xref: /XiangShan/src/main/scala/xiangshan/backend/rob/Rob.scala (revision b1e920234888fd3e5463ceb2a99c9bdca087f585)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.backend.rob
18
19import org.chipsalliance.cde.config.Parameters
20import chisel3._
21import chisel3.util._
22import difftest._
23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp}
24import utility._
25import utils._
26import xiangshan._
27import xiangshan.backend.BackendParams
28import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput}
29import xiangshan.backend.fu.{FuType, FuConfig}
30import xiangshan.frontend.FtqPtr
31import xiangshan.mem.{LqPtr, LsqEnqIO, SqPtr}
32import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput}
33import xiangshan.backend.ctrlblock.{DebugLSIO, DebugLsInfo, LsTopdownInfo}
34import xiangshan.backend.rename.SnapshotGenerator
35
36
37class RobPtr(entries: Int) extends CircularQueuePtr[RobPtr](
38  entries
39) with HasCircularQueuePtrHelper {
40
41  def this()(implicit p: Parameters) = this(p(XSCoreParamsKey).RobSize)
42
43  def needFlush(redirect: Valid[Redirect]): Bool = {
44    val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx
45    redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx))
46  }
47
48  def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR
49}
50
51object RobPtr {
52  def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = {
53    val ptr = Wire(new RobPtr)
54    ptr.flag := f
55    ptr.value := v
56    ptr
57  }
58}
59
60class RobCSRIO(implicit p: Parameters) extends XSBundle {
61  val intrBitSet = Input(Bool())
62  val trapTarget = Input(UInt(VAddrBits.W))
63  val isXRet     = Input(Bool())
64  val wfiEvent   = Input(Bool())
65
66  val fflags     = Output(Valid(UInt(5.W)))
67  val vxsat      = Output(Valid(Bool()))
68  val vstart     = Output(Valid(UInt(XLEN.W)))
69  val dirty_fs   = Output(Bool())
70  val perfinfo   = new Bundle {
71    val retiredInstr = Output(UInt(3.W))
72  }
73
74  val vcsrFlag   = Output(Bool())
75}
76
77class RobLsqIO(implicit p: Parameters) extends XSBundle {
78  val lcommit = Output(UInt(log2Up(CommitWidth + 1).W))
79  val scommit = Output(UInt(log2Up(CommitWidth + 1).W))
80  val pendingld = Output(Bool())
81  val pendingst = Output(Bool())
82  val commit = Output(Bool())
83  val pendingPtr = Output(new RobPtr)
84  val pendingPtrNext = Output(new RobPtr)
85
86  val mmio = Input(Vec(LoadPipelineWidth, Bool()))
87  // Todo: what's this?
88  val uop = Input(Vec(LoadPipelineWidth, new DynInst))
89}
90
91class RobEnqIO(implicit p: Parameters) extends XSBundle {
92  val canAccept = Output(Bool())
93  val isEmpty = Output(Bool())
94  // valid vector, for robIdx gen and walk
95  val needAlloc = Vec(RenameWidth, Input(Bool()))
96  val req = Vec(RenameWidth, Flipped(ValidIO(new DynInst)))
97  val resp = Vec(RenameWidth, Output(new RobPtr))
98}
99
100class RobCoreTopDownIO(implicit p: Parameters) extends XSBundle {
101  val robHeadVaddr = Valid(UInt(VAddrBits.W))
102  val robHeadPaddr = Valid(UInt(PAddrBits.W))
103}
104
105class RobDispatchTopDownIO extends Bundle {
106  val robTrueCommit = Output(UInt(64.W))
107  val robHeadLsIssue = Output(Bool())
108}
109
110class RobDebugRollingIO extends Bundle {
111  val robTrueCommit = Output(UInt(64.W))
112}
113
114class RobDispatchData(implicit p: Parameters) extends RobCommitInfo {}
115
116class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
117  val io = IO(new Bundle {
118    // for commits/flush
119    val state = Input(UInt(2.W))
120    val deq_v = Vec(CommitWidth, Input(Bool()))
121    val deq_w = Vec(CommitWidth, Input(Bool()))
122    val exception_state = Flipped(ValidIO(new RobExceptionInfo))
123    // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth)
124    val intrBitSetReg = Input(Bool())
125    val hasNoSpecExec = Input(Bool())
126    val interrupt_safe = Input(Bool())
127    val blockCommit = Input(Bool())
128    // output: the CommitWidth deqPtr
129    val out = Vec(CommitWidth, Output(new RobPtr))
130    val next_out = Vec(CommitWidth, Output(new RobPtr))
131  })
132
133  val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr))))
134
135  // for exceptions (flushPipe included) and interrupts:
136  // only consider the first instruction
137  val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe
138  val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0)
139  val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable)
140
141  // for normal commits: only to consider when there're no exceptions
142  // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions.
143  val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last)
144  val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i)))
145  val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B)
146  // when io.intrBitSetReg or there're possible exceptions in these instructions,
147  // only one instruction is allowed to commit
148  val allowOnlyOne = commit_exception || io.intrBitSetReg
149  val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt)
150
151  val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt))
152  val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec)
153
154  deqPtrVec := deqPtrVec_next
155
156  io.next_out := deqPtrVec_next
157  io.out      := deqPtrVec
158
159  when (io.state === 0.U) {
160    XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt)
161  }
162
163}
164
165class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
166  val io = IO(new Bundle {
167    // for input redirect
168    val redirect = Input(Valid(new Redirect))
169    // for enqueue
170    val allowEnqueue = Input(Bool())
171    val hasBlockBackward = Input(Bool())
172    val enq = Vec(RenameWidth, Input(Bool()))
173    val out = Output(Vec(RenameWidth, new RobPtr))
174  })
175
176  val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr)))
177
178  // enqueue
179  val canAccept = io.allowEnqueue && !io.hasBlockBackward
180  val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U)
181
182  for ((ptr, i) <- enqPtrVec.zipWithIndex) {
183    when(io.redirect.valid) {
184      ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
185    }.otherwise {
186      ptr := ptr + dispatchNum
187    }
188  }
189
190  io.out := enqPtrVec
191
192}
193
194class RobExceptionInfo(implicit p: Parameters) extends XSBundle {
195  // val valid = Bool()
196  val robIdx = new RobPtr
197  val exceptionVec = ExceptionVec()
198  val flushPipe = Bool()
199  val isVset = Bool()
200  val replayInst = Bool() // redirect to that inst itself
201  val singleStep = Bool() // TODO add frontend hit beneath
202  val crossPageIPFFix = Bool()
203  val trigger = new TriggerCf
204  val vstartEn = Bool()
205  val vstart = UInt(XLEN.W)
206
207  def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.canFire
208  def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.canFire
209  // only exceptions are allowed to writeback when enqueue
210  def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.canFire
211}
212
213class ExceptionGen(params: BackendParams)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
214  val io = IO(new Bundle {
215    val redirect = Input(Valid(new Redirect))
216    val flush = Input(Bool())
217    val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo)))
218    // csr + load + store + varith + vload + vstore
219    val wb = Vec(params.numException, Flipped(ValidIO(new RobExceptionInfo)))
220    val out = ValidIO(new RobExceptionInfo)
221    val state = ValidIO(new RobExceptionInfo)
222  })
223
224  val wbExuParams = params.allExuParams.filter(_.exceptionOut.nonEmpty)
225
226  def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): RobExceptionInfo = {
227    def getOldest_recursion(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = {
228      assert(valid.length == bits.length)
229      if (valid.length == 1) {
230        (valid, bits)
231      } else if (valid.length == 2) {
232        val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0)))))
233        for (i <- res.indices) {
234          res(i).valid := valid(i)
235          res(i).bits := bits(i)
236        }
237        val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1))
238        (Seq(oldest.valid), Seq(oldest.bits))
239      } else {
240        val left = getOldest_recursion(valid.take(valid.length / 2), bits.take(valid.length / 2))
241        val right = getOldest_recursion(valid.drop(valid.length / 2), bits.drop(valid.length / 2))
