1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.rob 18 19import org.chipsalliance.cde.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 24import utility._ 25import utils._ 26import xiangshan._ 27import xiangshan.backend.BackendParams 28import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 29import xiangshan.backend.fu.{FuConfig, FuType} 30import xiangshan.frontend.FtqPtr 31import xiangshan.mem.{LqPtr, LsqEnqIO, SqPtr} 32import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 33import xiangshan.backend.ctrlblock.{DebugLSIO, DebugLsInfo, LsTopdownInfo} 34import xiangshan.backend.fu.vector.Bundles.VType 35import xiangshan.backend.rename.SnapshotGenerator 36 37 38class RobPtr(entries: Int) extends CircularQueuePtr[RobPtr]( 39 entries 40) with HasCircularQueuePtrHelper { 41 42 def this()(implicit p: Parameters) = this(p(XSCoreParamsKey).RobSize) 43 44 def needFlush(redirect: Valid[Redirect]): Bool = { 45 val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx 46 redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx)) 47 } 48 49 def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR 50} 51 52object RobPtr { 53 def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = { 54 val ptr = Wire(new RobPtr) 55 ptr.flag := f 56 ptr.value := v 57 ptr 58 } 59} 60 61class RobCSRIO(implicit p: Parameters) extends XSBundle { 62 val intrBitSet = Input(Bool()) 63 val trapTarget = Input(UInt(VAddrBits.W)) 64 val isXRet = Input(Bool()) 65 val wfiEvent = Input(Bool()) 66 67 val fflags = Output(Valid(UInt(5.W))) 68 val vxsat = Output(Valid(Bool())) 69 val vstart = Output(Valid(UInt(XLEN.W))) 70 val dirty_fs = Output(Bool()) 71 val perfinfo = new Bundle { 72 val retiredInstr = Output(UInt(3.W)) 73 } 74 75 val vcsrFlag = Output(Bool()) 76} 77 78class RobLsqIO(implicit p: Parameters) extends XSBundle { 79 val lcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 80 val scommit = Output(UInt(log2Up(CommitWidth + 1).W)) 81 val pendingld = Output(Bool()) 82 val pendingst = Output(Bool()) 83 val commit = Output(Bool()) 84 val pendingPtr = Output(new RobPtr) 85 val pendingPtrNext = Output(new RobPtr) 86 87 val mmio = Input(Vec(LoadPipelineWidth, Bool())) 88 // Todo: what's this? 89 val uop = Input(Vec(LoadPipelineWidth, new DynInst)) 90} 91 92class RobEnqIO(implicit p: Parameters) extends XSBundle { 93 val canAccept = Output(Bool()) 94 val isEmpty = Output(Bool()) 95 // valid vector, for robIdx gen and walk 96 val needAlloc = Vec(RenameWidth, Input(Bool())) 97 val req = Vec(RenameWidth, Flipped(ValidIO(new DynInst))) 98 val resp = Vec(RenameWidth, Output(new RobPtr)) 99} 100 101class RobCoreTopDownIO(implicit p: Parameters) extends XSBundle { 102 val robHeadVaddr = Valid(UInt(VAddrBits.W)) 103 val robHeadPaddr = Valid(UInt(PAddrBits.W)) 104} 105 106class RobDispatchTopDownIO extends Bundle { 107 val robTrueCommit = Output(UInt(64.W)) 108 val robHeadLsIssue = Output(Bool()) 109} 110 111class RobDebugRollingIO extends Bundle { 112 val robTrueCommit = Output(UInt(64.W)) 113} 114 115class RobDispatchData(implicit p: Parameters) extends RobCommitInfo {} 116 117class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 118 val io = IO(new Bundle { 119 // for commits/flush 120 val state = Input(UInt(2.W)) 121 val deq_v = Vec(CommitWidth, Input(Bool())) 122 val deq_w = Vec(CommitWidth, Input(Bool())) 123 val exception_state = Flipped(ValidIO(new RobExceptionInfo)) 124 // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth) 125 val intrBitSetReg = Input(Bool()) 126 val hasNoSpecExec = Input(Bool()) 127 val interrupt_safe = Input(Bool()) 128 val blockCommit = Input(Bool()) 129 // output: the CommitWidth deqPtr 130 val out = Vec(CommitWidth, Output(new RobPtr)) 131 val next_out = Vec(CommitWidth, Output(new RobPtr)) 132 val commitCnt = Output(UInt(log2Up(CommitWidth+1).W)) 133 val canCommitPriorityCond = Output(Vec(CommitWidth+1,Bool())) 134 val commitEn = Output(Bool()) 135 }) 136 137 val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr)))) 138 139 // for exceptions (flushPipe included) and interrupts: 140 // only consider the first instruction 141 val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe 142 val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0) 143 val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable) 144 145 // for normal commits: only to consider when there're no exceptions 146 // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions. 147 val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last) 148 val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i))) 149 val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B) 150 // when io.intrBitSetReg or there're possible exceptions in these instructions, 151 // only one instruction is allowed to commit 152 val allowOnlyOne = commit_exception || io.intrBitSetReg 153 val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt) 154 val allowOnlyOneCond = Wire(chiselTypeOf(io.canCommitPriorityCond)) 155 allowOnlyOneCond.zipWithIndex.map{ case (value,i) => value := (if (i==0) !canCommit(0) else true.B)} 156 io.canCommitPriorityCond := Mux(allowOnlyOne, allowOnlyOneCond, VecInit(canCommit.map(c => !c) :+ true.B)) 157 158 val commitDeqPtrAll = VecInit((0 until 2*CommitWidth).map{case i => deqPtrVec(0) + i.U}) 159 val commitDeqPtrVec = Wire(chiselTypeOf(deqPtrVec)) 160 for (i <- 0 until CommitWidth){ 161 commitDeqPtrVec(i) := PriorityMuxDefault(io.canCommitPriorityCond.zip(commitDeqPtrAll.drop(i).take(CommitWidth+1)), deqPtrVec(i)) 162 } 163 val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec) 164 165 deqPtrVec := deqPtrVec_next 166 167 io.next_out := deqPtrVec_next 168 io.out := deqPtrVec 169 io.commitCnt := commitCnt 170 io.commitEn := io.state === 0.U && !redirectOutValid && !io.blockCommit 171 172 when (io.state === 0.U) { 173 XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt) 174 } 175 176} 177 178class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 179 val io = IO(new Bundle { 180 // for input redirect 181 val redirect = Input(Valid(new Redirect)) 182 // for enqueue 183 val allowEnqueue = Input(Bool()) 184 val hasBlockBackward = Input(Bool()) 185 val enq = Vec(RenameWidth, Input(Bool())) 186 val out = Output(Vec(RenameWidth, new RobPtr)) 187 }) 188 189 val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr))) 190 191 // enqueue 192 val canAccept = io.allowEnqueue && !io.hasBlockBackward 193 val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U) 194 195 for ((ptr, i) <- enqPtrVec.zipWithIndex) { 196 when(io.redirect.valid) { 197 ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 198 }.otherwise { 199 ptr := ptr + dispatchNum 200 } 201 } 202 203 io.out := enqPtrVec 204 205} 206 207class RobExceptionInfo(implicit p: Parameters) extends XSBundle { 208 // val valid = Bool() 209 val robIdx = new RobPtr 210 val exceptionVec = ExceptionVec() 211 val flushPipe = Bool() 212 val isVset = Bool() 213 val replayInst = Bool() // redirect to that inst itself 214 val singleStep = Bool() // TODO add frontend hit beneath 215 val crossPageIPFFix = Bool() 216 val trigger = new TriggerCf 217 val vstartEn = Bool() 218 val vstart = UInt(XLEN.W) 219 220 def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.canFire 221 def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.canFire 222 // only exceptions are allowed to writeback when enqueue 223 def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.canFire 224} 225 226class ExceptionGen(params: BackendParams)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 227 val io = IO(new Bundle { 228 val redirect = Input(Valid(new Redirect)) 229 val flush = Input(Bool()) 230 val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo))) 231 // csr + load + store + varith + vload + vstore 232 val wb = Vec(params.numException, Flipped(ValidIO(new RobExceptionInfo))) 233 val out = ValidIO(new RobExceptionInfo) 234 val state = ValidIO(new RobExceptionInfo) 235 }) 236 237 val wbExuParams = params.allExuParams.filter(_.exceptionOut.nonEmpty) 238 239 def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): RobExceptionInfo = { 240 def getOldest_recursion(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = { 241 assert(valid.length == bits.length) 242 if (valid.length == 1) { 243 (valid, bits) 244 } else if (valid.length == 2) { 245 val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0))))) 246 for (i <- res.indices) { 247 res(i).valid := valid(i) 248 res(i).bits := bits(i) 249 } 250 val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1)) 251 (Seq(oldest.valid), Seq(oldest.bits)) 252 } else { 253 val left = getOldest_recursion(valid.take(valid.length / 2), bits.take(valid.length / 2)) 254 val right = getOldest_recursion(valid.drop(valid.length / 2), bits.drop(valid.length / 2)) 255 getOldest_recursion(left._1 ++ right._1, left._2 ++ right._2) 256 } 257 } 258 getOldest_recursion(valid, bits)._2.head 259 } 260 261 262 val currentValid = RegInit(false.B) 263 val current = Reg(new