPtr.value(deqPtr.value.getWidth-1, bankAddrWidth)) 202 }.otherwise( 203 robBanksRaddrNextLine := robBanksRaddrThisLine 204 ) 205 val robDeqGroup = Reg(Vec(bankNum, new RobCommitEntryBundle)) 206 val rawInfo = VecInit((0 until CommitWidth).map(i => robDeqGroup(deqPtrVec(i).value(bankAddrWidth-1, 0)))).toSeq 207 val commitInfo = VecInit((0 until CommitWidth).map(i => robDeqGroup(deqPtrVec(i).value(bankAddrWidth-1,0)))).toSeq 208 val walkInfo = VecInit((0 until CommitWidth).map(i => robDeqGroup(walkPtrVec(i).value(bankAddrWidth-1, 0)))).toSeq 209 for (i <- 0 until CommitWidth) { 210 connectCommitEntry(robDeqGroup(i), robBanksRdataThisLineUpdate(i)) 211 when(allCommitted){ 212 connectCommitEntry(robDeqGroup(i), robBanksRdataNextLineUpdate(i)) 213 } 214 } 215 216 // In each robentry, the ftqIdx and ftqOffset belong to the first instruction that was compressed, 217 // that is Necessary when exceptions happen. 218 // Update the ftqIdx and ftqOffset to correctly notify the frontend which instructions have been committed. 219 for (i <- 0 until CommitWidth) { 220 val lastOffset = (rawInfo(i).traceBlockInPipe.iretire - (1.U << rawInfo(i).traceBlockInPipe.ilastsize.asUInt)) +& rawInfo(i).ftqOffset 221 commitInfo(i).ftqIdx := rawInfo(i).ftqIdx + lastOffset.head(1) 222 commitInfo(i).ftqOffset := lastOffset.tail(1) 223 } 224 225 // data for debug 226 // Warn: debug_* prefix should not exist in generated verilog. 227 val debug_microOp = DebugMem(RobSize, new DynInst) 228 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W))) //for debug 229 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle)) //for debug 230 val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init))) 231 val debug_lsTopdownInfo = RegInit(VecInit(Seq.fill(RobSize)(LsTopdownInfo.init))) 232 val debug_lqIdxValid = RegInit(VecInit.fill(RobSize)(false.B)) 233 val debug_lsIssued = RegInit(VecInit.fill(RobSize)(false.B)) 234 235 val isEmpty = enqPtr === deqPtr 236 val snptEnq = io.enq.canAccept && io.enq.req.map(x => x.valid && x.bits.snapshot).reduce(_ || _) 237 val snapshotPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 238 snapshotPtrVec(0) := io.enq.req(0).bits.robIdx 239 for (i <- 1 until CommitWidth) { 240 snapshotPtrVec(i) := snapshotPtrVec(0) + i.U 241 } 242 val snapshots = SnapshotGenerator(snapshotPtrVec, snptEnq, io.snpt.snptDeq, io.redirect.valid, io.snpt.flushVec) 243 val debug_lsIssue = WireDefault(debug_lsIssued) 244 debug_lsIssue(deqPtr.value) := io.debugHeadLsIssue 245 246 /** 247 * states of Rob 248 */ 249 val s_idle :: s_walk :: Nil = Enum(2) 250 val state = RegInit(s_idle) 251 252 val tip_computing :: tip_stalled :: tip_walk :: tip_drained :: Nil = Enum(4) 253 val tip_state = WireInit(0.U(4.W)) 254 when(!isEmpty) { // One or more inst in ROB 255 when(state === s_walk || io.redirect.valid) { 256 tip_state := tip_walk 257 }.elsewhen(io.commits.isCommit && PopCount(io.commits.commitValid) =/= 0.U) { 258 tip_state := tip_computing 259 }.otherwise { 260 tip_state := tip_stalled 261 } 262 }.otherwise { 263 tip_state := tip_drained 264 } 265 class TipEntry()(implicit p: Parameters) extends XSBundle { 266 val state = UInt(4.W) 267 val commits = new RobCommitIO() // info of commit 268 val redirect = Valid(new Redirect) // info of redirect 269 val redirect_pc = UInt(VAddrBits.W) // PC of the redirect uop 270 val debugLsInfo = new DebugLsInfo() 271 } 272 val tip_table = ChiselDB.createTable("Tip_" + p(XSCoreParamsKey).HartId.toString, new TipEntry) 273 val tip_data = Wire(new TipEntry()) 274 tip_data.state := tip_state 275 tip_data.commits := io.commits 276 tip_data.redirect := io.redirect 277 tip_data.redirect_pc := debug_microOp(io.redirect.bits.robIdx.value).pc 278 tip_data.debugLsInfo := debug_lsInfo(io.commits.robIdx(0).value) 279 tip_table.log(tip_data, true.B, "", clock, reset) 280 281 val exceptionGen = Module(new ExceptionGen(params)) 282 val exceptionDataRead = exceptionGen.io.state 283 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 284 val vxsatDataRead = Wire(Vec(CommitWidth, Bool())) 285 io.robDeqPtr := deqPtr 286 io.debugRobHead := debug_microOp(deqPtr.value) 287 288 /** 289 * connection of [[rab]] 290 */ 291 rab.io.redirect.valid := io.redirect.valid 292 293 rab.io.req.zip(io.enq.req).map { case (dest, src) => 294 dest.bits := src.bits 295 dest.valid := src.valid && io.enq.canAccept 296 } 297 298 val walkDestSizeDeqGroup = RegInit(VecInit(Seq.fill(CommitWidth)(0.U(log2Up(MaxUopSize + 1).W)))) 299 val realDestSizeSeq = VecInit(robDeqGroup.zip(hasCommitted).map{case (r, h) => Mux(h, 0.U, r.realDestSize)}) 300 val walkDestSizeSeq = VecInit(robDeqGroup.zip(donotNeedWalk).map{case (r, d) => Mux(d, 0.U, r.realDestSize)}) 301 val commitSizeSumSeq = VecInit((0 until CommitWidth).map(i => realDestSizeSeq.take(i + 1).reduce(_ +& _))) 302 val walkSizeSumSeq = VecInit((0 until CommitWidth).map(i => walkDestSizeSeq.take(i + 1).reduce(_ +& _))) 303 val commitSizeSumCond = VecInit(commitValidThisLine.zip(hasCommitted).map{case (c,h) => (c || h) && io.commits.isCommit}) 304 val walkSizeSumCond = VecInit(io.commits.walkValid.zip(donotNeedWalk).map{case (w,d) => (w || d) && io.commits.isWalk}) 305 val commitSizeSum = PriorityMuxDefault(commitSizeSumCond.reverse.zip(commitSizeSumSeq.reverse), 0.U) 306 val walkSizeSum = PriorityMuxDefault(walkSizeSumCond.reverse.zip(walkSizeSumSeq.reverse), 0.U) 307 308 val deqVlsExceptionNeedCommit = RegInit(false.B) 309 val deqVlsExceptionCommitSize = RegInit(0.U(log2Up(MaxUopSize + 1).W)) 310 val deqVlsCanCommit= RegInit(false.B) 311 rab.io.fromRob.commitSize := Mux(deqVlsExceptionNeedCommit, deqVlsExceptionCommitSize, commitSizeSum) 312 rab.io.fromRob.walkSize := walkSizeSum 313 rab.io.snpt := io.snpt 314 rab.io.snpt.snptEnq := snptEnq 315 316 io.rabCommits := rab.io.commits 317 io.diffCommits.foreach(_ := rab.io.diffCommits.get) 318 319 /** 320 * connection of [[vtypeBuffer]] 321 */ 322 323 vtypeBuffer.io.redirect.valid := io.redirect.valid 324 325 vtypeBuffer.io.req.zip(io.enq.req).map { case (sink, source) => 326 sink.valid := source.valid && io.enq.canAccept 327 sink.bits := source.bits 328 } 329 330 private val commitIsVTypeVec = VecInit(io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => io.commits.isCommit && valid && info.isVset }) 331 private val walkIsVTypeVec = VecInit(io.commits.walkValid.zip(walkInfo).map { case (valid, info) => io.commits.isWalk && valid && info.isVset }) 332 vtypeBuffer.io.fromRob.commitSize := PopCount(commitIsVTypeVec) 333 vtypeBuffer.io.fromRob.walkSize := PopCount(walkIsVTypeVec) 334 vtypeBuffer.io.snpt := io.snpt 335 vtypeBuffer.io.snpt.snptEnq := snptEnq 336 io.toDecode.isResumeVType := vtypeBuffer.io.toDecode.isResumeVType 337 io.toDecode.walkToArchVType := vtypeBuffer.io.toDecode.walkToArchVType 338 io.toDecode.commitVType := vtypeBuffer.io.toDecode.commitVType 339 io.toDecode.walkVType := vtypeBuffer.io.toDecode.walkVType 340 341 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 342 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 343 when(isEmpty) { 344 hasBlockBackward := false.B 345 } 346 // When any instruction commits, hasNoSpecExec should be set to false.B 347 when(io.commits.hasWalkInstr || io.commits.hasCommitInstr) { 348 hasWaitForward := false.B 349 } 350 351 // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing. 352 // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle. 353 // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts. 354 val hasWFI = RegInit(false.B) 355 io.cpu_halt := hasWFI 356 // WFI Timeout: 2^20 = 1M cycles 357 val wfi_cycles = RegInit(0.U(20.W)) 358 when(hasWFI) { 359 wfi_cycles := wfi_cycles + 1.U 360 }.elsewhen(!hasWFI && RegNext(hasWFI)) { 361 wfi_cycles := 0.U 362 } 363 val wfi_timeout = wfi_cycles.andR 364 when(RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) { 365 hasWFI := false.B 366 } 367 368 for (i <- 0 until RenameWidth) { 369 // we don't check whether io.redirect is valid here since redirect has higher priority 370 when(canEnqueue(i)) { 371 val enqUop = io.enq.req(i).bits 372 val enqIndex = allocatePtrVec(i).value 373 // store uop in data module and debug_microOp Vec 374 debug_microOp(enqIndex) := enqUop 375 