1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.rob 18 19import org.chipsalliance.cde.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 24import utility._ 25import utils._ 26import xiangshan._ 27import xiangshan.backend.BackendParams 28import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 29import xiangshan.backend.fu.{FuType, FuConfig} 30import xiangshan.frontend.FtqPtr 31import xiangshan.mem.{LqPtr, LsqEnqIO, SqPtr} 32import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 33import xiangshan.backend.ctrlblock.{DebugLSIO, DebugLsInfo, LsTopdownInfo} 34import xiangshan.backend.rename.SnapshotGenerator 35 36 37class RobPtr(entries: Int) extends CircularQueuePtr[RobPtr]( 38 entries 39) with HasCircularQueuePtrHelper { 40 41 def this()(implicit p: Parameters) = this(p(XSCoreParamsKey).RobSize) 42 43 def needFlush(redirect: Valid[Redirect]): Bool = { 44 val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx 45 redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx)) 46 } 47 48 def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR 49} 50 51object RobPtr { 52 def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = { 53 val ptr = Wire(new RobPtr) 54 ptr.flag := f 55 ptr.value := v 56 ptr 57 } 58} 59 60class RobCSRIO(implicit p: Parameters) extends XSBundle { 61 val intrBitSet = Input(Bool()) 62 val trapTarget = Input(UInt(VAddrBits.W)) 63 val isXRet = Input(Bool()) 64 val wfiEvent = Input(Bool()) 65 66 val fflags = Output(Valid(UInt(5.W))) 67 val vxsat = Output(Valid(Bool())) 68 val vstart = Output(Valid(UInt(XLEN.W))) 69 val dirty_fs = Output(Bool()) 70 val perfinfo = new Bundle { 71 val retiredInstr = Output(UInt(3.W)) 72 } 73 74 val vcsrFlag = Output(Bool()) 75} 76 77class RobLsqIO(implicit p: Parameters) extends XSBundle { 78 val lcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 79 val scommit = Output(UInt(log2Up(CommitWidth + 1).W)) 80 val pendingld = Output(Bool()) 81 val pendingst = Output(Bool()) 82 val commit = Output(Bool()) 83 val pendingPtr = Output(new RobPtr) 84 val pendingPtrNext = Output(new RobPtr) 85 86 val mmio = Input(Vec(LoadPipelineWidth, Bool())) 87 // Todo: what's this? 88 val uop = Input(Vec(LoadPipelineWidth, new DynInst)) 89} 90 91class RobEnqIO(implicit p: Parameters) extends XSBundle { 92 val canAccept = Output(Bool()) 93 val isEmpty = Output(Bool()) 94 // valid vector, for robIdx gen and walk 95 val needAlloc = Vec(RenameWidth, Input(Bool())) 96 val req = Vec(RenameWidth, Flipped(ValidIO(new DynInst))) 97 val resp = Vec(RenameWidth, Output(new RobPtr)) 98} 99 100class RobCoreTopDownIO(implicit p: Parameters) extends XSBundle { 101 val robHeadVaddr = Valid(UInt(VAddrBits.W)) 102 val robHeadPaddr = Valid(UInt(PAddrBits.W)) 103} 104 105class RobDispatchTopDownIO extends Bundle { 106 val robTrueCommit = Output(UInt(64.W)) 107 val robHeadLsIssue = Output(Bool()) 108} 109 110class RobDebugRollingIO extends Bundle { 111 val robTrueCommit = Output(UInt(64.W)) 112} 113 114class RobDispatchData(implicit p: Parameters) extends RobCommitInfo {} 115 116class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 117 val io = IO(new Bundle { 118 // for commits/flush 119 val state = Input(UInt(2.W)) 120 val deq_v = Vec(CommitWidth, Input(Bool())) 121 val deq_w = Vec(CommitWidth, Input(Bool())) 122 val exception_state = Flipped(ValidIO(new RobExceptionInfo)) 123 // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth) 124 val intrBitSetReg = Input(Bool()) 125 val hasNoSpecExec = Input(Bool()) 126 val interrupt_safe = Input(Bool()) 127 val blockCommit = Input(Bool()) 128 // output: the CommitWidth deqPtr 129 val out = Vec(CommitWidth, Output(new RobPtr)) 130 val next_out = Vec(CommitWidth, Output(new RobPtr)) 131 }) 132 133 val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr)))) 134 135 // for exceptions (flushPipe included) and interrupts: 136 // only consider the first instruction 137 val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe 138 val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0) 139 val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable) 140 141 // for normal commits: only to consider when there're no exceptions 142 // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions. 143 val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last) 144 val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i))) 145 val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B) 146 // when io.intrBitSetReg or there're possible exceptions in these instructions, 147 // only one instruction is allowed to commit 148 val allowOnlyOne = commit_exception || io.intrBitSetReg 149 val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt) 150 151 val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt)) 152 val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec) 153 154 deqPtrVec := deqPtrVec_next 155 156 io.next_out := deqPtrVec_next 157 io.out := deqPtrVec 158 159 when (io.state === 0.U) { 160 XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt) 161 } 162 163} 164 165class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 166 val io = IO(new Bundle { 167 // for input redirect 168 val redirect = Input(Valid(new Redirect)) 169 // for enqueue 170 val allowEnqueue = Input(Bool()) 171 val hasBlockBackward = Input(Bool()) 172 val enq = Vec(RenameWidth, Input(Bool())) 173 val out = Output(Vec(RenameWidth, new RobPtr)) 174 }) 175 176 val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr))) 177 178 // enqueue 179 val canAccept = io.allowEnqueue && !io.hasBlockBackward 180 val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U) 181 182 for ((ptr, i) <- enqPtrVec.zipWithIndex) { 183 when(io.redirect.valid) { 184 ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 185 }.otherwise { 186 ptr := ptr + dispatchNum 187 } 188 } 189 190 io.out := enqPtrVec 191 192} 193 194class RobExceptionInfo(implicit p: Parameters) extends XSBundle { 195 // val valid = Bool() 196 val robIdx = new RobPtr 197 val exceptionVec = ExceptionVec() 198 val flushPipe = Bool() 199 val isVset = Bool() 200 val replayInst = Bool() // redirect to that inst itself 201 val singleStep = Bool() // TODO add frontend hit beneath 202 val crossPageIPFFix = Bool() 203 val trigger = new TriggerCf 204 val vstartEn = Bool() 205 val vstart = UInt(XLEN.W) 206 207 def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.canFire 208 def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.canFire 209 // only exceptions are allowed to writeback when enqueue 210 def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.canFire 211} 212 213class ExceptionGen(params: BackendParams)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 214 val io = IO(new Bundle { 215 val redirect = Input(Valid(new Redirect)) 216 val flush = Input(Bool()) 217 val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo))) 218 // csr + load + store + varith + vload + vstore 219 val wb = Vec(params.numException, Flipped(ValidIO(new RobExceptionInfo))) 220 val out = ValidIO(new RobExceptionInfo) 221 val state = ValidIO(new RobExceptionInfo) 222 }) 223 224 val wbExuParams = params.allExuParams.filter(_.exceptionOut.nonEmpty) 225 226 def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): RobExceptionInfo = { 227 def getOldest_recursion(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = { 228 assert(valid.length == bits.length) 229 if (valid.length == 1) { 230 (valid, bits) 231 } else if (valid.length == 2) { 232 val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0))))) 233 for (i <- res.indices) { 234 res(i).valid := valid(i) 235 res(i).bits := bits(i) 236 } 237 val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1)) 238 (Seq(oldest.valid), Seq(oldest.bits)) 239 } else { 240 val left = getOldest_recursion(valid.take(valid.length / 2), bits.take(valid.length / 2)) 241 val right = getOldest_recursion(valid.drop(valid.length / 2), bits.drop(valid.length / 2)) 242 getOldest_recursion(left._1 ++ right._1, left._2 ++ right._2) 243 } 244 } 245 getOldest_recursion(valid, bits)._2.head 246 } 247 248 249 val currentValid = RegInit(false.B) 250 val current = Reg(new RobExceptionInfo) 251 252 // orR the exceptionVec 253 val lastCycleFlush = RegNext(io.flush) 254 val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush)) 255 256 // s0: compare wb in 6 groups 257 val csr_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(t => t.isCsr).nonEmpty).map(_._1) 258 val load_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.ldu).nonEmpty).map(_._1) 259 val store_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(t => t.isSta || t.fuType == FuType.mou).nonEmpty).map(_._1) 260 val varith_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.isVecArith).nonEmpty).map(_._1) 261 val vload_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.vldu).nonEmpty).map(_._1) 262 val vstore_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.vstu).nonEmpty).map(_._1) 263 264 val writebacks = Seq(csr_wb, load_wb, store_wb, varith_wb, vload_wb, vstore_wb) 265 val in_wb_valids = writebacks.map(_.map(w => w.valid && w.bits.has_exception && !lastCycleFlush)) 266 val wb_valid = in_wb_valids.zip(writebacks).map { case (valid, wb) => 267 valid.zip(wb.map(_.bits)).map { case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }.reduce(_ || _) 268 } 269 val wb_bits = in_wb_valids.zip(writebacks).map { case (valid, wb) => getOldest(valid, wb.map(_.bits))} 270 271 val s0_out_valid = wb_valid.map(x => RegNext(x)) 272 val s0_out_bits = wb_bits.map(x => RegNext(x)) 273 274 // s1: compare last six and current flush 275 val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) }) 276 val s1_out_bits = RegNext(getOldest(s0_out_valid, s0_out_bits)) 277 val s1_out_valid = RegNext(s1_valid.asUInt.orR) 278 279 val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 280 val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits))) 281 282 // s2: compare the input exception with the current one 283 // priorities: 284 // (1) system reset 285 // (2) current is valid: flush, remain, merge, update 286 // (3) current is not valid: s1 or enq 287 val current_flush = current.robIdx.needFlush(io.redirect) || io.flush 288 val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush 289 when (currentValid) { 290 when (current_flush) { 291 currentValid := Mux(s1_flush, false.B, s1_out_valid) 292 } 293 when (s1_out_valid && !s1_flush) { 294 when (isAfter(current.robIdx, s1_out_bits.robIdx)) { 295 current := s1_out_bits 296 }.elsewhen (current.robIdx === s1_out_bits.robIdx) { 297 current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec()) 298 current.flushPipe := s1_out_bits.flushPipe || current.flushPipe 299 current.replayInst := s1_out_bits.replayInst || current.replayInst 300 current.singleStep := s1_out_bits.singleStep || current.singleStep 301 current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf) 302 } 303 } 304 }.elsewhen (s1_out_valid && !s1_flush) { 305 currentValid := true.B 306 current := s1_out_bits 307 }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) { 308 currentValid := true.B 309 current := enq_bits 310 } 311 312 io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback 313 io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits) 314 io.state.valid := currentValid 315 io.state.bits := current 316 317} 318 319class RobFlushInfo(implicit p: Parameters) extends XSBundle { 320 val ftqIdx = new FtqPtr 321 val robIdx = new RobPtr 322 val ftqOffset = UInt(log2Up(PredictWidth).W) 323 val replayInst = Bool() 324} 325 326class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter { 327 override def shouldBeInlined: Boolean = false 328 329 lazy val module = new RobImp(this)(p, params) 330} 331 332class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper) 333 with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents { 334 335 private val LduCnt = params.LduCnt 336 private val StaCnt = params.StaCnt 337 private val HyuCnt = params.HyuCnt 338 339 val io = IO(new Bundle() { 340 val hartId = Input(UInt(8.W)) 341 val redirect = Input(Valid(new Redirect)) 342 val enq = new RobEnqIO 343 val flushOut = ValidIO(new Redirect) 344 val exception = ValidIO(new ExceptionInfo) 345 // exu + brq 346 val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles) 347 val commits = Output(new RobCommitIO) 348 val rabCommits = Output(new RobCommitIO) 349 val diffCommits = Output(new DiffCommitIO) 350 val isVsetFlushPipe = Output(Bool()) 351 val vconfigPdest = Output(UInt(PhyRegIdxWidth.W)) 352 val lsq = new RobLsqIO 353 val robDeqPtr = Output(new RobPtr) 354 val csr = new RobCSRIO 355 val snpt = Input(new SnapshotPort) 356 val robFull = Output(Bool()) 357 val headNotReady = Output(Bool()) 358 val cpu_halt = Output(Bool()) 359 val wfi_enable = Input(Bool()) 360 361 val debug_ls = Flipped(new DebugLSIO) 362 val debugRobHead = Output(new DynInst) 363 val debugEnqLsq = Input(new LsqEnqIO) 364 val debugHeadLsIssue = Input(Bool()) 365 val lsTopdownInfo = Vec(LduCnt + HyuCnt, Input(new LsTopdownInfo)) 366 val debugTopDown = new Bundle { 367 val toCore = new RobCoreTopDownIO 368 val toDispatch = new RobDispatchTopDownIO 369 val robHeadLqIdx = Valid(new LqPtr) 370 } 371 val debugRolling = new RobDebugRollingIO 372 }) 373 374 val exuWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(!_.bits.params.hasStdFu).toSeq 375 val stdWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(_.bits.params.hasStdFu).toSeq 376 val fflagsWBs = io.writeback.filter(x => x.bits.fflags.nonEmpty) 377 val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty) 378 val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty) 379 380 val exuWbPorts = io.writeback.filter(!_.bits.params.hasStdFu) 381 val stdWbPorts = io.writeback.filter(_.bits.params.hasStdFu) 382 val fflagsPorts = io.writeback.filter(x => x.bits.fflags.nonEmpty) 383 val vxsatPorts = io.writeback.filter(x => x.bits.vxsat.nonEmpty) 384 val exceptionPorts = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty) 385 val numExuWbPorts = exuWBs.length 386 val numStdWbPorts = stdWBs.length 387 388 389 println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth") 390// println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}") 391// println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}") 392// println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}") 393 394 395 // instvalid field 396 val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 397 // writeback status 398 399 val stdWritebacked = Reg(Vec(RobSize, Bool())) 400 val commitTrigger = Mem(RobSize, Bool()) 401 val uopNumVec = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W)))) 402 val realDestSize = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W)))) 403 val fflagsDataModule = RegInit(VecInit(Seq.fill(RobSize)(0.U(5.W)))) 404 val vxsatDataModule = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 405 406 def isWritebacked(ptr: UInt): Bool = { 407 !uopNumVec(ptr).orR && stdWritebacked(ptr) 408 } 409 410 def isUopWritebacked(ptr: UInt): Bool = { 411 !uopNumVec(ptr).orR 412 } 413 414 val mmio = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 415 416 // data for redirect, exception, etc. 417 val flagBkup = Mem(RobSize, Bool()) 418 // some instructions are not allowed to trigger interrupts 419 // They have side effects on the states of the processor before they write back 420 val interrupt_safe = RegInit(VecInit(Seq.fill(RobSize)(true.B))) 421 422 // data for debug 423 // Warn: debug_* prefix should not exist in generated verilog. 