242        getOldest_recursion(left._1 ++ right._1, left._2 ++ right._2)
243      }
244    }
245    getOldest_recursion(valid, bits)._2.head
246  }
247
248
249  val currentValid = RegInit(false.B)
250  val current = Reg(new RobExceptionInfo)
251
252  // orR the exceptionVec
253  val lastCycleFlush = RegNext(io.flush)
254  val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush))
255
256  // s0: compare wb in 6 groups
257  val csr_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(t => t.isCsr).nonEmpty).map(_._1)
258  val load_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.ldu).nonEmpty).map(_._1)
259  val store_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(t => t.isSta || t.fuType == FuType.mou).nonEmpty).map(_._1)
260  val varith_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.isVecArith).nonEmpty).map(_._1)
261  val vload_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.vldu).nonEmpty).map(_._1)
262  val vstore_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.vstu).nonEmpty).map(_._1)
263
264  val writebacks = Seq(csr_wb, load_wb, store_wb, varith_wb, vload_wb, vstore_wb)
265  val in_wb_valids = writebacks.map(_.map(w => w.valid && w.bits.has_exception && !lastCycleFlush))
266  val wb_valid = in_wb_valids.zip(writebacks).map { case (valid, wb) =>
267    valid.zip(wb.map(_.bits)).map { case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }.reduce(_ || _)
268  }
269  val wb_bits = in_wb_valids.zip(writebacks).map { case (valid, wb) => getOldest(valid, wb.map(_.bits))}
270
271  val s0_out_valid = wb_valid.map(x => RegNext(x))
272  val s0_out_bits = wb_bits.map(x => RegNext(x))
273
274  // s1: compare last six and current flush
275  val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) })
276  val s1_out_bits = RegNext(getOldest(s0_out_valid, s0_out_bits))
277  val s1_out_valid = RegNext(s1_valid.asUInt.orR)
278
279  val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush)
280  val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits)))
281
282  // s2: compare the input exception with the current one
283  // priorities:
284  // (1) system reset
285  // (2) current is valid: flush, remain, merge, update
286  // (3) current is not valid: s1 or enq
287  val current_flush = current.robIdx.needFlush(io.redirect) || io.flush
288  val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush
289  when (currentValid) {
290    when (current_flush) {
291      currentValid := Mux(s1_flush, false.B, s1_out_valid)
292    }
293    when (s1_out_valid && !s1_flush) {
294      when (isAfter(current.robIdx, s1_out_bits.robIdx)) {
295        current := s1_out_bits
296      }.elsewhen (current.robIdx === s1_out_bits.robIdx) {
297        current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec())
298        current.flushPipe := s1_out_bits.flushPipe || current.flushPipe
299        current.replayInst := s1_out_bits.replayInst || current.replayInst
300        current.singleStep := s1_out_bits.singleStep || current.singleStep
301        current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf)
302      }
303    }
304  }.elsewhen (s1_out_valid && !s1_flush) {
305    currentValid := true.B
306    current := s1_out_bits
307  }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) {
308    currentValid := true.B
309    current := enq_bits
310  }
311
312  io.out.valid   := s1_out_valid || enq_valid && enq_bits.can_writeback
313  io.out.bits    := Mux(s1_out_valid, s1_out_bits, enq_bits)
314  io.state.valid := currentValid
315  io.state.bits  := current
316
317}
318
319class RobFlushInfo(implicit p: Parameters) extends XSBundle {
320  val ftqIdx = new FtqPtr
321  val robIdx = new RobPtr
322  val ftqOffset = UInt(log2Up(PredictWidth).W)
323  val replayInst = Bool()
324}
325
326class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter {
327  override def shouldBeInlined: Boolean = false
328
329  lazy val module = new RobImp(this)(p, params)
330}
331
332class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper)
333  with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents {
334
335  private val LduCnt = params.LduCnt
336  private val StaCnt = params.StaCnt
337  private val HyuCnt = params.HyuCnt
338
339  val io = IO(new Bundle() {
340    val hartId = Input(UInt(8.W))
341    val redirect = Input(Valid(new Redirect))
342    val enq = new RobEnqIO
343    val flushOut = ValidIO(new Redirect)
344    val exception = ValidIO(new ExceptionInfo)
345    // exu + brq
346    val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles)
347    val commits = Output(new RobCommitIO)
348    val rabCommits = Output(new RobCommitIO)
349    val diffCommits = Output(new DiffCommitIO)
350    val isVsetFlushPipe = Output(Bool())
351    val vconfigPdest = Output(UInt(PhyRegIdxWidth.W))
352    val lsq = new RobLsqIO
353    val robDeqPtr = Output(new RobPtr)
354    val csr = new RobCSRIO
355    val snpt = Input(new SnapshotPort)
356    val robFull = Output(Bool())
357    val headNotReady = Output(Bool())
358    val cpu_halt = Output(Bool())
359    val wfi_enable = Input(Bool())
360
361    val debug_ls = Flipped(new DebugLSIO)
362    val debugRobHead = Output(new DynInst)
363    val debugEnqLsq = Input(new LsqEnqIO)
364    val debugHeadLsIssue = Input(Bool())
365    val lsTopdownInfo = Vec(LduCnt + HyuCnt, Input(new LsTopdownInfo))
366    val debugTopDown = new Bundle {
367      val toCore = new RobCoreTopDownIO
368      val toDispatch = new RobDispatchTopDownIO
369      val robHeadLqIdx = Valid(new LqPtr)
370    }
371    val debugRolling = new RobDebugRollingIO
372  })
373
374  val exuWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(!_.bits.params.hasStdFu).toSeq
375  val stdWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(_.bits.params.hasStdFu).toSeq
376  val fflagsWBs = io.writeback.filter(x => x.bits.fflags.nonEmpty)
377  val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty)
378  val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty)
379
380  val exuWbPorts = io.writeback.filter(!_.bits.params.hasStdFu)
381  val stdWbPorts = io.writeback.filter(_.bits.params.hasStdFu)
382  val fflagsPorts = io.writeback.filter(x => x.bits.fflags.nonEmpty)
383  val vxsatPorts = io.writeback.filter(x => x.bits.vxsat.nonEmpty)
384  val exceptionPorts = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty)
385  val numExuWbPorts = exuWBs.length
386  val numStdWbPorts = stdWBs.length
387
388
389  println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth")
390//  println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}")
391//  println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}")
392//  println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}")
393
394
395  // instvalid field
396  val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
397  // writeback status
398
399  val stdWritebacked = Reg(Vec(RobSize, Bool()))
400  val commitTrigger = Mem(RobSize, Bool())
401  val uopNumVec          = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W))))
402  val realDestSize       = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W))))
403  val fflagsDataModule   = RegInit(VecInit(Seq.fill(RobSize)(0.U(5.W))))
404  val vxsatDataModule    = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
405
406  def isWritebacked(ptr: UInt): Bool = {
407    !uopNumVec(ptr).orR && stdWritebacked(ptr)
408  }
409
410  def isUopWritebacked(ptr: UInt): Bool = {
411    !uopNumVec(ptr).orR
412  }
413
414  val mmio = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
415
416  // data for redirect, exception, etc.
417  val flagBkup = Mem(RobSize, Bool())
418  // some instructions are not allowed to trigger interrupts
419  // They have side effects on the states of the processor before they write back
420  val interrupt_safe = RegInit(VecInit(Seq.fill(RobSize)(true.B)))
421
422  // data for debug
423  // Warn: debug_* prefix should not exist in generated verilog.
424  val debug_microOp = DebugMem(RobSize, new DynInst)
425  val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug
426  val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug
427  val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init)))
428  val debug_lsTopdownInfo = RegInit(VecInit(Seq.fill(RobSize)(LsTopdownInfo.init)))
429  val debug_lqIdxValid = RegInit(VecInit.fill(RobSize)(false.B))
430  val debug_lsIssued = RegInit(VecInit.fill(RobSize)(false.B))
431
432  // pointers
433  // For enqueue ptr, we don't duplicate it since only enqueue needs it.