debug_microOp(enqIndex).debugInfo.dispatchTime := timer 376 debug_microOp(enqIndex).debugInfo.enqRsTime := timer 377 debug_microOp(enqIndex).debugInfo.selectTime := timer 378 debug_microOp(enqIndex).debugInfo.issueTime := timer 379 debug_microOp(enqIndex).debugInfo.writebackTime := timer 380 debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer 381 debug_microOp(enqIndex).debugInfo.tlbRespTime := timer 382 debug_lsInfo(enqIndex) := DebugLsInfo.init 383 debug_lsTopdownInfo(enqIndex) := LsTopdownInfo.init 384 debug_lqIdxValid(enqIndex) := false.B 385 debug_lsIssued(enqIndex) := false.B 386 when (enqUop.waitForward) { 387 hasWaitForward := true.B 388 } 389 val enqTriggerActionIsDebugMode = TriggerAction.isDmode(io.enq.req(i).bits.trigger) 390 val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR 391 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 392 when(!enqTriggerActionIsDebugMode && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe)) { 393 doingSvinval := true.B 394 } 395 // the end instruction of Svinval enqs so clear doingSvinval 396 when(!enqTriggerActionIsDebugMode && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe)) { 397 doingSvinval := false.B 398 } 399 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 400 assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe) || enqUop.isNotSvinval)) 401 when(enqUop.isWFI && !enqHasException && !enqTriggerActionIsDebugMode) { 402 hasWFI := true.B 403 } 404 405 robEntries(enqIndex).mmio := false.B 406 robEntries(enqIndex).vls := enqUop.vlsInstr 407 } 408 } 409 410 for (i <- 0 until RenameWidth) { 411 val enqUop = io.enq.req(i) 412 when(enqUop.valid && enqUop.bits.blockBackward && io.enq.canAccept) { 413 hasBlockBackward := true.B 414 } 415 } 416 417 val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(req => req.valid && req.bits.firstUop)), 0.U) 418 io.enq.isEmpty := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR) 419 420 when(!io.wfi_enable) { 421 hasWFI := false.B 422 } 423 // sel vsetvl's flush position 424 val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3) 425 val vsetvlState = RegInit(vs_idle) 426 427 val firstVInstrFtqPtr = RegInit(0.U.asTypeOf(new FtqPtr)) 428 val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W))) 429 val firstVInstrRobIdx = RegInit(0.U.asTypeOf(new RobPtr)) 430 431 val enq0 = io.enq.req(0) 432 val enq0IsVset = enq0.bits.isVset && enq0.bits.lastUop && canEnqueue(0) 433 val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe 434 val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map { case (req, fire) => FuType.isVArith(req.bits.fuType) && fire } 435 // for vs_idle 436 val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType))) 437 // for vs_waitVinstr 438 val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1) 439 val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req) 440 when(vsetvlState === vs_idle) { 441 firstVInstrFtqPtr := firstVInstrIdle.bits.ftqPtr 442 firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset 443 firstVInstrRobIdx := firstVInstrIdle.bits.robIdx 444 }.elsewhen(vsetvlState === vs_waitVinstr) { 445 when(Cat(enqIsVInstrOrVset).orR) { 446 firstVInstrFtqPtr := firstVInstrWait.bits.ftqPtr 447 firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset 448 firstVInstrRobIdx := firstVInstrWait.bits.robIdx 449 } 450 } 451 452 val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR 453 when(vsetvlState === vs_idle && !io.redirect.valid) { 454 when(enq0IsVsetFlush) { 455 vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr) 456 } 457 }.elsewhen(vsetvlState === vs_waitVinstr) { 458 when(io.redirect.valid) { 459 vsetvlState := vs_idle 460 }.elsewhen(Cat(enqIsVInstrOrVset).orR) { 461 vsetvlState := vs_waitFlush 462 } 463 }.elsewhen(vsetvlState === vs_waitFlush) { 464 when(io.redirect.valid) { 465 vsetvlState := vs_idle 466 } 467 } 468 469 // lqEnq 470 io.debugEnqLsq.needAlloc.map(_(0)).zip(io.debugEnqLsq.req).foreach { case (alloc, req) => 471 when(io.debugEnqLsq.canAccept && alloc && req.valid) { 472 debug_microOp(req.bits.robIdx.value).lqIdx := req.bits.lqIdx 473 debug_lqIdxValid(req.bits.robIdx.value) := true.B 474 } 475 } 476 477 // lsIssue 478 when(io.debugHeadLsIssue) { 479 debug_lsIssued(deqPtr.value) := true.B 480 } 481 482 /** 483 * Writeback (from execution units) 484 */ 485 for (wb <- exuWBs) { 486 when(wb.valid) { 487 val wbIdx = wb.bits.robIdx.value 488 debug_exuData(wbIdx) := wb.bits.data(0) 489 debug_exuDebug(wbIdx) := wb.bits.debug 490 debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime 491 debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime 492 debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime 493 debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime 494 495 // debug for lqidx and sqidx 496 debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr)) 497 debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr)) 498 499 val debug_Uop = debug_microOp(wbIdx) 500 XSInfo(true.B, 501 p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " + 502 p"data 0x${Hexadecimal(wb.bits.data(0))} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " + 503 p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.robIdx}\n" 504 ) 505 } 506 } 507 508 val writebackNum = PopCount(exuWBs.map(_.valid)) 509 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 510 511 for (i <- 0 until LoadPipelineWidth) { 512 when(RegNext(io.lsq.mmio(i))) { 513 robEntries(RegEnable(io.lsq.uop(i).robIdx, io.lsq.mmio(i)).value).mmio := true.B 514 } 515 } 516 517 518 /** 519 * RedirectOut: Interrupt and Exceptions 520 */ 521 val deqDispatchData = robEntries(deqPtr.value) 522 val debug_deqUop = debug_microOp(deqPtr.value) 523 524 val deqPtrEntry = robDeqGroup(deqPtr.value(bankAddrWidth-1,0)) 525 val deqPtrEntryValid = deqPtrEntry.commit_v 526 val deqHasFlushed = RegInit(false.B) 527 val intrBitSetReg = RegNext(io.csr.intrBitSet) 528 val intrEnable = intrBitSetReg && !hasWaitForward && deqPtrEntry.interrupt_safe && !deqHasFlushed 529 val deqNeedFlush = deqPtrEntry.needFlush && deqPtrEntry.commit_v && deqPtrEntry.commit_w 530 val deqHitExceptionGenState = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 531 val deqNeedFlushAndHitExceptionGenState = deqNeedFlush && deqHitExceptionGenState 532 val exceptionGenStateIsException = exceptionDataRead.bits.exceptionVec.asUInt.orR || exceptionDataRead.bits.singleStep || TriggerAction.isDmode(exceptionDataRead.bits.trigger) 533 val deqHasException = deqNeedFlushAndHitExceptionGenState && exceptionGenStateIsException 534 val deqHasFlushPipe = deqNeedFlushAndHitExceptionGenState && exceptionDataRead.bits.flushPipe && !deqHasException && (!deqPtrEntry.isVls || RegNext(RegNext(deqPtrEntry.commit_w))) 535 val deqHasReplayInst = deqNeedFlushAndHitExceptionGenState && exceptionDataRead.bits.replayInst 536 val deqIsVlsException = deqHasException && deqPtrEntry.isVls 537 // delay 2 cycle wait exceptionGen out 538 deqVlsCanCommit := RegNext(RegNext(deqIsVlsException && deqPtrEntry.commit_w)) 539 when(deqIsVlsException && deqVlsCanCommit){ 540 deqVlsExceptionCommitSize := deqPtrEntry.realDestSize 541 deqVlsExceptionNeedCommit := true.B 542 }.elsewhen(state === s_idle) { 543 deqVlsExceptionNeedCommit := false.B 544 } 545 546 XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n") 547 XSDebug(deqHasException && TriggerAction.isDmode(exceptionDataRead.bits.trigger), "Debug Mode: Deq has trigger entry debug Mode\n") 548 549 val isFlushPipe = deqPtrEntry.commit_w && (deqHasFlushPipe || deqHasReplayInst) 550 551 val isVsetFlushPipe = deqPtrEntry.commit_w && deqHasFlushPipe && exceptionDataRead.bits.isVset 552 // val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush) 553 val needModifyFtqIdxOffset = false.B 554 io.isVsetFlushPipe := isVsetFlushPipe 555 // io.flushOut will trigger redirect at the next cycle. 556 // Block any redirect or commit at the next cycle. 