1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.rob 18 19import org.chipsalliance.cde.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 24import utility._ 25import utils._ 26import xiangshan._ 27import xiangshan.backend.BackendParams 28import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 29import xiangshan.backend.fu.{FuConfig, FuType} 30import xiangshan.frontend.FtqPtr 31import xiangshan.mem.{LqPtr, LsqEnqIO, SqPtr} 32import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 33import xiangshan.backend.ctrlblock.{DebugLSIO, DebugLsInfo, LsTopdownInfo} 34import xiangshan.backend.fu.vector.Bundles.VType 35import xiangshan.backend.rename.SnapshotGenerator 36 37 38class RobPtr(entries: Int) extends CircularQueuePtr[RobPtr]( 39 entries 40) with HasCircularQueuePtrHelper { 41 42 def this()(implicit p: Parameters) = this(p(XSCoreParamsKey).RobSize) 43 44 def needFlush(redirect: Valid[Redirect]): Bool = { 45 val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx 46 redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx)) 47 } 48 49 def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR 50} 51 52object RobPtr { 53 def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = { 54 val ptr = Wire(new RobPtr) 55 ptr.flag := f 56 ptr.value := v 57 ptr 58 } 59} 60 61class RobCSRIO(implicit p: Parameters) extends XSBundle { 62 val intrBitSet = Input(Bool()) 63 val trapTarget = Input(UInt(VAddrBits.W)) 64 val isXRet = Input(Bool()) 65 val wfiEvent = Input(Bool()) 66 67 val fflags = Output(Valid(UInt(5.W))) 68 val vxsat = Output(Valid(Bool())) 69 val vstart = Output(Valid(UInt(XLEN.W))) 70 val dirty_fs = Output(Bool()) 71 val perfinfo = new Bundle { 72 val retiredInstr = Output(UInt(3.W)) 73 } 74 75 val vcsrFlag = Output(Bool()) 76} 77 78class RobLsqIO(implicit p: Parameters) extends XSBundle { 79 val lcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 80 val scommit = Output(UInt(log2Up(CommitWidth + 1).W)) 81 val pendingld = Output(Bool()) 82 val pendingst = Output(Bool()) 83 val commit = Output(Bool()) 84 val pendingPtr = Output(new RobPtr) 85 val pendingPtrNext = Output(new RobPtr) 86 87 val mmio = Input(Vec(LoadPipelineWidth, Bool())) 88 // Todo: what's this? 89 val uop = Input(Vec(LoadPipelineWidth, new DynInst)) 90} 91 92class RobEnqIO(implicit p: Parameters) extends XSBundle { 93 val canAccept = Output(Bool()) 94 val isEmpty = Output(Bool()) 95 // valid vector, for robIdx gen and walk 96 val needAlloc = Vec(RenameWidth, Input(Bool())) 97 val req = Vec(RenameWidth, Flipped(ValidIO(new DynInst))) 98 val resp = Vec(RenameWidth, Output(new RobPtr)) 99} 100 101class RobCoreTopDownIO(implicit p: Parameters) extends XSBundle { 102 val robHeadVaddr = Valid(UInt(VAddrBits.W)) 103 val robHeadPaddr = Valid(UInt(PAddrBits.W)) 104} 105 106class RobDispatchTopDownIO extends Bundle { 107 val robTrueCommit = Output(UInt(64.W)) 108 val robHeadLsIssue = Output(Bool()) 109} 110 111class RobDebugRollingIO extends Bundle { 112 val robTrueCommit = Output(UInt(64.W)) 113} 114 115class RobDispatchData(implicit p: Parameters) extends RobCommitInfo {} 116 117class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 118 val io = IO(new Bundle { 119 // for commits/flush 120 val state = Input(UInt(2.W)) 121 val deq_v = Vec(CommitWidth, Input(Bool())) 122 val deq_w = Vec(CommitWidth, Input(Bool())) 123 val exception_state = Flipped(ValidIO(new RobExceptionInfo)) 124 // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth) 125 val intrBitSetReg = Input(Bool()) 126 val hasNoSpecExec = Input(Bool()) 127 val interrupt_safe = Input(Bool()) 128 val blockCommit = Input(Bool()) 129 // output: the CommitWidth deqPtr 130 val out = Vec(CommitWidth, Output(new RobPtr)) 131 val next_out = Vec(CommitWidth, Output(new RobPtr)) 132 val commitCnt = Output(UInt(log2Up(CommitWidth+1).W)) 133 val canCommitPriorityCond = Output(Vec(CommitWidth+1,Bool())) 134 val commitEn = Output(Bool()) 135 }) 136 137 val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr)))) 138 139 // for exceptions (flushPipe included) and interrupts: 140 // only consider the first instruction 141 val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe 142 val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0) 143 val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable) 144 145 // for normal commits: only to consider when there're no exceptions 146 // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions. 147 val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last) 148 val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i))) 149 val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B) 150 // when io.intrBitSetReg or there're possible exceptions in these instructions, 151 // only