434  val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr))
435  val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr))
436
437  dontTouch(enqPtrVec)
438  dontTouch(deqPtrVec)
439
440  val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr))
441  val lastWalkPtr = Reg(new RobPtr)
442  val allowEnqueue = RegInit(true.B)
443
444  val enqPtr = enqPtrVec.head
445  val deqPtr = deqPtrVec(0)
446  val walkPtr = walkPtrVec(0)
447
448  val isEmpty = enqPtr === deqPtr
449  val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level)
450
451  val snptEnq = io.enq.canAccept && io.enq.req.head.valid && io.enq.req.head.bits.snapshot
452  val snapshots = SnapshotGenerator(enqPtrVec, snptEnq, io.snpt.snptDeq, io.redirect.valid, io.snpt.flushVec)
453  val debug_lsIssue = WireDefault(debug_lsIssued)
454  debug_lsIssue(deqPtr.value) := io.debugHeadLsIssue
455
456  /**
457    * states of Rob
458    */
459  val s_idle :: s_walk :: Nil = Enum(2)
460  val state = RegInit(s_idle)
461
462  /**
463    * Data Modules
464    *
465    * CommitDataModule: data from dispatch
466    * (1) read: commits/walk/exception
467    * (2) write: enqueue
468    *
469    * WritebackData: data from writeback
470    * (1) read: commits/walk/exception
471    * (2) write: write back from exe units
472    */
473  val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth))
474  val dispatchDataRead = dispatchData.io.rdata
475
476  val exceptionGen = Module(new ExceptionGen(params))
477  val exceptionDataRead = exceptionGen.io.state
478  val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W)))
479  val vxsatDataRead = Wire(Vec(CommitWidth, Bool()))
480
481  io.robDeqPtr := deqPtr
482  io.debugRobHead := debug_microOp(deqPtr.value)
483
484  val rab = Module(new RenameBuffer(RabSize))
485
486  rab.io.redirect.valid := io.redirect.valid
487
488  rab.io.req.zip(io.enq.req).map { case (dest, src) =>
489    dest.bits := src.bits
490    dest.valid := src.valid && io.enq.canAccept
491  }
492
493  val commitDestSizeSeq = (0 until CommitWidth).map(i => realDestSize(deqPtrVec(i).value))
494  val walkDestSizeSeq = (0 until CommitWidth).map(i => realDestSize(walkPtrVec(i).value))
495
496  val commitSizeSum = io.commits.commitValid.zip(commitDestSizeSeq).map { case (commitValid, destSize) =>
497    Mux(io.commits.isCommit && commitValid, destSize, 0.U)
498  }.reduce(_ +& _)
499  val walkSizeSum = io.commits.walkValid.zip(walkDestSizeSeq).map { case (walkValid, destSize) =>
500    Mux(io.commits.isWalk && walkValid, destSize, 0.U)
501  }.reduce(_ +& _)
502
503  rab.io.fromRob.commitSize := commitSizeSum
504  rab.io.fromRob.walkSize := walkSizeSum
505  rab.io.snpt := io.snpt
506  rab.io.snpt.snptEnq := snptEnq
507
508  io.rabCommits := rab.io.commits
509  io.diffCommits := rab.io.diffCommits
510
511  /**
512    * Enqueue (from dispatch)
513    */
514  // special cases
515  val hasBlockBackward = RegInit(false.B)
516  val hasWaitForward = RegInit(false.B)
517  val doingSvinval = RegInit(false.B)
518  // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B
519  // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty.
520  when (isEmpty) { hasBlockBackward:= false.B }
521  // When any instruction commits, hasNoSpecExec should be set to false.B
522  when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasWaitForward:= false.B }
523
524  // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing.
525  // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle.
526  // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts.
527  val hasWFI = RegInit(false.B)
528  io.cpu_halt := hasWFI
529  // WFI Timeout: 2^20 = 1M cycles
530  val wfi_cycles = RegInit(0.U(20.W))
531  when (hasWFI) {
532    wfi_cycles := wfi_cycles + 1.U
533  }.elsewhen (!hasWFI && RegNext(hasWFI)) {
534    wfi_cycles := 0.U
535  }
536  val wfi_timeout = wfi_cycles.andR
537  when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) {
538    hasWFI := false.B
539  }
540
541  val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.req.take(i).map(req => req.valid && req.bits.firstUop)))))
542  io.enq.canAccept := allowEnqueue && !hasBlockBackward && rab.io.canEnq
543  io.enq.resp      := allocatePtrVec
544  val canEnqueue = VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop && io.enq.canAccept))
545  val timer = GTimer()
546  for (i <- 0 until RenameWidth) {
547    // we don't check whether io.redirect is valid here since redirect has higher priority
548    when (canEnqueue(i)) {
549      val enqUop = io.enq.req(i).bits
550      val enqIndex = allocatePtrVec(i).value
551      // store uop in data module and debug_microOp Vec
552      debug_microOp(enqIndex) := enqUop
553      debug_microOp(enqIndex).debugInfo.dispatchTime := timer
554      debug_microOp(enqIndex).debugInfo.enqRsTime := timer
555      debug_microOp(enqIndex).debugInfo.selectTime := timer
556      debug_microOp(enqIndex).debugInfo.issueTime := timer
557      debug_microOp(enqIndex).debugInfo.writebackTime := timer
558      debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer
559      debug_microOp(enqIndex).debugInfo.tlbRespTime := timer
560      debug_lsInfo(enqIndex) := DebugLsInfo.init
561      debug_lsTopdownInfo(enqIndex) := LsTopdownInfo.init
562      debug_lqIdxValid(enqIndex) := false.B
563      debug_lsIssued(enqIndex) := false.B
564
565      when (enqUop.blockBackward) {
566        hasBlockBackward := true.B
567      }
568      when (enqUop.waitForward) {
569        hasWaitForward := true.B
570      }
571      val enqHasTriggerCanFire = io.enq.req(i).bits.trigger.getFrontendCanFire
572      val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR
573      // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process
574      when(!enqHasTriggerCanFire && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe))
575      {
576        doingSvinval := true.B
577      }
578      // the end instruction of Svinval enqs so clear doingSvinval
579      when(!enqHasTriggerCanFire && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe))
580      {
581        doingSvinval := false.B
582      }
583      // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear
584      assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe)))
585      when (enqUop.isWFI && !enqHasException && !enqHasTriggerCanFire) {
586        hasWFI := true.B
587      }
588
589      mmio(enqIndex) := false.B
590    }
591  }
592  val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(req => req.valid && req.bits.firstUop)), 0.U)
593  io.enq.isEmpty   := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR)
594
595  when (!io.wfi_enable) {
596    hasWFI := false.B
597  }
598  // sel vsetvl's flush position
599  val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3)
600  val vsetvlState = RegInit(vs_idle)
601
602  val firstVInstrFtqPtr    = RegInit(0.U.asTypeOf(new FtqPtr))
603  val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W)))
604  val firstVInstrRobIdx    = RegInit(0.U.asTypeOf(new RobPtr))
605
606  val enq0            = io.enq.req(0)
607  val enq0IsVset      = enq0.bits.isVset && enq0.bits.lastUop && canEnqueue(0)
608  val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe
609  val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVArith(req.bits.fuType) && fire}
610  // for vs_idle
611  val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType)))
612  // for vs_waitVinstr
613  val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1)
614  val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req)
615  when(vsetvlState === vs_idle){
616    firstVInstrFtqPtr    := firstVInstrIdle.bits.ftqPtr
617    firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset
618    firstVInstrRobIdx    := firstVInstrIdle.bits.robIdx
619  }.elsewhen(vsetvlState === vs_waitVinstr){
620    when(Cat(enqIsVInstrOrVset).orR){
621      firstVInstrFtqPtr := firstVInstrWait.bits.ftqPtr
622      firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset
623      firstVInstrRobIdx := firstVInstrWait.bits.robIdx
624    }
625  }
626
627  val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR
628  when(vsetvlState === vs_idle && !io.redirect.valid){
629    when(enq0IsVsetFlush){
630      vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr)
631    }
632  }.elsewhen(vsetvlState === vs_waitVinstr){
633    when(io.redirect.valid){
634      vsetvlState := vs_idle
635    }.elsewhen(Cat(enqIsVInstrOrVset).orR){
636      vsetvlState := vs_waitFlush
637    }
638  }.elsewhen(vsetvlState === vs_waitFlush){
639    when(io.redirect.valid){
640      vsetvlState := vs_idle
641    }
642  }
643
644  // lqEnq
645  io.debugEnqLsq.needAlloc.map(_(0)).zip(io.debugEnqLsq.req).foreach { case (alloc, req) =>