557 val lastCycleFlush = RegNext(io.flushOut.valid) 558 559 io.flushOut.valid := (state === s_idle) && deqPtrEntryValid && (intrEnable || deqHasException && (!deqIsVlsException || deqVlsCanCommit) || isFlushPipe) && !lastCycleFlush 560 io.flushOut.bits := DontCare 561 io.flushOut.bits.isRVC := deqDispatchData.isRVC 562 io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr) 563 io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx) 564 io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset) 565 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || deqHasException || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next" 566 io.flushOut.bits.interrupt := true.B 567 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 568 XSPerfAccumulate("exception_num", io.flushOut.valid && deqHasException) 569 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 570 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 571 572 val exceptionHappen = (state === s_idle) && deqPtrEntryValid && (intrEnable || deqHasException && (!deqIsVlsException || deqVlsCanCommit)) && !lastCycleFlush 573 io.exception.valid := RegNext(exceptionHappen) 574 io.exception.bits.pc := RegEnable(debug_deqUop.pc, exceptionHappen) 575 io.exception.bits.gpaddr := io.readGPAMemData.gpaddr 576 io.exception.bits.isForVSnonLeafPTE := io.readGPAMemData.isForVSnonLeafPTE 577 io.exception.bits.instr := RegEnable(debug_deqUop.instr, exceptionHappen) 578 io.exception.bits.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 579 io.exception.bits.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 580 io.exception.bits.isFetchMalAddr := RegEnable(exceptionDataRead.bits.isFetchMalAddr && deqHasException, exceptionHappen) 581 io.exception.bits.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 582 io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 583 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 584 io.exception.bits.isHls := RegEnable(deqDispatchData.isHls, exceptionHappen) 585 io.exception.bits.vls := RegEnable(robEntries(deqPtr.value).vls, exceptionHappen) 586 io.exception.bits.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen) 587 588 // data will be one cycle after valid 589 io.readGPAMemAddr.valid := exceptionHappen 590 io.readGPAMemAddr.bits.ftqPtr := exceptionDataRead.bits.ftqPtr 591 io.readGPAMemAddr.bits.ftqOffset := exceptionDataRead.bits.ftqOffset 592 593 XSDebug(io.flushOut.valid, 594 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " + 595 p"excp $deqHasException flushPipe $isFlushPipe " + 596 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget.pc)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 597 598 599 /** 600 * Commits (and walk) 601 * They share the same width. 602 */ 603 // T redirect.valid, T+1 use walkPtrVec read robEntries, T+2 start walk, shouldWalkVec used in T+2 604 val shouldWalkVec = Wire(Vec(CommitWidth,Bool())) 605 val walkingPtrVec = RegNext(walkPtrVec) 606 when(io.redirect.valid){ 607 shouldWalkVec := 0.U.asTypeOf(shouldWalkVec) 608 }.elsewhen(RegNext(io.redirect.valid)){ 609 shouldWalkVec := 0.U.asTypeOf(shouldWalkVec) 610 }.elsewhen(state === s_walk){ 611 shouldWalkVec := VecInit(walkingPtrVec.map(_ <= lastWalkPtr).zip(donotNeedWalk).map(x => x._1 && !x._2)) 612 }.otherwise( 613 shouldWalkVec := 0.U.asTypeOf(shouldWalkVec) 614 ) 615 val walkFinished = walkPtrTrue > lastWalkPtr 616 rab.io.fromRob.walkEnd := state === s_walk && walkFinished 617 vtypeBuffer.io.fromRob.walkEnd := state === s_walk && walkFinished 618 619 require(RenameWidth <= CommitWidth) 620 621 // wiring to csr 622 val (wflags, dirtyFs) = (0 until CommitWidth).map(i => { 623 val v = io.commits.commitValid(i) 624 val info = io.commits.info(i) 625 (v & info.wflags, v & info.dirtyFs) 626 }).unzip 627 val fflags = Wire(Valid(UInt(5.W))) 628 fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR 629 fflags.bits := wflags.zip(fflagsDataRead).map({ 630 case (w, f) => Mux(w, f, 0.U) 631 }).reduce(_ | _) 632 val dirtyVs = (0 until CommitWidth).map(i => { 633 val v = io.commits.commitValid(i) 634 val info = io.commits.info(i) 635 v & info.dirtyVs 636 }) 637 val dirty_fs = io.commits.isCommit && VecInit(dirtyFs).asUInt.orR 638 val dirty_vs = io.commits.isCommit && VecInit(dirtyVs).asUInt.orR 639 640 val resetVstart = dirty_vs && !io.vstartIsZero 641 642 io.csr.vstart.valid := RegNext(Mux(exceptionHappen, exceptionDataRead.bits.vstartEn, resetVstart)) 643 io.csr.vstart.bits := RegNext(Mux(exceptionHappen, exceptionDataRead.bits.vstart, 0.U)) 644 645 val vxsat = Wire(Valid(Bool())) 646 vxsat.valid := io.commits.isCommit && vxsat.bits 647 vxsat.bits := io.commits.commitValid.zip(vxsatDataRead).map { 648 case (valid, vxsat) => valid & vxsat 649 }.reduce(_ | _) 650 651 // when mispredict branches writeback, stop commit in the next 2 cycles 652 // TODO: don't check all exu write back 653 val misPredWb = Cat(VecInit(redirectWBs.map(wb => 654 wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid 655 ).toSeq)).orR 656 val misPredBlockCounter = Reg(UInt(3.W)) 657 misPredBlockCounter := Mux(misPredWb, 658 "b111".U, 659 misPredBlockCounter >> 1.U 660 ) 661 val misPredBlock = misPredBlockCounter(0) 662 val deqFlushBlockCounter = Reg(UInt(3.W)) 663 val deqFlushBlock = deqFlushBlockCounter(0) 664 val deqHasCommitted = io.commits.isCommit && io.commits.commitValid(0) 665 val deqHitRedirectReg = RegNext(io.redirect.valid && io.redirect.bits.robIdx === deqPtr) 666 when(deqNeedFlush && deqHitRedirectReg){ 667 deqFlushBlockCounter := "b111".U 668 }.otherwise{ 669 deqFlushBlockCounter := deqFlushBlockCounter >> 1.U 670 } 671 when(deqHasCommitted){ 672 deqHasFlushed := false.B 673 }.elsewhen(deqNeedFlush && io.flushOut.valid && !io.flushOut.bits.flushItself()){ 674 deqHasFlushed := true.B 675 } 676 val blockCommit = misPredBlock || lastCycleFlush || hasWFI || io.redirect.valid || (deqNeedFlush && !deqHasFlushed) || deqFlushBlock 677 678 io.commits.isWalk := state === s_walk 679 io.commits.isCommit := state === s_idle && !blockCommit 680 681 val walk_v = VecInit(walkingPtrVec.map(ptr => robEntries(ptr.value).valid)) 682 val commit_vDeqGroup = VecInit(robDeqGroup.map(_.commit_v)) 683 val commit_wDeqGroup = VecInit(robDeqGroup.map(_.commit_w)) 684 val realCommitLast = deqPtrVec(0).lineHeadPtr + Fill(bankAddrWidth, 1.U) 685 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_wDeqGroup(i) && !hasCommitted(i))) 686 val allowOnlyOneCommit = VecInit(robDeqGroup.map(x => x.commit_v && x.needFlush)).asUInt.orR || intrBitSetReg 687 // for instructions that may block others, we don't allow them to commit 688 io.commits.commitValid := PriorityMux(commitValidThisLine, (0 until CommitWidth).map(i => (commitValidThisLine.asUInt >> i).asUInt.asTypeOf(io.commits.commitValid))) 689 690 for (i <- 0 until CommitWidth) { 691 // defaults: state === s_idle and instructions commit 692 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 693 val isBlocked = intrEnable || (deqNeedFlush && !deqHasFlushed && !deqHasFlushPipe) 694 val isBlockedByOlder = if (i != 0) commit_block.asUInt(i, 0).orR || allowOnlyOneCommit && !hasCommitted.asUInt(i - 1, 0).andR else false.B 695 commitValidThisLine(i) := commit_vDeqGroup(i) && commit_wDeqGroup(i) && !isBlocked && !isBlockedByOlder && !hasCommitted(i) 696 io.commits.info(i) := commitInfo(i) 697 io.commits.robIdx(i) := deqPtrVec(i) 698 699 io.commits.walkValid(i) := shouldWalkVec(i) 700 when(state === s_walk) { 701 when(io.commits.isWalk && state === s_walk && shouldWalkVec(i)) { 702 XSError(!walk_v(i), s"The walking entry($i) should be valid\n") 703 } 704 } 705 706 XSInfo(io.commits.isCommit && io.commits.commitValid(i), 707 "retired pc %x wen %d ldest %d pdest %x data %x fflags: %b vxsat: %b\n", 708 debug_microOp(deqPtrVec(i).value).pc, 709 io.commits.info(i).rfWen, 710 io.commits.info(i).debug_ldest.getOrElse(0.U), 711 io.commits.info(i).debug_pdest.getOrElse(0.U), 712 debug_exuData(deqPtrVec(i).value), 713 fflagsDataRead(i), 714 vxsatDataRead(i) 715 ) 716 XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n", 717 debug_microOp(walkPtrVec(i).value).pc, 718 io.commits.info(i).rfWen, 719 io.commits.info(i).debug_ldest.getOrElse(0.U), 720 debug_exuData(walkPtrVec(i).value) 721 ) 722 } 723 724 // sync fflags/dirty_fs/vxsat to csr 725 io.csr.fflags := RegNextWithEnable(fflags) 726 io.csr.dirty_fs := GatedValidRegNext(dirty_fs) 727 io.csr.dirty_vs := GatedValidRegNext(dirty_vs) 728 io.csr.vxsat := RegNextWithEnable(vxsat) 729 730 // commit load/store to lsq 731 