1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15* 16* 17* Acknowledgement 18* 19* This implementation is inspired by several key papers: 20* [1] James E. Smith, and Andrew R. Pleszkun. "[Implementation of precise interrupts in pipelined processors.] 21* (https://dl.acm.org/doi/10.5555/327010.327125)" 12th Annual International Symposium on Computer Architecture (ISCA). 22* 1985. 23***************************************************************************************/ 24 25package xiangshan.backend.rob 26 27import org.chipsalliance.cde.config.Parameters 28import chisel3._ 29import chisel3.util._ 30import chisel3.experimental.BundleLiterals._ 31import difftest._ 32import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 33import utility._ 34import utils._ 35import xiangshan._ 36import xiangshan.backend.GPAMemEntry 37import xiangshan.backend.{BackendParams, RatToVecExcpMod, RegWriteFromRab, VecExcpInfo} 38import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 39import xiangshan.backend.fu.{FuConfig, FuType} 40import xiangshan.frontend.FtqPtr 41import xiangshan.mem.{LqPtr, LsqEnqIO, SqPtr} 42import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 43import xiangshan.backend.ctrlblock.{DebugLSIO, DebugLsInfo, LsTopdownInfo} 44import xiangshan.backend.fu.vector.Bundles.VType 45import xiangshan.backend.rename.SnapshotGenerator 46import yunsuan.VfaluType 47import xiangshan.backend.rob.RobBundles._ 48import xiangshan.backend.trace._ 49import chisel3.experimental.BundleLiterals._ 50 51class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter { 52 override def shouldBeInlined: Boolean = false 53 54 lazy val module = new RobImp(this)(p, params) 55} 56 57class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper) 58 with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents with HasCriticalErrors { 59 60 private val LduCnt = params.LduCnt 61 private val StaCnt = params.StaCnt 62 private val HyuCnt = params.HyuCnt 63 64 val io = IO(new Bundle() { 65 val hartId = Input(UInt(hartIdLen.W)) 66 val redirect = Input(Valid(new Redirect)) 67 val enq = new RobEnqIO 68 val flushOut = ValidIO(new Redirect) 69 val exception = ValidIO(new ExceptionInfo) 70 // exu + brq 71 val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles) 72 val exuWriteback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles) 73 val writebackNums = Flipped(Vec(writeback.size - params.StdCnt, ValidIO(UInt(writeback.size.U.getWidth.W)))) 74 val writebackNeedFlush = Input(Vec(params.allExuParams.filter(_.needExceptionGen).length, Bool())) 75 val commits = Output(new RobCommitIO) 76 val trace = new Bundle { 77 val blockCommit = Input(Bool()) 78 val traceCommitInfo = new TraceBundle(hasIaddr = false, CommitWidth, IretireWidthInPipe) 79 } 80 val rabCommits = Output(new RabCommitIO) 81 val diffCommits = if (backendParams.basicDebugEn) Some(Output(new DiffCommitIO)) else None 82 val isVsetFlushPipe = Output(Bool()) 83 val lsq = new RobLsqIO 84 val robDeqPtr = Output(new RobPtr) 85 val csr = new RobCSRIO 86 val snpt = Input(new SnapshotPort) 87 val robFull = Output(Bool()) 88 val headNotReady = Output(Bool()) 89 val cpu_halt = Output(Bool()) 90 val wfi_enable = Input(Bool()) 91 val toDecode = new Bundle { 92 val isResumeVType = Output(Bool()) 93 val walkToArchVType = Output(Bool()) 94 val walkVType = ValidIO(VType()) 95 val commitVType = new Bundle { 96 val vtype = ValidIO(VType()) 97 val hasVsetvl = Output(Bool()) 98 } 99 } 100 val fromVecExcpMod = Input(new Bundle { 101 val busy = Bool() 102 }) 103 val readGPAMemAddr = ValidIO(new Bundle { 104 val ftqPtr = new FtqPtr() 105 val ftqOffset = UInt(log2Up(PredictWidth).W) 106 }) 107 val readGPAMemData = Input(new GPAMemEntry) 108 val vstartIsZero = Input(Bool()) 109 110 val toVecExcpMod = Output(new Bundle { 111 val logicPhyRegMap = Vec(RabCommitWidth, ValidIO(new RegWriteFromRab)) 112 val excpInfo = ValidIO(new VecExcpInfo) 113 }) 114 val debug_ls = Flipped(new DebugLSIO) 115 val debugRobHead = Output(new DynInst) 116 val debugEnqLsq = Input(new LsqEnqIO) 117 val debugHeadLsIssue = Input(Bool()) 118 val lsTopdownInfo = Vec(LduCnt + HyuCnt, Input(new LsTopdownInfo)) 119 val debugTopDown = new Bundle { 120 val toCore = new RobCoreTopDownIO 121 val toDispatch = new RobDispatchTopDownIO 122 val robHeadLqIdx = Valid(new LqPtr) 123 } 124 val debugRolling = new RobDebugRollingIO 125 126 // store event difftest information 127 val storeDebugInfo = Vec(EnsbufferWidth, new Bundle { 128 val robidx = Input(new RobPtr) 129 val pc = Output(UInt(VAddrBits.W)) 130 }) 131 }) 132 133 val exuWBs: Seq[ValidIO[ExuOutput]] = io.exuWriteback.filter(!_.bits.params.hasStdFu).toSeq 134 val stdWBs: Seq[ValidIO[ExuOutput]] = io.exuWriteback.filter(_.bits.params.hasStdFu).toSeq 135 val fflagsWBs = io.exuWriteback.filter(x => x.bits.fflags.nonEmpty).toSeq 136 val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty).toSeq 137 val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty).toSeq 138 val vxsatWBs = io.exuWriteback.filter(x => x.bits.vxsat.nonEmpty).toSeq 139 val branchWBs = io.exuWriteback.filter(_.bits.params.hasBrhFu).toSeq 140 val csrWBs = io.exuWriteback.filter(x => x.bits.params.hasCSR).toSeq 141 142 val numExuWbPorts = exuWBs.length 143 val numStdWbPorts = stdWBs.length 144 val bankAddrWidth = log2Up(CommitWidth) 145 146 println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth") 147 148 val rab = Module(new RenameBuffer(RabSize)) 149 val vtypeBuffer = Module(new VTypeBuffer(VTypeBufferSize)) 150 val bankNum = 8 151 assert(RobSize % bankNum == 0, "RobSize % bankNum must be 0") 152 val robEntries = RegInit(VecInit.fill(RobSize)((new RobEntryBundle).Lit(_.valid -> false.B))) 153 // pointers 154 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 155 val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr)) 156 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 157 val deqPtrVec_next = Wire(Vec(CommitWidth, Output(new RobPtr))) 158 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 159 val walkPtrTrue = Reg(new RobPtr) 160 val lastWalkPtr = Reg(new RobPtr) 161 val allowEnqueue = RegInit(true.B) 162 val vecExcpInfo = RegInit(ValidIO(new VecExcpInfo).Lit( 163 _.valid -> false.B, 164 )) 165 166 /** 167 * Enqueue (from dispatch) 168 */ 169 // special cases 170 val hasBlockBackward = RegInit(false.B) 171 val hasWaitForward = RegInit(false.B) 172 val doingSvinval = RegInit(false.B) 173 val enqPtr = enqPtrVec(0) 174 val deqPtr = deqPtrVec(0) 175 val walkPtr = walkPtrVec(0) 176 val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.req.take(i).map(req => req.valid && req.bits.firstUop))))) 177 io.enq.canAccept := allowEnqueue && !hasBlockBackward && rab.io.canEnq && vtypeBuffer.io.canEnq && !io.fromVecExcpMod.busy 178 io.enq.resp := allocatePtrVec 179 val canEnqueue = VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop && io.enq.canAccept)) 180 val timer = GTimer() 181 // robEntries enqueue 182 for (i <- 0 until RobSize) { 183 val enqOH = VecInit(canEnqueue.zip(allocatePtrVec.map(_.value === i.U)).map(x => x._1 && x._2)) 184 assert(PopCount(enqOH) < 2.U, s"robEntries$i enqOH is not one hot") 185 when(enqOH.asUInt.orR && !io.redirect.valid){ 186 connectEnq(robEntries(i), Mux1H(enqOH, io.enq.req.map(_.bits))) 187 } 188 } 189 // robBanks0 include robidx : 0 8 16 24 32 ... 190 val robBanks = VecInit((0 until bankNum).map(i => VecInit(robEntries.zipWithIndex.filter(_._2 % bankNum == i).map(_._1)))) 191 // each Bank has 20 Entries, read addr is one hot 192 // all banks use same raddr 193 val eachBankEntrieNum = robBanks(0).length 194 val robBanksRaddrThisLine = RegInit(1.U(eachBankEntrieNum.W)) 195 val robBanksRaddrNextLine = Wire(UInt(eachBankEntrieNum.W)) 196 robBanksRaddrThisLine := robBanksRaddrNextLine 197 val bankNumWidth = log2Up(bankNum) 198 val deqPtrWidth = deqPtr.value.getWidth 199 val robIdxThisLine = VecInit((0 until bankNum).map(i => Cat(deqPtr.value(deqPtrWidth - 1, bankNumWidth), i.U(bankNumWidth.W)))) 200 val robIdxNextLine = VecInit((0 until bankNum).map(i => Cat(deqPtr.value(deqPtrWidth - 1, bankNumWidth) + 1.U, i.U(bankNumWidth.W)))) 201 // robBanks read 202 val robBanksRdataThisLine = VecInit(robBanks.map{ case bank => 203 Mux1H(robBanksRaddrThisLine, bank) 204 }) 205 val robBanksRdataNextLine = VecInit(robBanks.map{ case bank => 206 val shiftBank = bank.drop(1) :+ bank(0) 207 Mux1H(robBanksRaddrThisLine, shiftBank) 208 }) 209 val robBanksRdataThisLineUpdate = Wire(Vec(CommitWidth, new RobEntryBundle)) 210 val robBanksRdataNextLineUpdate = Wire(Vec(CommitWidth, new RobEntryBundle)) 211 val commitValidThisLine = Wire(Vec(CommitWidth, Bool())) 212 val hasCommitted = RegInit(VecInit(Seq.fill(CommitWidth)(false.B))) 213 val donotNeedWalk = RegInit(VecInit(Seq.fill(CommitWidth)(false.B))) 214 val allCommitted = Wire(Bool()) 215 216 when(allCommitted) { 217 hasCommitted := 0.U.asTypeOf(hasCommitted) 218 }.elsewhen(io.commits.isCommit){ 219 for (i <- 0 until CommitWidth){ 220 hasCommitted(i) := commitValidThisLine(i) || hasCommitted(i) 221 } 222 } 223 allCommitted := io.commits.isCommit && commitValidThisLine.last 224 val walkPtrHead = Wire(new RobPtr) 225 val changeBankAddrToDeqPtr = (walkPtrVec.head + CommitWidth.U) > lastWalkPtr 226 when(io.redirect.valid){ 227 robBanksRaddrNextLine := UIntToOH(walkPtrHead.value(walkPtrHead.value.getWidth-1, bankAddrWidth)) 228 }.elsewhen(allCommitted || io.commits.isWalk && !changeBankAddrToDeqPtr){ 229 robBanksRaddrNextLine := Mux(robBanksRaddrThisLine.head(1) === 1.U, 1.U, robBanksRaddrThisLine << 1) 230 }.elsewhen(io.commits.isWalk && changeBankAddrToDeqPtr){ 231 robBanksRaddrNextLine := UIntToOH(deqPtr.value(deqPtr.value.getWidth-1, bankAddrWidth)) 232 }.otherwise( 233 robBanksRaddrNextLine := robBanksRaddrThisLine 234 ) 235 val robDeqGroup = Reg(Vec(bankNum, new RobCommitEntryBundle)) 236 val rawInfo = VecInit((0 until CommitWidth).map(i => robDeqGroup(deqPtrVec(i).value(bankAddrWidth-1, 0)))).toSeq 237 val commitInfo = VecInit((0 until CommitWidth).map(i => robDeqGroup(deqPtrVec(i).value(bankAddrWidth-1,0)))).toSeq 238 val walkInfo = VecInit((0 until CommitWidth).map(i => robDeqGroup(walkPtrVec(i).value(bankAddrWidth-1, 0)))).toSeq 239 for (i <- 0 until CommitWidth) { 240 connectCommitEntry(robDeqGroup(i), robBanksRdataThisLineUpdate(i)) 241 when(allCommitted){ 242 connectCommitEntry(robDeqGroup(i), robBanksRdataNextLineUpdate(i)) 243 } 244 } 245 246 // In each robentry, the ftqIdx and ftqOffset belong to the first instruction that was compressed, 247 // That is Necessary when exceptions happen. 