646    when(io.debugEnqLsq.canAccept && alloc && req.valid) {
647      debug_microOp(req.bits.robIdx.value).lqIdx := req.bits.lqIdx
648      debug_lqIdxValid(req.bits.robIdx.value) := true.B
649    }
650  }
651
652  // lsIssue
653  when(io.debugHeadLsIssue) {
654    debug_lsIssued(deqPtr.value) := true.B
655  }
656
657  /**
658    * Writeback (from execution units)
659    */
660  for (wb <- exuWBs) {
661    when (wb.valid) {
662      val wbIdx = wb.bits.robIdx.value
663      debug_exuData(wbIdx) := wb.bits.data
664      debug_exuDebug(wbIdx) := wb.bits.debug
665      debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime
666      debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime
667      debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime
668      debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime
669
670      // debug for lqidx and sqidx
671      debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr))
672      debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr))
673
674      val debug_Uop = debug_microOp(wbIdx)
675      XSInfo(true.B,
676        p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " +
677        p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " +
678        p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.robIdx}\n"
679      )
680    }
681  }
682
683  val writebackNum = PopCount(exuWBs.map(_.valid))
684  XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum)
685
686  for (i <- 0 until LoadPipelineWidth) {
687    when (RegNext(io.lsq.mmio(i))) {
688      mmio(RegNext(io.lsq.uop(i).robIdx).value) := true.B
689    }
690  }
691
692  /**
693    * RedirectOut: Interrupt and Exceptions
694    */
695  val deqDispatchData = dispatchDataRead(0)
696  val debug_deqUop = debug_microOp(deqPtr.value)
697
698  val intrBitSetReg = RegNext(io.csr.intrBitSet)
699  val intrEnable = intrBitSetReg && !hasWaitForward && interrupt_safe(deqPtr.value)
700  val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr
701  val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR ||
702    exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.canFire)
703  val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe
704  val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst
705  val exceptionEnable = isWritebacked(deqPtr.value) && deqHasException
706
707  XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n")
708  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getFrontendCanFire, "Debug Mode: Deq has frontend trigger exception\n")
709  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getBackendCanFire, "Debug Mode: Deq has backend trigger exception\n")
710
711  val isFlushPipe = isWritebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst)
712
713  val isVsetFlushPipe = isWritebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset
714//  val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush)
715  val needModifyFtqIdxOffset = false.B
716  io.isVsetFlushPipe := isVsetFlushPipe
717  io.vconfigPdest := rab.io.vconfigPdest
718  // io.flushOut will trigger redirect at the next cycle.
719  // Block any redirect or commit at the next cycle.
720  val lastCycleFlush = RegNext(io.flushOut.valid)
721
722  io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush
723  io.flushOut.bits := DontCare
724  io.flushOut.bits.isRVC := deqDispatchData.isRVC
725  io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr)
726  io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx)
727  io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset)
728  io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next"
729  io.flushOut.bits.interrupt := true.B
730  XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable)
731  XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable)
732  XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe)
733  XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst)
734
735  val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush
736  io.exception.valid                := RegNext(exceptionHappen)
737  io.exception.bits.pc              := RegEnable(debug_deqUop.pc, exceptionHappen)
738  io.exception.bits.instr           := RegEnable(debug_deqUop.instr, exceptionHappen)
739  io.exception.bits.commitType      := RegEnable(deqDispatchData.commitType, exceptionHappen)
740  io.exception.bits.exceptionVec    := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen)
741  io.exception.bits.singleStep      := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen)
742  io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen)
743  io.exception.bits.isInterrupt     := RegEnable(intrEnable, exceptionHappen)
744  io.exception.bits.trigger         := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen)
745  io.csr.vstart.valid               := RegEnable(exceptionDataRead.bits.vstartEn, false.B, exceptionHappen)
746  io.csr.vstart.bits                := RegEnable(exceptionDataRead.bits.vstart, exceptionHappen)
747
748  XSDebug(io.flushOut.valid,
749    p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " +
750    p"excp $exceptionEnable flushPipe $isFlushPipe " +
751    p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n")
752
753
754  /**
755    * Commits (and walk)
756    * They share the same width.
757    */
758  val shouldWalkVec = VecInit(walkPtrVec.map(_ <= lastWalkPtr))
759  val walkFinished = VecInit(walkPtrVec.map(_ >= lastWalkPtr)).asUInt.orR
760  rab.io.fromRob.walkEnd := state === s_walk && walkFinished
761
762  require(RenameWidth <= CommitWidth)
763
764  // wiring to csr
765  val (wflags, dirtyFs) = (0 until CommitWidth).map(i => {
766    val v = io.commits.commitValid(i)
767    val info = io.commits.info(i)
768    (v & info.wflags, v & info.dirtyFs)
769  }).unzip
770  val fflags = Wire(Valid(UInt(5.W)))
771  fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR
772  fflags.bits := wflags.zip(fflagsDataRead).map({
773    case (w, f) => Mux(w, f, 0.U)
774  }).reduce(_|_)
775  val dirty_fs = io.commits.isCommit && VecInit(dirtyFs).asUInt.orR
776
777  val vxsat = Wire(Valid(Bool()))
778  vxsat.valid := io.commits.isCommit && vxsat.bits
779  vxsat.bits := io.commits.commitValid.zip(vxsatDataRead).map {
780    case (valid, vxsat) => valid & vxsat
781  }.reduce(_ | _)
782
783  // when mispredict branches writeback, stop commit in the next 2 cycles
784  // TODO: don't check all exu write back
785  val misPredWb = Cat(VecInit(redirectWBs.map(wb =>
786    wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid
787  ).toSeq)).orR
788  val misPredBlockCounter = Reg(UInt(3.W))
789  misPredBlockCounter := Mux(misPredWb,
790    "b111".U,
791    misPredBlockCounter >> 1.U
792  )
793  val misPredBlock = misPredBlockCounter(0)
794  val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI || io.redirect.valid
795
796  io.commits.isWalk := state === s_walk
797  io.commits.isCommit := state === s_idle && !blockCommit
798  val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value)))
799  val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value)))
800  // store will be commited iff both sta & std have been writebacked
801  val commit_w = VecInit(deqPtrVec.map(ptr => isWritebacked(ptr.value) && commitTrigger(ptr.value)))
802  val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last)
803  val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i)))
804  val allowOnlyOneCommit = commit_exception || intrBitSetReg
805  // for instructions that may block others, we don't allow them to commit
806  for (i <- 0 until CommitWidth) {
807    // defaults: state === s_idle and instructions commit
808    // when intrBitSetReg, allow only one instruction to commit at each clock cycle
809    val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst
810    io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked
811    io.commits.info(i) := dispatchDataRead(i)
812    io.commits.robIdx(i) := deqPtrVec(i)
813
814    io.commits.walkValid(i) := shouldWalkVec(i)
815    when (state === s_walk) {
816      when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) {
817        XSError(!walk_v(i), s"The walking entry($i) should be valid\n")
818      }
819    }
820
821    XSInfo(io.commits.isCommit && io.commits.commitValid(i),
822      "retired pc %x wen %d ldest %d pdest %x data %x fflags: %b vxsat: %b\n",
823      debug_microOp(deqPtrVec(i).value).pc,
824      io.commits.info(i).rfWen,
825      io.commits.info(i).ldest,
826      io.commits.info(i).pdest,
827      debug_exuData(deqPtrVec(i).value),
828      fflagsDataRead(i),
829      vxsatDataRead(i)
830    )
831    XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n",