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 732 // TODO: Check if meet the require that only set scommit when commit scala store uop 733 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE && !robEntries(deqPtrVec(i).value).vls )) 734 val deqPtrVec_next = Wire(Vec(CommitWidth, Output(new RobPtr))) 735 io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U)) 736 io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U)) 737 // indicate a pending load or store 738 io.lsq.pendingUncacheld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && robEntries(deqPtr.value).valid && robEntries(deqPtr.value).mmio) 739 io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && robEntries(deqPtr.value).valid) 740 // TODO: Check if need deassert pendingst when it is vst 741 io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && robEntries(deqPtr.value).valid) 742 // TODO: Check if set correctly when vector store is at the head of ROB 743 io.lsq.pendingVst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && robEntries(deqPtr.value).valid && robEntries(deqPtr.value).vls) 744 io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0)) 745 io.lsq.pendingPtr := RegNext(deqPtr) 746 io.lsq.pendingPtrNext := RegNext(deqPtrVec_next.head) 747 748 /** 749 * state changes 750 * (1) redirect: switch to s_walk 751 * (2) walk: when walking comes to the end, switch to s_idle 752 */ 753 val state_next = Mux( 754 io.redirect.valid || RegNext(io.redirect.valid), s_walk, 755 Mux( 756 state === s_walk && walkFinished && rab.io.status.walkEnd && vtypeBuffer.io.status.walkEnd, s_idle, 757 state 758 ) 759 ) 760 XSPerfAccumulate("s_idle_to_idle", state === s_idle && state_next === s_idle) 761 XSPerfAccumulate("s_idle_to_walk", state === s_idle && state_next === s_walk) 762 XSPerfAccumulate("s_walk_to_idle", state === s_walk && state_next === s_idle) 763 XSPerfAccumulate("s_walk_to_walk", state === s_walk && state_next === s_walk) 764 state := state_next 765 766 /** 767 * pointers and counters 768 */ 769 val deqPtrGenModule = Module(new NewRobDeqPtrWrapper) 770 deqPtrGenModule.io.state := state 771 deqPtrGenModule.io.deq_v := commit_vDeqGroup 772 deqPtrGenModule.io.deq_w := commit_wDeqGroup 773 deqPtrGenModule.io.exception_state := exceptionDataRead 774 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 775 deqPtrGenModule.io.hasNoSpecExec := hasWaitForward 776 deqPtrGenModule.io.allowOnlyOneCommit := allowOnlyOneCommit 777 deqPtrGenModule.io.interrupt_safe := robDeqGroup(deqPtr.value(bankAddrWidth-1,0)).interrupt_safe 778 deqPtrGenModule.io.blockCommit := blockCommit 779 deqPtrGenModule.io.hasCommitted := hasCommitted 780 deqPtrGenModule.io.allCommitted := allCommitted 781 deqPtrVec := deqPtrGenModule.io.out 782 deqPtrVec_next := deqPtrGenModule.io.next_out 783 784 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 785 enqPtrGenModule.io.redirect := io.redirect 786 enqPtrGenModule.io.allowEnqueue := allowEnqueue && rab.io.canEnq 787 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 788 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop)) 789 enqPtrVec := enqPtrGenModule.io.out 790 791 // next walkPtrVec: 792 // (1) redirect occurs: update according to state 793 // (2) walk: move forwards 794 val deqPtrReadBank = deqPtrVec_next(0).lineHeadPtr 795 val deqPtrVecForWalk = VecInit((0 until CommitWidth).map(i => deqPtrReadBank + i.U)) 796 val snapPtrReadBank = snapshots(io.snpt.snptSelect)(0).lineHeadPtr 797 val snapPtrVecForWalk = VecInit((0 until CommitWidth).map(i => snapPtrReadBank + i.U)) 798 val walkPtrVec_next: Vec[RobPtr] = Mux(io.redirect.valid, 799 Mux(io.snpt.useSnpt, snapPtrVecForWalk, deqPtrVecForWalk), 800 Mux((state === s_walk) && !walkFinished, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec) 801 ) 802 val walkPtrTrue_next: RobPtr = Mux(io.redirect.valid, 803 Mux(io.snpt.useSnpt, snapshots(io.snpt.snptSelect)(0), deqPtrVec_next(0)), 804 Mux((state === s_walk) && !walkFinished, walkPtrVec_next.head, walkPtrTrue) 805 ) 806 walkPtrHead := walkPtrVec_next.head 807 walkPtrVec := walkPtrVec_next 808 walkPtrTrue := walkPtrTrue_next 809 // T io.redirect.valid, T+1 walkPtrLowBits update, T+2 donotNeedWalk update 810 val walkPtrLowBits = Reg(UInt(bankAddrWidth.W)) 811 when(io.redirect.valid){ 812 walkPtrLowBits := Mux(io.snpt.useSnpt, snapshots(io.snpt.snptSelect)(0).value(bankAddrWidth-1, 0), deqPtrVec_next(0).value(bankAddrWidth-1, 0)) 813 } 814 when(io.redirect.valid) { 815 donotNeedWalk := Fill(donotNeedWalk.length, true.B).asTypeOf(donotNeedWalk) 816 }.elsewhen(RegNext(io.redirect.valid)){ 817 donotNeedWalk := (0 until CommitWidth).map(i => (i.U < walkPtrLowBits)) 818 }.otherwise{ 819 donotNeedWalk := 0.U.asTypeOf(donotNeedWalk) 820 } 821 walkDestSizeDeqGroup.zip(walkPtrVec_next).map { 822 case (reg, ptrNext) => reg := robEntries(deqPtr.value).realDestSize 823 } 824 val numValidEntries = distanceBetween(enqPtr, deqPtr) 825 val commitCnt = PopCount(io.commits.commitValid) 826 827 allowEnqueue := numValidEntries + dispatchNum <= (RobSize - CommitWidth).U 828 829 val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0)) 830 when(io.redirect.valid) { 831 lastWalkPtr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx - 1.U, io.redirect.bits.robIdx) 832 } 833 834 835 /** 836 * States 837 * We put all the stage bits changes here. 838 * 839 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 840 * All states: (1) valid; (2) writebacked; (3) flagBkup 841 */ 842 843 val deqPtrGroup = Wire(Vec(2 * CommitWidth, new RobPtr)) 844 deqPtrGroup.zipWithIndex.map { case (deq, i) => deq := deqPtrVec(0) + i.U } 845 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 846 847 val redirectValidReg = RegNext(io.redirect.valid) 848 val redirectBegin = Reg(UInt(log2Up(RobSize).W)) 849 val redirectEnd = Reg(UInt(log2Up(RobSize).W)) 850 when(io.redirect.valid){ 851 redirectBegin := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx.value - 1.U, io.redirect.bits.robIdx.value) 852 redirectEnd := enqPtr.value 853 } 854 855 // update robEntries valid 856 for (i <- 0 until RobSize) { 857 val enqOH = VecInit(canEnqueue.zip(allocatePtrVec.map(_.value === i.U)).map(x => x._1 && x._2)) 858 val commitCond = io.commits.isCommit && io.commits.commitValid.zip(deqPtrVec.map(_.value === i.U)).map(x => x._1 && x._2).reduce(_ || _) 859 assert(PopCount(enqOH) < 2.U, s"robEntries$i enqOH is not one hot") 860 val needFlush = redirectValidReg && Mux( 861 redirectEnd > redirectBegin, 862 (i.U > redirectBegin) && (i.U < redirectEnd), 863 (i.U > redirectBegin) || (i.U < redirectEnd) 864 ) 865 when(commitCond) { 866 robEntries(i).valid := false.B 867 }.elsewhen(enqOH.asUInt.orR && !io.redirect.valid) { 868 robEntries(i).valid := true.B 869 }.elsewhen(needFlush){ 870 robEntries(i).valid := false.B 871 } 872 } 873 874 // debug_inst update 875 for (i <- 0 until (LduCnt + StaCnt)) { 876 debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i)) 877 debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i)) 878 debug_lsInfo(io.debug_ls.debugLsInfo(i).s3_robIdx).s3SignalEnable(io.debug_ls.debugLsInfo(i)) 879 } 880 for (i <- 0 until LduCnt) { 881 debug_lsTopdownInfo(io.lsTopdownInfo(i).s1.robIdx).s1SignalEnable(io.lsTopdownInfo(i)) 882 debug_lsTopdownInfo(io.lsTopdownInfo(i).s2.robIdx).s2SignalEnable(io.lsTopdownInfo(i)) 883 } 884 885 // status field: writebacked 886 // enqueue logic set 6 writebacked to false 887 for (i <- 0 until RenameWidth) { 888 when(canEnqueue(i)) { 889 val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec).asUInt.orR 890 val enqTriggerActionIsDebugMode = TriggerAction.isDmode(io.enq.req(i).bits.trigger) 891 val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove 892 val isStu = FuType.isStore(io.enq.req(i).bits.fuType) 893 robEntries(allocatePtrVec(i).value).commitTrigger := enqIsWritebacked && !enqHasException && !enqTriggerActionIsDebugMode && !isStu 894 } 895 } 896 when(exceptionGen.io.out.valid) { 897 val wbIdx = exceptionGen.io.out.bits.robIdx.value 898 robEntries(wbIdx).commitTrigger := true.B 899 } 900 901 // writeback logic set numWbPorts writebacked to true 902 val blockWbSeq = Wire(Vec(exuWBs.length, Bool())) 903 blockWbSeq.map(_ := false.B) 904 for ((wb, blockWb) <- exuWBs.zip(blockWbSeq)) { 905 when(wb.valid) { 906 val wbIdx = wb.bits.robIdx.value 907 val wbHasException = wb.bits.exceptionVec.getOrElse(0.U).asUInt.orR 908 val wbTriggerActionIsDebugMode = TriggerAction.isDmode(wb.bits.trigger.getOrElse(TriggerAction.None)) 909 val wbHasFlushPipe = wb.bits.flushPipe.getOrElse(false.B) 910 val wbHasReplayInst = wb.bits.replay.getOrElse(false.B) //Todo: && wb.bits.replayInst 911 blockWb := wbHasException || wbHasFlushPipe || wbHasReplayInst || wbTriggerActionIsDebugMode 912 robEntries(wbIdx).commitTrigger := !blockWb 913 } 914 } 915 916 // if the first uop of an instruction is valid , write writebackedCounter 917 val uopEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid) 918 val instEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid && req.bits.firstUop) 919 val enqNeedWriteRFSeq = io.enq.req.map(_.bits.needWriteRf) 920 val enqRobIdxSeq = io.enq.req.map(req => req.bits.robIdx.value) 921 val enqUopNumVec = VecInit(io.enq.req.map(req => req.bits.numUops)) 922 val enqWBNumVec = VecInit(io.enq.req.map(req => req.bits.numWB)) 923 val enqEliminatedMoveVec = VecInit(io.enq.req.map(req => req.bits.eliminatedMove)) 924 925 private val enqWriteStdVec: Vec[Bool] = VecInit(io.enq.req.map { 926 req => FuType.isAMO(req.bits.fuType) || FuType.isStore(req.bits.fuType) 927 }) 928 val fflags_wb = fflagsWBs 929 val vxsat_wb = vxsatWBs 930 for (i <- 0 until RobSize) { 931 932 val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === i.U) 933 val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map { case (valid, isMatch) => valid && isMatch } 934 val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map { case (valid, isMatch) => valid && isMatch } 935 val instCanEnqFlag = Cat(instCanEnqSeq).orR 936 val isFirstEnq = !robEntries(i).valid && instCanEnqFlag 937 val realDestEnqNum = PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map { case (writeFlag, valid) => writeFlag && valid }) 938 when(isFirstEnq){ 939 robEntries(i).realDestSize := realDestEnqNum 940 }.elsewhen(robEntries(i).valid && Cat(uopCanEnqSeq).orR){ 941 robEntries(i).realDestSize := robEntries(i).realDestSize + realDestEnqNum 942 } 943 val enqUopNum = PriorityMux(instCanEnqSeq, enqUopNumVec) 944 val enqWBNum = PriorityMux(instCanEnqSeq, enqWBNumVec) 945 val enqEliminatedMove = PriorityMux(instCanEnqSeq, enqEliminatedMoveVec) 946 val enqWriteStd = PriorityMux(instCanEnqSeq, enqWriteStdVec) 947 948 val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 949 val canWbNoBlockSeq = canWbSeq.zip(blockWbSeq).map { case (canWb, blockWb) => canWb && !blockWb } 950 val canStdWbSeq = VecInit(stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)) 951 val wbCnt = Mux1H(canWbSeq, io.writebackNums.map(_.bits)) 952 953 val canWbExceptionSeq = exceptionWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 954 val needFlush = robEntries(i).needFlush 955 val needFlushWriteBack = Wire(Bool()) 956 needFlushWriteBack := Mux1H(canWbExceptionSeq, io.writebackNeedFlush) 957 when(robEntries(i).valid){ 958 needFlush := needFlush || needFlushWriteBack 959 } 960 961 when(robEntries(i).valid && (needFlush || needFlushWriteBack)) { 962 // exception flush 963 robEntries(i).uopNum := robEntries(i).uopNum - wbCnt 964 robEntries(i).stdWritebacked := true.B 965 }.elsewhen(!robEntries(i).valid && instCanEnqFlag) { 966 // enq set num of uops 967 robEntries(i).uopNum := enqWBNum 968 robEntries(i).stdWritebacked := Mux(enqWriteStd, false.B, true.B) 969 }.elsewhen(robEntries(i).valid) { 970 // update by writing back 971 robEntries(i).uopNum := robEntries(i).uopNum - wbCnt 972 assert(!(robEntries(i).uopNum - wbCnt > robEntries(i).uopNum), s"robEntries $i uopNum is overflow!") 973 when(canStdWbSeq.asUInt.orR) { 974 robEntries(i).stdWritebacked := true.B 975 } 976 } 977 978 val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U && writeback.bits.wflags.getOrElse(false.B)) 979 val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.fold(false.B)(_ | _) 980 when(isFirstEnq) { 981 robEntries(i).fflags := 0.U 982 }.elsewhen(fflagsRes.orR) { 983 robEntries(i).fflags := robEntries(i).fflags | fflagsRes 984 } 985 986 val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 987 val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.fold(false.B)(_ | _) 988 when(isFirstEnq) { 989 robEntries(i).vxsat := 0.U 990 }.elsewhen(vxsatRes.orR) { 991 robEntries(i).vxsat := robEntries(i).vxsat | vxsatRes 992 } 993 994 // trace 995 val taken = branchWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U && writeback.bits.redirect.get.bits.cfiUpdate.taken).reduce(_ || _) 996 val xret = csrWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U && io.csr.isXRet).reduce(_ || _) 997 998 when(xret){ 999 robEntries(i).traceBlockInPipe.itype := Itype.ExpIntReturn 1000 }.elsewhen(Itype.isBranchType(robEntries(i).traceBlockInPipe.itype)){ 1001 // BranchType code(itype = 5) must be correctly replaced! 1002 robEntries(i).traceBlockInPipe.itype := Mux(taken, Itype.Taken, Itype.NonTaken) 1003 } 1004 } 1005 1006 // begin update robBanksRdata 1007 val robBanksRdata = VecInit(robBanksRdataThisLine ++ robBanksRdataNextLine) 1008 val needUpdate = Wire(Vec(2 * CommitWidth, new RobEntryBundle)) 1009 needUpdate := VecInit(robBanksRdataThisLine ++ robBanksRdataNextLine) 1010 val needUpdateRobIdx = robIdxThisLine ++ robIdxNextLine 1011 for (i <- 0 until 2 * CommitWidth) { 1012 val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === needUpdateRobIdx(i)) 1013 val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map { case (valid, isMatch) => valid && isMatch } 1014 val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map { case (valid, isMatch) => valid && isMatch } 1015 val instCanEnqFlag = Cat(instCanEnqSeq).orR 1016 val realDestEnqNum = PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map { case (writeFlag, valid) => writeFlag && valid }) 1017 when(!needUpdate(i).valid && instCanEnqFlag) { 1018 needUpdate(i).realDestSize := realDestEnqNum 1019 }.elsewhen(needUpdate(i).valid && instCanEnqFlag) { 1020 needUpdate(i).realDestSize := robBanksRdata(i).realDestSize + realDestEnqNum 1021 } 1022 val enqUopNum = PriorityMux(instCanEnqSeq, enqUopNumVec) 1023 val enqWBNum = PriorityMux(instCanEnqSeq, enqWBNumVec) 1024 val enqEliminatedMove = PriorityMux(instCanEnqSeq, enqEliminatedMoveVec) 1025 val enqWriteStd = PriorityMux(instCanEnqSeq, enqWriteStdVec) 1026 1027 val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === needUpdateRobIdx(i)) 1028 val canWbNoBlockSeq = canWbSeq.zip(blockWbSeq).map { case (canWb, blockWb) => canWb && !blockWb } 1029 val canStdWbSeq = VecInit(stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === needUpdateRobIdx(i))) 1030 val wbCnt = Mux1H(canWbSeq, io.writebackNums.map(_.bits)) 1031 1032 val canWbExceptionSeq = exceptionWBs.map(writeback => writeback.valid && (writeback.bits.robIdx.value === needUpdateRobIdx(i))) 1033 val needFlush = robBanksRdata(i).needFlush 1034 val needFlushWriteBack = Wire(Bool()) 1035 needFlushWriteBack := Mux1H(canWbExceptionSeq, io.writebackNeedFlush) 1036 when(needUpdate(i).valid) { 1037 needUpdate(i).needFlush := needFlush || needFlushWriteBack 1038 } 1039 1040 when(needUpdate(i).valid && (needFlush || needFlushWriteBack)) { 1041 // exception flush 1042 needUpdate(i).uopNum := robBanksRdata(i).uopNum - wbCnt 1043 needUpdate(i).stdWritebacked := true.B 1044 }.elsewhen(!needUpdate(i).valid && instCanEnqFlag) { 1045 // enq set num of uops 1046 needUpdate(i).uopNum := enqWBNum 1047 needUpdate(i).stdWritebacked := Mux(enqWriteStd, false.B, true.B) 1048 }.elsewhen(needUpdate(i).valid) { 1049 // update by writing back 1050 needUpdate(i).uopNum := robBanksRdata(i).uopNum - wbCnt 1051 when(canStdWbSeq.asUInt.orR) { 1052 needUpdate(i).stdWritebacked := true.B 1053 } 1054 } 1055 1056 val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === needUpdateRobIdx(i) && writeback.bits.wflags.getOrElse(false.B)) 1057 val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.fold(false.B)(_ | _) 1058 needUpdate(i).fflags := Mux(!robBanksRdata(i).valid && instCanEnqFlag, 0.U, robBanksRdata(i).fflags | fflagsRes) 1059 1060 val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === needUpdateRobIdx(i)) 1061 val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.fold(false.B)(_ | _) 1062 needUpdate(i).vxsat := Mux(!robBanksRdata(i).valid && instCanEnqFlag, 0.U, robBanksRdata(i).vxsat | vxsatRes) 1063 } 1064 robBanksRdataThisLineUpdate := VecInit(needUpdate.take(8)) 1065 robBanksRdataNextLineUpdate := VecInit(needUpdate.drop(8)) 1066 // end update robBanksRdata 1067 1068 // interrupt_safe 1069 for (i <- 0 until RenameWidth) { 1070 // We RegNext the updates for better timing. 