248 // Update the ftqOffset to correctly notify the frontend which instructions have been committed. 249 // Instructions in multiple Ftq entries compressed to one RobEntry do not occur. 250 for (i <- 0 until CommitWidth) { 251 val lastOffset = (rawInfo(i).traceBlockInPipe.iretire - (1.U << rawInfo(i).traceBlockInPipe.ilastsize.asUInt).asUInt) + rawInfo(i).ftqOffset 252 commitInfo(i).ftqOffset := Mux(CommitType.isFused(rawInfo(i).commitType), rawInfo(i).ftqOffset, lastOffset) 253 } 254 255 // data for debug 256 // Warn: debug_* prefix should not exist in generated verilog. 257 val debug_microOp = DebugMem(RobSize, new DynInst) 258 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W))) //for debug 259 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle)) //for debug 260 val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init))) 261 val debug_lsTopdownInfo = RegInit(VecInit(Seq.fill(RobSize)(LsTopdownInfo.init))) 262 val debug_lqIdxValid = RegInit(VecInit.fill(RobSize)(false.B)) 263 val debug_lsIssued = RegInit(VecInit.fill(RobSize)(false.B)) 264 265 val isEmpty = enqPtr === deqPtr 266 val snptEnq = io.enq.canAccept && io.enq.req.map(x => x.valid && x.bits.snapshot).reduce(_ || _) 267 val snapshotPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 268 snapshotPtrVec(0) := io.enq.req(0).bits.robIdx 269 for (i <- 1 until CommitWidth) { 270 snapshotPtrVec(i) := snapshotPtrVec(0) + i.U 271 } 272 val snapshots = SnapshotGenerator(snapshotPtrVec, snptEnq, io.snpt.snptDeq, io.redirect.valid, io.snpt.flushVec) 273 val debug_lsIssue = WireDefault(debug_lsIssued) 274 debug_lsIssue(deqPtr.value) := io.debugHeadLsIssue 275 276 /** 277 * states of Rob 278 */ 279 val s_idle :: s_walk :: Nil = Enum(2) 280 val state = RegInit(s_idle) 281 val state_next = Wire(chiselTypeOf(state)) 282 283 val tip_computing :: tip_stalled :: tip_walk :: tip_drained :: Nil = Enum(4) 284 val tip_state = WireInit(0.U(4.W)) 285 when(!isEmpty) { // One or more inst in ROB 286 when(state === s_walk || io.redirect.valid) { 287 tip_state := tip_walk 288 }.elsewhen(io.commits.isCommit && PopCount(io.commits.commitValid) =/= 0.U) { 289 tip_state := tip_computing 290 }.otherwise { 291 tip_state := tip_stalled 292 } 293 }.otherwise { 294 tip_state := tip_drained 295 } 296 class TipEntry()(implicit p: Parameters) extends XSBundle { 297 val state = UInt(4.W) 298 val commits = new RobCommitIO() // info of commit 299 val redirect = Valid(new Redirect) // info of redirect 300 val redirect_pc = UInt(VAddrBits.W) // PC of the redirect uop 301 val debugLsInfo = new DebugLsInfo() 302 } 303 val tip_table = ChiselDB.createTable("Tip_" + p(XSCoreParamsKey).HartId.toString, new TipEntry) 304 val tip_data = Wire(new TipEntry()) 305 tip_data.state := tip_state 306 tip_data.commits := io.commits 307 tip_data.redirect := io.redirect 308 tip_data.redirect_pc := debug_microOp(io.redirect.bits.robIdx.value).pc 309 tip_data.debugLsInfo := debug_lsInfo(io.commits.robIdx(0).value) 310 tip_table.log(tip_data, true.B, "", clock, reset) 311 312 val exceptionGen = Module(new ExceptionGen(params)) 313 val exceptionDataRead = exceptionGen.io.state 314 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 315 val vxsatDataRead = Wire(Vec(CommitWidth, Bool())) 316 io.robDeqPtr := deqPtr 317 io.debugRobHead := debug_microOp(deqPtr.value) 318 319 /** 320 * connection of [[rab]] 321 */ 322 rab.io.redirect.valid := io.redirect.valid 323 324 rab.io.req.zip(io.enq.req).map { case (dest, src) => 325 dest.bits := src.bits 326 dest.valid := src.valid && io.enq.canAccept 327 } 328 329 val walkDestSizeDeqGroup = RegInit(VecInit(Seq.fill(CommitWidth)(0.U(log2Up(MaxUopSize + 1).W)))) 330 val realDestSizeSeq = VecInit(robDeqGroup.zip(hasCommitted).map{case (r, h) => Mux(h, 0.U, r.realDestSize)}) 331 val walkDestSizeSeq = VecInit(robDeqGroup.zip(donotNeedWalk).map{case (r, d) => Mux(d, 0.U, r.realDestSize)}) 332 val commitSizeSumSeq = VecInit((0 until CommitWidth).map(i => realDestSizeSeq.take(i + 1).reduce(_ +& _))) 333 val walkSizeSumSeq = VecInit((0 until CommitWidth).map(i => walkDestSizeSeq.take(i + 1).reduce(_ +& _))) 334 val commitSizeSumCond = VecInit(commitValidThisLine.zip(hasCommitted).map{case (c,h) => (c || h) && io.commits.isCommit}) 335 val walkSizeSumCond = VecInit(io.commits.walkValid.zip(donotNeedWalk).map{case (w,d) => (w || d) && io.commits.isWalk}) 336 val commitSizeSum = PriorityMuxDefault(commitSizeSumCond.reverse.zip(commitSizeSumSeq.reverse), 0.U) 337 val walkSizeSum = PriorityMuxDefault(walkSizeSumCond.reverse.zip(walkSizeSumSeq.reverse), 0.U) 338 339 val deqVlsExceptionNeedCommit = RegInit(false.B) 340 val deqVlsExceptionCommitSize = RegInit(0.U(log2Up(MaxUopSize + 1).W)) 341 val deqVlsCanCommit= RegInit(false.B) 342 rab.io.fromRob.commitSize := Mux(deqVlsExceptionNeedCommit, deqVlsExceptionCommitSize, commitSizeSum) 343 rab.io.fromRob.walkSize := walkSizeSum 344 rab.io.fromRob.vecLoadExcp.valid := RegNext(exceptionDataRead.valid && exceptionDataRead.bits.isVecLoad) 345 rab.io.fromRob.vecLoadExcp.bits.isStrided := RegEnable(exceptionDataRead.bits.isStrided, exceptionDataRead.valid) 346 rab.io.fromRob.vecLoadExcp.bits.isVlm := RegEnable(exceptionDataRead.bits.isVlm, exceptionDataRead.valid) 347 rab.io.snpt := io.snpt 348 rab.io.snpt.snptEnq := snptEnq 349 350 io.rabCommits := rab.io.commits 351 io.diffCommits.foreach(_ := rab.io.diffCommits.get) 352 353 /** 354 * connection of [[vtypeBuffer]] 355 */ 356 357 vtypeBuffer.io.redirect.valid := io.redirect.valid 358 359 vtypeBuffer.io.req.zip(io.enq.req).map { case (sink, source) => 360 sink.valid := source.valid && io.enq.canAccept 361 sink.bits := source.bits 362 } 363 364 private val commitIsVTypeVec = VecInit(io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => io.commits.isCommit && valid && info.isVset }) 365 private val walkIsVTypeVec = VecInit(io.commits.walkValid.zip(walkInfo).map { case (valid, info) => io.commits.isWalk && valid && info.isVset }) 366 vtypeBuffer.io.fromRob.commitSize := PopCount(commitIsVTypeVec) 367 vtypeBuffer.io.fromRob.walkSize := PopCount(walkIsVTypeVec) 368 vtypeBuffer.io.snpt := io.snpt 369 vtypeBuffer.io.snpt.snptEnq := snptEnq 370 io.toDecode.isResumeVType := vtypeBuffer.io.toDecode.isResumeVType 371 io.toDecode.walkToArchVType := vtypeBuffer.io.toDecode.walkToArchVType 372 io.toDecode.commitVType := vtypeBuffer.io.toDecode.commitVType 373 io.toDecode.walkVType := vtypeBuffer.io.toDecode.walkVType 374 375 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 376 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 377 when(isEmpty) { 378 hasBlockBackward := false.B 379 } 380 // When any instruction commits, hasNoSpecExec should be set to false.B 381 when(io.commits.hasWalkInstr || io.commits.hasCommitInstr) { 382 hasWaitForward := false.B 383 } 384 385 // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing. 386 // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle. 387 // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts. 388 val hasWFI = RegInit(false.B) 389 io.cpu_halt := hasWFI 390 // WFI Timeout: 2^20 = 1M cycles 391 val wfi_cycles = RegInit(0.U(20.W)) 392 when(hasWFI) { 393 wfi_cycles := wfi_cycles + 1.U 394 }.elsewhen(!hasWFI && RegNext(hasWFI)) { 395 wfi_cycles := 0.U 396 } 397 val wfi_timeout = wfi_cycles.andR 398 when(RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) { 399 hasWFI := false.B 400 } 401 402 for (i <- 0 until RenameWidth) { 403 // we don't check whether io.redirect is valid here since redirect has higher priority 404 when(canEnqueue(i)) { 405 val enqUop = io.enq.req(i).bits 406 val enqIndex = allocatePtrVec(i).value 407 // store uop in data module and debug_microOp Vec 408 debug_microOp(enqIndex) := enqUop 409 debug_microOp(enqIndex).debugInfo.dispatchTime := timer 410 debug_microOp(enqIndex).debugInfo.enqRsTime := timer 411 debug_microOp(enqIndex).debugInfo.selectTime := timer 412 debug_microOp(enqIndex).debugInfo.issueTime := timer 413 debug_microOp(enqIndex).debugInfo.writebackTime := timer 414 debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer 415 debug_microOp(enqIndex).debugInfo.tlbRespTime := timer 416 debug_lsInfo(enqIndex) := DebugLsInfo.init 417 debug_lsTopdownInfo(enqIndex) := LsTopdownInfo.init 418 debug_lqIdxValid(enqIndex) := false.B 419 debug_lsIssued(enqIndex) := false.B 420 when (enqUop.waitForward) { 421 hasWaitForward := true.B 422 } 423 val enqTriggerActionIsDebugMode = TriggerAction.isDmode(io.enq.req(i).bits.trigger) 424 val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR 425 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 426 when(!enqTriggerActionIsDebugMode && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe)) { 427 doingSvinval := true.B 428 } 429 // the end instruction of Svinval enqs so clear doingSvinval 430 when(!enqTriggerActionIsDebugMode && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe)) { 431 doingSvinval := false.B 432 } 433 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 434 assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe) || enqUop.isNotSvinval)) 435 when(enqUop.isWFI && !enqHasException && !enqTriggerActionIsDebugMode) { 436 hasWFI := true.B 437 } 438 439 robEntries(enqIndex).mmio := false.B 440 robEntries(enqIndex).vls := enqUop.vlsInstr 441 } 442 } 443 444 for (i <- 0 until RenameWidth) { 445 val enqUop = io.enq.req(i) 