832      debug_microOp(walkPtrVec(i).value).pc,
833      io.commits.info(i).rfWen,
834      io.commits.info(i).ldest,
835      debug_exuData(walkPtrVec(i).value)
836    )
837  }
838  if (env.EnableDifftest) {
839    io.commits.info.map(info => dontTouch(info.pc))
840  }
841
842  // sync fflags/dirty_fs/vxsat to csr
843  io.csr.fflags := RegNext(fflags)
844  io.csr.dirty_fs := RegNext(dirty_fs)
845  io.csr.vxsat := RegNext(vxsat)
846
847  // sync v csr to csr
848  // for difftest
849  if(env.AlwaysBasicDiff || env.EnableDifftest) {
850    val isDiffWriteVconfigVec = io.diffCommits.commitValid.zip(io.diffCommits.info).map { case (valid, info) => valid && info.ldest === VCONFIG_IDX.U && info.vecWen }.reverse
851    io.csr.vcsrFlag := RegNext(io.diffCommits.isCommit && Cat(isDiffWriteVconfigVec).orR)
852  }
853  else{
854    io.csr.vcsrFlag := false.B
855  }
856
857  // commit load/store to lsq
858  val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD))
859  val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE))
860  val deqPtrVec_next = Wire(Vec(CommitWidth, Output(new RobPtr)))
861  io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U))
862  io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U))
863  // indicate a pending load or store
864  io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value) && mmio(deqPtr.value))
865  io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value))
866  io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0))
867  io.lsq.pendingPtr := RegNext(deqPtr)
868  io.lsq.pendingPtrNext := RegNext(deqPtrVec_next.head)
869
870  /**
871    * state changes
872    * (1) redirect: switch to s_walk
873    * (2) walk: when walking comes to the end, switch to s_idle
874    */
875  val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished && rab.io.status.walkEnd, s_idle, state))
876  XSPerfAccumulate("s_idle_to_idle",            state === s_idle && state_next === s_idle)
877  XSPerfAccumulate("s_idle_to_walk",            state === s_idle && state_next === s_walk)
878  XSPerfAccumulate("s_walk_to_idle",            state === s_walk && state_next === s_idle)
879  XSPerfAccumulate("s_walk_to_walk",            state === s_walk && state_next === s_walk)
880  state := state_next
881
882  /**
883    * pointers and counters
884    */
885  val deqPtrGenModule = Module(new RobDeqPtrWrapper)
886  deqPtrGenModule.io.state := state
887  deqPtrGenModule.io.deq_v := commit_v
888  deqPtrGenModule.io.deq_w := commit_w
889  deqPtrGenModule.io.exception_state := exceptionDataRead
890  deqPtrGenModule.io.intrBitSetReg := intrBitSetReg
891  deqPtrGenModule.io.hasNoSpecExec := hasWaitForward
892  deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value)
893  deqPtrGenModule.io.blockCommit := blockCommit
894  deqPtrVec := deqPtrGenModule.io.out
895  deqPtrVec_next := deqPtrGenModule.io.next_out
896
897  val enqPtrGenModule = Module(new RobEnqPtrWrapper)
898  enqPtrGenModule.io.redirect := io.redirect
899  enqPtrGenModule.io.allowEnqueue := allowEnqueue && rab.io.canEnq
900  enqPtrGenModule.io.hasBlockBackward := hasBlockBackward
901  enqPtrGenModule.io.enq := VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop))
902  enqPtrVec := enqPtrGenModule.io.out
903
904  // next walkPtrVec:
905  // (1) redirect occurs: update according to state
906  // (2) walk: move forwards
907  val walkPtrVec_next = Mux(io.redirect.valid,
908    Mux(io.snpt.useSnpt, snapshots(io.snpt.snptSelect), deqPtrVec_next),
909    Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec)
910  )
911  walkPtrVec := walkPtrVec_next
912
913  val numValidEntries = distanceBetween(enqPtr, deqPtr)
914  val commitCnt = PopCount(io.commits.commitValid)
915
916  allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U
917
918  val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0))
919  when (io.redirect.valid) {
920    lastWalkPtr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx - 1.U, io.redirect.bits.robIdx)
921  }
922
923
924  /**
925    * States
926    * We put all the stage bits changes here.
927
928    * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit);
929    * All states: (1) valid; (2) writebacked; (3) flagBkup
930    */
931  val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value)))
932
933  // redirect logic writes 6 valid
934  val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr))
935  val redirectTail = Reg(new RobPtr)
936  val redirectIdle :: redirectBusy :: Nil = Enum(2)
937  val redirectState = RegInit(redirectIdle)
938  val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail))
939  when(redirectState === redirectBusy) {
940    redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U)
941    redirectHeadVec zip invMask foreach {
942      case (redirectHead, inv) => when(inv) {
943        valid(redirectHead.value) := false.B
944      }
945    }
946    when(!invMask.last) {
947      redirectState := redirectIdle
948    }
949  }
950  when(io.redirect.valid) {
951    redirectState := redirectBusy
952    when(redirectState === redirectIdle) {
953      redirectTail := enqPtr
954    }
955    redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) =>
956      redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
957    }
958  }
959  // enqueue logic writes 6 valid
960  for (i <- 0 until RenameWidth) {
961    when (canEnqueue(i) && !io.redirect.valid) {
962      valid(allocatePtrVec(i).value) := true.B
963    }
964  }
965  // dequeue logic writes 6 valid
966  for (i <- 0 until CommitWidth) {
967    val commitValid = io.commits.isCommit && io.commits.commitValid(i)
968    when (commitValid) {
969      valid(commitReadAddr(i)) := false.B
970    }
971  }
972
973  // debug_inst update
974  for(i <- 0 until (LduCnt + StaCnt)) {
975    debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i))
976    debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i))
977  }
978  for (i <- 0 until LduCnt) {
979    debug_lsTopdownInfo(io.lsTopdownInfo(i).s1.robIdx).s1SignalEnable(io.lsTopdownInfo(i))
980    debug_lsTopdownInfo(io.lsTopdownInfo(i).s2.robIdx).s2SignalEnable(io.lsTopdownInfo(i))
981  }
982
983  // status field: writebacked
984  // enqueue logic set 6 writebacked to false
985  for (i <- 0 until RenameWidth) {
986    when(canEnqueue(i)) {
987      val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec).asUInt.orR
988      val enqHasTriggerCanFire = io.enq.req(i).bits.trigger.getFrontendCanFire
989      val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove
990      val isStu = FuType.isStore(io.enq.req(i).bits.fuType)
991      commitTrigger(allocatePtrVec(i).value) := enqIsWritebacked && !enqHasException && !enqHasTriggerCanFire && !isStu
992    }
993  }
994  when(exceptionGen.io.out.valid) {
995    val wbIdx = exceptionGen.io.out.bits.robIdx.value
996    commitTrigger(wbIdx) := true.B
997  }
998
999  // writeback logic set numWbPorts writebacked to true
1000  val blockWbSeq = Wire(Vec(exuWBs.length, Bool()))
1001  blockWbSeq.map(_ := false.B)
1002  for ((wb, blockWb) <- exuWBs.zip(blockWbSeq)) {
1003    when(wb.valid) {
1004      val wbIdx = wb.bits.robIdx.value
1005      val wbHasException = wb.bits.exceptionVec.getOrElse(0.U).asUInt.orR
1006      val wbHasTriggerCanFire = wb.bits.trigger.getOrElse(0.U).asTypeOf(io.enq.req(0).bits.trigger).getBackendCanFire //Todo: wb.bits.trigger.getHitBackend
1007      val wbHasFlushPipe = wb.bits.flushPipe.getOrElse(false.B)
1008      val wbHasReplayInst = wb.bits.replay.getOrElse(false.B) //Todo: && wb.bits.replayInst
1009      blockWb := wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerCanFire
1010      commitTrigger(wbIdx) := !blockWb
1011    }
1012  }
1013
1014  // if the first uop of an instruction is valid , write writebackedCounter
1015  val uopEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid)
1016  val instEnqValidSeq = io.enq.req.map (req => io.enq.canAccept && req.valid && req.bits.firstUop)
1017  val enqNeedWriteRFSeq = io.enq.req.map(_.bits.needWriteRf)
1018  val enqRobIdxSeq = io.enq.req.map(req => req.bits.robIdx.value)
1019  val enqUopNumVec = VecInit(io.enq.req.map(req => req.bits.numUops))
1020  val enqWBNumVec = VecInit(io.enq.req.map(req => req.bits.numWB))
1021  val enqEliminatedMoveVec = VecInit(io.enq.req.map(req => req.bits.eliminatedMove))
1022
1023  private val enqWriteStdVec: Vec[Bool] = VecInit(io.enq.req.map {
1024    req => FuType.isAMO(req.bits.fuType) || FuType.isStore(req.bits.fuType)
1025  })
1026  val fflags_wb = fflagsPorts
1027  val vxsat_wb = vxsatPorts
1028  for(i <- 0 until RobSize){
1029
1030    val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === i.U)