RobExceptionInfo) 264 265 // orR the exceptionVec 266 val lastCycleFlush = RegNext(io.flush) 267 val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush)) 268 269 // s0: compare wb in 6 groups 270 val csr_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(t => t.isCsr).nonEmpty).map(_._1) 271 val load_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.ldu).nonEmpty).map(_._1) 272 val store_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(t => t.isSta || t.fuType == FuType.mou).nonEmpty).map(_._1) 273 val varith_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.isVecArith).nonEmpty).map(_._1) 274 val vload_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.vldu).nonEmpty).map(_._1) 275 val vstore_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.vstu).nonEmpty).map(_._1) 276 277 val writebacks = Seq(csr_wb, load_wb, store_wb, varith_wb, vload_wb, vstore_wb) 278 val in_wb_valids = writebacks.map(_.map(w => w.valid && w.bits.has_exception && !lastCycleFlush)) 279 val wb_valid = in_wb_valids.zip(writebacks).map { case (valid, wb) => 280 valid.zip(wb.map(_.bits)).map { case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }.reduce(_ || _) 281 } 282 val wb_bits = in_wb_valids.zip(writebacks).map { case (valid, wb) => getOldest(valid, wb.map(_.bits))} 283 284 val s0_out_valid = wb_valid.map(x => RegNext(x)) 285 val s0_out_bits = wb_bits.zip(wb_valid).map{ case(b, v) => RegEnable(b, v)} 286 287 // s1: compare last six and current flush 288 val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) }) 289 val s1_out_bits = RegEnable(getOldest(s0_out_valid, s0_out_bits), s1_valid.asUInt.orR) 290 val s1_out_valid = RegNext(s1_valid.asUInt.orR) 291 292 val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 293 val enq_bits = RegEnable(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits)), in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 294 295 // s2: compare the input exception with the current one 296 // priorities: 297 // (1) system reset 298 // (2) current is valid: flush, remain, merge, update 299 // (3) current is not valid: s1 or enq 300 val current_flush = current.robIdx.needFlush(io.redirect) || io.flush 301 val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush 302 when (currentValid) { 303 when (current_flush) { 304 currentValid := Mux(s1_flush, false.B, s1_out_valid) 305 } 306 when (s1_out_valid && !s1_flush) { 307 when (isAfter(current.robIdx, s1_out_bits.robIdx)) { 308 current := s1_out_bits 309 }.elsewhen (current.robIdx === s1_out_bits.robIdx) { 310 current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec()) 311 current.flushPipe := s1_out_bits.flushPipe || current.flushPipe 312 current.replayInst := s1_out_bits.replayInst || current.replayInst 313 current.singleStep := s1_out_bits.singleStep || current.singleStep 314 current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf) 315 } 316 } 317 }.elsewhen (s1_out_valid && !s1_flush) { 318 currentValid := true.B 319 current := s1_out_bits 320 }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) { 321 currentValid := true.B 322 current := enq_bits 323 } 324 325 io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback 326 io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits) 327 io.state.valid := currentValid 328 io.state.bits := current 329 330} 331 332class RobFlushInfo(implicit p: Parameters) extends XSBundle { 333 val ftqIdx = new FtqPtr 334 val robIdx = new RobPtr 335 val ftqOffset = UInt(log2Up(PredictWidth).W) 336 val replayInst = Bool() 337} 338 339class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter { 340 override def shouldBeInlined: Boolean = false 341 342 lazy val module = new RobImp(this)(p, params) 343} 344 345class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper) 346 with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents { 347 348 private val LduCnt = params.LduCnt 349 private val StaCnt = params.StaCnt 350 private val HyuCnt = params.HyuCnt 351 352 val io = IO(new Bundle() { 353 val hartId = Input(UInt(8.W)) 354 val redirect = Input(Valid(new Redirect)) 355 val enq = new RobEnqIO 356 val flushOut = ValidIO(new Redirect) 357 val exception = ValidIO(new ExceptionInfo) 358 // exu + brq 359 val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles) 360 val writebackNums = Flipped(Vec(writeback.size-params.StdCnt, ValidIO(UInt(writeback.size.U.getWidth.W)))) 361 val commits = Output(new RobCommitIO) 362 val rabCommits = Output(new RabCommitIO) 363 val diffCommits = if (backendParams.debugEn) Some(Output(new DiffCommitIO)) else None 364 val isVsetFlushPipe = Output(Bool()) 365 val vconfigPdest = Output(UInt(PhyRegIdxWidth.W)) 366 val lsq = new RobLsqIO 367 val robDeqPtr = Output(new RobPtr) 368 val csr = new RobCSRIO 369 val snpt = Input(new SnapshotPort) 370 val robFull = Output(Bool()) 371 val headNotReady = Output(Bool()) 372 val cpu_halt = Output(Bool()) 373 val wfi_enable = Input(Bool()) 374 val toDecode = new Bundle { 375 val isResumeVType = Output(Bool()) 376 val vtype = ValidIO(VType()) 377 } 378 379 val debug_ls = Flipped(new DebugLSIO) 380 val debugRobHead = Output(new DynInst) 381 val debugEnqLsq = Input(new LsqEnqIO) 382 val debugHeadLsIssue = Input(Bool()) 383 val lsTopdownInfo = Vec(LduCnt + HyuCnt, Input(new LsTopdownInfo)) 384 val debugTopDown = new Bundle { 385 val toCore = new RobCoreTopDownIO 386 val toDispatch = new RobDispatchTopDownIO 387 val robHeadLqIdx = Valid(new LqPtr) 388 } 389 val debugRolling = new RobDebugRollingIO 390 }) 391 392 val exuWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(!_.bits.params.hasStdFu).toSeq 393 val stdWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(_.bits.params.hasStdFu).toSeq 394 val fflagsWBs = io.writeback.filter(x => x.bits.fflags.nonEmpty) 395 val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty) 396 val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty) 397 val vxsatWBs = io.writeback.filter(x => x.bits.vxsat.nonEmpty) 398 399 val numExuWbPorts = exuWBs.length 400 val numStdWbPorts = stdWBs.length 401 402 403 println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth") 404// println(s"exuPorts: ${exuWbs.map(_._1.map(_.name))}") 405// println(s"stdPorts: ${stdWbs.map(_._1.map(_.name))}") 406// println(s"fflagsPorts: ${fflagsWBs.map(_._1.map(_.name))}") 407 408 409 // instvalid field 410 val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 411 // writeback status 412 413 val stdWritebacked = Reg(Vec(RobSize, Bool())) 414 val commitTrigger = Mem(RobSize, Bool()) 415 val uopNumVec = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W)))) 416 val realDestSize = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W)))) 417 val fflagsDataModule = RegInit(VecInit(Seq.fill(RobSize)(0.U(5.W)))) 418 val vxsatDataModule = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 419 val vls = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 420 421 val stdWritebackedDeqGroup = Reg(Vec(CommitWidth, Bool())) 422 val uopNumVecDeqGroup = RegInit(VecInit(Seq.fill(CommitWidth)(0.U(log2Up(MaxUopSize + 1).W)))) 423 val realDestSizeDeqGroup = RegInit(VecInit(Seq.fill(CommitWidth)(0.U(log2Up(MaxUopSize + 1).W)))) 424 val fflagsDataModuleDeqGroup = RegInit(VecInit(Seq.fill(CommitWidth)(0.U(5.W)))) 425 val vxsatDataModuleDeqGroup = RegInit(VecInit(Seq.fill(CommitWidth)(false.B))) 426 def isWritebacked(ptr: UInt): Bool = { 427 !uopNumVec(ptr).orR && stdWritebacked(ptr) 428 } 429 430 def isUopWritebacked(ptr: UInt): Bool = { 431 !uopNumVec(ptr).orR 432 } 433 434 val mmio = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 435 436 // data for redirect, exception, etc. 437 val flagBkup = Mem(RobSize, Bool()) 438 // some instructions are not allowed to trigger interrupts 439 // They have side effects on the states of the processor before they write back 440 val interrupt_safe = RegInit(VecInit(Seq.fill(RobSize)(true.B))) 441 val interrupt_safeDeqGroup = Reg(Vec(CommitWidth, Bool())) 442 443 // data for debug 444 // Warn: debug_* prefix should not exist in generated verilog. 