446 when(enqUop.valid && enqUop.bits.blockBackward && io.enq.canAccept) { 447 hasBlockBackward := true.B 448 } 449 } 450 451 val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(req => req.valid && req.bits.firstUop)), 0.U) 452 io.enq.isEmpty := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR) 453 454 when(!io.wfi_enable) { 455 hasWFI := false.B 456 } 457 // sel vsetvl's flush position 458 val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3) 459 val vsetvlState = RegInit(vs_idle) 460 461 val firstVInstrFtqPtr = RegInit(0.U.asTypeOf(new FtqPtr)) 462 val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W))) 463 val firstVInstrRobIdx = RegInit(0.U.asTypeOf(new RobPtr)) 464 465 val enq0 = io.enq.req(0) 466 val enq0IsVset = enq0.bits.isVset && enq0.bits.lastUop && canEnqueue(0) 467 val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe 468 val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map { case (req, fire) => FuType.isVArith(req.bits.fuType) && fire } 469 // for vs_idle 470 val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType))) 471 // for vs_waitVinstr 472 val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1) 473 val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req) 474 when(vsetvlState === vs_idle) { 475 firstVInstrFtqPtr := firstVInstrIdle.bits.ftqPtr 476 firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset 477 firstVInstrRobIdx := firstVInstrIdle.bits.robIdx 478 }.elsewhen(vsetvlState === vs_waitVinstr) { 479 when(Cat(enqIsVInstrOrVset).orR) { 480 firstVInstrFtqPtr := firstVInstrWait.bits.ftqPtr 481 firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset 482 firstVInstrRobIdx := firstVInstrWait.bits.robIdx 483 } 484 } 485 486 val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR 487 when(vsetvlState === vs_idle && !io.redirect.valid) { 488 when(enq0IsVsetFlush) { 489 vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr) 490 } 491 }.elsewhen(vsetvlState === vs_waitVinstr) { 492 when(io.redirect.valid) { 493 vsetvlState := vs_idle 494 }.elsewhen(Cat(enqIsVInstrOrVset).orR) { 495 vsetvlState := vs_waitFlush 496 } 497 }.elsewhen(vsetvlState === vs_waitFlush) { 498 when(io.redirect.valid) { 499 vsetvlState := vs_idle 500 } 501 } 502 503 // lqEnq 504 io.debugEnqLsq.needAlloc.map(_(0)).zip(io.debugEnqLsq.req).foreach { case (alloc, req) => 505 when(io.debugEnqLsq.canAccept && alloc && req.valid) { 506 debug_microOp(req.bits.robIdx.value).lqIdx := req.bits.lqIdx 507 debug_lqIdxValid(req.bits.robIdx.value) := true.B 508 } 509 } 510 511 // lsIssue 512 when(io.debugHeadLsIssue) { 513 debug_lsIssued(deqPtr.value) := true.B 514 } 515 516 /** 517 * Writeback (from execution units) 518 */ 519 for (wb <- exuWBs) { 520 when(wb.valid) { 521 val wbIdx = wb.bits.robIdx.value 522 debug_exuData(wbIdx) := wb.bits.data(0) 523 debug_exuDebug(wbIdx) := wb.bits.debug 524 debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime 525 debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime 526 debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime 527 debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime 528 529 // debug for lqidx and sqidx 530 debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr)) 531 debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr)) 532 533 val debug_Uop = debug_microOp(wbIdx) 534 XSInfo(true.B, 535 p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " + 536 p"data 0x${Hexadecimal(wb.bits.data(0))} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " + 537 p"skip ${wb.bits.debug.isSkipDiff} robIdx: ${wb.bits.robIdx}\n" 538 ) 539 } 540 } 541 542 val writebackNum = PopCount(exuWBs.map(_.valid)) 543 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 544 545 for (i <- 0 until LoadPipelineWidth) { 546 when(RegNext(io.lsq.mmio(i))) { 547 robEntries(RegEnable(io.lsq.uop(i).robIdx, io.lsq.mmio(i)).value).mmio := true.B 548 } 549 } 550 551 552 /** 553 * RedirectOut: Interrupt and Exceptions 554 */ 555 val deqDispatchData = robEntries(deqPtr.value) 556 val debug_deqUop = debug_microOp(deqPtr.value) 557 558 val deqPtrEntry = robDeqGroup(deqPtr.value(bankAddrWidth-1,0)) 559 val deqPtrEntryValid = deqPtrEntry.commit_v 560 val deqHasFlushed = RegInit(false.B) 561 val intrBitSetReg = RegNext(io.csr.intrBitSet) 562 val intrEnable = intrBitSetReg && !hasWaitForward && deqPtrEntry.interrupt_safe && !deqHasFlushed 563 val deqNeedFlush = deqPtrEntry.needFlush && deqPtrEntry.commit_v && deqPtrEntry.commit_w 564 val deqHitExceptionGenState = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 565 val deqNeedFlushAndHitExceptionGenState = deqNeedFlush && deqHitExceptionGenState 566 val exceptionGenStateIsException = exceptionDataRead.bits.exceptionVec.asUInt.orR || exceptionDataRead.bits.singleStep || TriggerAction.isDmode(exceptionDataRead.bits.trigger) 567 val deqHasException = deqNeedFlushAndHitExceptionGenState && exceptionGenStateIsException 568 val deqHasFlushPipe = deqNeedFlushAndHitExceptionGenState && exceptionDataRead.bits.flushPipe && !deqHasException && (!deqPtrEntry.isVls || RegNext(RegNext(deqPtrEntry.commit_w))) 569 val deqHasReplayInst = deqNeedFlushAndHitExceptionGenState && exceptionDataRead.bits.replayInst 570 val deqIsVlsException = deqHasException && deqPtrEntry.isVls && !exceptionDataRead.bits.isEnqExcp 571 // delay 2 cycle wait exceptionGen out 572 // vls exception can be committed only when RAB commit all its reg pairs 573 deqVlsCanCommit := RegNext(RegNext(deqIsVlsException && deqPtrEntry.commit_w)) && rab.io.status.commitEnd 574 575 // lock at assertion of deqVlsExceptionNeedCommit until condition not assert 576 val deqVlsExcpLock = RegInit(false.B) 577 val handleVlsExcp = deqIsVlsException && deqVlsCanCommit && !deqVlsExcpLock && state === s_idle 578 when(handleVlsExcp) { 579 deqVlsExcpLock := true.B 580 }.elsewhen(deqPtrVec.head =/= deqPtrVec_next.head) { 581 deqVlsExcpLock := false.B 582 } 583 584 // Only assert once when deqVlsExcp occurs until condition not assert to avoid multi message passed to RAB 585 when (deqVlsExceptionNeedCommit) { 586 deqVlsExceptionNeedCommit := false.B 587 }.elsewhen(handleVlsExcp){ 588 deqVlsExceptionCommitSize := deqPtrEntry.realDestSize 589 deqVlsExceptionNeedCommit := true.B 590 } 591 592 XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n") 593 XSDebug(deqHasException && TriggerAction.isDmode(exceptionDataRead.bits.trigger), "Debug Mode: Deq has trigger entry debug Mode\n") 594 595 val isFlushPipe = deqPtrEntry.commit_w && (deqHasFlushPipe || deqHasReplayInst) 596 597 val isVsetFlushPipe = deqPtrEntry.commit_w && deqHasFlushPipe && exceptionDataRead.bits.isVset 598 // val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush) 599 val needModifyFtqIdxOffset = false.B 600 io.isVsetFlushPipe := isVsetFlushPipe 601 // io.flushOut will trigger redirect at the next cycle. 602 // Block any redirect or commit at the next cycle. 603 val lastCycleFlush = RegNext(io.flushOut.valid) 604 605 io.flushOut.valid := (state === s_idle) && deqPtrEntryValid && (intrEnable || deqHasException && (!deqIsVlsException || deqVlsCanCommit) || isFlushPipe) && !lastCycleFlush 606 io.flushOut.bits := DontCare 607 io.flushOut.bits.isRVC := deqDispatchData.isRVC 608 io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr) 609 io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx) 610 io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset) 611 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || deqHasException || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next" 612 io.flushOut.bits.interrupt := true.B 613 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 614 XSPerfAccumulate("exception_num", io.flushOut.valid && deqHasException) 615 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 616 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 617 618 val exceptionHappen = (state === s_idle) && deqPtrEntryValid && (intrEnable || deqHasException && (!deqIsVlsException || deqVlsCanCommit)) && !lastCycleFlush 619 io.exception.valid := RegNext(exceptionHappen) 620 io.exception.bits.pc := RegEnable(debug_deqUop.pc, exceptionHappen) 621 io.exception.bits.gpaddr := io.readGPAMemData.gpaddr 622 io.exception.bits.isForVSnonLeafPTE := io.readGPAMemData.isForVSnonLeafPTE 623 io.exception.bits.instr := RegEnable(debug_deqUop.instr, exceptionHappen) 624 io.exception.bits.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 625 io.exception.bits.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 626 // fetch trigger fire or execute ebreak 627 io.exception.bits.isPcBkpt := RegEnable( 628 exceptionDataRead.bits.exceptionVec(ExceptionNO.EX_BP) && ( 629 exceptionDataRead.bits.isEnqExcp || 630 exceptionDataRead.bits.trigger === TriggerAction.None 631 ), 632 exceptionHappen, 633 ) 634 io.exception.bits.isFetchMalAddr := RegEnable(exceptionDataRead.bits.isFetchMalAddr && deqHasException, exceptionHappen) 635 io.exception.bits.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 636 io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 637 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 638 io.exception.bits.isHls := RegEnable(deqDispatchData.isHls, exceptionHappen) 639 io.exception.bits.vls := RegEnable(robEntries(deqPtr.value).vls, exceptionHappen) 640 io.exception.bits.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen) 641 642 // data will be one cycle after valid 643 io.readGPAMemAddr.valid := exceptionHappen 644 io.readGPAMemAddr.bits.ftqPtr := exceptionDataRead.bits.ftqPtr 645 io.readGPAMemAddr.bits.ftqOffset := exceptionDataRead.bits.ftqOffset 646 647 XSDebug(io.flushOut.valid, 648 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " + 649 p"excp $deqHasException flushPipe $isFlushPipe " + 650 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget.pc)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 651 652 653 /** 654 * Commits (and walk) 655 * They share the same width. 