1031    val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch }
1032    val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch }
1033    val instCanEnqFlag = Cat(instCanEnqSeq).orR
1034
1035    realDestSize(i) := Mux(!valid(i) && instCanEnqFlag || valid(i), realDestSize(i) + PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map{ case(writeFlag, valid) => writeFlag && valid }), 0.U)
1036
1037    val enqUopNum = PriorityMux(instCanEnqSeq, enqUopNumVec)
1038    val enqWBNum = PriorityMux(instCanEnqSeq, enqWBNumVec)
1039    val enqEliminatedMove = PriorityMux(instCanEnqSeq, enqEliminatedMoveVec)
1040    val enqWriteStd = PriorityMux(instCanEnqSeq, enqWriteStdVec)
1041
1042    val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)
1043    val canWbNoBlockSeq = canWbSeq.zip(blockWbSeq).map{ case(canWb, blockWb) => canWb && !blockWb }
1044    val canStdWbSeq = VecInit(stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U))
1045    val wbCnt = PopCount(canWbNoBlockSeq)
1046
1047    val exceptionHas = RegInit(false.B)
1048    val exceptionHasWire = Wire(Bool())
1049    exceptionHasWire := MuxCase(exceptionHas, Seq(
1050      (valid(i) && exceptionGen.io.out.valid && exceptionGen.io.out.bits.robIdx.value === i.U) -> true.B,
1051      !valid(i) -> false.B
1052    ))
1053    exceptionHas := exceptionHasWire
1054
1055    when (exceptionHas || exceptionHasWire) {
1056      // exception flush
1057      uopNumVec(i) := 0.U
1058      stdWritebacked(i) := true.B
1059    }.elsewhen(!valid(i) && instCanEnqFlag) {
1060      // enq set num of uops
1061      uopNumVec(i) := enqWBNum
1062      stdWritebacked(i) := Mux(enqWriteStd, false.B, true.B)
1063    }.elsewhen(valid(i)) {
1064      // update by writing back
1065      uopNumVec(i) := uopNumVec(i) - wbCnt
1066      assert(!(uopNumVec(i) - wbCnt > uopNumVec(i)), "Overflow!")
1067      when (canStdWbSeq.asUInt.orR) {
1068        stdWritebacked(i) := true.B
1069      }
1070    }.otherwise {
1071      uopNumVec(i) := 0.U
1072    }
1073
1074    val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U && writeback.bits.wflags.getOrElse(false.B))
1075    val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.fold(false.B)(_ | _)
1076    fflagsDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, fflagsDataModule(i) | fflagsRes)
1077
1078    val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)
1079    val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.fold(false.B)(_ | _)
1080    vxsatDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, vxsatDataModule(i) | vxsatRes)
1081  }
1082
1083  // flagBkup
1084  // enqueue logic set 6 flagBkup at most
1085  for (i <- 0 until RenameWidth) {
1086    when (canEnqueue(i)) {
1087      flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag
1088    }
1089  }
1090
1091  // interrupt_safe
1092  for (i <- 0 until RenameWidth) {
1093    // We RegNext the updates for better timing.
1094    // Note that instructions won't change the system's states in this cycle.
1095    when (RegNext(canEnqueue(i))) {
1096      // For now, we allow non-load-store instructions to trigger interrupts
1097      // For MMIO instructions, they should not trigger interrupts since they may
1098      // be sent to lower level before it writes back.
1099      // However, we cannot determine whether a load/store instruction is MMIO.
1100      // Thus, we don't allow load/store instructions to trigger an interrupt.
1101      // TODO: support non-MMIO load-store instructions to trigger interrupts
1102      val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType)
1103      interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts)
1104    }
1105  }
1106
1107  /**
1108    * read and write of data modules
1109    */
1110  val commitReadAddr_next = Mux(state_next === s_idle,
1111    VecInit(deqPtrVec_next.map(_.value)),
1112    VecInit(walkPtrVec_next.map(_.value))
1113  )
1114  dispatchData.io.wen := canEnqueue
1115  dispatchData.io.waddr := allocatePtrVec.map(_.value)
1116  dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).zipWithIndex.foreach { case ((wdata, req), portIdx) =>
1117    wdata.ldest := req.ldest
1118    wdata.rfWen := req.rfWen
1119    wdata.dirtyFs := req.dirtyFs
1120    wdata.vecWen := req.vecWen
1121    wdata.wflags := req.wfflags
1122    wdata.commitType := req.commitType
1123    wdata.pdest := req.pdest
1124    wdata.ftqIdx := req.ftqPtr
1125    wdata.ftqOffset := req.ftqOffset
1126    wdata.isMove := req.eliminatedMove
1127    wdata.isRVC := req.preDecodeInfo.isRVC
1128    wdata.pc := req.pc
1129    wdata.vtype := req.vpu.vtype
1130    wdata.isVset := req.isVset
1131    wdata.instrSize := req.instrSize
1132  }
1133  dispatchData.io.raddr := commitReadAddr_next
1134
1135  exceptionGen.io.redirect <> io.redirect
1136  exceptionGen.io.flush := io.flushOut.valid
1137
1138  val canEnqueueEG = VecInit(io.enq.req.map(req => req.valid && io.enq.canAccept))
1139  for (i <- 0 until RenameWidth) {
1140    exceptionGen.io.enq(i).valid := canEnqueueEG(i)
1141    exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx
1142    exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec)
1143    exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe
1144    exceptionGen.io.enq(i).bits.isVset := io.enq.req(i).bits.isVset
1145    exceptionGen.io.enq(i).bits.replayInst := false.B
1146    XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst")
1147    exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep
1148    exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix
1149    exceptionGen.io.enq(i).bits.trigger.clear()
1150    exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.trigger.frontendHit
1151    exceptionGen.io.enq(i).bits.trigger.frontendCanFire := io.enq.req(i).bits.trigger.frontendCanFire
1152    exceptionGen.io.enq(i).bits.vstartEn := false.B //DontCare
1153    exceptionGen.io.enq(i).bits.vstart := 0.U //DontCare
1154  }
1155
1156  println(s"ExceptionGen:")
1157  println(s"num of exceptions: ${params.numException}")
1158  require(exceptionWBs.length == exceptionGen.io.wb.length,
1159    f"exceptionWBs.length: ${exceptionWBs.length}, " +
1160      f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}")
1161  for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) {
1162    exc_wb.valid                := wb.valid
1163    exc_wb.bits.robIdx          := wb.bits.robIdx
1164    exc_wb.bits.exceptionVec    := wb.bits.exceptionVec.get
1165    exc_wb.bits.flushPipe       := wb.bits.flushPipe.getOrElse(false.B)
1166    exc_wb.bits.isVset          := false.B
1167    exc_wb.bits.replayInst      := wb.bits.replay.getOrElse(false.B)
1168    exc_wb.bits.singleStep      := false.B
1169    exc_wb.bits.crossPageIPFFix := false.B
1170    // TODO: make trigger configurable
1171    val trigger = wb.bits.trigger.getOrElse(0.U).asTypeOf(exc_wb.bits.trigger)
1172    exc_wb.bits.trigger.clear() // Don't care frontend timing, chain, hit and canFire
1173    exc_wb.bits.trigger.backendHit := trigger.backendHit
1174    exc_wb.bits.trigger.backendCanFire := trigger.backendCanFire
1175    exc_wb.bits.vstartEn := false.B //wb.bits.vstartEn.getOrElse(false.B) // todo need add vstart in ExuOutput
1176    exc_wb.bits.vstart := 0.U //wb.bits.vstart.getOrElse(0.U)
1177//    println(s"  [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " +
1178//      s"flushPipe ${configs.exists(_.flushPipe)}, " +
1179//      s"replayInst ${configs.exists(_.replayInst)}")
1180  }
1181
1182  fflagsDataRead := (0 until CommitWidth).map(i => fflagsDataModule(deqPtrVec(i).value))
1183  vxsatDataRead := (0 until CommitWidth).map(i => vxsatDataModule(deqPtrVec(i).value))
1184
1185  val instrCntReg = RegInit(0.U(64.W))
1186  val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) })
1187  val trueCommitCnt = RegNext(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => Mux(v, i.instrSize, 0.U) }.reduce(_ +& _)) +& fuseCommitCnt
1188  val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U)
1189  val instrCnt = instrCntReg + retireCounter
1190  instrCntReg := instrCnt
1191  io.csr.perfinfo.retiredInstr := retireCounter
1192  io.robFull := !allowEnqueue
1193  io.headNotReady := commit_v.head && !commit_w.head
1194
1195  /**
1196    * debug info
1197    */
1198  XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n")
1199  XSDebug("")
1200  XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n")
1201  for(i <- 0 until RobSize) {
1202    XSDebug(false, !valid(i), "-")
1203    XSDebug(false, valid(i) && isWritebacked(i.U), "w")
1204    XSDebug(false, valid(i) && !isWritebacked(i.U), "v")
1205  }
1206  XSDebug(false, true.B, "\n")
1207
1208  for(i <- 0 until RobSize) {
1209    if (i % 4 == 0) XSDebug("")