424 val debug_microOp = DebugMem(RobSize, new DynInst) 425 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug 426 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug 427 val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init))) 428 val debug_lsTopdownInfo = RegInit(VecInit(Seq.fill(RobSize)(LsTopdownInfo.init))) 429 val debug_lqIdxValid = RegInit(VecInit.fill(RobSize)(false.B)) 430 val debug_lsIssued = RegInit(VecInit.fill(RobSize)(false.B)) 431 432 // pointers 433 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 434 val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr)) 435 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 436 437 dontTouch(enqPtrVec) 438 dontTouch(deqPtrVec) 439 440 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 441 val lastWalkPtr = Reg(new RobPtr) 442 val allowEnqueue = RegInit(true.B) 443 444 val enqPtr = enqPtrVec.head 445 val deqPtr = deqPtrVec(0) 446 val walkPtr = walkPtrVec(0) 447 448 val isEmpty = enqPtr === deqPtr 449 val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level) 450 451 val snptEnq = io.enq.canAccept && io.enq.req.head.valid && io.enq.req.head.bits.snapshot 452 val snapshots = SnapshotGenerator(enqPtrVec, snptEnq, io.snpt.snptDeq, io.redirect.valid, io.snpt.flushVec) 453 val debug_lsIssue = WireDefault(debug_lsIssued) 454 debug_lsIssue(deqPtr.value) := io.debugHeadLsIssue 455 456 /** 457 * states of Rob 458 */ 459 val s_idle :: s_walk :: Nil = Enum(2) 460 val state = RegInit(s_idle) 461 462 /** 463 * Data Modules 464 * 465 * CommitDataModule: data from dispatch 466 * (1) read: commits/walk/exception 467 * (2) write: enqueue 468 * 469 * WritebackData: data from writeback 470 * (1) read: commits/walk/exception 471 * (2) write: write back from exe units 472 */ 473 val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth)) 474 val dispatchDataRead = dispatchData.io.rdata 475 476 val exceptionGen = Module(new ExceptionGen(params)) 477 val exceptionDataRead = exceptionGen.io.state 478 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 479 val vxsatDataRead = Wire(Vec(CommitWidth, Bool())) 480 481 io.robDeqPtr := deqPtr 482 io.debugRobHead := debug_microOp(deqPtr.value) 483 484 val rab = Module(new RenameBuffer(RabSize)) 485 486 rab.io.redirect.valid := io.redirect.valid 487 488 rab.io.req.zip(io.enq.req).map { case (dest, src) => 489 dest.bits := src.bits 490 dest.valid := src.valid && io.enq.canAccept 491 } 492 493 val commitDestSizeSeq = (0 until CommitWidth).map(i => realDestSize(deqPtrVec(i).value)) 494 val walkDestSizeSeq = (0 until CommitWidth).map(i => realDestSize(walkPtrVec(i).value)) 495 496 val commitSizeSum = io.commits.commitValid.zip(commitDestSizeSeq).map { case (commitValid, destSize) => 497 Mux(io.commits.isCommit && commitValid, destSize, 0.U) 498 }.reduce(_ +& _) 499 val walkSizeSum = io.commits.walkValid.zip(walkDestSizeSeq).map { case (walkValid, destSize) => 500 Mux(io.commits.isWalk && walkValid, destSize, 0.U) 501 }.reduce(_ +& _) 502 503 rab.io.fromRob.commitSize := commitSizeSum 504 rab.io.fromRob.walkSize := walkSizeSum 505 rab.io.snpt := io.snpt 506 rab.io.snpt.snptEnq := snptEnq 507 508 io.rabCommits := rab.io.commits 509 io.diffCommits := rab.io.diffCommits 510 511 /** 512 * Enqueue (from dispatch) 513 */ 514 // special cases 515 val hasBlockBackward = RegInit(false.B) 516 val hasWaitForward = RegInit(false.B) 517 val doingSvinval = RegInit(false.B) 518 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 519 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 520 when (isEmpty) { hasBlockBackward:= false.B } 521 // When any instruction commits, hasNoSpecExec should be set to false.B 522 when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasWaitForward:= false.B } 523 524 // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing. 525 // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle. 526 // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts. 527 val hasWFI = RegInit(false.B) 528 io.cpu_halt := hasWFI 529 // WFI Timeout: 2^20 = 1M cycles 530 val wfi_cycles = RegInit(0.U(20.W)) 531 when (hasWFI) { 532 wfi_cycles := wfi_cycles + 1.U 533 }.elsewhen (!hasWFI && RegNext(hasWFI)) { 534 wfi_cycles := 0.U 535 } 536 val wfi_timeout = wfi_cycles.andR 537 when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) { 538 hasWFI := false.B 539 } 540 541 val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.req.take(i).map(req => req.valid && req.bits.firstUop))))) 542 io.enq.canAccept := allowEnqueue && !hasBlockBackward && rab.io.canEnq 543 io.enq.resp := allocatePtrVec 544 val canEnqueue = VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop && io.enq.canAccept)) 545 val timer = GTimer() 546 for (i <- 0 until RenameWidth) { 547 // we don't check whether io.redirect is valid here since redirect has higher priority 548 when (canEnqueue(i)) { 549 val enqUop = io.enq.req(i).bits 550 val enqIndex = allocatePtrVec(i).value 551 // store uop in data module and debug_microOp Vec 552 debug_microOp(enqIndex) := enqUop 553 debug_microOp(enqIndex).debugInfo.dispatchTime := timer 554 debug_microOp(enqIndex).debugInfo.enqRsTime := timer 555 debug_microOp(enqIndex).debugInfo.selectTime := timer 556 debug_microOp(enqIndex).debugInfo.issueTime := timer 557 debug_microOp(enqIndex).debugInfo.writebackTime := timer 558 debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer 559 debug_microOp(enqIndex).debugInfo.tlbRespTime := timer 560 debug_lsInfo(enqIndex) := DebugLsInfo.init 561 debug_lsTopdownInfo(enqIndex) := LsTopdownInfo.init 562 debug_lqIdxValid(enqIndex) := false.B 563 debug_lsIssued(enqIndex) := false.B 564 565 when (enqUop.blockBackward) { 566 hasBlockBackward := true.B 567 } 568 when (enqUop.waitForward) { 569 hasWaitForward := true.B 570 } 571 val enqHasTriggerCanFire = io.enq.req(i).bits.trigger.getFrontendCanFire 572 val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR 573 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 574 when(!enqHasTriggerCanFire && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe)) 575 { 576 doingSvinval := true.B 577 } 578 // the end instruction of Svinval enqs so clear doingSvinval 579 when(!enqHasTriggerCanFire && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe)) 580 { 581 doingSvinval := false.B 582 } 583 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 584 assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe))) 585 when (enqUop.isWFI && !enqHasException && !enqHasTriggerCanFire) { 586 hasWFI := true.B 587 } 588 589 mmio(enqIndex) := false.B 590 } 591 } 592 val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(req => req.valid && req.bits.firstUop)), 0.U) 593 io.enq.isEmpty := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR) 594 595 when (!io.wfi_enable) { 596 hasWFI := false.B 597 } 598 // sel vsetvl's flush position 599 val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3) 600 val vsetvlState = RegInit(vs_idle) 601 602 val firstVInstrFtqPtr = RegInit(0.U.asTypeOf(new FtqPtr)) 603 val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W))) 604 val firstVInstrRobIdx = RegInit(0.U.asTypeOf(new RobPtr)) 605 606 val enq0 = io.enq.req(0) 607 val enq0IsVset = enq0.bits.isVset && enq0.bits.lastUop && canEnqueue(0) 608 val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe 609 val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVArith(req.bits.fuType) && fire} 610 // for vs_idle 611 val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType))) 612 // for vs_waitVinstr 613 val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1) 614 val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req) 615 when(vsetvlState === vs_idle){ 616 firstVInstrFtqPtr := firstVInstrIdle.bits.ftqPtr 617 firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset 618 firstVInstrRobIdx := firstVInstrIdle.bits.robIdx 619 }.elsewhen(vsetvlState === vs_waitVinstr){ 620 when(Cat(enqIsVInstrOrVset).orR){ 621 firstVInstrFtqPtr := firstVInstrWait.bits.ftqPtr 622 firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset 623 firstVInstrRobIdx := firstVInstrWait.bits.robIdx 624 } 625 } 626 627 val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR 628 when(vsetvlState === vs_idle && !io.redirect.valid){ 629 when(enq0IsVsetFlush){ 630 vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr) 631 } 632 }.elsewhen(vsetvlState === vs_waitVinstr){ 633 when(io.redirect.valid){ 634 vsetvlState := vs_idle 635 }.elsewhen(Cat(enqIsVInstrOrVset).orR){ 636 vsetvlState := vs_waitFlush 637 } 638 }.elsewhen(vsetvlState === vs_waitFlush){ 639 when(io.redirect.valid){ 640 vsetvlState := vs_idle 641 } 642 } 643 644 // lqEnq 645 io.debugEnqLsq.needAlloc.map(_(0)).zip(io.debugEnqLsq.req).foreach { case (alloc, req) => 646 when(io.debugEnqLsq.canAccept && alloc && req.valid) { 647 debug_microOp(req.bits.robIdx.value).lqIdx := req.bits.lqIdx 648 debug_lqIdxValid(req.bits.robIdx.value) := true.B 649 } 650 } 651 652 // lsIssue 653 when(io.debugHeadLsIssue) { 654 debug_lsIssued(deqPtr.value) := true.B 655 } 656 657 /** 658 * Writeback (from execution units) 659 */ 660 for (wb <- exuWBs) { 661 when (wb.valid) { 662 val wbIdx = wb.bits.robIdx.value 663 debug_exuData(wbIdx) := wb.bits.data 664 debug_exuDebug(wbIdx) := wb.bits.debug 665 debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime 666 debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime 667 debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime 668 debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime 669 670 // debug for lqidx and sqidx 671 debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr)) 672 debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr)) 673 674 val debug_Uop = debug_microOp(wbIdx) 675 XSInfo(true.B, 676 p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " + 677 p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " + 678 p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.robIdx}\n" 679 ) 680 } 681 } 682 683 val writebackNum = PopCount(exuWBs.map(_.valid)) 684 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 685 686 for (i <- 0 until LoadPipelineWidth) { 687 when (RegNext(io.lsq.mmio(i))) { 688 mmio(RegNext(io.lsq.uop(i).robIdx).value) := true.B 689 } 690 } 691 692 /** 693 * RedirectOut: Interrupt and Exceptions 694 */ 695 val deqDispatchData = dispatchDataRead(0) 696 val debug_deqUop = debug_microOp(deqPtr.value) 697 698 val intrBitSetReg = RegNext(io.csr.intrBitSet) 699 val intrEnable = intrBitSetReg && !hasWaitForward && interrupt_safe(deqPtr.value) 700 val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 701 val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR || 702 exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.canFire) 703 val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe 704 val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst 705 val exceptionEnable = isWritebacked(deqPtr.value) && deqHasException 706 707 XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n") 708 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getFrontendCanFire, "Debug Mode: Deq has frontend trigger exception\n") 709 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getBackendCanFire, "Debug Mode: Deq has backend trigger exception\n") 710 711 val isFlushPipe = isWritebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst) 712 713 val isVsetFlushPipe = isWritebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset 714// val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush) 715 val needModifyFtqIdxOffset = false.B 716 io.isVsetFlushPipe := isVsetFlushPipe 717 io.vconfigPdest := rab.io.vconfigPdest 718 // io.flushOut will trigger redirect at the next cycle. 719 // Block any redirect or commit at the next cycle. 720 val lastCycleFlush = RegNext(io.flushOut.valid) 721 722 io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush 723 io.flushOut.bits := DontCare 724 io.flushOut.bits.isRVC := deqDispatchData.isRVC 725 io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr) 726 io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx) 727 io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset) 728 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next" 729 io.flushOut.bits.interrupt := true.B 730 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 731 XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable) 732 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 733 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 734 735 val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush 736 io.exception.valid := RegNext(exceptionHappen) 737 io.exception.bits.pc := RegEnable(debug_deqUop.pc, exceptionHappen) 738 io.exception.bits.instr := RegEnable(debug_deqUop.instr, exceptionHappen) 739 io.exception.bits.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 740 io.exception.bits.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 741 io.exception.bits.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 742 io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 743 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 744 io.exception.bits.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen) 745 io.csr.vstart.valid := RegEnable(exceptionDataRead.bits.vstartEn, false.B, exceptionHappen) 746 io.csr.vstart.bits := RegEnable(exceptionDataRead.bits.vstart, exceptionHappen) 747 748 XSDebug(io.flushOut.valid, 749 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " + 750 p"excp $exceptionEnable flushPipe $isFlushPipe " + 751 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 752 753 754 /** 755 * Commits (and walk) 756 * They share the same width. 757 */ 758 val shouldWalkVec = VecInit(walkPtrVec.map(_ <= lastWalkPtr)) 759 val walkFinished = VecInit(walkPtrVec.map(_ >= lastWalkPtr)).asUInt.orR 760 rab.io.fromRob.walkEnd := state === s_walk && walkFinished 761 762 require(RenameWidth <= CommitWidth) 763 764 // wiring to csr 765 val (wflags, dirtyFs) = (0 until CommitWidth).map(i => { 766 val v = io.commits.commitValid(i) 767 val info = io.commits.info(i) 768 (v & info.wflags, v & info.dirtyFs) 769 }).unzip 770 val fflags = Wire(Valid(UInt(5.W))) 771 fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR 772 fflags.bits := wflags.zip(fflagsDataRead).map({ 773 case (w, f) => Mux(w, f, 0.U) 774 }).reduce(_|_) 775 val dirty_fs = io.commits.isCommit && VecInit(dirtyFs).asUInt.orR 776 777 val vxsat = Wire(Valid(Bool())) 778 vxsat.valid := io.commits.isCommit && vxsat.bits 779 vxsat.bits := io.commits.commitValid.zip(vxsatDataRead).map { 780 case (valid, vxsat) => valid & vxsat 781 }.reduce(_ | _) 782 783 // when mispredict branches writeback, stop commit in the next 2 cycles 784 // TODO: don't check all exu write back 785 val misPredWb = Cat(VecInit(redirectWBs.map(wb => 786 wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid 787 ).toSeq)).orR 788 val misPredBlockCounter = Reg(UInt(3.W)) 789 misPredBlockCounter := Mux(misPredWb, 790 "b111".U, 791 misPredBlockCounter >> 1.U 792 ) 793 val misPredBlock = misPredBlockCounter(0) 794 val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI || io.redirect.valid 795 796 io.commits.isWalk := state === s_walk 797 io.commits.isCommit := state === s_idle && !blockCommit 798 val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value))) 799 val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value))) 800 // store will be commited iff both sta & std have been writebacked 801 val commit_w = VecInit(deqPtrVec.map(ptr => isWritebacked(ptr.value) && commitTrigger(ptr.value))) 802 val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last) 803 