1071 // Note that instructions won't change the system's states in this cycle. 1072 when(RegNext(canEnqueue(i))) { 1073 // For now, we allow non-load-store instructions to trigger interrupts 1074 // For MMIO instructions, they should not trigger interrupts since they may 1075 // be sent to lower level before it writes back. 1076 // However, we cannot determine whether a load/store instruction is MMIO. 1077 // Thus, we don't allow load/store instructions to trigger an interrupt. 1078 // TODO: support non-MMIO load-store instructions to trigger interrupts 1079 val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType) && !FuType.isFence(io.enq.req(i).bits.fuType) && !FuType.isCsr(io.enq.req(i).bits.fuType) 1080 robEntries(RegEnable(allocatePtrVec(i).value, canEnqueue(i))).interrupt_safe := RegEnable(allow_interrupts, canEnqueue(i)) 1081 } 1082 } 1083 1084 /** 1085 * read and write of data modules 1086 */ 1087 val commitReadAddr_next = Mux(state_next === s_idle, 1088 VecInit(deqPtrVec_next.map(_.value)), 1089 VecInit(walkPtrVec_next.map(_.value)) 1090 ) 1091 1092 exceptionGen.io.redirect <> io.redirect 1093 exceptionGen.io.flush := io.flushOut.valid 1094 1095 val canEnqueueEG = VecInit(io.enq.req.map(req => req.valid && io.enq.canAccept)) 1096 for (i <- 0 until RenameWidth) { 1097 exceptionGen.io.enq(i).valid := canEnqueueEG(i) 1098 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 1099 exceptionGen.io.enq(i).bits.ftqPtr := io.enq.req(i).bits.ftqPtr 1100 exceptionGen.io.enq(i).bits.ftqOffset := io.enq.req(i).bits.ftqOffset 1101 exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec) 1102 exceptionGen.io.enq(i).bits.hasException := io.enq.req(i).bits.hasException 1103 exceptionGen.io.enq(i).bits.isFetchMalAddr := io.enq.req(i).bits.isFetchMalAddr 1104 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe 1105 exceptionGen.io.enq(i).bits.isVset := io.enq.req(i).bits.isVset 1106 exceptionGen.io.enq(i).bits.replayInst := false.B 1107 XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst") 1108 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep 1109 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix 1110 exceptionGen.io.enq(i).bits.trigger := io.enq.req(i).bits.trigger 1111 exceptionGen.io.enq(i).bits.vstartEn := false.B //DontCare 1112 exceptionGen.io.enq(i).bits.vstart := 0.U //DontCare 1113 exceptionGen.io.enq(i).bits.vuopIdx := 0.U 1114 } 1115 1116 println(s"ExceptionGen:") 1117 println(s"num of exceptions: ${params.numException}") 1118 require(exceptionWBs.length == exceptionGen.io.wb.length, 1119 f"exceptionWBs.length: ${exceptionWBs.length}, " + 1120 f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}") 1121 for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) { 1122 exc_wb.valid := wb.valid 1123 exc_wb.bits.robIdx := wb.bits.robIdx 1124 // only enq inst use ftqPtr to read gpa 1125 exc_wb.bits.ftqPtr := 0.U.asTypeOf(exc_wb.bits.ftqPtr) 1126 exc_wb.bits.ftqOffset := 0.U.asTypeOf(exc_wb.bits.ftqOffset) 1127 exc_wb.bits.exceptionVec := wb.bits.exceptionVec.get 1128 exc_wb.bits.hasException := wb.bits.exceptionVec.get.asUInt.orR // Todo: use io.writebackNeedFlush(i) instead 1129 exc_wb.bits.isFetchMalAddr := false.B 1130 exc_wb.bits.flushPipe := wb.bits.flushPipe.getOrElse(false.B) 1131 exc_wb.bits.isVset := false.B 1132 exc_wb.bits.replayInst := wb.bits.replay.getOrElse(false.B) 1133 exc_wb.bits.singleStep := false.B 1134 exc_wb.bits.crossPageIPFFix := false.B 1135 // TODO: make trigger configurable 1136 val trigger = wb.bits.trigger.getOrElse(TriggerAction.None).asTypeOf(exc_wb.bits.trigger) 1137 exc_wb.bits.trigger := trigger 1138 exc_wb.bits.vstartEn := (if (wb.bits.vls.nonEmpty) wb.bits.exceptionVec.get.asUInt.orR else 0.U) 1139 exc_wb.bits.vstart := (if (wb.bits.vls.nonEmpty) wb.bits.vls.get.vpu.vstart else 0.U) 1140 exc_wb.bits.vuopIdx := (if (wb.bits.vls.nonEmpty) wb.bits.vls.get.vpu.vuopIdx else 0.U) 1141 // println(s" [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " + 1142 // s"flushPipe ${configs.exists(_.flushPipe)}, " + 1143 // s"replayInst ${configs.exists(_.replayInst)}") 1144 } 1145 1146 fflagsDataRead := (0 until CommitWidth).map(i => robEntries(deqPtrVec(i).value).fflags) 1147 vxsatDataRead := (0 until CommitWidth).map(i => robEntries(deqPtrVec(i).value).vxsat) 1148 1149 val isCommit = io.commits.isCommit 1150 val isCommitReg = GatedValidRegNext(io.commits.isCommit) 1151 val instrCntReg = RegInit(0.U(64.W)) 1152 val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map { case (v, i) => RegEnable(v && CommitType.isFused(i.commitType), isCommit) }) 1153 val trueCommitCnt = RegEnable(io.commits.commitValid.zip(io.commits.info).map { case (v, i) => Mux(v, i.instrSize, 0.U) }.reduce(_ +& _), isCommit) +& fuseCommitCnt 1154 val retireCounter = Mux(isCommitReg, trueCommitCnt, 0.U) 1155 val instrCnt = instrCntReg + retireCounter 1156 when(isCommitReg){ 1157 instrCntReg := instrCnt 1158 } 1159 io.csr.perfinfo.retiredInstr := retireCounter 1160 io.robFull := !allowEnqueue 1161 io.headNotReady := commit_vDeqGroup(deqPtr.value(bankNumWidth-1, 0)) && !commit_wDeqGroup(deqPtr.value(bankNumWidth-1, 0)) 1162 1163 /** 1164 * debug info 1165 */ 1166 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 1167 XSDebug("") 1168 XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n") 1169 for (i <- 0 until RobSize) { 1170 XSDebug(false, !robEntries(i).valid, "-") 1171 XSDebug(false, robEntries(i).valid && robEntries(i).isWritebacked, "w") 1172 XSDebug(false, robEntries(i).valid && !robEntries(i).isWritebacked, "v") 1173 } 1174 XSDebug(false, true.B, "\n") 1175 1176 for (i <- 0 until RobSize) { 1177 if (i % 4 == 0) XSDebug("") 1178 XSDebug(false, true.B, "%x ", debug_microOp(i).pc) 1179 XSDebug(false, !robEntries(i).valid, "- ") 1180 XSDebug(false, robEntries(i).valid && robEntries(i).isWritebacked, "w ") 1181 XSDebug(false, robEntries(i).valid && !robEntries(i).isWritebacked, "v ") 1182 if (i % 4 == 3) XSDebug(false, true.B, "\n") 1183 } 1184 1185 def ifCommit(counter: UInt): UInt = Mux(isCommit, counter, 0.U) 1186 1187 def ifCommitReg(counter: UInt): UInt = Mux(isCommitReg, counter, 0.U) 1188 1189 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 1190 XSPerfAccumulate("clock_cycle", 1.U) 1191 QueuePerf(RobSize, numValidEntries, numValidEntries === RobSize.U) 1192 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 1193 XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt)) 1194 XSPerfRolling("ipc", ifCommitReg(trueCommitCnt), 1000, clock, reset) 1195 XSPerfRolling("cpi", perfCnt = 1.U /*Cycle*/ , eventTrigger = ifCommitReg(trueCommitCnt), granularity = 1000, clock, reset) 1196 val commitIsMove = commitInfo.map(_.isMove) 1197 XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map { case (v, m) => v && m }))) 1198 val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) 1199 XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e }))) 1200 XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt)) 1201 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 1202 val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map { case (v, t) => v && t } 1203 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 1204 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 1205 val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map { case (v, t) => v && t } 1206 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 1207 val commitLoadWaitBit = commitInfo.map(_.loadWaitBit) 1208 XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map { case (v, w) => v && w }))) 1209 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 1210 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map { case (v, t) => v && t }))) 1211 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => robEntries(i).valid && robEntries(i).isWritebacked))) 1212 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire))) 1213 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 1214 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)) 1215 XSPerfAccumulate("walkCycleTotal", state === s_walk) 1216 XSPerfAccumulate("waitRabWalkEnd", state === s_walk && walkFinished && !rab.io.status.walkEnd) 1217 private val walkCycle = RegInit(0.U(8.W)) 1218 private val waitRabWalkCycle = RegInit(0.U(8.W)) 1219 walkCycle := Mux(io.redirect.valid, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U)) 1220 waitRabWalkCycle := Mux(state === s_walk && walkFinished, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U)) 1221 1222 XSPerfHistogram("walkRobCycleHist", walkCycle, state === s_walk && walkFinished, 0, 32) 1223 XSPerfHistogram("walkRabExtraCycleHist", waitRabWalkCycle, state === s_walk && walkFinished && rab.io.status.walkEnd, 0, 32) 1224 XSPerfHistogram("walkTotalCycleHist", walkCycle, state === s_walk && state_next === s_idle, 0, 32) 1225 1226 private val deqNotWritebacked = robEntries(deqPtr.value).valid && !robEntries(deqPtr.value).isWritebacked 1227 private val deqStdNotWritebacked = robEntries(deqPtr.value).valid && !robEntries(deqPtr.value).stdWritebacked 1228 private val deqUopNotWritebacked = robEntries(deqPtr.value).valid && !robEntries(deqPtr.value).isUopWritebacked 1229 private val deqHeadInfo = debug_microOp(deqPtr.value) 1230 val deqUopCommitType = debug_microOp(deqPtr.value).commitType 1231 1232 XSPerfAccumulate("waitAluCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.alu.U) 1233 XSPerfAccumulate("waitMulCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.mul.U) 1234 XSPerfAccumulate("waitDivCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.div.U) 1235 XSPerfAccumulate("waitBrhCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.brh.U) 1236 XSPerfAccumulate("waitJmpCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.jmp.U) 1237 XSPerfAccumulate("waitCsrCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.csr.U) 1238 XSPerfAccumulate("waitFenCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.fence.U) 1239 XSPerfAccumulate("waitBkuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.bku.U) 1240 XSPerfAccumulate("waitLduCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.ldu.U) 1241 XSPerfAccumulate("waitStuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1242 XSPerfAccumulate("waitStaCycle", deqUopNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1243 XSPerfAccumulate("waitStdCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1244 XSPerfAccumulate("waitAtmCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.mou.U) 1245 1246 XSPerfAccumulate("waitVfaluCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.vfalu.U) 1247 XSPerfAccumulate("waitVfmaCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.vfma.U) 1248 XSPerfAccumulate("waitVfdivCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.vfdiv.U) 1249 1250 val vfalufuop = Seq(VfaluType.vfadd, VfaluType.vfwadd, VfaluType.vfwadd_w, VfaluType.vfsub, VfaluType.vfwsub, VfaluType.vfwsub_w, VfaluType.vfmin, VfaluType.vfmax, 1251 VfaluType.vfmerge, VfaluType.vfmv, VfaluType.vfsgnj, VfaluType.vfsgnjn, VfaluType.vfsgnjx, VfaluType.vfeq, VfaluType.vfne, VfaluType.vflt, VfaluType.vfle, VfaluType.vfgt, 1252 VfaluType.vfge, VfaluType.vfclass, VfaluType.vfmv_f_s, VfaluType.vfmv_s_f, VfaluType.vfredusum, VfaluType.vfredmax, VfaluType.vfredmin, VfaluType.vfredosum, VfaluType.vfwredosum) 1253 1254 vfalufuop.zipWithIndex.map{ 1255 case(fuoptype,i) => XSPerfAccumulate(s"waitVfalu_${i}Cycle", deqStdNotWritebacked && deqHeadInfo.fuOpType === fuoptype && deqHeadInfo.fuType === FuType.vfalu.U) 1256 } 1257 1258 1259 1260 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 1261 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 1262 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 1263 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 1264 XSPerfAccumulate("robHeadPC", io.commits.info(0).debug_pc.getOrElse(0.U)) 1265 XSPerfAccumulate("commitCompressCntAll", PopCount(io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => io.commits.isCommit && valid && info.instrSize > 1.U })) 1266 (2 to RenameWidth).foreach(i => 1267 XSPerfAccumulate(s"commitCompressCnt${i}", PopCount(io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => io.commits.isCommit && valid && info.instrSize === i.U })) 1268 ) 1269 XSPerfAccumulate("compressSize", io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => Mux(io.commits.isCommit && valid && info.instrSize > 1.U, info.instrSize, 0.U) }.reduce(_ +& _)) 1270 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 1271 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 1272 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 1273 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 1274 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 1275 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 1276 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 1277 1278 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 1279 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 1280 } 1281 1282 for (fuType <- FuType.functionNameMap.keys) { 1283 val fuName = FuType.functionNameMap(fuType) 1284 val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U) 1285 XSPerfRolling(s"ipc_futype_${fuName}", ifCommit(PopCount(commitIsFuType)), 1000, clock, reset) 1286 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 1287 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 1288 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 1289 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 1290 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 1291 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 1292 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 1293 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 1294 } 1295 XSPerfAccumulate(s"redirect_use_snapshot", io.redirect.valid && io.snpt.useSnpt) 1296 1297 // top-down info 1298 io.debugTopDown.toCore.robHeadVaddr.valid := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_valid 1299 io.debugTopDown.toCore.robHeadVaddr.bits := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_bits 1300 io.debugTopDown.toCore.robHeadPaddr.valid := debug_lsTopdownInfo(deqPtr.value).s2.paddr_valid 1301 io.debugTopDown.toCore.robHeadPaddr.bits := debug_lsTopdownInfo(deqPtr.value).s2.paddr_bits 1302 io.debugTopDown.toDispatch.robTrueCommit := ifCommitReg(trueCommitCnt) 1303 io.debugTopDown.toDispatch.robHeadLsIssue := debug_lsIssue(deqPtr.value) 1304 io.debugTopDown.robHeadLqIdx.valid := debug_lqIdxValid(deqPtr.value) 1305 io.debugTopDown.robHeadLqIdx.bits := debug_microOp(deqPtr.value).lqIdx 1306 1307 // rolling 1308 io.debugRolling.robTrueCommit := ifCommitReg(trueCommitCnt) 1309 1310 /** 1311 * DataBase info: 1312 * log trigger is at writeback valid 1313 * */ 1314 if (!env.FPGAPlatform) { 1315 val instTableName = "InstTable" + p(XSCoreParamsKey).HartId.toString 1316 val instSiteName = "Rob" + p(XSCoreParamsKey).HartId.toString 1317 val debug_instTable = ChiselDB.createTable(instTableName, new InstInfoEntry) 1318 for (wb <- exuWBs) { 1319 when(wb.valid) { 1320 val debug_instData = Wire(new InstInfoEntry) 1321 val idx = wb.bits.robIdx.value 1322 debug_instData.robIdx := idx 1323 debug_instData.dvaddr := wb.bits.debug.vaddr 1324 debug_instData.dpaddr := wb.bits.debug.paddr 1325 debug_instData.issueTime := wb.bits.debugInfo.issueTime 1326 debug_instData.writebackTime := wb.bits.debugInfo.writebackTime 1327 debug_instData.dispatchLatency := wb.bits.debugInfo.dispatchTime - wb.bits.debugInfo.renameTime 1328 debug_instData.enqRsLatency := wb.bits.debugInfo.enqRsTime - wb.bits.debugInfo.dispatchTime 1329 debug_instData.selectLatency := wb.bits.debugInfo.selectTime - wb.bits.debugInfo.enqRsTime 1330 debug_instData.issueLatency := wb.bits.debugInfo.issueTime - wb.bits.debugInfo.selectTime 1331 debug_instData.executeLatency := wb.bits.debugInfo.writebackTime - wb.bits.debugInfo.issueTime 1332 debug_instData.rsFuLatency := wb.bits.debugInfo.writebackTime - wb.bits.debugInfo.enqRsTime 1333 debug_instData.tlbLatency := wb.bits.debugInfo.tlbRespTime - wb.bits.debugInfo.tlbFirstReqTime 1334 debug_instData.exceptType := Cat(wb.bits.exceptionVec.getOrElse(ExceptionVec(false.B))) 1335 debug_instData.lsInfo := debug_lsInfo(idx) 1336 // debug_instData.globalID := wb.bits.uop.ctrl.debug_globalID 1337 // debug_instData.instType := wb.bits.uop.ctrl.fuType 1338 // debug_instData.ivaddr := wb.bits.uop.cf.pc 1339 // debug_instData.mdpInfo.ssid := wb.bits.uop.cf.ssid 1340 // debug_instData.mdpInfo.waitAllStore := wb.bits.uop.cf.loadWaitStrict && wb.bits.uop.cf.loadWaitBit 1341 debug_instTable.log( 1342 data = debug_instData, 1343 en = wb.valid, 1344 site = instSiteName, 1345 clock = clock, 1346 reset = reset 1347 ) 1348 } 1349 } 1350 } 1351 1352 1353 //difftest signals 1354 val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value 1355 1356 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1357 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1358 1359 for (i <- 0 until CommitWidth) { 1360 val idx = deqPtrVec(i).value 1361 wdata(i) := debug_exuData(idx) 1362 wpc(i) := SignExt(commitDebugUop(i).pc, XLEN) 1363 } 1364 1365 if (env.EnableDifftest || env.AlwaysBasicDiff) { 1366 // These are the structures used by difftest only and should be optimized after synthesis. 1367 val dt_eliminatedMove = Mem(RobSize, Bool()) 1368 val dt_isRVC = Mem(RobSize, Bool()) 1369 val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) 1370 for (i <- 0 until RenameWidth) { 1371 when(canEnqueue(i)) { 1372 dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 1373 dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC 1374 } 1375 } 1376 for (wb <- exuWBs) { 1377 when(wb.valid) { 1378 val wbIdx = wb.bits.robIdx.value 1379 dt_exuDebug(wbIdx) := wb.bits.debug 1380 } 1381 } 1382 // Always instantiate basic difftest modules. 1383 for (i <- 0 until CommitWidth) { 1384 val uop = commitDebugUop(i) 1385 val commitInfo = io.commits.info(i) 1386 val ptr = deqPtrVec(i).value 1387 val exuOut = dt_exuDebug(ptr) 1388 val eliminatedMove = dt_eliminatedMove(ptr) 1389 val isRVC = dt_isRVC(ptr) 1390 1391 val difftest = DifftestModule(new DiffInstrCommit(MaxPhyPregs), delay = 3, dontCare = true) 1392 val dt_skip = Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt) 1393 difftest.coreid := io.hartId 1394 difftest.index := i.U 1395 difftest.valid := io.commits.commitValid(i) && io.commits.isCommit 1396 difftest.skip := dt_skip 1397 difftest.isRVC := isRVC 1398 difftest.rfwen := io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.debug_ldest.get =/= 0.U 1399 difftest.fpwen := io.commits.commitValid(i) && uop.fpWen 1400 difftest.wpdest := commitInfo.debug_pdest.get 1401 difftest.wdest := commitInfo.debug_ldest.get 1402 difftest.nFused := CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize - 1.U 1403 when(difftest.valid) { 1404 assert(CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize >= 1.U) 1405 } 1406 if (env.EnableDifftest) { 1407 val uop = commitDebugUop(i) 1408 difftest.pc := SignExt(uop.pc, XLEN) 1409 difftest.instr := uop.instr 1410 difftest.robIdx := ZeroExt(ptr, 10) 1411 difftest.lqIdx := ZeroExt(uop.lqIdx.value, 7) 1412 difftest.sqIdx := ZeroExt(uop.sqIdx.value, 7) 1413 difftest.isLoad := io.commits.info(i).commitType === CommitType.LOAD 1414 difftest.isStore := io.commits.info(i).commitType === CommitType.STORE 1415 // Check LoadEvent only when isAmo or isLoad and skip MMIO 1416 val difftestLoadEvent = DifftestModule(new DiffLoadEvent, delay = 3) 1417 difftestLoadEvent.coreid := io.hartId 1418 difftestLoadEvent.index := i.U 1419 val loadCheck = (FuType.isAMO(uop.fuType) || FuType.isLoad(uop.fuType)) && !dt_skip 1420 difftestLoadEvent.valid := io.commits.commitValid(i) && io.commits.isCommit && loadCheck 1421 difftestLoadEvent.paddr := exuOut.paddr 1422 difftestLoadEvent.opType := uop.fuOpType 1423 difftestLoadEvent.isAtomic := FuType.isAMO(uop.fuType) 1424 difftestLoadEvent.isLoad := FuType.isLoad(uop.fuType) 1425 } 1426 } 1427 } 1428 1429 if (env.EnableDifftest || env.AlwaysBasicDiff) { 1430 val dt_isXSTrap = Mem(RobSize, Bool()) 1431 for (i <- 0 until RenameWidth) { 1432 when(canEnqueue(i)) { 1433 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap 1434 } 1435 } 1436 val trapVec = io.commits.commitValid.zip(deqPtrVec).map { case (v, d) => 1437 io.commits.isCommit && v && dt_isXSTrap(d.value) 1438 } 1439 val hitTrap = trapVec.reduce(_ || _) 1440 val difftest = DifftestModule(new DiffTrapEvent, dontCare = true) 1441 difftest.coreid := io.hartId 1442 difftest.hasTrap := hitTrap 1443 difftest.cycleCnt := timer 1444 difftest.instrCnt := instrCnt 1445 difftest.hasWFI := hasWFI 1446 1447 if (env.EnableDifftest) { 1448 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 1449 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 -> x._1)), XLEN) 1450 difftest.code := trapCode 1451 difftest.pc := trapPC 1452 } 1453 } 1454 1455 val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map { case (v, m) => v && m }) 1456 val commitLoadVec = VecInit(commitLoadValid) 1457 val commitBranchVec = VecInit(commitBranchValid) 1458 val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map { case (v, w) => v && w }) 1459 val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map { case (v, t) => v && t }) 1460 val perfEvents = Seq( 1461 ("rob_interrupt_num ", io.flushOut.valid && intrEnable), 1462 ("rob_exception_num ", io.flushOut.valid && deqHasException), 1463 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe), 1464 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst), 1465 ("rob_commitUop ", ifCommit(commitCnt)), 1466 ("rob_commitInstr ", ifCommitReg(trueCommitCnt)), 1467 ("rob_commitInstrMove ", ifCommitReg(PopCount(RegEnable(commitMoveVec, isCommit)))), 1468 ("rob_commitInstrFused ", ifCommitReg(fuseCommitCnt)), 1469 ("rob_commitInstrLoad ", ifCommitReg(PopCount(RegEnable(commitLoadVec, isCommit)))), 1470 ("rob_commitInstrBranch ", ifCommitReg(PopCount(RegEnable(commitBranchVec, isCommit)))), 1471 ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegEnable(commitLoadWaitVec, isCommit)))), 1472 ("rob_commitInstrStore ", ifCommitReg(PopCount(RegEnable(commitStoreVec, isCommit)))), 1473 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)), 1474 ("rob_walkCycle ", (state === s_walk)), 1475 ("rob_1_4_valid ", numValidEntries <= (RobSize / 4).U), 1476 ("rob_2_4_valid ", numValidEntries > (RobSize / 4).U && numValidEntries <= (RobSize / 2).U), 1477 ("rob_3_4_valid ", numValidEntries > (RobSize / 2).U && numValidEntries <= (RobSize * 3 / 4).U), 1478 ("rob_4_4_valid ", numValidEntries > (RobSize * 3 / 4).U), 1479 ) 1480 generatePerfEvent() 1481 1482 // dontTouch for debug 1483 if (backendParams.debugEn) { 1484 dontTouch(enqPtrVec) 1485 dontTouch(deqPtrVec) 1486 dontTouch(robEntries) 1487 dontTouch(robDeqGroup) 1488 dontTouch(robBanks) 1489 dontTouch(robBanksRaddrThisLine) 1490 dontTouch(robBanksRaddrNextLine) 1491 dontTouch(robBanksRdataThisLine) 1492 dontTouch(robBanksRdataNextLine) 1493 dontTouch(robBanksRdataThisLineUpdate) 1494 dontTouch(robBanksRdataNextLineUpdate) 1495 dontTouch(needUpdate) 1496 val exceptionWBsVec = MixedVecInit(exceptionWBs) 1497 dontTouch(exceptionWBsVec) 1498 dontTouch(commit_wDeqGroup) 1499 dontTouch(commit_vDeqGroup) 1500 dontTouch(commitSizeSumSeq) 1501 dontTouch(walkSizeSumSeq) 1502 dontTouch(commitSizeSumCond) 1503 dontTouch(walkSizeSumCond) 1504 dontTouch(commitSizeSum) 1505 dontTouch(walkSizeSum) 1506 dontTouch(realDestSizeSeq) 1507 dontTouch(walkDestSizeSeq) 1508 dontTouch(io.commits) 1509 dontTouch(commitIsVTypeVec) 1510 dontTouch(walkIsVTypeVec) 1511 dontTouch(commitValidThisLine) 1512 dontTouch(commitReadAddr_next) 1513 dontTouch(donotNeedWalk) 1514 dontTouch(walkPtrVec_next) 1515 dontTouch(walkPtrVec) 1516 dontTouch(deqPtrVec_next) 1517 dontTouch(deqPtrVecForWalk) 1518 dontTouch(snapPtrReadBank) 1519 dontTouch(snapPtrVecForWalk) 1520 dontTouch(shouldWalkVec) 1521 dontTouch(walkFinished) 1522 dontTouch(changeBankAddrToDeqPtr) 1523 } 1524 if (env.EnableDifftest) { 1525 io.commits.info.map(info => dontTouch(info.debug_pc.get)) 1526 } 1527} 1528