656 */ 657 // T redirect.valid, T+1 use walkPtrVec read robEntries, T+2 start walk, shouldWalkVec used in T+2 658 val shouldWalkVec = Wire(Vec(CommitWidth,Bool())) 659 val walkingPtrVec = RegNext(walkPtrVec) 660 when(io.redirect.valid){ 661 shouldWalkVec := 0.U.asTypeOf(shouldWalkVec) 662 }.elsewhen(RegNext(io.redirect.valid)){ 663 shouldWalkVec := 0.U.asTypeOf(shouldWalkVec) 664 }.elsewhen(state === s_walk){ 665 shouldWalkVec := VecInit(walkingPtrVec.map(_ <= lastWalkPtr).zip(donotNeedWalk).map(x => x._1 && !x._2)) 666 }.otherwise( 667 shouldWalkVec := 0.U.asTypeOf(shouldWalkVec) 668 ) 669 val walkFinished = walkPtrTrue > lastWalkPtr 670 rab.io.fromRob.walkEnd := state === s_walk && walkFinished 671 vtypeBuffer.io.fromRob.walkEnd := state === s_walk && walkFinished 672 673 require(RenameWidth <= CommitWidth) 674 675 // wiring to csr 676 val (wflags, dirtyFs) = (0 until CommitWidth).map(i => { 677 val v = io.commits.commitValid(i) 678 val info = io.commits.info(i) 679 (v & info.wflags, v & info.dirtyFs) 680 }).unzip 681 val fflags = Wire(Valid(UInt(5.W))) 682 fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR 683 fflags.bits := wflags.zip(fflagsDataRead).map({ 684 case (w, f) => Mux(w, f, 0.U) 685 }).reduce(_ | _) 686 val dirtyVs = (0 until CommitWidth).map(i => { 687 val v = io.commits.commitValid(i) 688 val info = io.commits.info(i) 689 v & info.dirtyVs 690 }) 691 val dirty_fs = io.commits.isCommit && VecInit(dirtyFs).asUInt.orR 692 val dirty_vs = io.commits.isCommit && VecInit(dirtyVs).asUInt.orR 693 694 val resetVstart = dirty_vs && !io.vstartIsZero 695 696 vecExcpInfo.valid := exceptionHappen && !intrEnable && exceptionDataRead.bits.vstartEn && exceptionDataRead.bits.isVecLoad && !exceptionDataRead.bits.isEnqExcp 697 when (exceptionHappen) { 698 vecExcpInfo.bits.nf := exceptionDataRead.bits.nf 699 vecExcpInfo.bits.vsew := exceptionDataRead.bits.vsew 700 vecExcpInfo.bits.veew := exceptionDataRead.bits.veew 701 vecExcpInfo.bits.vlmul := exceptionDataRead.bits.vlmul 702 vecExcpInfo.bits.isStride := exceptionDataRead.bits.isStrided 703 vecExcpInfo.bits.isIndexed := exceptionDataRead.bits.isIndexed 704 vecExcpInfo.bits.isWhole := exceptionDataRead.bits.isWhole 705 vecExcpInfo.bits.isVlm := exceptionDataRead.bits.isVlm 706 vecExcpInfo.bits.vstart := exceptionDataRead.bits.vstart 707 } 708 709 io.csr.vstart.valid := RegNext(Mux(exceptionHappen && deqHasException, exceptionDataRead.bits.vstartEn, resetVstart)) 710 io.csr.vstart.bits := RegNext(Mux(exceptionHappen && deqHasException, exceptionDataRead.bits.vstart, 0.U)) 711 712 val vxsat = Wire(Valid(Bool())) 713 vxsat.valid := io.commits.isCommit && vxsat.bits 714 vxsat.bits := io.commits.commitValid.zip(vxsatDataRead).map { 715 case (valid, vxsat) => valid & vxsat 716 }.reduce(_ | _) 717 718 // when mispredict branches writeback, stop commit in the next 2 cycles 719 // TODO: don't check all exu write back 720 val misPredWb = Cat(VecInit(redirectWBs.map(wb => 721 wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid 722 ).toSeq)).orR 723 val misPredBlockCounter = Reg(UInt(3.W)) 724 misPredBlockCounter := Mux(misPredWb, 725 "b111".U, 726 misPredBlockCounter >> 1.U 727 ) 728 val misPredBlock = misPredBlockCounter(0) 729 val deqFlushBlockCounter = Reg(UInt(3.W)) 730 val deqFlushBlock = deqFlushBlockCounter(0) 731 val deqHasCommitted = io.commits.isCommit && io.commits.commitValid(0) 732 // TODO *** WARNING *** 733 // Blocking commit. Don't change this before we fully understand the logic. 734 val deqHitRedirectReg = RegNext(io.redirect.valid && io.redirect.bits.robIdx === deqPtr) || RegNext(RegNext(io.redirect.valid && io.redirect.bits.robIdx === deqPtr)) 735 val criticalErrorState = io.csr.criticalErrorState 736 when(deqNeedFlush && deqHitRedirectReg){ 737 deqFlushBlockCounter := "b111".U 738 }.otherwise{ 739 deqFlushBlockCounter := deqFlushBlockCounter >> 1.U 740 } 741 when(deqHasCommitted){ 742 deqHasFlushed := false.B 743 }.elsewhen(deqNeedFlush && io.flushOut.valid && !io.flushOut.bits.flushItself()){ 744 deqHasFlushed := true.B 745 } 746 val traceBlock = io.trace.blockCommit 747 val blockCommit = misPredBlock || lastCycleFlush || hasWFI || io.redirect.valid || 748 (deqNeedFlush && !deqHasFlushed) || deqFlushBlock || criticalErrorState || traceBlock 749 750 io.commits.isWalk := state === s_walk 751 io.commits.isCommit := state === s_idle && !blockCommit 752 753 val walk_v = VecInit(walkingPtrVec.map(ptr => robEntries(ptr.value).valid)) 754 val commit_vDeqGroup = VecInit(robDeqGroup.map(_.commit_v)) 755 val commit_wDeqGroup = VecInit(robDeqGroup.map(_.commit_w)) 756 val realCommitLast = deqPtrVec(0).lineHeadPtr + Fill(bankAddrWidth, 1.U) 757 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_wDeqGroup(i) && !hasCommitted(i))) 758 val allowOnlyOneCommit = VecInit(robDeqGroup.map(x => x.commit_v && x.needFlush)).asUInt.orR || intrBitSetReg 759 // for instructions that may block others, we don't allow them to commit 760 io.commits.commitValid := PriorityMux(commitValidThisLine, (0 until CommitWidth).map(i => (commitValidThisLine.asUInt >> i).asUInt.asTypeOf(io.commits.commitValid))) 761 762 for (i <- 0 until CommitWidth) { 763 // defaults: state === s_idle and instructions commit 764 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 765 val isBlocked = intrEnable || (deqNeedFlush && !deqHasFlushed && !deqHasFlushPipe) 766 val isBlockedByOlder = if (i != 0) commit_block.asUInt(i, 0).orR || allowOnlyOneCommit && !hasCommitted.asUInt(i - 1, 0).andR else false.B 767 commitValidThisLine(i) := commit_vDeqGroup(i) && commit_wDeqGroup(i) && !isBlocked && !isBlockedByOlder && !hasCommitted(i) 768 io.commits.info(i) := commitInfo(i) 769 io.commits.robIdx(i) := deqPtrVec(i) 770 771 io.commits.walkValid(i) := shouldWalkVec(i) 772 when(state === s_walk) { 773 when(io.commits.isWalk && state === s_walk && shouldWalkVec(i)) { 774 XSError(!walk_v(i), s"The walking entry($i) should be valid\n") 775 } 776 } 777 778 XSInfo(io.commits.isCommit && io.commits.commitValid(i), 779 "retired pc %x wen %d ldest %d pdest %x data %x fflags: %b vxsat: %b\n", 780 debug_microOp(deqPtrVec(i).value).pc, 781 io.commits.info(i).rfWen, 782 io.commits.info(i).debug_ldest.getOrElse(0.U), 783 io.commits.info(i).debug_pdest.getOrElse(0.U), 784 debug_exuData(deqPtrVec(i).value), 785 fflagsDataRead(i), 786 vxsatDataRead(i) 787 ) 788 XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n", 789 debug_microOp(walkPtrVec(i).value).pc, 790 io.commits.info(i).rfWen, 791 io.commits.info(i).debug_ldest.getOrElse(0.U), 792 debug_exuData(walkPtrVec(i).value) 793 ) 794 } 795 796 // sync fflags/dirty_fs/vxsat to csr 797 io.csr.fflags := RegNextWithEnable(fflags) 798 io.csr.dirty_fs := GatedValidRegNext(dirty_fs) 799 io.csr.dirty_vs := GatedValidRegNext(dirty_vs) 800 io.csr.vxsat := RegNextWithEnable(vxsat) 801 802 // commit load/store to lsq 803 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 804 // TODO: Check if meet the require that only set scommit when commit scala store uop 805 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE && !robEntries(deqPtrVec(i).value).vls )) 806 io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U)) 807 io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U)) 808 // indicate a pending load or store 809 io.lsq.pendingMMIOld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && robEntries(deqPtr.value).valid && robEntries(deqPtr.value).mmio) 810 io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && robEntries(deqPtr.value).valid) 811 // TODO: Check if need deassert pendingst when it is vst 812 io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && robEntries(deqPtr.value).valid) 813 // TODO: Check if set correctly when vector store is at the head of ROB 814 io.lsq.pendingVst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && robEntries(deqPtr.value).valid && robEntries(deqPtr.value).vls) 815 io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0)) 816 io.lsq.pendingPtr := RegNext(deqPtr) 817 io.lsq.pendingPtrNext := RegNext(deqPtrVec_next.head) 818 819 /** 820 * state changes 821 * (1) redirect: switch to s_walk 822 * (2) walk: when walking comes to the end, switch to s_idle 823 */ 824 state_next := Mux( 825 io.redirect.valid || RegNext(io.redirect.valid), s_walk, 826 Mux( 827 state === s_walk && walkFinished && rab.io.status.walkEnd && vtypeBuffer.io.status.walkEnd, s_idle, 828 state 829 ) 830 ) 831 XSPerfAccumulate("s_idle_to_idle", state === s_idle && state_next === s_idle) 832 XSPerfAccumulate("s_idle_to_walk", state === s_idle && state_next === s_walk) 833 XSPerfAccumulate("s_walk_to_idle", state === s_walk && state_next === s_idle) 834 XSPerfAccumulate("s_walk_to_walk", state === s_walk && state_next === s_walk) 835 state := state_next 836 837 /** 838 * pointers and counters 839 */ 840 val deqPtrGenModule = Module(new NewRobDeqPtrWrapper) 841 deqPtrGenModule.io.state := state 842 deqPtrGenModule.io.deq_v := commit_vDeqGroup 843 deqPtrGenModule.io.deq_w := commit_wDeqGroup 844 deqPtrGenModule.io.exception_state := exceptionDataRead 845 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 846 deqPtrGenModule.io.hasNoSpecExec := hasWaitForward 847 deqPtrGenModule.io.allowOnlyOneCommit := allowOnlyOneCommit 848 deqPtrGenModule.io.interrupt_safe := robDeqGroup(deqPtr.value(bankAddrWidth-1,0)).interrupt_safe 849 deqPtrGenModule.io.blockCommit := blockCommit 850 deqPtrGenModule.io.hasCommitted := hasCommitted 851 deqPtrGenModule.io.allCommitted := allCommitted 852 deqPtrVec := deqPtrGenModule.io.out 853 deqPtrVec_next := deqPtrGenModule.io.next_out 854 855 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 856 enqPtrGenModule.io.redirect := io.redirect 857 enqPtrGenModule.io.allowEnqueue := allowEnqueue && rab.io.canEnq && !io.fromVecExcpMod.busy 858 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 859 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop)) 860 enqPtrVec := enqPtrGenModule.io.out 861 862 // next walkPtrVec: 863 // (1) redirect