one instruction is allowed to commit 152 val allowOnlyOne = commit_exception || io.intrBitSetReg 153 val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt) 154 val allowOnlyOneCond = Wire(chiselTypeOf(io.canCommitPriorityCond)) 155 allowOnlyOneCond.zipWithIndex.map{ case (value,i) => value := (if (i==0) !canCommit(0) else true.B)} 156 io.canCommitPriorityCond := Mux(allowOnlyOne, allowOnlyOneCond, VecInit(canCommit.map(c => !c) :+ true.B)) 157 158 val commitDeqPtrAll = VecInit((0 until 2*CommitWidth).map{case i => deqPtrVec(0) + i.U}) 159 val commitDeqPtrVec = Wire(chiselTypeOf(deqPtrVec)) 160 for (i <- 0 until CommitWidth){ 161 commitDeqPtrVec(i) := PriorityMuxDefault(io.canCommitPriorityCond.zip(commitDeqPtrAll.drop(i).take(CommitWidth+1)), deqPtrVec(i)) 162 } 163 val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec) 164 165 deqPtrVec := deqPtrVec_next 166 167 io.next_out := deqPtrVec_next 168 io.out := deqPtrVec 169 io.commitCnt := commitCnt 170 io.commitEn := io.state === 0.U && !redirectOutValid && !io.blockCommit 171 172 when (io.state === 0.U) { 173 XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt) 174 } 175 176} 177 178class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 179 val io = IO(new Bundle { 180 // for input redirect 181 val redirect = Input(Valid(new Redirect)) 182 // for enqueue 183 val allowEnqueue = Input(Bool()) 184 val hasBlockBackward = Input(Bool()) 185 val enq = Vec(RenameWidth, Input(Bool())) 186 val out = Output(Vec(RenameWidth, new RobPtr)) 187 }) 188 189 val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr))) 190 191 // enqueue 192 val canAccept = io.allowEnqueue && !io.hasBlockBackward 193 val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U) 194 195 for ((ptr, i) <- enqPtrVec.zipWithIndex) { 196 when(io.redirect.valid) { 197 ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 198 }.otherwise { 199 ptr := ptr + dispatchNum 200 } 201 } 202 203 io.out := enqPtrVec 204 205} 206 207class RobExceptionInfo(implicit p: Parameters) extends XSBundle { 208 // val valid = Bool() 209 val robIdx = new RobPtr 210 val ftqPtr = new FtqPtr() 211 val ftqOffset = UInt(log2Up(PredictWidth).W) 212 val exceptionVec = ExceptionVec() 213 val flushPipe = Bool() 214 val isVset = Bool() 215 val replayInst = Bool() // redirect to that inst itself 216 val singleStep = Bool() // TODO add frontend hit beneath 217 val crossPageIPFFix = Bool() 218 val trigger = new TriggerCf 219 val vstartEn = Bool() 220 val vstart = UInt(XLEN.W) 221 222 def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.canFire 223 def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.canFire 224 // only exceptions are allowed to writeback when enqueue 225 def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.canFire 226} 227 228class ExceptionGen(params: BackendParams)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 229 val io = IO(new Bundle { 230 val redirect = Input(Valid(new Redirect)) 231 val flush = Input(Bool()) 232 val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo))) 233 // csr + load + store + varith + vload + vstore 234 val wb = Vec(params.numException, Flipped(ValidIO(new RobExceptionInfo))) 235 val out = ValidIO(new RobExceptionInfo) 236 val state = ValidIO(new RobExceptionInfo) 237 }) 238 239 val wbExuParams = params.allExuParams.filter(_.exceptionOut.nonEmpty) 240 241 def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): RobExceptionInfo = { 242 def getOldest_recursion(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = { 243 assert(valid.length == bits.length) 244 if (valid.length == 1) { 245 (valid, bits) 246 } else if (valid.length == 2) { 247 val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0))))) 248 for (i <- res.indices) { 249 res(i).valid := valid(i) 250 res(i).bits := bits(i) 251 } 252 val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1)) 253 (Seq(oldest.valid), Seq(oldest.bits)) 254 } else { 255 val left = getOldest_recursion(valid.take(valid.length / 2), bits.take(valid.length / 2)) 256 val right = getOldest_recursion(valid.drop(valid.length / 2), bits.drop(valid.length/ 2)) 257 getOldest_recursion(left._1 ++ right._1, left._2 ++ right._2) 258 } 259 } 260 getOldest_recursion(valid, bits)._2.head 261 } 262 263 264 val currentValid = RegInit(false.B) 265 val current = Reg(new RobExceptionInfo) 266 267 // orR the exceptionVec 268 val lastCycleFlush = RegNext(io.flush) 269 val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush)) 270 271 // s0: compare wb in 6 groups 272 val csr_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(t => t.isCsr).nonEmpty).map(_._1) 273 val load_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.ldu).nonEmpty).map(_._1) 274 val