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i))) 804 val allowOnlyOneCommit = commit_exception || intrBitSetReg 805 // for instructions that may block others, we don't allow them to commit 806 for (i <- 0 until CommitWidth) { 807 // defaults: state === s_idle and instructions commit 808 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 809 val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst 810 io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked 811 io.commits.info(i) := dispatchDataRead(i) 812 io.commits.robIdx(i) := deqPtrVec(i) 813 814 io.commits.walkValid(i) := shouldWalkVec(i) 815 when (state === s_walk) { 816 when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) { 817 XSError(!walk_v(i), s"The walking entry($i) should be valid\n") 818 } 819 } 820 821 XSInfo(io.commits.isCommit && io.commits.commitValid(i), 822 "retired pc %x wen %d ldest %d pdest %x data %x fflags: %b vxsat: %b\n", 823 debug_microOp(deqPtrVec(i).value).pc, 824 io.commits.info(i).rfWen, 825 io.commits.info(i).ldest, 826 io.commits.info(i).pdest, 827 debug_exuData(deqPtrVec(i).value), 828 fflagsDataRead(i), 829 vxsatDataRead(i) 830 ) 831 XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n", 832 debug_microOp(walkPtrVec(i).value).pc, 833 io.commits.info(i).rfWen, 834 io.commits.info(i).ldest, 835 debug_exuData(walkPtrVec(i).value) 836 ) 837 } 838 if (env.EnableDifftest) { 839 io.commits.info.map(info => dontTouch(info.pc)) 840 } 841 842 // sync fflags/dirty_fs/vxsat to csr 843 io.csr.fflags := RegNext(fflags) 844 io.csr.dirty_fs := RegNext(dirty_fs) 845 io.csr.vxsat := RegNext(vxsat) 846 847 // sync v csr to csr 848 // for difftest 849 if(env.AlwaysBasicDiff || env.EnableDifftest) { 850 val isDiffWriteVconfigVec = io.diffCommits.commitValid.zip(io.diffCommits.info).map { case (valid, info) => valid && info.ldest === VCONFIG_IDX.U && info.vecWen }.reverse 851 io.csr.vcsrFlag := RegNext(io.diffCommits.isCommit && Cat(isDiffWriteVconfigVec).orR) 852 } 853 else{ 854 io.csr.vcsrFlag := false.B 855 } 856 857 // commit load/store to lsq 858 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 859 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE)) 860 val deqPtrVec_next = Wire(Vec(CommitWidth, Output(new RobPtr))) 861 io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U)) 862 io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U)) 863 // indicate a pending load or store 864 io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value) && mmio(deqPtr.value)) 865 io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value)) 866 io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0)) 867 io.lsq.pendingPtr := RegNext(deqPtr) 868 io.lsq.pendingPtrNext := RegNext(deqPtrVec_next.head) 869 870 /** 871 * state changes 872 * (1) redirect: switch to s_walk 873 * (2) walk: when walking comes to the end, switch to s_idle 874 */ 875 val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished && rab.io.status.walkEnd, s_idle, state)) 876 XSPerfAccumulate("s_idle_to_idle", state === s_idle && state_next === s_idle) 877 XSPerfAccumulate("s_idle_to_walk", state === s_idle && state_next === s_walk) 878 XSPerfAccumulate("s_walk_to_idle", state === s_walk && state_next === s_idle) 879 XSPerfAccumulate("s_walk_to_walk", state === s_walk && state_next === s_walk) 880 state := state_next 881 882 /** 883 * pointers and counters 884 */ 885 val deqPtrGenModule = Module(new RobDeqPtrWrapper) 886 deqPtrGenModule.io.state := state 887 deqPtrGenModule.io.deq_v := commit_v 888 deqPtrGenModule.io.deq_w := commit_w 889 deqPtrGenModule.io.exception_state := exceptionDataRead 890 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 891 deqPtrGenModule.io.hasNoSpecExec := hasWaitForward 892 deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value) 893 deqPtrGenModule.io.blockCommit := blockCommit 894 deqPtrVec := deqPtrGenModule.io.out 895 deqPtrVec_next := deqPtrGenModule.io.next_out 896 897 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 898 enqPtrGenModule.io.redirect := io.redirect 899 enqPtrGenModule.io.allowEnqueue := allowEnqueue && rab.io.canEnq 900 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 901 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop)) 902 enqPtrVec := enqPtrGenModule.io.out 903 904 // next walkPtrVec: 905 // (1) redirect occurs: update according to state 906 // (2) walk: move forwards 907 val walkPtrVec_next = Mux(io.redirect.valid, 908 Mux(io.snpt.useSnpt, snapshots(io.snpt.snptSelect), deqPtrVec_next), 909 Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec) 910 ) 911 walkPtrVec := walkPtrVec_next 912 913 val numValidEntries = distanceBetween(enqPtr, deqPtr) 914 val commitCnt = PopCount(io.commits.commitValid) 915 916 allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U 917 918 val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0)) 919 when (io.redirect.valid) { 920 lastWalkPtr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx - 1.U, io.redirect.bits.robIdx) 921 } 922 923 924 /** 925 * States 926 * We put all the stage bits changes here. 927 928 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 929 * All states: (1) valid; (2) writebacked; (3) flagBkup 930 */ 931 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 932 933 // redirect logic writes 6 valid 934 val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr)) 935 val redirectTail = Reg(new RobPtr) 936 val redirectIdle :: redirectBusy :: Nil = Enum(2) 937 val redirectState = RegInit(redirectIdle) 938 val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail)) 939 when(redirectState === redirectBusy) { 940 redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U) 941 redirectHeadVec zip invMask foreach { 942 case (redirectHead, inv) => when(inv) { 943 valid(redirectHead.value) := false.B 944 } 945 } 946 when(!invMask.last) { 947 redirectState := redirectIdle 948 } 949 } 950 when(io.redirect.valid) { 951 redirectState := redirectBusy 952 when(redirectState === redirectIdle) { 953 redirectTail := enqPtr 954 } 955 redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) => 956 redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 957 } 958 } 959 // enqueue logic writes 6 valid 960 for (i <- 0 until RenameWidth) { 961 when (canEnqueue(i) && !io.redirect.valid) { 962 valid(allocatePtrVec(i).value) := true.B 963 } 964 } 965 // dequeue logic writes 6 valid 966 for (i <- 0 until CommitWidth) { 967 val commitValid = io.commits.isCommit && io.commits.commitValid(i) 968 when (commitValid) { 969 valid(commitReadAddr(i)) := false.B 970 } 971 } 972 973 // debug_inst update 974 for(i <- 0 until (LduCnt + StaCnt)) { 975 debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i)) 976 debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i)) 977 } 978 for (i <- 0 until LduCnt) { 979 debug_lsTopdownInfo(io.lsTopdownInfo(i).s1.robIdx).s1SignalEnable(io.lsTopdownInfo(i)) 980 debug_lsTopdownInfo(io.lsTopdownInfo(i).s2.robIdx).s2SignalEnable(io.lsTopdownInfo(i)) 981 } 982 983 // status field: writebacked 984 // enqueue logic set 6 writebacked to false 985 for (i <- 0 until RenameWidth) { 986 when(canEnqueue(i)) { 987 val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec).asUInt.orR 988 val enqHasTriggerCanFire = io.enq.req(i).bits.trigger.getFrontendCanFire 989 val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove 990 val isStu = FuType.isStore(io.enq.req(i).bits.fuType) 991 commitTrigger(allocatePtrVec(i).value) := enqIsWritebacked && !enqHasException && !enqHasTriggerCanFire && !isStu 992 } 993 } 994 when(exceptionGen.io.out.valid) { 995 val wbIdx = exceptionGen.io.out.bits.robIdx.value 996 commitTrigger(wbIdx) := true.B 997 } 998 999 // writeback logic set numWbPorts writebacked to true 1000 val blockWbSeq = Wire(Vec(exuWBs.length, Bool())) 1001 blockWbSeq.map(_ := false.B) 1002 for ((wb, blockWb) <- exuWBs.zip(blockWbSeq)) { 1003 when(wb.valid) { 1004 val wbIdx = wb.bits.robIdx.value 1005 val wbHasException = wb.bits.exceptionVec.getOrElse(0.U).asUInt.orR 1006 val wbHasTriggerCanFire = wb.bits.trigger.getOrElse(0.U).asTypeOf(io.enq.req(0).bits.trigger).getBackendCanFire //Todo: wb.bits.trigger.getHitBackend 1007 val wbHasFlushPipe = wb.bits.flushPipe.getOrElse(false.B) 1008 val wbHasReplayInst = wb.bits.replay.getOrElse(false.B) //Todo: && wb.bits.replayInst 1009 blockWb := wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerCanFire 1010 commitTrigger(wbIdx) := !blockWb 1011 } 1012 } 1013 1014 // if the first uop of an instruction is valid , write writebackedCounter 1015 val uopEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid) 1016 val instEnqValidSeq = io.enq.req.map (req => io.enq.canAccept && req.valid && req.bits.firstUop) 1017 val enqNeedWriteRFSeq = io.enq.req.map(_.bits.needWriteRf) 1018 val enqRobIdxSeq = io.enq.req.map(req => req.bits.robIdx.value) 1019 val enqUopNumVec = VecInit(io.enq.req.map(req => req.bits.numUops)) 1020 val enqWBNumVec = VecInit(io.enq.req.map(req => req.bits.numWB)) 1021 val enqEliminatedMoveVec = VecInit(io.enq.req.map(req => req.bits.eliminatedMove)) 1022 1023 private val enqWriteStdVec: Vec[Bool] = VecInit(io.enq.req.map { 1024 req => FuType.isAMO(req.bits.fuType) || FuType.isStore(req.bits.fuType) 1025 }) 1026 val fflags_wb = fflagsPorts 1027 val vxsat_wb = vxsatPorts 1028 for(i <- 0 until RobSize){ 1029 1030 val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === i.U) 1031 val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch } 1032 val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch } 1033 val instCanEnqFlag = Cat(instCanEnqSeq).orR 1034 1035 realDestSize(i) := Mux(!valid(i) && instCanEnqFlag || valid(i), realDestSize(i) + PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map{ case(writeFlag, valid) => writeFlag && valid }), 0.U) 1036 1037 val enqUopNum = PriorityMux(instCanEnqSeq, enqUopNumVec) 1038 val enqWBNum = PriorityMux(instCanEnqSeq, enqWBNumVec) 1039 val enqEliminatedMove = PriorityMux(instCanEnqSeq, enqEliminatedMoveVec) 1040 val enqWriteStd = PriorityMux(instCanEnqSeq, enqWriteStdVec) 1041 1042 val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 1043 val canWbNoBlockSeq = canWbSeq.zip(blockWbSeq).map{ case(canWb, blockWb) => canWb && !blockWb } 1044 val canStdWbSeq = VecInit(stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)) 1045 val wbCnt = PopCount(canWbNoBlockSeq) 1046 1047 val exceptionHas = RegInit(false.B) 1048 val exceptionHasWire = Wire(Bool()) 1049 exceptionHasWire := MuxCase(exceptionHas, Seq( 1050 (valid(i) && exceptionGen.io.out.valid && exceptionGen.io.out.bits.robIdx.value === i.U) -> true.B, 1051 !valid(i) -> false.B 1052 )) 1053 exceptionHas := exceptionHasWire 1054 1055 when (exceptionHas || exceptionHasWire) { 1056 // exception flush 1057 uopNumVec(i) := 0.U 1058 stdWritebacked(i) := true.B 1059 }.elsewhen(!valid(i) && instCanEnqFlag) { 1060 // enq set num of uops 1061 uopNumVec(i) := enqWBNum 1062 stdWritebacked(i) := Mux(enqWriteStd, false.B, true.B) 1063 }.elsewhen(valid(i)) { 1064 // update by writing back 1065 uopNumVec(i) := uopNumVec(i) - wbCnt 1066 assert(!(uopNumVec(i) - wbCnt > uopNumVec(i)), "Overflow!") 1067 when (canStdWbSeq.asUInt.orR) { 1068 stdWritebacked(i) := true.B 1069 } 1070 }.otherwise { 1071 uopNumVec(i) := 0.U 1072 } 1073 1074 val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U && writeback.bits.wflags.getOrElse(false.B)) 1075 val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.fold(false.B)(_ | _) 1076 fflagsDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, fflagsDataModule(i) | fflagsRes) 1077 1078 val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 1079 val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.fold(false.B)(_ | _) 1080 vxsatDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, vxsatDataModule(i) | vxsatRes) 1081 } 1082 1083 // flagBkup 1084 // enqueue logic set 6 flagBkup at most 1085 for (i <- 0 until RenameWidth) { 1086 when (canEnqueue(i)) { 1087 flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag 1088 } 1089 } 1090 1091 // interrupt_safe 1092 for (i <- 0 until RenameWidth) { 1093 // We RegNext the updates for better timing. 1094 // Note that instructions won't change the system's states in this cycle. 1095 when (RegNext(canEnqueue(i))) { 1096 // For now, we allow non-load-store instructions to trigger interrupts 1097 // For MMIO instructions, they should not trigger interrupts since they may 1098 // be sent to lower level before it writes back. 1099 // However, we cannot determine whether a load/store instruction is MMIO. 1100 // Thus, we don't allow load/store instructions to trigger an interrupt. 1101 // TODO: support non-MMIO load-store instructions to trigger interrupts 1102 val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType) 1103 interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts) 1104 } 1105 } 1106 1107 /** 1108 * read and write of data modules 1109 */ 1110 val commitReadAddr_next = Mux(state_next === s_idle, 1111 VecInit(deqPtrVec_next.map(_.value)), 1112 VecInit(walkPtrVec_next.map(_.value)) 1113 ) 1114 dispatchData.io.wen := canEnqueue 1115 dispatchData.io.waddr := allocatePtrVec.map(_.value) 1116 dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).zipWithIndex.foreach { case ((wdata, req), portIdx) => 1117 wdata.ldest := req.ldest 1118 wdata.rfWen := req.rfWen 1119 wdata.dirtyFs := req.dirtyFs 1120 wdata.vecWen := req.vecWen 1121 wdata.wflags := req.wfflags 1122 wdata.commitType := req.commitType 1123 wdata.pdest := req.pdest 1124 wdata.ftqIdx := req.ftqPtr 1125 wdata.ftqOffset := req.ftqOffset 1126 wdata.isMove := req.eliminatedMove 1127 wdata.isRVC := req.preDecodeInfo.isRVC 1128 wdata.pc := req.pc 1129 wdata.vtype := req.vpu.vtype 1130 wdata.isVset := req.isVset 1131 wdata.instrSize := req.instrSize 1132 } 1133 dispatchData.io.raddr := commitReadAddr_next 1134 1135 exceptionGen.io.redirect <> io.redirect 1136 exceptionGen.io.flush := io.flushOut.valid 1137 1138 val canEnqueueEG = VecInit(io.enq.req.map(req => req.valid && io.enq.canAccept)) 1139 for (i <- 0 until RenameWidth) { 1140 exceptionGen.io.enq(i).valid := canEnqueueEG(i) 1141 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 1142 exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec) 1143 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe 1144 exceptionGen.io.enq(i).bits.isVset := io.enq.req(i).bits.isVset 1145 exceptionGen.io.enq(i).bits.replayInst := false.B 1146 XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst") 1147 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep 1148 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix 1149 exceptionGen.io.enq(i).bits.trigger.clear() 1150 exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.trigger.frontendHit 1151 exceptionGen.io.enq(i).bits.trigger.frontendCanFire := io.enq.req(i).bits.trigger.frontendCanFire 1152 exceptionGen.io.enq(i).bits.vstartEn := false.B //DontCare 1153 exceptionGen.io.enq(i).bits.vstart := 0.U //DontCare 1154 } 1155 1156 println(s"ExceptionGen:") 1157 println(s"num of exceptions: ${params.numException}") 1158 require(exceptionWBs.length == exceptionGen.io.wb.length, 1159 f"exceptionWBs.length: ${exceptionWBs.length}, " + 1160 f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}") 1161 for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) { 1162 exc_wb.valid := wb.valid 1163 exc_wb.bits.robIdx := wb.bits.robIdx 1164 exc_wb.bits.exceptionVec := wb.bits.exceptionVec.get 1165 exc_wb.bits.flushPipe := wb.bits.flushPipe.getOrElse(false.B) 1166 exc_wb.bits.isVset := false.B 