445 val debug_microOp = DebugMem(RobSize, new DynInst) 446 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug 447 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug 448 val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init))) 449 val debug_lsTopdownInfo = RegInit(VecInit(Seq.fill(RobSize)(LsTopdownInfo.init))) 450 val debug_lqIdxValid = RegInit(VecInit.fill(RobSize)(false.B)) 451 val debug_lsIssued = RegInit(VecInit.fill(RobSize)(false.B)) 452 453 // pointers 454 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 455 val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr)) 456 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 457 458 if(backendParams.debugEn) { 459 dontTouch(enqPtrVec) 460 dontTouch(deqPtrVec) 461 } 462 463 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 464 val lastWalkPtr = Reg(new RobPtr) 465 val allowEnqueue = RegInit(true.B) 466 467 val enqPtr = enqPtrVec.head 468 val deqPtr = deqPtrVec(0) 469 val walkPtr = walkPtrVec(0) 470 471 val isEmpty = enqPtr === deqPtr 472 val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level) 473 474 val snptEnq = io.enq.canAccept && io.enq.req.head.valid && io.enq.req.head.bits.snapshot 475 val snapshots = SnapshotGenerator(enqPtrVec, snptEnq, io.snpt.snptDeq, io.redirect.valid, io.snpt.flushVec) 476 val debug_lsIssue = WireDefault(debug_lsIssued) 477 debug_lsIssue(deqPtr.value) := io.debugHeadLsIssue 478 479 /** 480 * states of Rob 481 */ 482 val s_idle :: s_walk :: Nil = Enum(2) 483 val state = RegInit(s_idle) 484 485 /** 486 * Data Modules 487 * 488 * CommitDataModule: data from dispatch 489 * (1) read: commits/walk/exception 490 * (2) write: enqueue 491 * 492 * WritebackData: data from writeback 493 * (1) read: commits/walk/exception 494 * (2) write: write back from exe units 495 */ 496 val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth)) 497 val dispatchDataRead = dispatchData.io.rdata 498 499 val exceptionGen = Module(new ExceptionGen(params)) 500 val exceptionDataRead = exceptionGen.io.state 501 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 502 val vxsatDataRead = Wire(Vec(CommitWidth, Bool())) 503 504 io.robDeqPtr := deqPtr 505 io.debugRobHead := debug_microOp(deqPtr.value) 506 507 val rab = Module(new RenameBuffer(RabSize)) 508 val vtypeBuffer = Module(new VTypeBuffer(VTypeBufferSize)) 509 510 /** 511 * connection of [[rab]] 512 */ 513 rab.io.redirect.valid := io.redirect.valid 514 515 rab.io.req.zip(io.enq.req).map { case (dest, src) => 516 dest.bits := src.bits 517 dest.valid := src.valid && io.enq.canAccept 518 } 519 520 val commitDestSizeSeq = (0 until CommitWidth).map(i => realDestSize(deqPtrVec(i).value)) 521 val walkDestSizeSeq = (0 until CommitWidth).map(i => realDestSize(walkPtrVec(i).value)) 522 523 val walkDestSizeDeqGroup = RegInit(VecInit(Seq.fill(CommitWidth)(0.U(log2Up(MaxUopSize + 1).W)))) 524 val commitSizeSumSeq = (0 until CommitWidth).map(i => realDestSizeDeqGroup.take(i+1).reduce(_ +& _)) 525 val walkSizeSumSeq = (0 until CommitWidth).map(i => walkDestSizeDeqGroup.take(i+1).reduce(_ +& _)) 526 val commitSizeSumCond = io.commits.commitValid.map(_ && io.commits.isCommit) 527 val walkSizeSumCond = io.commits.walkValid.map(_ && io.commits.isWalk) 528 val commitSizeSum = PriorityMuxDefault(commitSizeSumCond.reverse.zip(commitSizeSumSeq.reverse), 0.U) 529 val walkSizeSum = PriorityMuxDefault(walkSizeSumCond.reverse.zip(walkSizeSumSeq.reverse), 0.U) 530 531 rab.io.fromRob.commitSize := commitSizeSum 532 rab.io.fromRob.walkSize := walkSizeSum 533 rab.io.snpt := io.snpt 534 rab.io.snpt.snptEnq := snptEnq 535 536 io.rabCommits := rab.io.commits 537 io.diffCommits.foreach(_ := rab.io.diffCommits.get) 538 539 /** 540 * connection of [[vtypeBuffer]] 541 */ 542 543 vtypeBuffer.io.redirect.valid := io.redirect.valid 544 545 vtypeBuffer.io.req.zip(io.enq.req).map { case (sink, source) => 546 sink.valid := source.valid && io.enq.canAccept 547 sink.bits := source.bits 548 } 549 550 private val commitIsVTypeVec = VecInit(io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => io.commits.isCommit && valid && info.isVset }) 551 private val walkIsVTypeVec = VecInit(io.commits.walkValid.zip(io.commits.info).map { case (valid, info) => io.commits.isWalk && valid && info.isVset }) 552 vtypeBuffer.io.fromRob.commitSize := PopCount(commitIsVTypeVec) 553 vtypeBuffer.io.fromRob.walkSize := PopCount(walkIsVTypeVec) 554 vtypeBuffer.io.snpt := io.snpt 555 vtypeBuffer.io.snpt.snptEnq := snptEnq 556 io.toDecode.isResumeVType := vtypeBuffer.io.toDecode.isResumeVType 557 io.toDecode.vtype := vtypeBuffer.io.toDecode.vtype 558 559 /** 560 * Enqueue (from dispatch) 561 */ 562 // special cases 563 val hasBlockBackward = RegInit(false.B) 564 val hasWaitForward = RegInit(false.B) 565 val doingSvinval = RegInit(false.B) 566 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 567 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 568 when (isEmpty) { hasBlockBackward:= false.B } 569 // When any instruction commits, hasNoSpecExec should be set to false.B 570 when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasWaitForward:= false.B } 571 572 // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing. 573 // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle. 574 // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts. 575 val hasWFI = RegInit(false.B) 576 io.cpu_halt := hasWFI 577 // WFI Timeout: 2^20 = 1M cycles 578 val wfi_cycles = RegInit(0.U(20.W)) 579 when (hasWFI) { 580 wfi_cycles := wfi_cycles + 1.U 581 }.elsewhen (!hasWFI && RegNext(hasWFI)) { 582 wfi_cycles := 0.U 583 } 584 val wfi_timeout = wfi_cycles.andR 585 when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) { 586 hasWFI := false.B 587 } 588 589 val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.req.take(i).map(req => req.valid && req.bits.firstUop))))) 590 io.enq.canAccept := allowEnqueue && !hasBlockBackward && rab.io.canEnq && vtypeBuffer.io.canEnq 591 io.enq.resp := allocatePtrVec 592 val canEnqueue = VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop && io.enq.canAccept)) 593 val timer = GTimer() 594 for (i <- 0 until RenameWidth) { 595 // we don't check whether io.redirect is valid here since redirect has higher priority 596 when (canEnqueue(i)) { 597 val enqUop = io.enq.req(i).bits 598 val enqIndex = allocatePtrVec(i).value 599 // store uop in data module and debug_microOp Vec 600 debug_microOp(enqIndex) := enqUop 601 debug_microOp(enqIndex).debugInfo.dispatchTime := timer 602 debug_microOp(enqIndex).debugInfo.enqRsTime := timer 603 debug_microOp(enqIndex).debugInfo.selectTime := timer 604 debug_microOp(enqIndex).debugInfo.issueTime := timer 605 debug_microOp(enqIndex).debugInfo.writebackTime := timer 606 debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer 607 debug_microOp(enqIndex).debugInfo.tlbRespTime := timer 608 debug_lsInfo(enqIndex) := DebugLsInfo.init 609 debug_lsTopdownInfo(enqIndex) := LsTopdownInfo.init 610 debug_lqIdxValid(enqIndex) := false.B 611 debug_lsIssued(enqIndex) := false.B 612 613 when (enqUop.blockBackward) { 614 hasBlockBackward := true.B 615 } 616 when (enqUop.waitForward) { 617 hasWaitForward := true.B 618 } 619 val enqHasTriggerCanFire = io.enq.req(i).bits.trigger.getFrontendCanFire 620 val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR 621 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 622 when(!enqHasTriggerCanFire && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe)) 623 { 624 doingSvinval := true.B 625 } 626 // the end instruction of Svinval enqs so clear doingSvinval 627 when(!enqHasTriggerCanFire && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe)) 628 { 629 doingSvinval := false.B 630 } 631 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 632 assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe))) 633 when (enqUop.isWFI && !enqHasException && !enqHasTriggerCanFire) { 634 hasWFI := true.B 635 } 636 637 mmio(enqIndex) := false.B 638 639 vls(enqIndex) := enqUop.vlsInstr 640 } 641 } 642 val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(req => req.valid && req.bits.firstUop)), 0.U) 643 io.enq.isEmpty := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR) 644 645 when (!io.wfi_enable) { 646 hasWFI := false.B 647 } 648 // sel vsetvl's flush position 649 val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3) 650 val vsetvlState = RegInit(vs_idle) 651 652 val firstVInstrFtqPtr = RegInit(0.U.asTypeOf(new FtqPtr)) 653 val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W))) 654 val firstVInstrRobIdx = RegInit(0.U.asTypeOf(new RobPtr)) 655 656 val enq0 = io.enq.req(0) 657 val enq0IsVset = enq0.bits.isVset && enq0.bits.lastUop && canEnqueue(0) 658 val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe 659 val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVArith(req.bits.fuType) && fire} 660 // for vs_idle 661 val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType))) 662 // for vs_waitVinstr 663 val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1) 664 val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req) 665 when(vsetvlState === vs_idle){ 666 firstVInstrFtqPtr := firstVInstrIdle.bits.ftqPtr 667 firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset 668 firstVInstrRobIdx := firstVInstrIdle.bits.robIdx 669 }.elsewhen(vsetvlState === vs_waitVinstr){ 670 when(Cat(enqIsVInstrOrVset).orR){ 671 firstVInstrFtqPtr := firstVInstrWait.bits.ftqPtr 672 firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset 673 firstVInstrRobIdx := firstVInstrWait.bits.robIdx 674 } 675 } 676 677 val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR 678 when(vsetvlState === vs_idle && !io.redirect.valid){ 679 when(enq0IsVsetFlush){ 680 vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr) 681 } 682 }.elsewhen(vsetvlState === vs_waitVinstr){ 683 when(io.redirect.valid){ 684 vsetvlState := vs_idle 685 }.elsewhen(Cat(enqIsVInstrOrVset).orR){ 686 vsetvlState := vs_waitFlush 687 } 688 }.elsewhen(vsetvlState === vs_waitFlush){ 689 when(io.redirect.valid){ 690 vsetvlState := vs_idle 691 } 692 } 693 694 // lqEnq 695 io.debugEnqLsq.needAlloc.map(_(0)).zip(io.debugEnqLsq.req).foreach { case (alloc, req) => 696 when(io.debugEnqLsq.canAccept && alloc && req.valid) { 697 debug_microOp(req.bits.robIdx.value).lqIdx := req.bits.lqIdx 698 debug_lqIdxValid(req.bits.robIdx.value) := true.B 699 } 700 } 701 702 // lsIssue 703 when(io.debugHeadLsIssue) { 704 debug_lsIssued(deqPtr.value) := true.B 705 } 706 707 /** 708 * Writeback (from execution units) 709 */ 710 for (wb <- exuWBs) { 711 when (wb.valid) { 712 val wbIdx = wb.bits.robIdx.value 713 debug_exuData(wbIdx) := wb.bits.data 714 debug_exuDebug(wbIdx) := wb.bits.debug 715 debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime 716 debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime 717 debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime 718 debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime 719 720 // debug for lqidx and sqidx 721 debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr)) 722 debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr)) 723 724 val debug_Uop = debug_microOp(wbIdx) 725 XSInfo(true.B, 726 p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " + 727 p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " + 728 p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.robIdx}\n" 729 ) 730 } 731 } 732 733 val writebackNum = PopCount(exuWBs.map(_.valid)) 734 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 735 736 for (i <- 0 until LoadPipelineWidth) { 737 when (RegNext(io.lsq.mmio(i))) { 738 mmio(RegEnable(io.lsq.uop(i).robIdx, io.lsq.mmio(i)).value) := true.B 739 } 740 } 741 742 /** 743 * RedirectOut: Interrupt and Exceptions 744 */ 745 val deqDispatchData = dispatchDataRead(0) 746 val debug_deqUop = debug_microOp(deqPtr.value) 747 748 val intrBitSetReg = RegNext(io.csr.intrBitSet) 749 val intrEnable = intrBitSetReg && !hasWaitForward && interrupt_safeDeqGroup(0) 750 val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 751 val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR || 752 exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.canFire) 753 val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe 754 val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst 755 val exceptionEnable = isWritebacked(deqPtr.value) && deqHasException 756 757 XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n") 758 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getFrontendCanFire, "Debug Mode: Deq has frontend trigger exception\n") 759 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getBackendCanFire, "Debug Mode: Deq has backend trigger exception\n") 760 761 val isFlushPipe = isWritebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst) 762 763 val isVsetFlushPipe = isWritebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset 764// val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush) 765 val needModifyFtqIdxOffset = false.B 766 io.isVsetFlushPipe := isVsetFlushPipe 767 io.vconfigPdest := rab.io.vconfigPdest 768 // io.flushOut will trigger redirect at the next cycle. 769 // Block any redirect or commit at the next cycle. 770 val lastCycleFlush = RegNext(io.flushOut.valid) 771 772 io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush 773 io.flushOut.bits := DontCare 774 io.flushOut.bits.isRVC := deqDispatchData.isRVC 775 io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr) 776 io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx) 777 io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset) 778 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next" 779 io.flushOut.bits.interrupt := true.B 780 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 781 XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable) 782 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 783 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 784 785 val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush 786 io.exception.valid := RegNext(exceptionHappen) 787 io.exception.bits.pc := RegEnable(debug_deqUop.pc, exceptionHappen) 788 io.exception.bits.instr := RegEnable(debug_deqUop.instr, exceptionHappen) 789 io.exception.bits.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 790 io.exception.bits.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 791 io.exception.bits.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 792 io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 793 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 794 io.exception.bits.vls := RegEnable(vls(deqPtr.value), exceptionHappen) 795 io.exception.bits.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen) 796 io.csr.vstart.valid := RegEnable(exceptionDataRead.bits.vstartEn, false.B, exceptionHappen) 797 io.csr.vstart.bits := RegEnable(exceptionDataRead.bits.vstart, exceptionHappen) 798 799 XSDebug(io.flushOut.valid, 800 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " + 801 p"excp $exceptionEnable flushPipe $isFlushPipe " + 802 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 803 804 805 /** 806 * Commits (and walk) 807 * They share the same width. 808 */ 809 val shouldWalkVec = VecInit(walkPtrVec.map(_ <= lastWalkPtr)) 810 val walkFinished = VecInit(walkPtrVec.map(_ >= lastWalkPtr)).asUInt.orR 811 rab.io.fromRob.walkEnd := state === s_walk && walkFinished 812 vtypeBuffer.io.fromRob.walkEnd := state === s_walk && walkFinished 813 814 require(RenameWidth <= CommitWidth) 815 816 // wiring to csr 817 val (wflags, dirtyFs) = (0 until CommitWidth).map(i => { 818 val v = io.commits.commitValid(i) 819 val info = io.commits.info(i) 820 (v & info.wflags, v & (info.dirtyFs | fflagsDataRead(i).orR)) 821 }).unzip 822 val fflags = Wire(Valid(UInt(5.W))) 823 fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR 824 fflags.bits := wflags.zip(fflagsDataRead).map({ 825 case (w, f) => Mux(w, f, 0.U) 826 }).reduce(_|_) 827 val dirty_fs = io.commits.isCommit && VecInit(dirtyFs).asUInt.orR 828 829 val vxsat = Wire(Valid(Bool())) 830 vxsat.valid := io.commits.isCommit && vxsat.bits 831 vxsat.bits := io.commits.commitValid.zip(vxsatDataRead).map { 832 case (valid, vxsat) => valid & vxsat 833 }.reduce(_ | _) 834 835 // when mispredict branches writeback, stop commit in the next 2 cycles 836 // TODO: don't check all exu write back 837 val misPredWb = Cat(VecInit(redirectWBs.map(wb => 838 wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid 839 ).toSeq)).orR 840 val misPredBlockCounter = Reg(UInt(3.W)) 841 misPredBlockCounter := Mux(misPredWb, 842 "b111".U, 843 misPredBlockCounter >> 1.U 844 ) 845 val misPredBlock = misPredBlockCounter(0) 846 val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI || io.redirect.valid 847 848 io.commits.isWalk := state === s_walk 849 io.commits.isCommit := state === s_idle && !blockCommit 850 val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value))) 851 val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value))) 852 if(backendParams.debugEn) { 853 dontTouch(commit_v) 854 } 855 val commit_vDeqGroup = Reg(chiselTypeOf(walk_v)) 856 // store will be commited iff both sta & std have been writebacked 857 val commit_w = VecInit(deqPtrVec.map(ptr => isWritebacked(ptr.value) && commitTrigger(ptr.value))) 858 val commit_wDeqGroup = Reg(chiselTypeOf(walk_v)) 859 val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last) 860 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_wDeqGroup(i))) 861 val allowOnlyOneCommit = commit_exception || intrBitSetReg 862 // for instructions that may block others, we don't allow them to commit 863 for (i <- 0 until CommitWidth) { 864 // defaults: state === s_idle and instructions commit 865 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 866 val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst 867 io.commits.commitValid(i) := commit_vDeqGroup(i) && commit_wDeqGroup(i) && !isBlocked 868 io.commits.info(i) := dispatchDataRead(i) 869 io.commits.robIdx(i) := deqPtrVec(i) 870 871 io.commits.walkValid(i) := shouldWalkVec(i) 872 when (state === s_walk) { 873 when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) { 874 XSError(!walk_v(i), s"The walking entry($i) should be valid\n") 875 } 876 } 877 878 XSInfo(io.commits.isCommit && io.commits.commitValid(i), 879 "retired pc %x wen %d ldest %d pdest %x data %x fflags: %b vxsat: %b\n", 880 debug_microOp(deqPtrVec(i).value).pc, 881 io.commits.info(i).rfWen, 882 io.commits.info(i).ldest, 883 io.commits.info(i).pdest, 884 debug_exuData(deqPtrVec(i).value), 885 fflagsDataRead(i), 886 vxsatDataRead(i) 887 ) 888 XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n", 889 debug_microOp(walkPtrVec(i).value).pc, 890 io.commits.info(i).rfWen, 891 io.commits.info(i).ldest, 892 debug_exuData(walkPtrVec(i).value) 893 ) 894 } 895 if (env.EnableDifftest) { 896 io.commits.info.map(info => dontTouch(info.pc)) 897 } 898 899 // sync fflags/dirty_fs/vxsat