1210    XSDebug(false, true.B, "%x ", debug_microOp(i).pc)
1211    XSDebug(false, !valid(i), "- ")
1212    XSDebug(false, valid(i) && isWritebacked(i.U), "w ")
1213    XSDebug(false, valid(i) && !isWritebacked(i.U), "v ")
1214    if (i % 4 == 3) XSDebug(false, true.B, "\n")
1215  }
1216
1217  def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U)
1218  def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U)
1219
1220  val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_))
1221  XSPerfAccumulate("clock_cycle", 1.U)
1222  QueuePerf(RobSize, numValidEntries, numValidEntries === RobSize.U)
1223  XSPerfAccumulate("commitUop", ifCommit(commitCnt))
1224  XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt))
1225  XSPerfRolling("ipc", ifCommitReg(trueCommitCnt), 1000, clock, reset)
1226  XSPerfRolling("cpi", perfCnt = 1.U/*Cycle*/, eventTrigger = ifCommitReg(trueCommitCnt), granularity = 1000, clock, reset)
1227  val commitIsMove = commitDebugUop.map(_.isMove)
1228  XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })))
1229  val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove)
1230  XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e })))
1231  XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt))
1232  val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD)
1233  val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t }
1234  XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid)))
1235  val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH)
1236  val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t }
1237  XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid)))
1238  val commitLoadWaitBit = commitDebugUop.map(_.loadWaitBit)
1239  XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })))
1240  val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE)
1241  XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })))
1242  XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && isWritebacked(i.U))))
1243  // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire)))
1244  // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready)))
1245  XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U))
1246  XSPerfAccumulate("walkCycleTotal", state === s_walk)
1247  XSPerfAccumulate("waitRabWalkEnd", state === s_walk && walkFinished && !rab.io.status.walkEnd)
1248  private val walkCycle = RegInit(0.U(8.W))
1249  private val waitRabWalkCycle = RegInit(0.U(8.W))
1250  walkCycle := Mux(io.redirect.valid, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U))
1251  waitRabWalkCycle := Mux(state === s_walk && walkFinished, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U))
1252
1253  XSPerfHistogram("walkRobCycleHist", walkCycle, state === s_walk && walkFinished, 0, 32)
1254  XSPerfHistogram("walkRabExtraCycleHist", waitRabWalkCycle, state === s_walk && walkFinished && rab.io.status.walkEnd, 0, 32)
1255  XSPerfHistogram("walkTotalCycleHist", walkCycle, state === s_walk && state_next === s_idle, 0, 32)
1256
1257  private val deqNotWritebacked = valid(deqPtr.value) && !isWritebacked(deqPtr.value)
1258  private val deqStdNotWritebacked = valid(deqPtr.value) && !stdWritebacked(deqPtr.value)
1259  private val deqUopNotWritebacked = valid(deqPtr.value) && !isUopWritebacked(deqPtr.value)
1260  private val deqHeadInfo = debug_microOp(deqPtr.value)
1261  val deqUopCommitType = io.commits.info(0).commitType
1262
1263  XSPerfAccumulate("waitAluCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.alu.U)
1264  XSPerfAccumulate("waitMulCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.mul.U)
1265  XSPerfAccumulate("waitDivCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.div.U)
1266  XSPerfAccumulate("waitBrhCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.brh.U)
1267  XSPerfAccumulate("waitJmpCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.jmp.U)
1268  XSPerfAccumulate("waitCsrCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.csr.U)
1269  XSPerfAccumulate("waitFenCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.fence.U)
1270  XSPerfAccumulate("waitBkuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.bku.U)
1271  XSPerfAccumulate("waitLduCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.ldu.U)
1272  XSPerfAccumulate("waitStuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.stu.U)
1273  XSPerfAccumulate("waitStaCycle", deqUopNotWritebacked && deqHeadInfo.fuType === FuType.stu.U)
1274  XSPerfAccumulate("waitStdCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.stu.U)
1275  XSPerfAccumulate("waitAtmCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.mou.U)
1276
1277  XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL)
1278  XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH)
1279  XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD)
1280  XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE)
1281  XSPerfAccumulate("robHeadPC", io.commits.info(0).pc)
1282  XSPerfAccumulate("commitCompressCntAll", PopCount(io.commits.commitValid.zip(io.commits.info).map{case(valid, info) => io.commits.isCommit && valid && info.instrSize > 1.U}))
1283  (2 to RenameWidth).foreach(i =>
1284    XSPerfAccumulate(s"commitCompressCnt${i}", PopCount(io.commits.commitValid.zip(io.commits.info).map{case(valid, info) => io.commits.isCommit && valid && info.instrSize === i.U}))
1285  )
1286  XSPerfAccumulate("compressSize", io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => Mux(io.commits.isCommit && valid && info.instrSize > 1.U, info.instrSize, 0.U) }.reduce(_ +& _))
1287  val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime)
1288  val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime)
1289  val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime)
1290  val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime)
1291  val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime)
1292  val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime)
1293  val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime)
1294  def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = {
1295    cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _)
1296  }
1297  for (fuType <- FuType.functionNameMap.keys) {
1298    val fuName = FuType.functionNameMap(fuType)
1299    val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U )
1300    XSPerfRolling(s"ipc_futype_${fuName}", ifCommit(PopCount(commitIsFuType)), 1000, clock, reset)
1301    XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType)))
1302    XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency)))
1303    XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency)))
1304    XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency)))
1305    XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency)))
1306    XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency)))
1307    XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency)))
1308    XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency)))
1309  }
1310  XSPerfAccumulate(s"redirect_use_snapshot", io.redirect.valid && io.snpt.useSnpt)
1311
1312  // top-down info
1313  io.debugTopDown.toCore.robHeadVaddr.valid := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_valid
1314  io.debugTopDown.toCore.robHeadVaddr.bits  := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_bits
1315  io.debugTopDown.toCore.robHeadPaddr.valid := debug_lsTopdownInfo(deqPtr.value).s2.paddr_valid
1316  io.debugTopDown.toCore.robHeadPaddr.bits  := debug_lsTopdownInfo(deqPtr.value).s2.paddr_bits
1317  io.debugTopDown.toDispatch.robTrueCommit := ifCommitReg(trueCommitCnt)
1318  io.debugTopDown.toDispatch.robHeadLsIssue := debug_lsIssue(deqPtr.value)
1319  io.debugTopDown.robHeadLqIdx.valid := debug_lqIdxValid(deqPtr.value)
1320  io.debugTopDown.robHeadLqIdx.bits  := debug_microOp(deqPtr.value).lqIdx
1321
1322  // rolling
1323  io.debugRolling.robTrueCommit := ifCommitReg(trueCommitCnt)
1324
1325  /**
1326    * DataBase info:
1327    * log trigger is at writeback valid
1328    * */
1329
1330  /**
1331    * @todo add InstInfoEntry back
1332    * @author Maxpicca-Li
1333    */
1334
1335  //difftest signals
1336  val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value
1337
1338  val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1339  val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1340
1341  for(i <- 0 until CommitWidth) {
1342    val idx = deqPtrVec(i).value
1343    wdata(i) := debug_exuData(idx)
1344    wpc(i) := SignExt(commitDebugUop(i).pc, XLEN)
1345  }
1346
1347  if (env.EnableDifftest || env.AlwaysBasicDiff) {
1348    // These are the structures used by difftest only and should be optimized after synthesis.