1167 exc_wb.bits.replayInst := wb.bits.replay.getOrElse(false.B) 1168 exc_wb.bits.singleStep := false.B 1169 exc_wb.bits.crossPageIPFFix := false.B 1170 // TODO: make trigger configurable 1171 val trigger = wb.bits.trigger.getOrElse(0.U).asTypeOf(exc_wb.bits.trigger) 1172 exc_wb.bits.trigger.clear() // Don't care frontend timing, chain, hit and canFire 1173 exc_wb.bits.trigger.backendHit := trigger.backendHit 1174 exc_wb.bits.trigger.backendCanFire := trigger.backendCanFire 1175 exc_wb.bits.vstartEn := false.B //wb.bits.vstartEn.getOrElse(false.B) // todo need add vstart in ExuOutput 1176 exc_wb.bits.vstart := 0.U //wb.bits.vstart.getOrElse(0.U) 1177// println(s" [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " + 1178// s"flushPipe ${configs.exists(_.flushPipe)}, " + 1179// s"replayInst ${configs.exists(_.replayInst)}") 1180 } 1181 1182 fflagsDataRead := (0 until CommitWidth).map(i => fflagsDataModule(deqPtrVec(i).value)) 1183 vxsatDataRead := (0 until CommitWidth).map(i => vxsatDataModule(deqPtrVec(i).value)) 1184 1185 val instrCntReg = RegInit(0.U(64.W)) 1186 val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) }) 1187 val trueCommitCnt = RegNext(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => Mux(v, i.instrSize, 0.U) }.reduce(_ +& _)) +& fuseCommitCnt 1188 val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U) 1189 val instrCnt = instrCntReg + retireCounter 1190 instrCntReg := instrCnt 1191 io.csr.perfinfo.retiredInstr := retireCounter 1192 io.robFull := !allowEnqueue 1193 io.headNotReady := commit_v.head && !commit_w.head 1194 1195 /** 1196 * debug info 1197 */ 1198 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 1199 XSDebug("") 1200 XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n") 1201 for(i <- 0 until RobSize) { 1202 XSDebug(false, !valid(i), "-") 1203 XSDebug(false, valid(i) && isWritebacked(i.U), "w") 1204 XSDebug(false, valid(i) && !isWritebacked(i.U), "v") 1205 } 1206 XSDebug(false, true.B, "\n") 1207 1208 for(i <- 0 until RobSize) { 1209 if (i % 4 == 0) XSDebug("") 1210 XSDebug(false, true.B, "%x ", debug_microOp(i).pc) 1211 XSDebug(false, !valid(i), "- ") 1212 XSDebug(false, valid(i) && isWritebacked(i.U), "w ") 1213 XSDebug(false, valid(i) && !isWritebacked(i.U), "v ") 1214 if (i % 4 == 3) XSDebug(false, true.B, "\n") 1215 } 1216 1217 def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U) 1218 def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U) 1219 1220 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 1221 XSPerfAccumulate("clock_cycle", 1.U) 1222 QueuePerf(RobSize, numValidEntries, numValidEntries === RobSize.U) 1223 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 1224 XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt)) 1225 XSPerfRolling("ipc", ifCommitReg(trueCommitCnt), 1000, clock, reset) 1226 XSPerfRolling("cpi", perfCnt = 1.U/*Cycle*/, eventTrigger = ifCommitReg(trueCommitCnt), granularity = 1000, clock, reset) 1227 val commitIsMove = commitDebugUop.map(_.isMove) 1228 XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }))) 1229 val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) 1230 XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e }))) 1231 XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt)) 1232 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 1233 val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t } 1234 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 1235 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 1236 val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t } 1237 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 1238 val commitLoadWaitBit = commitDebugUop.map(_.loadWaitBit) 1239 XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))) 1240 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 1241 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }))) 1242 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && isWritebacked(i.U)))) 1243 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire))) 1244 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 1245 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)) 1246 XSPerfAccumulate("walkCycleTotal", state === s_walk) 1247 XSPerfAccumulate("waitRabWalkEnd", state === s_walk && walkFinished && !rab.io.status.walkEnd) 1248 private val walkCycle = RegInit(0.U(8.W)) 1249 private val waitRabWalkCycle = RegInit(0.U(8.W)) 1250 walkCycle := Mux(io.redirect.valid, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U)) 1251 waitRabWalkCycle := Mux(state === s_walk && walkFinished, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U)) 1252 1253 XSPerfHistogram("walkRobCycleHist", walkCycle, state === s_walk && walkFinished, 0, 32) 1254 XSPerfHistogram("walkRabExtraCycleHist", waitRabWalkCycle, state === s_walk && walkFinished && rab.io.status.walkEnd, 0, 32) 1255 XSPerfHistogram("walkTotalCycleHist", walkCycle, state === s_walk && state_next === s_idle, 0, 32) 1256 1257 private val deqNotWritebacked = valid(deqPtr.value) && !isWritebacked(deqPtr.value) 1258 private val deqStdNotWritebacked = valid(deqPtr.value) && !stdWritebacked(deqPtr.value) 1259 private val deqUopNotWritebacked = valid(deqPtr.value) && !isUopWritebacked(deqPtr.value) 1260 private val deqHeadInfo = debug_microOp(deqPtr.value) 1261 val deqUopCommitType = io.commits.info(0).commitType 1262 1263 XSPerfAccumulate("waitAluCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.alu.U) 1264 XSPerfAccumulate("waitMulCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.mul.U) 1265 XSPerfAccumulate("waitDivCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.div.U) 1266 XSPerfAccumulate("waitBrhCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.brh.U) 1267 XSPerfAccumulate("waitJmpCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.jmp.U) 1268 XSPerfAccumulate("waitCsrCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.csr.U) 1269 XSPerfAccumulate("waitFenCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.fence.U) 1270 XSPerfAccumulate("waitBkuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.bku.U) 1271 XSPerfAccumulate("waitLduCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.ldu.U) 1272 XSPerfAccumulate("waitStuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1273 XSPerfAccumulate("waitStaCycle", deqUopNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1274 XSPerfAccumulate("waitStdCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1275 XSPerfAccumulate("waitAtmCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.mou.U) 1276 1277 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 1278 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 1279 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 1280 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 1281 XSPerfAccumulate("robHeadPC", io.commits.info(0).pc) 1282 XSPerfAccumulate("commitCompressCntAll", PopCount(io.commits.commitValid.zip(io.commits.info).map{case(valid, info) => io.commits.isCommit && valid && info.instrSize > 1.U})) 1283 (2 to RenameWidth).foreach(i => 1284 XSPerfAccumulate(s"commitCompressCnt${i}", PopCount(io.commits.commitValid.zip(io.commits.info).map{case(valid, info) => io.commits.isCommit && valid && info.instrSize === i.U})) 1285 ) 1286 XSPerfAccumulate("compressSize", io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => Mux(io.commits.isCommit && valid && info.instrSize > 1.U, info.instrSize, 0.U) }.reduce(_ +& _)) 1287 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 1288 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 1289 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 1290 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 1291 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 1292 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 