to csr 900 io.csr.fflags := RegNext(fflags) 901 io.csr.dirty_fs := RegNext(dirty_fs) 902 io.csr.vxsat := RegNext(vxsat) 903 904 // sync v csr to csr 905 // for difftest 906 if(env.AlwaysBasicDiff || env.EnableDifftest) { 907 val isDiffWriteVconfigVec = io.diffCommits.get.commitValid.zip(io.diffCommits.get.info).map { case (valid, info) => valid && info.ldest === VCONFIG_IDX.U && info.vecWen }.reverse 908 io.csr.vcsrFlag := RegNext(io.diffCommits.get.isCommit && Cat(isDiffWriteVconfigVec).orR) 909 } 910 else{ 911 io.csr.vcsrFlag := false.B 912 } 913 914 // commit load/store to lsq 915 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 916 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE)) 917 val deqPtrVec_next = Wire(Vec(CommitWidth, Output(new RobPtr))) 918 io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U)) 919 io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U)) 920 // indicate a pending load or store 921 io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value) && mmio(deqPtr.value)) 922 io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value)) 923 io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0)) 924 io.lsq.pendingPtr := RegNext(deqPtr) 925 io.lsq.pendingPtrNext := RegNext(deqPtrVec_next.head) 926 927 /** 928 * state changes 929 * (1) redirect: switch to s_walk 930 * (2) walk: when walking comes to the end, switch to s_idle 931 */ 932 val state_next = Mux( 933 io.redirect.valid, s_walk, 934 Mux( 935 state === s_walk && walkFinished && rab.io.status.walkEnd && vtypeBuffer.io.status.walkEnd, s_idle, 936 state 937 ) 938 ) 939 XSPerfAccumulate("s_idle_to_idle", state === s_idle && state_next === s_idle) 940 XSPerfAccumulate("s_idle_to_walk", state === s_idle && state_next === s_walk) 941 XSPerfAccumulate("s_walk_to_idle", state === s_walk && state_next === s_idle) 942 XSPerfAccumulate("s_walk_to_walk", state === s_walk && state_next === s_walk) 943 state := state_next 944 945 /** 946 * pointers and counters 947 */ 948 val deqPtrGenModule = Module(new RobDeqPtrWrapper) 949 deqPtrGenModule.io.state := state 950 deqPtrGenModule.io.deq_v := commit_vDeqGroup 951 deqPtrGenModule.io.deq_w := commit_wDeqGroup 952 deqPtrGenModule.io.exception_state := exceptionDataRead 953 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 954 deqPtrGenModule.io.hasNoSpecExec := hasWaitForward 955 deqPtrGenModule.io.interrupt_safe := interrupt_safeDeqGroup(0) 956 deqPtrGenModule.io.blockCommit := blockCommit 957 deqPtrVec := deqPtrGenModule.io.out 958 deqPtrVec_next := deqPtrGenModule.io.next_out 959 960 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 961 enqPtrGenModule.io.redirect := io.redirect 962 enqPtrGenModule.io.allowEnqueue := allowEnqueue && rab.io.canEnq 963 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 964 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop)) 965 enqPtrVec := enqPtrGenModule.io.out 966 967 // next walkPtrVec: 968 // (1) redirect occurs: update according to state 969 // (2) walk: move forwards 970 val walkPtrVec_next = Mux(io.redirect.valid, 971 Mux(io.snpt.useSnpt, snapshots(io.snpt.snptSelect), deqPtrVec_next), 972 Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec) 973 ) 974 walkPtrVec := walkPtrVec_next 975 walkDestSizeDeqGroup.zip(walkPtrVec_next).map{ 976 case (reg, ptrNext) => reg := realDestSize(ptrNext.value) 977 } 978 val numValidEntries = distanceBetween(enqPtr, deqPtr) 979 val commitCnt = PopCount(io.commits.commitValid) 980 981 allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U 982 983 val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0)) 984 when (io.redirect.valid) { 985 lastWalkPtr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx - 1.U, io.redirect.bits.robIdx) 986 } 987 988 989 /** 990 * States 991 * We put all the stage bits changes here. 992 993 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 994 * All states: (1) valid; (2) writebacked; (3) flagBkup 995 */ 996 997 // update commit_vDeqGroup 998 val deqPtrValue = Wire(Vec(2 * CommitWidth, new RobPtr)) 999 deqPtrValue.zipWithIndex.map{case (deq, i) => deq := deqPtrVec(0) + i.U} 1000 val commit_vReadVec = Wire(Vec(2 * CommitWidth, chiselTypeOf(commit_v(0)))) 1001 val commit_vNextVec = Wire(Vec(2 * CommitWidth, chiselTypeOf(commit_v(0)))) 1002 if(backendParams.debugEn) { 1003 dontTouch(commit_vDeqGroup) 1004 dontTouch(commit_vReadVec) 1005 dontTouch(commit_vNextVec) 1006 dontTouch(deqPtrValue) 1007 } 1008 for (i <- 0 until 2 * CommitWidth) { 1009 commit_vReadVec(i) := valid(deqPtrValue(i).value) 1010 commit_vNextVec(i) := commit_vReadVec(i) 1011 } 1012 (0 until CommitWidth).map { case i => 1013 val nextVec = commit_vNextVec 1014 val commitEn = deqPtrGenModule.io.commitEn 1015 val canCommitPriorityCond = deqPtrGenModule.io.canCommitPriorityCond 1016 val commit_wNextThis = nextVec.drop(i).take(CommitWidth+1) 1017 val originValue = nextVec(i) 1018 val ifCommitEnValue = PriorityMuxDefault(canCommitPriorityCond.zip(commit_wNextThis), originValue) 1019 commit_vDeqGroup(i) := Mux(commitEn, ifCommitEnValue, originValue) 1020 } 1021 // update commit_wDeqGroup 1022 val commit_wReadVec = Wire(Vec(2 * CommitWidth, chiselTypeOf(commit_w(0)))) 1023 val commit_wNextVec = Wire(Vec(2 * CommitWidth, chiselTypeOf(commit_w(0)))) 1024 if(backendParams.debugEn) { 1025 dontTouch(commit_wDeqGroup) 1026 dontTouch(commit_wReadVec) 1027 dontTouch(commit_wNextVec) 1028 dontTouch(commit_w) 1029 } 1030 for (i <- 0 until 2 * CommitWidth) { 1031 commit_wReadVec(i) := isWritebacked(deqPtrValue(i).value) 1032 commit_wNextVec(i) := commit_vReadVec(i) 1033 } 1034 (0 until CommitWidth).map { case i => 1035 val nextVec = commit_wNextVec 1036 val commitEn = deqPtrGenModule.io.commitEn 1037 val canCommitPriorityCond = deqPtrGenModule.io.canCommitPriorityCond 1038 val commit_wNextThis = nextVec.drop(i).take(CommitWidth+1) 1039 val originValue = nextVec(i) 1040 val ifCommitEnValue = PriorityMuxDefault(canCommitPriorityCond.zip(commit_wNextThis),originValue) 1041 commit_wDeqGroup(i) := Mux(commitEn, ifCommitEnValue, originValue) 1042 } 1043 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 1044 1045 // redirect logic writes 6 valid 1046 val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr)) 1047 val redirectTail = Reg(new RobPtr) 1048 val redirectIdle :: redirectBusy :: Nil = Enum(2) 1049 val redirectState = RegInit(redirectIdle) 1050 val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail)) 1051 when(redirectState === redirectBusy) { 1052 redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U) 1053 redirectHeadVec zip invMask foreach { 1054 case (redirectHead, inv) => when(inv) { 1055 valid(redirectHead.value) := false.B 1056 for (j <- 0 until 2 * CommitWidth) { 1057 when(redirectHead.value === deqPtrValue(j).value) { 1058 commit_vNextVec(j) := false.B 1059 } 1060 } 1061 } 1062 } 1063 when(!invMask.last) { 1064 redirectState := redirectIdle 1065 } 1066 } 1067 when(io.redirect.valid) { 1068 redirectState := redirectBusy 1069 when(redirectState === redirectIdle) { 1070 redirectTail := enqPtr 1071 } 1072 redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) => 1073 redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 1074 } 1075 } 1076 // enqueue logic writes 6 valid 1077 for (i <- 0 until RenameWidth) { 1078 when (canEnqueue(i) && !io.redirect.valid) { 1079 valid(allocatePtrVec(i).value) := true.B 1080 for (j <- 0 until 2*CommitWidth) { 1081 when(allocatePtrVec(i).value === deqPtrValue(j).value){ 1082 commit_vNextVec(j) := true.B 1083 } 1084 } 1085 } 1086 } 1087 // dequeue logic writes 6 valid 1088 for (i <- 0 until CommitWidth) { 1089 val commitValid = io.commits.isCommit && io.commits.commitValid(i) 1090 when (commitValid) { 1091 valid(commitReadAddr(i)) := false.B 1092 for (j <- 0 until 2 * CommitWidth) { 1093 when(commitReadAddr(i) === deqPtrValue(j).value) { 1094 commit_vNextVec(j) := false.B 1095 } 1096 } 1097 } 1098 } 1099 1100 // debug_inst update 1101 for(i <- 0 until (LduCnt + StaCnt)) { 1102 debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i)) 1103 debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i)) 1104 } 1105 for (i <- 0 until LduCnt) { 1106 debug_lsTopdownInfo(io.lsTopdownInfo(i).s1.robIdx).s1SignalEnable(io.lsTopdownInfo(i)) 1107 debug_lsTopdownInfo(io.lsTopdownInfo(i).s2.robIdx).s2SignalEnable(io.lsTopdownInfo(i)) 1108 } 1109 1110 // status field: writebacked 1111 // enqueue logic set 6 writebacked to false 1112 for (i <- 0 until RenameWidth) { 1113 when(canEnqueue(i)) { 1114 val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec).asUInt.orR 1115 val enqHasTriggerCanFire = io.enq.req(i).bits.trigger.getFrontendCanFire 1116 val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove 1117 val isStu = FuType.isStore(io.enq.req(i).bits.fuType) 1118 commitTrigger(allocatePtrVec(i).value) := enqIsWritebacked && !enqHasException && !enqHasTriggerCanFire && !isStu 1119 } 1120 } 1121 when(exceptionGen.io.out.valid) { 1122 val wbIdx = exceptionGen.io.out.bits.robIdx.value 1123 commitTrigger(wbIdx) := true.B 1124 } 1125 1126 // writeback logic set numWbPorts writebacked to true 1127 val blockWbSeq = Wire(Vec(exuWBs.length, Bool())) 1128 blockWbSeq.map(_ := false.B) 1129 for ((wb, blockWb) <- exuWBs.zip(blockWbSeq)) { 1130 when(wb.valid) { 1131 val wbIdx = wb.bits.robIdx.value 1132 val wbHasException = wb.bits.exceptionVec.getOrElse(0.U).asUInt.orR 1133 val wbHasTriggerCanFire = wb.bits.trigger.getOrElse(0.U).asTypeOf(io.enq.req(0).bits.trigger).getBackendCanFire //Todo: wb.bits.trigger.getHitBackend 1134 val wbHasFlushPipe = wb.bits.flushPipe.getOrElse(false.B) 1135 val wbHasReplayInst = wb.bits.replay.getOrElse(false.B) //Todo: && wb.bits.replayInst 1136 blockWb := wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerCanFire 1137 commitTrigger(wbIdx) := !blockWb 1138 } 1139 } 1140 1141 // if the first uop of an instruction is valid , write writebackedCounter 1142 val uopEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid) 1143 val instEnqValidSeq = io.enq.req.map (req => io.enq.canAccept && req.valid && req.bits.firstUop) 1144 val enqNeedWriteRFSeq = io.enq.req.map(_.bits.needWriteRf) 1145 val enqRobIdxSeq = io.enq.req.map(req => req.bits.robIdx.value) 1146 val enqUopNumVec = VecInit(io.enq.req.map(req => req.bits.numUops)) 1147 val enqWBNumVec = VecInit(io.enq.req.map(req => req.bits.numWB)) 1148 val enqEliminatedMoveVec = VecInit(io.enq.req.map(req => req.bits.eliminatedMove)) 1149 1150 private val enqWriteStdVec: Vec[Bool] = VecInit(io.enq.req.map { 1151 req => FuType.isAMO(req.bits.fuType) || FuType.isStore(req.bits.fuType) 1152 }) 1153 val fflags_wb = fflagsWBs 1154 val vxsat_wb = vxsatWBs 1155 for(i <- 0 until RobSize){ 1156 1157 val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === i.U) 1158 val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch } 1159 val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch } 1160 val instCanEnqFlag = Cat(instCanEnqSeq).orR 1161 1162 realDestSize(i) := Mux(!valid(i) && instCanEnqFlag || valid(i), realDestSize(i) + PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map{ case(writeFlag, valid) => writeFlag && valid }), 0.U) 1163 1164 val enqUopNum = PriorityMux(instCanEnqSeq, enqUopNumVec) 1165 val enqWBNum = PriorityMux(instCanEnqSeq, enqWBNumVec) 1166 val enqEliminatedMove = PriorityMux(instCanEnqSeq, enqEliminatedMoveVec) 1167 val enqWriteStd = PriorityMux(instCanEnqSeq, enqWriteStdVec) 1168 1169 val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 1170 val canWbNoBlockSeq = canWbSeq.zip(blockWbSeq).map{ case(canWb, blockWb) => canWb && !blockWb } 1171 val canStdWbSeq = VecInit(stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)) 1172 val wbCnt = Mux1H(canWbNoBlockSeq, io.writebackNums.map(_.bits)) 1173 1174 val exceptionHas = RegInit(false.B) 1175 val exceptionHasWire = Wire(Bool()) 1176 exceptionHasWire := MuxCase(exceptionHas, Seq( 1177 (valid(i) && exceptionGen.io.out.valid && exceptionGen.io.out.bits.robIdx.value === i.U) -> true.B, 1178 !valid(i) -> false.B 1179 )) 1180 exceptionHas := exceptionHasWire 1181 1182 when (exceptionHas || exceptionHasWire) { 1183 // exception flush 1184 uopNumVec(i) := 0.U 1185 stdWritebacked(i) := true.B 1186 for (j <- 0 until 2 * CommitWidth) { 1187 when(i.U === deqPtrValue(j).value) { 1188 commit_wNextVec(j) := true.B 1189 } 1190 } 1191 }.elsewhen(!valid(i) && instCanEnqFlag) { 1192 // enq set num of uops 1193 uopNumVec(i) := enqWBNum 1194 stdWritebacked(i) := Mux(enqWriteStd, false.B, true.B) 1195 for (j <- 0 until 2 * CommitWidth) { 1196 when(i.U === deqPtrValue(j).value) { 1197 commit_wNextVec(j) := !enqUopNum.orR && Mux(enqWriteStd, false.B, true.B) 1198 } 1199 } 1200 }.elsewhen(valid(i)) { 1201 // update by writing back 1202 uopNumVec(i) := uopNumVec(i) - wbCnt 1203 assert(!(uopNumVec(i) - wbCnt > uopNumVec(i)), s"Overflow! robIdx=$i") 1204 for (j <- 0 until 2 * CommitWidth) { 1205 when(i.U === deqPtrValue(j).value) { 1206 commit_wNextVec(j) := (uopNumVec(i) === wbCnt) && stdWritebacked(i) 1207 } 1208 } 1209 when (canStdWbSeq.asUInt.orR) { 1210 stdWritebacked(i) := true.B 1211 for (j <- 0 until 2 * CommitWidth) { 1212 when(i.U === deqPtrValue(j).value) { 1213 commit_wNextVec(j) := uopNumVec(i) === wbCnt 1214 } 1215 } 1216 } 1217 }.otherwise { 1218 uopNumVec(i) := 0.U 1219 for (j <- 0 until 2 * CommitWidth) { 1220 when(i.U === deqPtrValue(j).value) { 1221 commit_wNextVec(j) := stdWritebacked(i) 1222 } 1223 } 1224 } 1225 1226 val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U && writeback.bits.wflags.getOrElse(false.B)) 1227 val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.fold(false.B)(_ | _) 1228 fflagsDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, fflagsDataModule(i) | fflagsRes) 1229 1230 val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 1231 val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.fold(false.B)(_ | _) 1232 vxsatDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, vxsatDataModule(i) | vxsatRes) 1233 } 1234 // update uopNumVecDeqGroup 1235 val realDestSizeReadVec = Wire(Vec(2*CommitWidth, chiselTypeOf(realDestSize(0)))) 1236 val realDestSizeNextVec = Wire(Vec(2*CommitWidth, chiselTypeOf(realDestSize(0)))) 1237 for(i <- 0 until 2*CommitWidth) { 1238 val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === deqPtrValue(i).value) 1239 val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map { case (valid, isMatch) => valid && isMatch } 1240 val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map { case (valid, isMatch) => valid && isMatch } 1241 val instCanEnqFlag = Cat(instCanEnqSeq).orR 1242 realDestSizeReadVec(i) := realDestSize(deqPtrValue(i).value) 1243 realDestSizeNextVec(i) := Mux(valid(deqPtrValue(i).value) || instCanEnqFlag, realDestSizeReadVec(i) + PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map { case (writeFlag, valid) => writeFlag && valid }), 0.U) 1244 } 1245 (0 until CommitWidth).map{ case i => 1246 val nextVec = realDestSizeNextVec 1247 val commitEn = deqPtrGenModule.io.commitEn 1248 val canCommitPriorityCond = deqPtrGenModule.io.canCommitPriorityCond 1249 val commit_wNextThis = nextVec.drop(i).take(CommitWidth+1) 1250 val originValue = nextVec(i) 1251 val ifCommitEnValue = PriorityMuxDefault(canCommitPriorityCond.zip(commit_wNextThis), originValue) 1252 realDestSizeDeqGroup(i) := Mux(commitEn, ifCommitEnValue, originValue) 1253 } 1254 // flagBkup 1255 // enqueue logic set 6 flagBkup at most 1256 for (i <- 0 until RenameWidth) { 1257 when (canEnqueue(i)) { 1258 flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag 1259 } 1260 } 1261 1262 // interrupt_safe 1263 1264 val interrupt_safeReadVec = Wire(Vec(2 * CommitWidth, chiselTypeOf(interrupt_safe(0)))) 1265 val interrupt_safeNextVec = Wire(Vec(2 * CommitWidth, chiselTypeOf(interrupt_safe(0)))) 1266 if(backendParams.debugEn){ 1267 dontTouch(interrupt_safeDeqGroup) 1268 dontTouch(interrupt_safeReadVec) 1269 dontTouch(interrupt_safeNextVec) 1270 } 1271 for (i <- 0 until 2 * CommitWidth) { 1272 interrupt_safeReadVec(i) := interrupt_safe(deqPtrValue(i).value) 1273 interrupt_safeNextVec(i) := interrupt_safeReadVec(i) 1274 } 1275 (0 until CommitWidth).map { case i => 1276 val nextVec = interrupt_safeNextVec 1277 val commitEn = deqPtrGenModule.io.commitEn 1278 val canCommitPriorityCond = deqPtrGenModule.io.canCommitPriorityCond 1279 val commit_wNextThis = nextVec.drop(i).take(CommitWidth+1) 1280 val originValue = nextVec(i) 1281 val ifCommitEnValue = PriorityMuxDefault(canCommitPriorityCond.zip(commit_wNextThis), originValue) 1282 interrupt_safeDeqGroup(i) := Mux(commitEn, ifCommitEnValue, originValue) 1283 } 1284 for (i <- 0 until RenameWidth) { 1285 // We RegNext the updates for better timing. 1286 // Note that instructions won't change the system's states in this cycle. 1287 when (RegNext(canEnqueue(i))) { 1288 // For now, we allow non-load-store instructions to trigger interrupts 1289 // For MMIO instructions, they should not trigger interrupts since they may 1290 // be sent to lower level before it writes back. 1291 // However, we cannot determine whether a load/store instruction is MMIO. 1292 // Thus, we don't allow load/store instructions to trigger an interrupt. 