occurs: update according to state 864 // (2) walk: move forwards 865 val deqPtrReadBank = deqPtrVec_next(0).lineHeadPtr 866 val deqPtrVecForWalk = VecInit((0 until CommitWidth).map(i => deqPtrReadBank + i.U)) 867 val snapPtrReadBank = snapshots(io.snpt.snptSelect)(0).lineHeadPtr 868 val snapPtrVecForWalk = VecInit((0 until CommitWidth).map(i => snapPtrReadBank + i.U)) 869 val walkPtrVec_next: Vec[RobPtr] = Mux(io.redirect.valid, 870 Mux(io.snpt.useSnpt, snapPtrVecForWalk, deqPtrVecForWalk), 871 Mux((state === s_walk) && !walkFinished, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec) 872 ) 873 val walkPtrTrue_next: RobPtr = Mux(io.redirect.valid, 874 Mux(io.snpt.useSnpt, snapshots(io.snpt.snptSelect)(0), deqPtrVec_next(0)), 875 Mux((state === s_walk) && !walkFinished, walkPtrVec_next.head, walkPtrTrue) 876 ) 877 walkPtrHead := walkPtrVec_next.head 878 walkPtrVec := walkPtrVec_next 879 walkPtrTrue := walkPtrTrue_next 880 // T io.redirect.valid, T+1 walkPtrLowBits update, T+2 donotNeedWalk update 881 val walkPtrLowBits = Reg(UInt(bankAddrWidth.W)) 882 when(io.redirect.valid){ 883 walkPtrLowBits := Mux(io.snpt.useSnpt, snapshots(io.snpt.snptSelect)(0).value(bankAddrWidth-1, 0), deqPtrVec_next(0).value(bankAddrWidth-1, 0)) 884 } 885 when(io.redirect.valid) { 886 donotNeedWalk := Fill(donotNeedWalk.length, true.B).asTypeOf(donotNeedWalk) 887 }.elsewhen(RegNext(io.redirect.valid)){ 888 donotNeedWalk := (0 until CommitWidth).map(i => (i.U < walkPtrLowBits)) 889 }.otherwise{ 890 donotNeedWalk := 0.U.asTypeOf(donotNeedWalk) 891 } 892 walkDestSizeDeqGroup.zip(walkPtrVec_next).map { 893 case (reg, ptrNext) => reg := robEntries(deqPtr.value).realDestSize 894 } 895 val numValidEntries = distanceBetween(enqPtr, deqPtr) 896 val commitCnt = PopCount(io.commits.commitValid) 897 898 allowEnqueue := numValidEntries + dispatchNum <= (RobSize - CommitWidth).U 899 900 val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0)) 901 when(io.redirect.valid) { 902 lastWalkPtr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx - 1.U, io.redirect.bits.robIdx) 903 } 904 905 906 /** 907 * States 908 * We put all the stage bits changes here. 909 * 910 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 911 * All states: (1) valid; (2) writebacked; (3) flagBkup 912 */ 913 914 val deqPtrGroup = Wire(Vec(2 * CommitWidth, new RobPtr)) 915 deqPtrGroup.zipWithIndex.map { case (deq, i) => deq := deqPtrVec(0) + i.U } 916 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 917 918 val redirectValidReg = RegNext(io.redirect.valid) 919 val redirectBegin = Reg(UInt(log2Up(RobSize).W)) 920 val redirectEnd = Reg(UInt(log2Up(RobSize).W)) 921 when(io.redirect.valid){ 922 redirectBegin := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx.value - 1.U, io.redirect.bits.robIdx.value) 923 redirectEnd := enqPtr.value 924 } 925 926 // update robEntries valid 927 for (i <- 0 until RobSize) { 928 val enqOH = VecInit(canEnqueue.zip(allocatePtrVec.map(_.value === i.U)).map(x => x._1 && x._2)) 929 val commitCond = io.commits.isCommit && io.commits.commitValid.zip(deqPtrVec.map(_.value === i.U)).map(x => x._1 && x._2).reduce(_ || _) 930 assert(PopCount(enqOH) < 2.U, s"robEntries$i enqOH is not one hot") 931 val needFlush = redirectValidReg && Mux( 932 redirectEnd > redirectBegin, 933 (i.U > redirectBegin) && (i.U < redirectEnd), 934 (i.U > redirectBegin) || (i.U < redirectEnd) 935 ) 936 when(commitCond) { 937 robEntries(i).valid := false.B 938 }.elsewhen(enqOH.asUInt.orR && !io.redirect.valid) { 939 robEntries(i).valid := true.B 940 }.elsewhen(needFlush){ 941 robEntries(i).valid := false.B 942 } 943 } 944 945 // debug_inst update 946 for (i <- 0 until (LduCnt + StaCnt)) { 947 debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i)) 948 debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i)) 949 debug_lsInfo(io.debug_ls.debugLsInfo(i).s3_robIdx).s3SignalEnable(io.debug_ls.debugLsInfo(i)) 950 } 951 for (i <- 0 until LduCnt) { 952 debug_lsTopdownInfo(io.lsTopdownInfo(i).s1.robIdx).s1SignalEnable(io.lsTopdownInfo(i)) 953 debug_lsTopdownInfo(io.lsTopdownInfo(i).s2.robIdx).s2SignalEnable(io.lsTopdownInfo(i)) 954 } 955 956 // status field: writebacked 957 // enqueue logic set 6 writebacked to false 958 959 // writeback logic set numWbPorts writebacked to true 960 961 // if the first uop of an instruction is valid , write writebackedCounter 962 val uopEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid) 963 val instEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid && req.bits.firstUop) 964 val enqNeedWriteRFSeq = io.enq.req.map(_.bits.needWriteRf) 965 val enqHasExcpSeq = io.enq.req.map(_.bits.hasException) 966 val enqRobIdxSeq = io.enq.req.map(req => req.bits.robIdx.value) 967 val enqUopNumVec = VecInit(io.enq.req.map(req => req.bits.numUops)) 968 val enqWBNumVec = VecInit(io.enq.req.map(req => req.bits.numWB)) 969 970 private val enqWriteStdVec: Vec[Bool] = VecInit(io.enq.req.map { 971 req => FuType.isStore(req.bits.fuType) 972 }) 973 val fflags_wb = fflagsWBs 974 val vxsat_wb = vxsatWBs 975 for (i <- 0 until RobSize) { 976 977 val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === i.U) 978 val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map { case (valid, isMatch) => valid && isMatch } 979 val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map { case (valid, isMatch) => valid && isMatch } 980 val instCanEnqFlag = Cat(instCanEnqSeq).orR 981 val hasExcpSeq = enqHasExcpSeq.lazyZip(robIdxMatchSeq).lazyZip(uopEnqValidSeq).map { case (excp, isMatch, valid) => excp && isMatch && valid } 982 val hasExcpFlag = Cat(hasExcpSeq).orR 983 val isFirstEnq = !robEntries(i).valid && instCanEnqFlag 984 val realDestEnqNum = PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map { case (writeFlag, valid) => writeFlag && valid }) 985 when(isFirstEnq){ 986 robEntries(i).realDestSize := Mux(hasExcpFlag, 0.U, realDestEnqNum) 987 }.elsewhen(robEntries(i).valid && Cat(uopCanEnqSeq).orR){ 988 robEntries(i).realDestSize := robEntries(i).realDestSize + realDestEnqNum 989 } 990 val enqUopNum = PriorityMux(instCanEnqSeq, enqUopNumVec) 991 val enqWBNum = PriorityMux(instCanEnqSeq, enqWBNumVec) 992 val enqWriteStd = PriorityMux(instCanEnqSeq, enqWriteStdVec) 993 994 val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 995 val canStdWbSeq = VecInit(stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)) 996 val wbCnt = Mux1H(canWbSeq, io.writebackNums.map(_.bits)) 997 998 val canWbExceptionSeq = exceptionWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 999 val needFlush = robEntries(i).needFlush 1000 val needFlushWriteBack = Wire(Bool()) 1001 needFlushWriteBack := Mux1H(canWbExceptionSeq, io.writebackNeedFlush) 1002 when(robEntries(i).valid){ 1003 needFlush := needFlush || needFlushWriteBack 1004 } 1005 1006 when(robEntries(i).valid && (needFlush || needFlushWriteBack)) { 1007 // exception flush 1008 robEntries(i).uopNum := robEntries(i).uopNum - wbCnt 1009 robEntries(i).stdWritebacked := true.B 1010 }.elsewhen(!robEntries(i).valid && instCanEnqFlag) { 1011 // enq set num of uops 1012 robEntries(i).uopNum := enqWBNum 1013 robEntries(i).stdWritebacked := Mux(enqWriteStd, false.B, true.B) 1014 }.elsewhen(robEntries(i).valid) { 1015 // update by writing back 1016 robEntries(i).uopNum := robEntries(i).uopNum - wbCnt 1017 assert(!(robEntries(i).uopNum - wbCnt > robEntries(i).uopNum), s"robEntries $i uopNum is overflow!") 1018 when(canStdWbSeq.asUInt.orR) { 1019 robEntries(i).stdWritebacked := true.B 1020 } 1021 } 1022 1023 val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U && writeback.bits.wflags.getOrElse(false.B)) 1024 val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.fold(false.B)(_ | _) 1025 when(isFirstEnq) { 1026 robEntries(i).fflags := 0.U 1027 }.elsewhen(fflagsRes.orR) { 1028 robEntries(i).fflags := robEntries(i).fflags | fflagsRes 1029 } 1030 1031 val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 1032 val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.fold(false.B)(_ | _) 1033 when(isFirstEnq) { 1034 robEntries(i).vxsat := 0.U 1035 }.elsewhen(vxsatRes.orR) { 1036 robEntries(i).vxsat := robEntries(i).vxsat | vxsatRes 1037 } 1038 1039 // trace 1040 val taken = branchWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U && writeback.bits.redirect.get.bits.cfiUpdate.taken).reduce(_ || _) 1041 val xret = csrWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U && io.csr.isXRet).reduce(_ || _) 1042 1043 when(robEntries(i).valid && xret){ 1044 robEntries(i).traceBlockInPipe.itype := Itype.ExpIntReturn 1045 }.elsewhen(robEntries(i).valid && Itype.isBranchType(robEntries(i).traceBlockInPipe.itype) && taken){ 1046 // BranchType code(notaken itype = 4) must be correctly replaced! 