1293 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 1294 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 1295 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 1296 } 1297 for (fuType <- FuType.functionNameMap.keys) { 1298 val fuName = FuType.functionNameMap(fuType) 1299 val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U ) 1300 XSPerfRolling(s"ipc_futype_${fuName}", ifCommit(PopCount(commitIsFuType)), 1000, clock, reset) 1301 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 1302 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 1303 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 1304 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 1305 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 1306 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 1307 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 1308 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 1309 } 1310 XSPerfAccumulate(s"redirect_use_snapshot", io.redirect.valid && io.snpt.useSnpt) 1311 1312 // top-down info 1313 io.debugTopDown.toCore.robHeadVaddr.valid := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_valid 1314 io.debugTopDown.toCore.robHeadVaddr.bits := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_bits 1315 io.debugTopDown.toCore.robHeadPaddr.valid := debug_lsTopdownInfo(deqPtr.value).s2.paddr_valid 1316 io.debugTopDown.toCore.robHeadPaddr.bits := debug_lsTopdownInfo(deqPtr.value).s2.paddr_bits 1317 io.debugTopDown.toDispatch.robTrueCommit := ifCommitReg(trueCommitCnt) 1318 io.debugTopDown.toDispatch.robHeadLsIssue := debug_lsIssue(deqPtr.value) 1319 io.debugTopDown.robHeadLqIdx.valid := debug_lqIdxValid(deqPtr.value) 1320 io.debugTopDown.robHeadLqIdx.bits := debug_microOp(deqPtr.value).lqIdx 1321 1322 // rolling 1323 io.debugRolling.robTrueCommit := ifCommitReg(trueCommitCnt) 1324 1325 /** 1326 * DataBase info: 1327 * log trigger is at writeback valid 1328 * */ 1329 1330 /** 1331 * @todo add InstInfoEntry back 1332 * @author Maxpicca-Li 1333 */ 1334 1335 //difftest signals 1336 val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value 1337 1338 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1339 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1340 1341 for(i <- 0 until CommitWidth) { 1342 val idx = deqPtrVec(i).value 1343 wdata(i) := debug_exuData(idx) 1344 wpc(i) := SignExt(commitDebugUop(i).pc, XLEN) 1345 } 1346 1347 if (env.EnableDifftest || env.AlwaysBasicDiff) { 1348 // These are the structures used by difftest only and should be optimized after synthesis. 1349 val dt_eliminatedMove = Mem(RobSize, Bool()) 1350 val dt_isRVC = Mem(RobSize, Bool()) 1351 val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) 1352 for (i <- 0 until RenameWidth) { 1353 when (canEnqueue(i)) { 1354 dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 1355 dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC 1356 } 1357 } 1358 for (wb <- exuWBs) { 1359 when (wb.valid) { 1360 val wbIdx = wb.bits.robIdx.value 1361 dt_exuDebug(wbIdx) := wb.bits.debug 1362 } 1363 } 1364 // Always instantiate basic difftest modules. 1365 for (i <- 0 until CommitWidth) { 1366 val uop = commitDebugUop(i) 1367 val commitInfo = io.commits.info(i) 1368 val ptr = deqPtrVec(i).value 1369 val exuOut = dt_exuDebug(ptr) 1370 val eliminatedMove = dt_eliminatedMove(ptr) 1371 val isRVC = dt_isRVC(ptr) 1372 1373 val difftest = DifftestModule(new DiffInstrCommit(MaxPhyPregs), delay = 3, dontCare = true) 1374 difftest.coreid := io.hartId 1375 difftest.index := i.U 1376 difftest.valid := io.commits.commitValid(i) && io.commits.isCommit 1377 difftest.skip := Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt) 1378 difftest.isRVC := isRVC 1379 difftest.rfwen := io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U 1380 difftest.fpwen := io.commits.commitValid(i) && uop.fpWen 1381 difftest.wpdest := commitInfo.pdest 1382 difftest.wdest := commitInfo.ldest 1383 difftest.nFused := CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize - 1.U 1384 when(difftest.valid) { 1385 assert(CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize >= 1.U) 1386 } 1387 if (env.EnableDifftest) { 1388 val uop = commitDebugUop(i) 1389 difftest.pc := SignExt(uop.pc, XLEN) 1390 difftest.instr := uop.instr 1391 difftest.robIdx := ZeroExt(ptr, 10) 1392 difftest.lqIdx := ZeroExt(uop.lqIdx.value, 7) 1393 difftest.sqIdx := ZeroExt(uop.sqIdx.value, 7) 1394 difftest.isLoad := io.commits.info(i).commitType === CommitType.LOAD 1395 difftest.isStore := io.commits.info(i).commitType === CommitType.STORE 1396 } 1397 } 1398 } 1399 1400 if (env.EnableDifftest) { 1401 for (i <- 0 until CommitWidth) { 1402 val difftest = DifftestModule(new DiffLoadEvent, delay = 3) 1403 difftest.coreid := io.hartId 1404 difftest.index := i.U 1405 1406 val ptr = deqPtrVec(i).value 1407 val uop = commitDebugUop(i) 1408 val exuOut = debug_exuDebug(ptr) 1409 difftest.valid := io.commits.commitValid(i) && io.commits.isCommit 1410 difftest.paddr := exuOut.paddr 1411 difftest.opType := uop.fuOpType 1412 difftest.fuType := uop.fuType 1413 } 1414 } 1415 1416 if (env.EnableDifftest || env.AlwaysBasicDiff) { 1417 val dt_isXSTrap = Mem(RobSize, Bool()) 1418 for (i <- 0 until RenameWidth) { 1419 when (canEnqueue(i)) { 1420 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap 1421 } 1422 } 1423 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => 1424 io.commits.isCommit && v && dt_isXSTrap(d.value) 1425 } 1426 val hitTrap = trapVec.reduce(_||_) 1427 val difftest = DifftestModule(new DiffTrapEvent, dontCare = true) 1428 difftest.coreid := io.hartId 1429 difftest.hasTrap := hitTrap 1430 difftest.cycleCnt := timer 1431 difftest.instrCnt := instrCnt 1432 difftest.hasWFI := hasWFI 1433 1434 if (env.EnableDifftest) { 1435 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 1436 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN) 1437 difftest.code := trapCode 1438 difftest.pc := trapPC 1439 } 1440 } 1441 1442 val validEntriesBanks = (0 until (RobSize + 31) / 32).map(i => RegNext(PopCount(valid.drop(i * 32).take(32)))) 1443 val validEntries = RegNext(VecInit(validEntriesBanks).reduceTree(_ +& _)) 1444 val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }) 1445 val commitLoadVec = VecInit(commitLoadValid) 1446 val commitBranchVec = VecInit(commitBranchValid) 1447 val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }) 1448 val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }) 1449 val perfEvents = Seq( 1450 ("rob_interrupt_num ", io.flushOut.valid && intrEnable ), 1451 ("rob_exception_num ", io.flushOut.valid && exceptionEnable ), 1452 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe ), 1453 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst ), 1454 ("rob_commitUop ", ifCommit(commitCnt) ), 1455 ("rob_commitInstr ", ifCommitReg(trueCommitCnt) ), 1456 ("rob_commitInstrMove ", ifCommitReg(PopCount(RegNext(commitMoveVec))) ), 1457 ("rob_commitInstrFused ", ifCommitReg(fuseCommitCnt) ), 1458 ("rob_commitInstrLoad ", ifCommitReg(PopCount(RegNext(commitLoadVec))) ), 1459 ("rob_commitInstrBranch ", ifCommitReg(PopCount(RegNext(commitBranchVec))) ), 1460 ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec))) ), 1461 ("rob_commitInstrStore ", ifCommitReg(PopCount(RegNext(commitStoreVec))) ), 1462 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U) ), 1463 ("rob_walkCycle ", (state === s_walk) ), 1464 ("rob_1_4_valid ", validEntries <= (RobSize / 4).U ), 1465 ("rob_2_4_valid ", validEntries > (RobSize / 4).U && validEntries <= (RobSize / 2).U ), 1466 ("rob_3_4_valid ", validEntries > (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U), 1467 ("rob_4_4_valid ", validEntries > (RobSize * 3 / 4).U ), 1468 ) 1469 generatePerfEvent() 1470} 1471