1293 // TODO: support non-MMIO load-store instructions to trigger interrupts 1294 val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType) 1295 interrupt_safe(RegEnable(allocatePtrVec(i).value, canEnqueue(i))) := RegEnable(allow_interrupts, canEnqueue(i)) 1296 for (j <- 0 until 2 * CommitWidth) { 1297 when(RegNext(allocatePtrVec(i).value) === deqPtrValue(j).value) { 1298 interrupt_safeNextVec(j) := RegNext(allow_interrupts) 1299 } 1300 } 1301 } 1302 } 1303 1304 /** 1305 * read and write of data modules 1306 */ 1307 val commitReadAddr_next = Mux(state_next === s_idle, 1308 VecInit(deqPtrVec_next.map(_.value)), 1309 VecInit(walkPtrVec_next.map(_.value)) 1310 ) 1311 dispatchData.io.wen := canEnqueue 1312 dispatchData.io.waddr := allocatePtrVec.map(_.value) 1313 dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).zipWithIndex.foreach { case ((wdata, req), portIdx) => 1314 wdata.ldest := req.ldest 1315 wdata.rfWen := req.rfWen 1316 wdata.dirtyFs := req.dirtyFs 1317 wdata.vecWen := req.vecWen 1318 wdata.wflags := req.wfflags 1319 wdata.commitType := req.commitType 1320 wdata.pdest := req.pdest 1321 wdata.ftqIdx := req.ftqPtr 1322 wdata.ftqOffset := req.ftqOffset 1323 wdata.isMove := req.eliminatedMove 1324 wdata.isRVC := req.preDecodeInfo.isRVC 1325 wdata.pc := req.pc 1326 wdata.vtype := req.vpu.vtype 1327 wdata.isVset := req.isVset 1328 wdata.instrSize := req.instrSize 1329 } 1330 dispatchData.io.raddr := commitReadAddr_next 1331 1332 exceptionGen.io.redirect <> io.redirect 1333 exceptionGen.io.flush := io.flushOut.valid 1334 1335 val canEnqueueEG = VecInit(io.enq.req.map(req => req.valid && io.enq.canAccept)) 1336 for (i <- 0 until RenameWidth) { 1337 exceptionGen.io.enq(i).valid := canEnqueueEG(i) 1338 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 1339 exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec) 1340 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe 1341 exceptionGen.io.enq(i).bits.isVset := io.enq.req(i).bits.isVset 1342 exceptionGen.io.enq(i).bits.replayInst := false.B 1343 XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst") 1344 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep 1345 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix 1346 exceptionGen.io.enq(i).bits.trigger.clear() 1347 exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.trigger.frontendHit 1348 exceptionGen.io.enq(i).bits.trigger.frontendCanFire := io.enq.req(i).bits.trigger.frontendCanFire 1349 exceptionGen.io.enq(i).bits.vstartEn := false.B //DontCare 1350 exceptionGen.io.enq(i).bits.vstart := 0.U //DontCare 1351 } 1352 1353 println(s"ExceptionGen:") 1354 println(s"num of exceptions: ${params.numException}") 1355 require(exceptionWBs.length == exceptionGen.io.wb.length, 1356 f"exceptionWBs.length: ${exceptionWBs.length}, " + 1357 f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}") 1358 for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) { 1359 exc_wb.valid := wb.valid 1360 exc_wb.bits.robIdx := wb.bits.robIdx 1361 exc_wb.bits.exceptionVec := wb.bits.exceptionVec.get 1362 exc_wb.bits.flushPipe := wb.bits.flushPipe.getOrElse(false.B) 1363 exc_wb.bits.isVset := false.B 1364 exc_wb.bits.replayInst := wb.bits.replay.getOrElse(false.B) 1365 exc_wb.bits.singleStep := false.B 1366 exc_wb.bits.crossPageIPFFix := false.B 1367 // TODO: make trigger configurable 1368 val trigger = wb.bits.trigger.getOrElse(0.U).asTypeOf(exc_wb.bits.trigger) 1369 exc_wb.bits.trigger.clear() // Don't care frontend timing, chain, hit and canFire 1370 exc_wb.bits.trigger.backendHit := trigger.backendHit 1371 exc_wb.bits.trigger.backendCanFire := trigger.backendCanFire 1372 exc_wb.bits.vstartEn := false.B //wb.bits.vstartEn.getOrElse(false.B) // todo need add vstart in ExuOutput 1373 exc_wb.bits.vstart := 0.U //wb.bits.vstart.getOrElse(0.U) 1374// println(s" [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " + 1375// s"flushPipe ${configs.exists(_.flushPipe)}, " + 1376// s"replayInst ${configs.exists(_.replayInst)}") 1377 } 1378 1379 fflagsDataRead := (0 until CommitWidth).map(i => fflagsDataModule(deqPtrVec(i).value)) 1380 vxsatDataRead := (0 until CommitWidth).map(i => vxsatDataModule(deqPtrVec(i).value)) 1381 1382 val instrCntReg = RegInit(0.U(64.W)) 1383 val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) }) 1384 val trueCommitCnt = RegNext(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => Mux(v, i.instrSize, 0.U) }.reduce(_ +& _)) +& fuseCommitCnt 1385 val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U) 1386 val instrCnt = instrCntReg + retireCounter 1387 instrCntReg := instrCnt 1388 io.csr.perfinfo.retiredInstr := retireCounter 1389 io.robFull := !allowEnqueue 1390 io.headNotReady := commit_vDeqGroup.head && !commit_wDeqGroup.head 1391 1392 /** 1393 * debug info 1394 */ 1395 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 1396 XSDebug("") 1397 XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n") 1398 for(i <- 0 until RobSize) { 1399 XSDebug(false, !valid(i), "-") 1400 XSDebug(false, valid(i) && isWritebacked(i.U), "w") 1401 XSDebug(false, valid(i) && !isWritebacked(i.U), "v") 1402 } 1403 XSDebug(false, true.B, "\n") 1404 1405 for(i <- 0 until RobSize) { 1406 if (i % 4 == 0) XSDebug("") 1407 XSDebug(false, true.B, "%x ", debug_microOp(i).pc) 1408 XSDebug(false, !valid(i), "- ") 1409 XSDebug(false, valid(i) && isWritebacked(i.U), "w ") 1410 XSDebug(false, valid(i) && !isWritebacked(i.U), "v ") 1411 if (i % 4 == 3) XSDebug(false, true.B, "\n") 1412 } 1413 1414 def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U) 1415 def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U) 1416 1417 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 1418 XSPerfAccumulate("clock_cycle", 1.U) 1419 QueuePerf(RobSize, numValidEntries, numValidEntries === RobSize.U) 1420 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 1421 XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt)) 1422 XSPerfRolling("ipc", ifCommitReg(trueCommitCnt), 1000, clock, reset) 1423 XSPerfRolling("cpi", perfCnt = 1.U/*Cycle*/, eventTrigger = ifCommitReg(trueCommitCnt), granularity = 1000, clock, reset) 1424 val commitIsMove = commitDebugUop.map(_.isMove) 1425 XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }))) 1426 val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) 1427 XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e }))) 1428 XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt)) 1429 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 1430 val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t } 1431 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 1432 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 1433 val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t } 1434 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 1435 val commitLoadWaitBit = commitDebugUop.map(_.loadWaitBit) 1436 XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))) 1437 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 1438 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }))) 1439 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && isWritebacked(i.U)))) 1440 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire))) 1441 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 1442 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)) 1443 XSPerfAccumulate("walkCycleTotal", state === s_walk) 1444 XSPerfAccumulate("waitRabWalkEnd", state === s_walk && walkFinished && !rab.io.status.walkEnd) 1445 private val walkCycle = RegInit(0.U(8.W)) 1446 private val waitRabWalkCycle = RegInit(0.U(8.W)) 1447 walkCycle := Mux(io.redirect.valid, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U)) 1448 waitRabWalkCycle := Mux(state === s_walk && walkFinished, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U)) 1449 1450 XSPerfHistogram("walkRobCycleHist", walkCycle, state === s_walk && walkFinished, 0, 32) 1451 XSPerfHistogram("walkRabExtraCycleHist", waitRabWalkCycle, state === s_walk && walkFinished && rab.io.status.walkEnd, 0, 32) 1452 XSPerfHistogram("walkTotalCycleHist", walkCycle, state === s_walk && state_next === s_idle, 0, 32) 1453 1454 private val deqNotWritebacked = valid(deqPtr.value) && !isWritebacked(deqPtr.value) 1455 private val deqStdNotWritebacked = valid(deqPtr.value) && !stdWritebacked(deqPtr.value) 1456 private val deqUopNotWritebacked = valid(deqPtr.value) && !isUopWritebacked(deqPtr.value) 1457 private val deqHeadInfo = debug_microOp(deqPtr.value) 1458 val deqUopCommitType = io.commits.info(0).commitType 1459 1460 XSPerfAccumulate("waitAluCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.alu.U) 1461 XSPerfAccumulate("waitMulCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.mul.U) 1462 XSPerfAccumulate("waitDivCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.div.U) 1463 XSPerfAccumulate("waitBrhCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.brh.U) 1464 XSPerfAccumulate("waitJmpCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.jmp.U) 1465 XSPerfAccumulate("waitCsrCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.csr.U) 1466 XSPerfAccumulate("waitFenCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.fence.U) 1467 XSPerfAccumulate("waitBkuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.bku.U) 1468 XSPerfAccumulate("waitLduCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.ldu.U) 1469 XSPerfAccumulate("waitStuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1470 XSPerfAccumulate("waitStaCycle", deqUopNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1471 XSPerfAccumulate("waitStdCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1472 XSPerfAccumulate("waitAtmCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.mou.U) 1473 1474 