1047 robEntries(i).traceBlockInPipe.itype := Itype.Taken 1048 } 1049 } 1050 1051 // begin update robBanksRdata 1052 val robBanksRdata = VecInit(robBanksRdataThisLine ++ robBanksRdataNextLine) 1053 val needUpdate = Wire(Vec(2 * CommitWidth, new RobEntryBundle)) 1054 needUpdate := VecInit(robBanksRdataThisLine ++ robBanksRdataNextLine) 1055 val needUpdateRobIdx = robIdxThisLine ++ robIdxNextLine 1056 for (i <- 0 until 2 * CommitWidth) { 1057 val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === needUpdateRobIdx(i)) 1058 val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map { case (valid, isMatch) => valid && isMatch } 1059 val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map { case (valid, isMatch) => valid && isMatch } 1060 val instCanEnqFlag = Cat(instCanEnqSeq).orR 1061 val realDestEnqNum = PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map { case (writeFlag, valid) => writeFlag && valid }) 1062 when(!needUpdate(i).valid && instCanEnqFlag) { 1063 needUpdate(i).realDestSize := realDestEnqNum 1064 }.elsewhen(needUpdate(i).valid && instCanEnqFlag) { 1065 needUpdate(i).realDestSize := robBanksRdata(i).realDestSize + realDestEnqNum 1066 } 1067 val enqUopNum = PriorityMux(instCanEnqSeq, enqUopNumVec) 1068 val enqWBNum = PriorityMux(instCanEnqSeq, enqWBNumVec) 1069 val enqWriteStd = PriorityMux(instCanEnqSeq, enqWriteStdVec) 1070 1071 val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === needUpdateRobIdx(i)) 1072 val canStdWbSeq = VecInit(stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === needUpdateRobIdx(i))) 1073 val wbCnt = Mux1H(canWbSeq, io.writebackNums.map(_.bits)) 1074 1075 val canWbExceptionSeq = exceptionWBs.map(writeback => writeback.valid && (writeback.bits.robIdx.value === needUpdateRobIdx(i))) 1076 val needFlush = robBanksRdata(i).needFlush 1077 val needFlushWriteBack = Wire(Bool()) 1078 needFlushWriteBack := Mux1H(canWbExceptionSeq, io.writebackNeedFlush) 1079 when(needUpdate(i).valid) { 1080 needUpdate(i).needFlush := needFlush || needFlushWriteBack 1081 } 1082 1083 when(needUpdate(i).valid && (needFlush || needFlushWriteBack)) { 1084 // exception flush 1085 needUpdate(i).uopNum := robBanksRdata(i).uopNum - wbCnt 1086 needUpdate(i).stdWritebacked := true.B 1087 }.elsewhen(!needUpdate(i).valid && instCanEnqFlag) { 1088 // enq set num of uops 1089 needUpdate(i).uopNum := enqWBNum 1090 needUpdate(i).stdWritebacked := Mux(enqWriteStd, false.B, true.B) 1091 }.elsewhen(needUpdate(i).valid) { 1092 // update by writing back 1093 needUpdate(i).uopNum := robBanksRdata(i).uopNum - wbCnt 1094 when(canStdWbSeq.asUInt.orR) { 1095 needUpdate(i).stdWritebacked := true.B 1096 } 1097 } 1098 1099 val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === needUpdateRobIdx(i) && writeback.bits.wflags.getOrElse(false.B)) 1100 val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.fold(false.B)(_ | _) 1101 needUpdate(i).fflags := Mux(!robBanksRdata(i).valid && instCanEnqFlag, 0.U, robBanksRdata(i).fflags | fflagsRes) 1102 1103 val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === needUpdateRobIdx(i)) 1104 val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.fold(false.B)(_ | _) 1105 needUpdate(i).vxsat := Mux(!robBanksRdata(i).valid && instCanEnqFlag, 0.U, robBanksRdata(i).vxsat | vxsatRes) 1106 1107 // trace 1108 val taken = branchWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === needUpdateRobIdx(i) && writeback.bits.redirect.get.bits.cfiUpdate.taken).reduce(_ || _) 1109 val xret = csrWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === needUpdateRobIdx(i) && io.csr.isXRet).reduce(_ || _) 1110 when(robBanksRdata(i).valid && xret){ 1111 needUpdate(i).traceBlockInPipe.itype := Itype.ExpIntReturn 1112 }.elsewhen(robBanksRdata(i).valid && Itype.isBranchType(robBanksRdata(i).traceBlockInPipe.itype) && taken){ 1113 // BranchType code(notaken itype = 4) must be correctly replaced! 1114 needUpdate(i).traceBlockInPipe.itype := Itype.Taken 1115 } 1116 } 1117 robBanksRdataThisLineUpdate := VecInit(needUpdate.take(8)) 1118 robBanksRdataNextLineUpdate := VecInit(needUpdate.drop(8)) 1119 // end update robBanksRdata 1120 1121 // interrupt_safe 1122 for (i <- 0 until RenameWidth) { 1123 when(canEnqueue(i)) { 1124 // For now, we allow non-load-store instructions to trigger interrupts 1125 // For MMIO instructions, they should not trigger interrupts since they may 1126 // be sent to lower level before it writes back. 1127 // However, we cannot determine whether a load/store instruction is MMIO. 1128 // Thus, we don't allow load/store instructions to trigger an interrupt. 1129 // TODO: support non-MMIO load-store instructions to trigger interrupts 1130 val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType) && !FuType.isFence(io.enq.req(i).bits.fuType) && !FuType.isCsr(io.enq.req(i).bits.fuType) && !FuType.isVset(io.enq.req(i).bits.fuType) 1131 robEntries(allocatePtrVec(i).value).interrupt_safe := allow_interrupts 1132 } 1133 } 1134 1135 /** 1136 * read and write of data modules 1137 */ 1138 val commitReadAddr_next = Mux(state_next === s_idle, 1139 VecInit(deqPtrVec_next.map(_.value)), 1140 VecInit(walkPtrVec_next.map(_.value)) 1141 ) 1142 1143 exceptionGen.io.redirect <> io.redirect 1144 exceptionGen.io.flush := io.flushOut.valid 1145 1146 val canEnqueueEG = VecInit(io.enq.req.map(req => req.valid && io.enq.canAccept)) 1147 for (i <- 0 until RenameWidth) { 1148 exceptionGen.io.enq(i).valid := canEnqueueEG(i) 1149 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 1150 exceptionGen.io.enq(i).bits.ftqPtr := io.enq.req(i).bits.ftqPtr 1151 exceptionGen.io.enq(i).bits.ftqOffset := io.enq.req(i).bits.ftqOffset 1152 exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec) 1153 exceptionGen.io.enq(i).bits.hasException := io.enq.req(i).bits.hasException 1154 exceptionGen.io.enq(i).bits.isEnqExcp := io.enq.req(i).bits.hasException 1155 exceptionGen.io.enq(i).bits.isFetchMalAddr := io.enq.req(i).bits.isFetchMalAddr 1156 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe 1157 exceptionGen.io.enq(i).bits.isVset := io.enq.req(i).bits.isVset 1158 exceptionGen.io.enq(i).bits.replayInst := false.B 1159 XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst") 1160 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep 1161 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix 1162 exceptionGen.io.enq(i).bits.trigger := io.enq.req(i).bits.trigger 1163 exceptionGen.io.enq(i).bits.vstartEn := false.B //DontCare 1164 exceptionGen.io.enq(i).bits.vstart := 0.U //DontCare 1165 exceptionGen.io.enq(i).bits.vuopIdx := 0.U 1166 exceptionGen.io.enq(i).bits.isVecLoad := false.B 1167 exceptionGen.io.enq(i).bits.isVlm := false.B 1168 exceptionGen.io.enq(i).bits.isStrided := false.B 1169 exceptionGen.io.enq(i).bits.isIndexed := false.B 1170 exceptionGen.io.enq(i).bits.isWhole := false.B 1171 exceptionGen.io.enq(i).bits.nf := 0.U 1172 exceptionGen.io.enq(i).bits.vsew := 0.U 1173 exceptionGen.io.enq(i).bits.veew := 0.U 1174 exceptionGen.io.enq(i).bits.vlmul := 0.U 1175 } 1176 1177 println(s"ExceptionGen:") 1178 println(s"num of exceptions: ${params.numException}") 1179 require(exceptionWBs.length == exceptionGen.io.wb.length, 1180 f"exceptionWBs.length: ${exceptionWBs.length}, " + 1181 f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}") 1182 for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) { 1183 exc_wb.valid := wb.valid 1184 exc_wb.bits.robIdx := wb.bits.robIdx 1185 // only enq inst use ftqPtr to read gpa 1186 exc_wb.bits.ftqPtr := 0.U.asTypeOf(exc_wb.bits.ftqPtr) 1187 exc_wb.bits.ftqOffset := 0.U.asTypeOf(exc_wb.bits.ftqOffset) 1188 exc_wb.bits.exceptionVec := wb.bits.exceptionVec.get 1189 exc_wb.bits.hasException := wb.bits.exceptionVec.get.asUInt.orR // Todo: use io.writebackNeedFlush(i) instead 1190 exc_wb.bits.isEnqExcp := false.B 1191 exc_wb.bits.isFetchMalAddr := false.B 1192 exc_wb.bits.flushPipe := wb.bits.flushPipe.getOrElse(false.B) 1193 exc_wb.bits.isVset := false.B 1194 exc_wb.bits.replayInst := wb.bits.replay.getOrElse(false.B) 1195 exc_wb.bits.singleStep := false.B 1196 exc_wb.bits.crossPageIPFFix := false.B 1197 val trigger = wb.bits.trigger.getOrElse(TriggerAction.None).asTypeOf(exc_wb.bits.trigger) 1198 exc_wb.bits.trigger := trigger 1199 exc_wb.bits.vstartEn := (if (wb.bits.vls.nonEmpty) wb.bits.exceptionVec.get.asUInt.orR || TriggerAction.isDmode(trigger) else 0.U) 1200 exc_wb.bits.vstart := (if (wb.bits.vls.nonEmpty) wb.bits.vls.get.vpu.vstart else 0.U) 1201 exc_wb.bits.vuopIdx := (if (wb.bits.vls.nonEmpty) wb.bits.vls.get.vpu.vuopIdx else 0.U) 1202 exc_wb.bits.isVecLoad := wb.bits.vls.map(_.isVecLoad).getOrElse(false.B) 1203 exc_wb.bits.isVlm := wb.bits.vls.map(_.isVlm).getOrElse(false.B) 1204 exc_wb.bits.isStrided := wb.bits.vls.map(_.isStrided).getOrElse(false.B) // strided need two mode tmp vreg 1205 exc_wb.bits.isIndexed := wb.bits.vls.map(_.isIndexed).getOrElse(false.B) // indexed and nf=0 need non-sequential uopidx -> vdidx 1206 exc_wb.bits.isWhole := wb.bits.vls.map(_.isWhole).getOrElse(false.B) // indexed and nf=0 need non-sequential uopidx -> vdidx 1207 exc_wb.bits.nf := wb.bits.vls.map(_.vpu.nf).getOrElse(0.U) 1208 exc_wb.bits.vsew := wb.bits.vls.map(_.vpu.vsew).getOrElse(0.U) 1209 exc_wb.bits.veew := wb.bits.vls.map(_.vpu.veew).getOrElse(0.U) 1210 exc_wb.bits.vlmul := wb.bits.vls.map(_.vpu.vlmul).getOrElse(0.U) 1211 } 1212 1213 fflagsDataRead := (0 until CommitWidth).map(i => robEntries(deqPtrVec(i).value).fflags) 1214 vxsatDataRead := (0 until CommitWidth).map(i => robEntries(deqPtrVec(i).value).vxsat) 1215 1216 val isCommit = io.commits.isCommit 1217 val isCommitReg = GatedValidRegNext(io.commits.isCommit) 1218 val instrCntReg = RegInit(0.U(64.W)) 1219 val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map { case (v, i) => RegEnable(v && CommitType.isFused(i.commitType), isCommit) }) 1220 val trueCommitCnt = RegEnable(io.commits.commitValid.zip(io.commits.info).map { case (v, i) => Mux(v, i.instrSize, 0.U) }.reduce(_ +& _), isCommit) +& fuseCommitCnt 1221 val retireCounter = Mux(isCommitReg, trueCommitCnt, 0.U) 1222 val instrCnt = instrCntReg + retireCounter 1223 when(isCommitReg){ 1224 instrCntReg := instrCnt 1225 } 1226 io.csr.perfinfo.retiredInstr := retireCounter 1227 io.robFull := !allowEnqueue 1228 io.headNotReady := commit_vDeqGroup(deqPtr.value(bankNumWidth-1, 0)) && !commit_wDeqGroup(deqPtr.value(bankNumWidth-1, 0)) 1229 1230 io.toVecExcpMod.logicPhyRegMap := rab.io.toVecExcpMod.logicPhyRegMap 1231 io.toVecExcpMod.excpInfo := vecExcpInfo 1232 1233 /** 1234 * trace 1235 */ 1236 val trapTraceInfoFromCsr = io.csr.traceTrapInfo 1237 1238 // trace output 1239 val traceTrap = io.trace.traceCommitInfo.trap 1240 val traceValids = io.trace.traceCommitInfo.blocks.map(_.valid) 1241 val traceBlocks = io.trace.traceCommitInfo.blocks 1242 val traceBlockInPipe = io.trace.traceCommitInfo.blocks.map(_.bits.tracePipe) 1243 1244 traceTrap := trapTraceInfoFromCsr.bits 1245 1246 for (i <- 0 until CommitWidth) { 1247 traceBlocks(i).bits.ftqIdx.foreach(_ := rawInfo(i).ftqIdx) 1248 traceBlocks(i).bits.ftqOffset.foreach(_ := rawInfo(i).ftqOffset) 1249 traceBlockInPipe(i).itype := rawInfo(i).traceBlockInPipe.itype 