1349    val dt_eliminatedMove = Mem(RobSize, Bool())
1350    val dt_isRVC = Mem(RobSize, Bool())
1351    val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle))
1352    for (i <- 0 until RenameWidth) {
1353      when (canEnqueue(i)) {
1354        dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove
1355        dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC
1356      }
1357    }
1358    for (wb <- exuWBs) {
1359      when (wb.valid) {
1360        val wbIdx = wb.bits.robIdx.value
1361        dt_exuDebug(wbIdx) := wb.bits.debug
1362      }
1363    }
1364    // Always instantiate basic difftest modules.
1365    for (i <- 0 until CommitWidth) {
1366      val uop = commitDebugUop(i)
1367      val commitInfo = io.commits.info(i)
1368      val ptr = deqPtrVec(i).value
1369      val exuOut = dt_exuDebug(ptr)
1370      val eliminatedMove = dt_eliminatedMove(ptr)
1371      val isRVC = dt_isRVC(ptr)
1372
1373      val difftest = DifftestModule(new DiffInstrCommit(MaxPhyPregs), delay = 3, dontCare = true)
1374      difftest.coreid  := io.hartId
1375      difftest.index   := i.U
1376      difftest.valid   := io.commits.commitValid(i) && io.commits.isCommit
1377      difftest.skip    := Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)
1378      difftest.isRVC   := isRVC
1379      difftest.rfwen   := io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U
1380      difftest.fpwen   := io.commits.commitValid(i) && uop.fpWen
1381      difftest.wpdest  := commitInfo.pdest
1382      difftest.wdest   := commitInfo.ldest
1383      difftest.nFused  := CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize - 1.U
1384      when(difftest.valid) {
1385        assert(CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize >= 1.U)
1386      }
1387      if (env.EnableDifftest) {
1388        val uop = commitDebugUop(i)
1389        difftest.pc       := SignExt(uop.pc, XLEN)
1390        difftest.instr    := uop.instr
1391        difftest.robIdx   := ZeroExt(ptr, 10)
1392        difftest.lqIdx    := ZeroExt(uop.lqIdx.value, 7)
1393        difftest.sqIdx    := ZeroExt(uop.sqIdx.value, 7)
1394        difftest.isLoad   := io.commits.info(i).commitType === CommitType.LOAD
1395        difftest.isStore  := io.commits.info(i).commitType === CommitType.STORE
1396      }
1397    }
1398  }
1399
1400  if (env.EnableDifftest) {
1401    for (i <- 0 until CommitWidth) {
1402      val difftest = DifftestModule(new DiffLoadEvent, delay = 3)
1403      difftest.coreid := io.hartId
1404      difftest.index  := i.U
1405
1406      val ptr = deqPtrVec(i).value
1407      val uop = commitDebugUop(i)
1408      val exuOut = debug_exuDebug(ptr)
1409      difftest.valid  := io.commits.commitValid(i) && io.commits.isCommit
1410      difftest.paddr  := exuOut.paddr
1411      difftest.opType := uop.fuOpType
1412      difftest.fuType := uop.fuType
1413    }
1414  }
1415
1416  if (env.EnableDifftest || env.AlwaysBasicDiff) {
1417    val dt_isXSTrap = Mem(RobSize, Bool())
1418    for (i <- 0 until RenameWidth) {
1419      when (canEnqueue(i)) {
1420        dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap
1421      }
1422    }
1423    val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) =>
1424      io.commits.isCommit && v && dt_isXSTrap(d.value)
1425    }
1426    val hitTrap = trapVec.reduce(_||_)
1427    val difftest = DifftestModule(new DiffTrapEvent, dontCare = true)
1428    difftest.coreid   := io.hartId
1429    difftest.hasTrap  := hitTrap
1430    difftest.cycleCnt := timer
1431    difftest.instrCnt := instrCnt
1432    difftest.hasWFI   := hasWFI
1433
1434    if (env.EnableDifftest) {
1435      val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1))
1436      val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN)
1437      difftest.code     := trapCode
1438      difftest.pc       := trapPC
1439    }
1440  }
1441
1442  val validEntriesBanks = (0 until (RobSize + 31) / 32).map(i => RegNext(PopCount(valid.drop(i * 32).take(32))))
1443  val validEntries = RegNext(VecInit(validEntriesBanks).reduceTree(_ +& _))
1444  val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })
1445  val commitLoadVec = VecInit(commitLoadValid)
1446  val commitBranchVec = VecInit(commitBranchValid)
1447  val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })
1448  val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })
1449  val perfEvents = Seq(
1450    ("rob_interrupt_num      ", io.flushOut.valid && intrEnable                                       ),
1451    ("rob_exception_num      ", io.flushOut.valid && exceptionEnable                                  ),
1452    ("rob_flush_pipe_num     ", io.flushOut.valid && isFlushPipe                                      ),
1453    ("rob_replay_inst_num    ", io.flushOut.valid && isFlushPipe && deqHasReplayInst                  ),
1454    ("rob_commitUop          ", ifCommit(commitCnt)                                                   ),
1455    ("rob_commitInstr        ", ifCommitReg(trueCommitCnt)                                            ),
1456    ("rob_commitInstrMove    ", ifCommitReg(PopCount(RegNext(commitMoveVec)))                         ),
1457    ("rob_commitInstrFused   ", ifCommitReg(fuseCommitCnt)                                            ),
1458    ("rob_commitInstrLoad    ", ifCommitReg(PopCount(RegNext(commitLoadVec)))                         ),
1459    ("rob_commitInstrBranch  ", ifCommitReg(PopCount(RegNext(commitBranchVec)))                       ),
1460    ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec)))                     ),
1461    ("rob_commitInstrStore   ", ifCommitReg(PopCount(RegNext(commitStoreVec)))                        ),
1462    ("rob_walkInstr          ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)           ),
1463    ("rob_walkCycle          ", (state === s_walk)                                                    ),
1464    ("rob_1_4_valid          ", validEntries <= (RobSize / 4).U                                       ),
1465    ("rob_2_4_valid          ", validEntries >  (RobSize / 4).U && validEntries <= (RobSize / 2).U    ),
1466    ("rob_3_4_valid          ", validEntries >  (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U),
1467    ("rob_4_4_valid          ", validEntries >  (RobSize * 3 / 4).U                                   ),
1468  )
1469  generatePerfEvent()
1470}
1471