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 1475 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 1476 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 1477 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 1478 XSPerfAccumulate("robHeadPC", io.commits.info(0).pc) 1479 XSPerfAccumulate("commitCompressCntAll", PopCount(io.commits.commitValid.zip(io.commits.info).map{case(valid, info) => io.commits.isCommit && valid && info.instrSize > 1.U})) 1480 (2 to RenameWidth).foreach(i => 1481 XSPerfAccumulate(s"commitCompressCnt${i}", PopCount(io.commits.commitValid.zip(io.commits.info).map{case(valid, info) => io.commits.isCommit && valid && info.instrSize === i.U})) 1482 ) 1483 XSPerfAccumulate("compressSize", io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => Mux(io.commits.isCommit && valid && info.instrSize > 1.U, info.instrSize, 0.U) }.reduce(_ +& _)) 1484 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 1485 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 1486 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 1487 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 1488 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 1489 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 1490 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 1491 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 1492 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 1493 } 1494 for (fuType <- FuType.functionNameMap.keys) { 1495 val fuName = FuType.functionNameMap(fuType) 1496 val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U ) 1497 XSPerfRolling(s"ipc_futype_${fuName}", ifCommit(PopCount(commitIsFuType)), 1000, clock, reset) 1498 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 1499 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 1500 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 1501 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 1502 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 1503 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 1504 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 1505 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 1506 } 1507 XSPerfAccumulate(s"redirect_use_snapshot", io.redirect.valid && io.snpt.useSnpt) 1508 1509 // top-down info 1510 io.debugTopDown.toCore.robHeadVaddr.valid := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_valid 1511 io.debugTopDown.toCore.robHeadVaddr.bits := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_bits 1512 io.debugTopDown.toCore.robHeadPaddr.valid := debug_lsTopdownInfo(deqPtr.value).s2.paddr_valid 1513 io.debugTopDown.toCore.robHeadPaddr.bits := debug_lsTopdownInfo(deqPtr.value).s2.paddr_bits 1514 io.debugTopDown.toDispatch.robTrueCommit := ifCommitReg(trueCommitCnt) 1515 io.debugTopDown.toDispatch.robHeadLsIssue := debug_lsIssue(deqPtr.value) 1516 io.debugTopDown.robHeadLqIdx.valid := debug_lqIdxValid(deqPtr.value) 1517 io.debugTopDown.robHeadLqIdx.bits := debug_microOp(deqPtr.value).lqIdx 1518 1519 // rolling 1520 io.debugRolling.robTrueCommit := ifCommitReg(trueCommitCnt) 1521 1522 /** 1523 * DataBase info: 1524 * log trigger is at writeback valid 1525 * */ 1526 1527 /** 1528 * @todo add InstInfoEntry back 1529 * @author Maxpicca-Li 1530 */ 1531 1532 //difftest signals 1533 val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value 1534 1535 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1536 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1537 1538 for(i <- 0 until CommitWidth) { 1539 val idx = deqPtrVec(i).value 1540 wdata(i) := debug_exuData(idx) 1541 wpc(i) := SignExt(commitDebugUop(i).pc, XLEN) 1542 } 1543 1544 if (env.EnableDifftest || env.AlwaysBasicDiff) { 1545 // These are the structures used by difftest only and should be optimized after synthesis. 1546 val dt_eliminatedMove = Mem(RobSize, Bool()) 1547 val dt_isRVC = Mem(RobSize, Bool()) 1548 val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) 1549 for (i <- 0 until RenameWidth) { 1550 when (canEnqueue(i)) { 1551 dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 1552 dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC 1553 } 1554 } 1555 for (wb <- exuWBs) { 1556 when (wb.valid) { 1557 val wbIdx = wb.bits.robIdx.value 1558 dt_exuDebug(wbIdx) := wb.bits.debug 1559 } 1560 } 1561 // Always instantiate basic difftest modules. 1562 for (i <- 0 until CommitWidth) { 1563 val uop = commitDebugUop(i) 1564 val commitInfo = io.commits.info(i) 1565 val ptr = deqPtrVec(i).value 1566 val exuOut = dt_exuDebug(ptr) 1567 val eliminatedMove = dt_eliminatedMove(ptr) 1568 val isRVC = dt_isRVC(ptr) 1569 1570 val difftest = DifftestModule(new DiffInstrCommit(MaxPhyPregs), delay = 3, dontCare = true) 1571 difftest.coreid := io.hartId 1572 difftest.index := i.U 1573 difftest.valid := io.commits.commitValid(i) && io.commits.isCommit 1574 difftest.skip := Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt) 1575 difftest.isRVC := isRVC 1576 difftest.rfwen := io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U 1577 difftest.fpwen := io.commits.commitValid(i) && uop.fpWen 1578 difftest.wpdest := commitInfo.pdest 1579 difftest.wdest := commitInfo.ldest 1580 difftest.nFused := CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize - 1.U 1581 when(difftest.valid) { 1582 assert(CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize >= 1.U) 1583 } 1584 if (env.EnableDifftest) { 1585 val uop = commitDebugUop(i) 1586 difftest.pc := SignExt(uop.pc, XLEN) 1587 difftest.instr := uop.instr 1588 difftest.robIdx := ZeroExt(ptr, 10) 1589 difftest.lqIdx := ZeroExt(uop.lqIdx.value, 7) 1590 difftest.sqIdx := ZeroExt(uop.sqIdx.value, 7) 1591 difftest.isLoad := io.commits.info(i).commitType === CommitType.LOAD 1592 difftest.isStore := io.commits.info(i).commitType === CommitType.STORE 1593 } 1594 } 1595 } 1596 1597 if (env.EnableDifftest) { 1598 for (i <- 0 until CommitWidth) { 1599 val difftest = DifftestModule(new DiffLoadEvent, delay = 3) 1600 difftest.coreid := io.hartId 1601 difftest.index := i.U 1602 1603 val ptr = deqPtrVec(i).value 1604 val uop = commitDebugUop(i) 1605 val exuOut = debug_exuDebug(ptr) 1606 difftest.valid := io.commits.commitValid(i) && io.commits.isCommit 1607 difftest.paddr := exuOut.paddr 1608 difftest.opType := uop.fuOpType 1609 difftest.fuType := uop.fuType 1610 } 1611 } 1612 1613 if (env.EnableDifftest || env.AlwaysBasicDiff) { 1614 val dt_isXSTrap = Mem(RobSize, Bool()) 1615 for (i <- 0 until RenameWidth) { 1616 when (canEnqueue(i)) { 1617 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap 1618 } 1619 } 1620 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => 1621 io.commits.isCommit && v && dt_isXSTrap(d.value) 1622 } 1623 val hitTrap = trapVec.reduce(_||_) 1624 val difftest = DifftestModule(new DiffTrapEvent, dontCare = true) 1625 difftest.coreid := io.hartId 1626 difftest.hasTrap := hitTrap 1627 difftest.cycleCnt := timer 1628 difftest.instrCnt := instrCnt 1629 difftest.hasWFI := hasWFI 1630 1631 if (env.EnableDifftest) { 1632 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 1633 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN) 1634 difftest.code := trapCode 1635 difftest.pc := trapPC 1636 } 1637 } 1638 1639 val validEntriesBanks = (0 until (RobSize + 31) / 32).map(i => RegNext(PopCount(valid.drop(i * 32).take(32)))) 1640 val validEntries = RegNext(VecInit(validEntriesBanks).reduceTree(_ +& _)) 1641 val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }) 1642 val commitLoadVec = VecInit(commitLoadValid) 1643 val commitBranchVec = VecInit(commitBranchValid) 1644 val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }) 1645 val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }) 1646 val perfEvents = Seq( 1647 ("rob_interrupt_num ", io.flushOut.valid && intrEnable ), 1648 ("rob_exception_num ", io.flushOut.valid && exceptionEnable ), 1649 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe ), 1650 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst ), 1651 ("rob_commitUop ", ifCommit(commitCnt) ), 1652 ("rob_commitInstr ", ifCommitReg(trueCommitCnt) ), 1653 ("rob_commitInstrMove ", ifCommitReg(PopCount(RegNext(commitMoveVec))) ), 1654 ("rob_commitInstrFused ", ifCommitReg(fuseCommitCnt) ), 1655 ("rob_commitInstrLoad ", ifCommitReg(PopCount(RegNext(commitLoadVec))) ), 1656 ("rob_commitInstrBranch ", ifCommitReg(PopCount(RegNext(commitBranchVec))) ), 1657 ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec))) ), 1658 ("rob_commitInstrStore ", ifCommitReg(PopCount(RegNext(commitStoreVec))) ), 1659 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U) ), 1660 ("rob_walkCycle ", (state === s_walk) ), 1661 ("rob_1_4_valid ", validEntries <= (RobSize / 4).U ), 1662 ("rob_2_4_valid ", validEntries > (RobSize / 4).U && validEntries <= (RobSize / 2).U ), 1663 ("rob_3_4_valid ", validEntries > (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U), 1664 ("rob_4_4_valid ", validEntries > (RobSize * 3 / 4).U ), 1665 ) 1666 generatePerfEvent() 1667} 1668