1250 traceBlockInPipe(i).iretire := Mux(io.commits.isCommit && io.commits.commitValid(i), rawInfo(i).traceBlockInPipe.iretire, 0.U) 1251 traceBlockInPipe(i).ilastsize := rawInfo(i).traceBlockInPipe.ilastsize 1252 } 1253 1254 for (i <- 0 until CommitWidth) { 1255 val iretire = traceBlocks(i).bits.tracePipe.iretire 1256 val itype = traceBlocks(i).bits.tracePipe.itype 1257 traceValids(i) := iretire =/= 0.U 1258 } 1259 1260 val t_idle :: t_waiting :: Nil = Enum(2) 1261 val traceState = RegInit(t_idle) 1262 when(traceState === t_idle){ 1263 when(io.exception.valid){ 1264 traceState := t_waiting 1265 } 1266 }.elsewhen(traceState === t_waiting){ 1267 when(trapTraceInfoFromCsr.valid){ 1268 traceState := t_idle 1269 1270 traceBlocks(0).bits.tracePipe.itype := Mux(io.exception.bits.isInterrupt, 1271 Itype.Interrupt, 1272 Itype.Exception 1273 ) 1274 traceValids(0) := true.B 1275 } 1276 } 1277 1278 /** 1279 * debug info 1280 */ 1281 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 1282 XSDebug("") 1283 XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n") 1284 for (i <- 0 until RobSize) { 1285 XSDebug(false, !robEntries(i).valid, "-") 1286 XSDebug(false, robEntries(i).valid && robEntries(i).isWritebacked, "w") 1287 XSDebug(false, robEntries(i).valid && !robEntries(i).isWritebacked, "v") 1288 } 1289 XSDebug(false, true.B, "\n") 1290 1291 for (i <- 0 until RobSize) { 1292 if (i % 4 == 0) XSDebug("") 1293 XSDebug(false, true.B, "%x ", debug_microOp(i).pc) 1294 XSDebug(false, !robEntries(i).valid, "- ") 1295 XSDebug(false, robEntries(i).valid && robEntries(i).isWritebacked, "w ") 1296 XSDebug(false, robEntries(i).valid && !robEntries(i).isWritebacked, "v ") 1297 if (i % 4 == 3) XSDebug(false, true.B, "\n") 1298 } 1299 1300 def ifCommit(counter: UInt): UInt = Mux(isCommit, counter, 0.U) 1301 1302 def ifCommitReg(counter: UInt): UInt = Mux(isCommitReg, counter, 0.U) 1303 1304 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 1305 XSPerfAccumulate("clock_cycle", 1.U) 1306 QueuePerf(RobSize, numValidEntries, numValidEntries === RobSize.U) 1307 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 1308 XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt)) 1309 XSPerfRolling("ipc", ifCommitReg(trueCommitCnt), 1000, clock, reset) 1310 XSPerfRolling("cpi", perfCnt = 1.U /*Cycle*/ , eventTrigger = ifCommitReg(trueCommitCnt), granularity = 1000, clock, reset) 1311 XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt)) 1312 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 1313 val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map { case (v, t) => v && t } 1314 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 1315 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 1316 val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map { case (v, t) => v && t } 1317 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 1318 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 1319 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map { case (v, t) => v && t }))) 1320 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => robEntries(i).valid && robEntries(i).isWritebacked))) 1321 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire))) 1322 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 1323 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)) 1324 XSPerfAccumulate("walkCycleTotal", state === s_walk) 1325 XSPerfAccumulate("waitRabWalkEnd", state === s_walk && walkFinished && !rab.io.status.walkEnd) 1326 private val walkCycle = RegInit(0.U(8.W)) 1327 private val waitRabWalkCycle = RegInit(0.U(8.W)) 1328 walkCycle := Mux(io.redirect.valid, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U)) 1329 waitRabWalkCycle := Mux(state === s_walk && walkFinished, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U)) 1330 1331 XSPerfHistogram("walkRobCycleHist", walkCycle, state === s_walk && walkFinished, 0, 32) 1332 XSPerfHistogram("walkRabExtraCycleHist", waitRabWalkCycle, state === s_walk && walkFinished && rab.io.status.walkEnd, 0, 32) 1333 XSPerfHistogram("walkTotalCycleHist", walkCycle, state === s_walk && state_next === s_idle, 0, 32) 1334 1335 private val deqNotWritebacked = robEntries(deqPtr.value).valid && !robEntries(deqPtr.value).isWritebacked 1336 private val deqStdNotWritebacked = robEntries(deqPtr.value).valid && !robEntries(deqPtr.value).stdWritebacked 1337 private val deqUopNotWritebacked = robEntries(deqPtr.value).valid && !robEntries(deqPtr.value).isUopWritebacked 1338 private val deqHeadInfo = debug_microOp(deqPtr.value) 1339 val deqUopCommitType = debug_microOp(deqPtr.value).commitType 1340 1341 XSPerfAccumulate("waitAluCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.alu.U) 1342 XSPerfAccumulate("waitMulCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.mul.U) 1343 XSPerfAccumulate("waitDivCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.div.U) 1344 XSPerfAccumulate("waitBrhCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.brh.U) 1345 XSPerfAccumulate("waitJmpCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.jmp.U) 1346 XSPerfAccumulate("waitCsrCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.csr.U) 1347 XSPerfAccumulate("waitFenCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.fence.U) 1348 XSPerfAccumulate("waitBkuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.bku.U) 1349 XSPerfAccumulate("waitLduCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.ldu.U) 1350 XSPerfAccumulate("waitStuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1351 XSPerfAccumulate("waitStaCycle", deqUopNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1352 XSPerfAccumulate("waitStdCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1353 XSPerfAccumulate("waitAtmCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.mou.U) 1354 1355 XSPerfAccumulate("waitVfaluCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.vfalu.U) 1356 XSPerfAccumulate("waitVfmaCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.vfma.U) 1357 XSPerfAccumulate("waitVfdivCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.vfdiv.U) 1358 1359 val vfalufuop = Seq(VfaluType.vfadd, VfaluType.vfwadd, VfaluType.vfwadd_w, VfaluType.vfsub, VfaluType.vfwsub, VfaluType.vfwsub_w, VfaluType.vfmin, VfaluType.vfmax, 1360 VfaluType.vfmerge, VfaluType.vfmv, VfaluType.vfsgnj, VfaluType.vfsgnjn, VfaluType.vfsgnjx, VfaluType.vfeq, VfaluType.vfne, VfaluType.vflt, VfaluType.vfle, VfaluType.vfgt, 1361 VfaluType.vfge, VfaluType.vfclass, VfaluType.vfmv_f_s, VfaluType.vfmv_s_f, VfaluType.vfredusum, VfaluType.vfredmax, VfaluType.vfredmin, VfaluType.vfredosum, VfaluType.vfwredosum) 1362 1363 vfalufuop.zipWithIndex.map{ 1364 case(fuoptype,i) => XSPerfAccumulate(s"waitVfalu_${i}Cycle", deqStdNotWritebacked && deqHeadInfo.fuOpType === fuoptype && deqHeadInfo.fuType === FuType.vfalu.U) 1365 } 1366 1367 1368 1369 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 1370 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 1371 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 1372 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 1373 XSPerfAccumulate("robHeadPC", io.commits.info(0).debug_pc.getOrElse(0.U)) 1374 XSPerfAccumulate("commitCompressCntAll", PopCount(io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => io.commits.isCommit && valid && info.instrSize > 1.U })) 1375 (2 to RenameWidth).foreach(i => 1376 XSPerfAccumulate(s"commitCompressCnt${i}", PopCount(io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => io.commits.isCommit && valid && info.instrSize === i.U })) 1377 ) 1378 XSPerfAccumulate("compressSize", io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => Mux(io.commits.isCommit && valid && info.instrSize > 1.U, info.instrSize, 0.U) }.reduce(_ +& _)) 1379 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 1380 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 1381 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 1382 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 1383 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 1384 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 1385 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 1386 1387 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 1388 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 1389 } 1390 1391 for (fuType <- FuType.functionNameMap.keys) { 1392 val fuName = FuType.functionNameMap(fuType) 1393 val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U) 1394 XSPerfRolling(s"ipc_futype_${fuName}", ifCommit(PopCount(commitIsFuType)), 1000, clock, reset) 1395 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 1396 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 1397 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 1398 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 1399 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 1400 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 1401 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 1402 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 1403 } 1404 XSPerfAccumulate(s"redirect_use_snapshot", io.redirect.valid && io.snpt.useSnpt) 1405 1406 // top-down info 1407 io.debugTopDown.toCore.robHeadVaddr.valid := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_valid 1408 io.debugTopDown.toCore.robHeadVaddr.bits := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_bits 1409 io.debugTopDown.toCore.robHeadPaddr.valid := debug_lsTopdownInfo(deqPtr.value).s2.paddr_valid 1410 io.debugTopDown.toCore.robHeadPaddr.bits := debug_lsTopdownInfo(deqPtr.value).s2.paddr_bits 1411 io.debugTopDown.toDispatch.robTrueCommit := ifCommitReg(trueCommitCnt) 1412 io.debugTopDown.toDispatch.robHeadLsIssue := debug_lsIssue(deqPtr.value) 1413 io.debugTopDown.robHeadLqIdx.valid := debug_lqIdxValid(deqPtr.value) 1414 io.debugTopDown.robHeadLqIdx.bits := debug_microOp(deqPtr.value).lqIdx 1415 1416 // rolling 1417 io.debugRolling.robTrueCommit := ifCommitReg(trueCommitCnt) 1418 1419 /** 1420 * DataBase info: 1421 * log trigger is at writeback valid 1422 * */ 1423 if (!env.FPGAPlatform) { 1424 val instTableName = "InstTable" + p(XSCoreParamsKey).HartId.toString 1425 val instSiteName = "Rob" + p(XSCoreParamsKey).HartId.toString 1426 val debug_instTable = ChiselDB.createTable(instTableName, new InstInfoEntry) 1427 for (wb <- exuWBs) { 1428 when(wb.valid) { 1429 val debug_instData = Wire(new InstInfoEntry) 1430 val idx = wb.bits.robIdx.value 1431 debug_instData.robIdx := idx 1432 debug_instData.dvaddr := wb.bits.debug.vaddr 1433 debug_instData.dpaddr := wb.bits.debug.paddr 1434 debug_instData.issueTime := wb.bits.debugInfo.issueTime 1435 debug_instData.writebackTime := wb.bits.debugInfo.writebackTime 1436 debug_instData.dispatchLatency := wb.bits.debugInfo.dispatchTime - wb.bits.debugInfo.renameTime 1437 debug_instData.enqRsLatency := wb.bits.debugInfo.enqRsTime - wb.bits.debugInfo.dispatchTime 1438 debug_instData.selectLatency := wb.bits.debugInfo.selectTime - wb.bits.debugInfo.enqRsTime 1439 debug_instData.issueLatency := wb.bits.debugInfo.issueTime - wb.bits.debugInfo.selectTime 1440 debug_instData.executeLatency := wb.bits.debugInfo.writebackTime - wb.bits.debugInfo.issueTime 1441 debug_instData.rsFuLatency := wb.bits.debugInfo.writebackTime - wb.bits.debugInfo.enqRsTime 1442 debug_instData.tlbLatency := wb.bits.debugInfo.tlbRespTime - wb.bits.debugInfo.tlbFirstReqTime 1443 debug_instData.exceptType := Cat(wb.bits.exceptionVec.getOrElse(ExceptionVec(false.B))) 1444 debug_instData.lsInfo := debug_lsInfo(idx) 1445 // debug_instData.globalID := wb.bits.uop.ctrl.debug_globalID 1446 // debug_instData.instType := wb.bits.uop.ctrl.fuType 1447 // debug_instData.ivaddr := wb.bits.uop.cf.pc 1448 // debug_instData.mdpInfo.ssid := wb.bits.uop.cf.ssid 1449 // debug_instData.mdpInfo.waitAllStore := wb.bits.uop.cf.loadWaitStrict && wb.bits.uop.cf.loadWaitBit 1450 debug_instTable.log( 1451 data = debug_instData, 1452 en = wb.valid, 1453 site = instSiteName, 1454 clock = clock, 1455 reset = reset 1456 ) 1457 } 1458 } 1459 } 1460 1461 1462 //difftest signals 1463 val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value 1464 1465 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1466 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1467 1468 for (i <- 0 until CommitWidth) { 1469 val idx = deqPtrVec(i).value 1470 wdata(i) := debug_exuData(idx) 1471 wpc(i) := SignExt(commitDebugUop(i).pc, XLEN) 1472 } 1473 1474 if (env.EnableDifftest || env.AlwaysBasicDiff) { 1475 // These are the structures used by difftest only and should be optimized after synthesis. 1476 val dt_eliminatedMove = Mem(RobSize, Bool()) 1477 val dt_isRVC = Mem(RobSize, Bool()) 1478 val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) 1479 for (i <- 0 until RenameWidth) { 1480 when(canEnqueue(i)) { 1481 dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 1482 dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC 1483 } 1484 } 1485 for (wb <- exuWBs) { 1486 when(wb.valid) { 1487 val wbIdx = wb.bits.robIdx.value 1488 dt_exuDebug(wbIdx) := wb.bits.debug 1489 } 1490 } 1491 // Always instantiate basic difftest modules. 1492 for (i <- 0 until CommitWidth) { 1493 val uop = commitDebugUop(i) 1494 val commitInfo = io.commits.info(i) 1495 val ptr = deqPtrVec(i).value 1496 val exuOut = dt_exuDebug(ptr) 1497 val eliminatedMove = dt_eliminatedMove(ptr) 1498 val isRVC = dt_isRVC(ptr) 1499 1500 val difftest = DifftestModule(new DiffInstrCommit(MaxPhyRegs), delay = 3, dontCare = true) 1501 val dt_skip = Mux(eliminatedMove, false.B, exuOut.isSkipDiff) 1502 difftest.coreid := io.hartId 1503 difftest.index := i.U 1504 difftest.valid := io.commits.commitValid(i) && io.commits.isCommit 1505 difftest.skip := dt_skip 1506 difftest.isRVC := isRVC 1507 difftest.rfwen := io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.debug_ldest.get =/= 0.U 1508 difftest.fpwen := io.commits.commitValid(i) && uop.fpWen 1509 difftest.wpdest := commitInfo.debug_pdest.get 1510 difftest.wdest := commitInfo.debug_ldest.get 1511 difftest.nFused := CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize - 1.U 1512 when(difftest.valid) { 1513 assert(CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize >= 1.U) 1514 } 1515 if (env.EnableDifftest) { 1516 val uop = commitDebugUop(i) 1517 difftest.pc := SignExt(uop.pc, XLEN) 1518 difftest.instr := uop.instr 1519 difftest.robIdx := ZeroExt(ptr, 10) 1520 difftest.lqIdx := ZeroExt(uop.lqIdx.value, 7) 1521 difftest.sqIdx := ZeroExt(uop.sqIdx.value, 7) 1522 difftest.isLoad := io.commits.info(i).commitType === CommitType.LOAD 1523 difftest.isStore := io.commits.info(i).commitType === CommitType.STORE 1524 // Check LoadEvent only when isAmo or isLoad and skip MMIO 1525 val difftestLoadEvent = DifftestModule(new DiffLoadEvent, delay = 3) 1526 difftestLoadEvent.coreid := io.hartId 1527 difftestLoadEvent.index := i.U 1528 val loadCheck = (FuType.isAMO(uop.fuType) || FuType.isLoad(uop.fuType)) && !dt_skip 1529 difftestLoadEvent.valid := io.commits.commitValid(i) && io.commits.isCommit && loadCheck 1530 difftestLoadEvent.paddr := exuOut.paddr 1531 difftestLoadEvent.opType := uop.fuOpType 1532 difftestLoadEvent.isAtomic := FuType.isAMO(uop.fuType) 1533 difftestLoadEvent.isLoad := FuType.isLoad(uop.fuType) 1534 } 1535 } 1536 } 1537 1538 if (env.EnableDifftest || env.AlwaysBasicDiff) { 1539 val dt_isXSTrap = Mem(RobSize, Bool()) 1540 for (i <- 0 until RenameWidth) { 1541 when(canEnqueue(i)) { 1542 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap 1543 } 1544 } 1545 val trapVec = io.commits.commitValid.zip(deqPtrVec).map { case (v, d) => 1546 io.commits.isCommit && v && dt_isXSTrap(d.value) 1547 } 1548 val hitTrap = trapVec.reduce(_ || _) 1549 val difftest = DifftestModule(new DiffTrapEvent, dontCare = true) 1550 difftest.coreid := io.hartId 1551 difftest.hasTrap := hitTrap 1552 difftest.cycleCnt := timer 1553 difftest.instrCnt := instrCnt 1554 difftest.hasWFI := hasWFI 1555 1556 if (env.EnableDifftest) { 1557 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 1558 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 -> x._1)), XLEN) 1559 difftest.code := trapCode 1560 difftest.pc := trapPC 1561 } 1562 } 1563 1564 //store evetn difftest information 1565 io.storeDebugInfo := DontCare 1566 if (env.EnableDifftest) { 1567 io.storeDebugInfo.map{port => 1568 port.pc := debug_microOp(port.robidx.value).pc 1569 } 1570 } 1571 1572 val commitLoadVec = VecInit(commitLoadValid) 1573 val commitBranchVec = VecInit(commitBranchValid) 1574 val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map { case (v, t) => v && t }) 1575 val perfEvents = Seq( 1576 ("rob_interrupt_num ", io.flushOut.valid && intrEnable), 1577 ("rob_exception_num ", io.flushOut.valid && deqHasException), 1578 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe), 1579 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst), 1580 ("rob_commitUop ", ifCommit(commitCnt)), 1581 ("rob_commitInstr ", ifCommitReg(trueCommitCnt)), 1582 ("rob_commitInstrFused ", ifCommitReg(fuseCommitCnt)), 1583 ("rob_commitInstrLoad ", ifCommitReg(PopCount(RegEnable(commitLoadVec, isCommit)))), 1584 ("rob_commitInstrBranch ", ifCommitReg(PopCount(RegEnable(commitBranchVec, isCommit)))), 1585 ("rob_commitInstrStore ", ifCommitReg(PopCount(RegEnable(commitStoreVec, isCommit)))), 1586 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)), 1587 ("rob_walkCycle ", (state === s_walk)), 1588 ("rob_1_4_valid ", numValidEntries <= (RobSize / 4).U), 1589 ("rob_2_4_valid ", numValidEntries > (RobSize / 4).U && numValidEntries <= (RobSize / 2).U), 1590 ("rob_3_4_valid ", numValidEntries > (RobSize / 2).U && numValidEntries <= (RobSize * 3 / 4).U), 1591 ("rob_4_4_valid ", numValidEntries > (RobSize * 3 / 4).U), 1592 ) 1593 generatePerfEvent() 1594 1595 // max commit-stuck cycle 1596 val deqismmio = Mux(robEntries(deqPtr.value).valid, robEntries(deqPtr.value).mmio, false.B) 1597 val commitStuck = (!io.commits.commitValid.reduce(_ || _) || !io.commits.isCommit) && !deqismmio 1598 val commitStuckCycle = RegInit(0.U(log2Up(maxCommitStuck).W)) 1599 when(commitStuck) { 1600 commitStuckCycle := commitStuckCycle + 1.U 1601 }.elsewhen(!commitStuck && RegNext(commitStuck)) { 1602 commitStuckCycle := 0.U 1603 } 1604 // check if stuck > 2^maxCommitStuckCycle 1605 val commitStuck_overflow = commitStuckCycle.andR 1606 val criticalErrors = Seq( 1607 ("rob_commit_stuck ", commitStuck_overflow), 1608 ) 1609 generateCriticalErrors() 1610 1611 1612 // dontTouch for debug 1613 if (backendParams.debugEn) { 1614 dontTouch(enqPtrVec) 1615 dontTouch(deqPtrVec) 1616 dontTouch(robEntries) 1617 dontTouch(robDeqGroup) 1618 dontTouch(robBanks) 1619 dontTouch(robBanksRaddrThisLine) 1620 dontTouch(robBanksRaddrNextLine) 1621 dontTouch(robBanksRdataThisLine) 1622 dontTouch(robBanksRdataNextLine) 1623 dontTouch(robBanksRdataThisLineUpdate) 1624 dontTouch(robBanksRdataNextLineUpdate) 1625 dontTouch(needUpdate) 1626 val exceptionWBsVec = MixedVecInit(exceptionWBs) 1627 dontTouch(exceptionWBsVec) 1628 dontTouch(commit_wDeqGroup) 1629 dontTouch(commit_vDeqGroup) 1630 dontTouch(commitSizeSumSeq) 1631 dontTouch(walkSizeSumSeq) 1632 dontTouch(commitSizeSumCond) 1633 dontTouch(walkSizeSumCond) 1634 dontTouch(commitSizeSum) 1635 dontTouch(walkSizeSum) 1636 dontTouch(realDestSizeSeq) 1637 dontTouch(walkDestSizeSeq) 1638 dontTouch(io.commits) 1639 dontTouch(commitIsVTypeVec) 1640 dontTouch(walkIsVTypeVec) 1641 dontTouch(commitValidThisLine) 1642 dontTouch(commitReadAddr_next) 1643 dontTouch(donotNeedWalk) 1644 dontTouch(walkPtrVec_next) 1645 dontTouch(walkPtrVec) 1646 dontTouch(deqPtrVec_next) 1647 dontTouch(deqPtrVecForWalk) 1648 dontTouch(snapPtrReadBank) 1649 dontTouch(snapPtrVecForWalk) 1650 dontTouch(shouldWalkVec) 1651 dontTouch(walkFinished) 1652 dontTouch(changeBankAddrToDeqPtr) 1653 } 1654 if (env.EnableDifftest) { 1655 io.commits.info.map(info => dontTouch(info.debug_pc.get)) 1656 } 1657} 1658