store_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(t => t.isSta || t.fuType == FuType.mou).nonEmpty).map(_._1) 275 val varith_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.isVecArith).nonEmpty).map(_._1) 276 val vload_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.vldu).nonEmpty).map(_._1) 277 val vstore_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.vstu).nonEmpty).map(_._1) 278 279 val writebacks = Seq(csr_wb, load_wb, store_wb, varith_wb, vload_wb, vstore_wb) 280 val in_wb_valids = writebacks.map(_.map(w => w.valid && w.bits.has_exception && !lastCycleFlush)) 281 val wb_valid = in_wb_valids.zip(writebacks).map { case (valid, wb) => 282 valid.zip(wb.map(_.bits)).map { case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }.reduce(_ || _) 283 } 284 val wb_bits = in_wb_valids.zip(writebacks).map { case (valid, wb) => getOldest(valid, wb.map(_.bits))} 285 286 val s0_out_valid = wb_valid.map(x => RegNext(x)) 287 val s0_out_bits = wb_bits.zip(wb_valid).map{ case(b, v) => RegEnable(b, v)} 288 289 // s1: compare last six and current flush 290 val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) }) 291 val s1_out_bits = RegEnable(getOldest(s0_out_valid, s0_out_bits), s1_valid.asUInt.orR) 292 val s1_out_valid = RegNext(s1_valid.asUInt.orR) 293 294 val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 295 val enq_bits = RegEnable(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits)), in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 296 297 // s2: compare the input exception with the current one 298 // priorities: 299 // (1) system reset 300 // (2) current is valid: flush, remain, merge, update 301 // (3) current is not valid: s1 or enq 302 val current_flush = current.robIdx.needFlush(io.redirect) || io.flush 303 val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush 304 when (currentValid) { 305 when (current_flush) { 306 currentValid := Mux(s1_flush, false.B, s1_out_valid) 307 } 308 when (s1_out_valid && !s1_flush) { 309 when (isAfter(current.robIdx, s1_out_bits.robIdx)) { 310 current := s1_out_bits 311 }.elsewhen (current.robIdx === s1_out_bits.robIdx) { 312 current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec()) 313 current.flushPipe := s1_out_bits.flushPipe || current.flushPipe 314 current.replayInst := s1_out_bits.replayInst || current.replayInst 315 current.singleStep := s1_out_bits.singleStep || current.singleStep 316 current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf) 317 } 318 } 319 }.elsewhen (s1_out_valid && !s1_flush) { 320 currentValid := true.B 321 current := s1_out_bits 322 }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) { 323 currentValid := true.B 324 current := enq_bits 325 } 326 327 io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback 328 io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits) 329 io.state.valid := currentValid 330 io.state.bits := current 331 332} 333 334class RobFlushInfo(implicit p: Parameters) extends XSBundle { 335 val ftqIdx = new FtqPtr 336 val robIdx = new RobPtr 337 val ftqOffset = UInt(log2Up(PredictWidth).W) 338 val replayInst = Bool() 339} 340 341class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter { 342 override def shouldBeInlined: Boolean = false 343 344 lazy val module = new RobImp(this)(p, params) 345} 346 347class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper) 348 with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents { 349 350 private val LduCnt = params.LduCnt 351 private val StaCnt = params.StaCnt 352 private val HyuCnt = params.HyuCnt 353 354 val io = IO(new Bundle() { 355 val hartId = Input(UInt(hartIdLen.W)) 356 val redirect = Input(Valid(new Redirect)) 357 val enq = new RobEnqIO 358 val flushOut = ValidIO(new Redirect) 359 val exception = ValidIO(new ExceptionInfo) 360 // exu + brq 361 val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles) 362 val writebackNums = Flipped(Vec(writeback.size-params.StdCnt, ValidIO(UInt(writeback.size.U.getWidth.W)))) 363 val commits = Output(new RobCommitIO) 364 val rabCommits = Output(new RabCommitIO) 365 val diffCommits = if (backendParams.debugEn) Some(Output(new DiffCommitIO)) else None 366 val isVsetFlushPipe = Output(Bool()) 367 val lsq = new RobLsqIO 368 val robDeqPtr = Output(new RobPtr) 369 val csr = new RobCSRIO 370 val snpt = Input(new SnapshotPort) 371 val robFull = Output(Bool()) 372 val headNotReady = Output(Bool()) 373 val cpu_halt = Output(Bool()) 374 val wfi_enable = Input(Bool()) 375 val toDecode = new Bundle { 376 val isResumeVType = Output(Bool()) 377 val commitVType = ValidIO(VType()) 378 val walkVType = ValidIO(VType()) 379 } 380 val readGPAMemAddr = ValidIO(new Bundle { 381 val ftqPtr = new FtqPtr() 382 val ftqOffset = UInt(log2Up(PredictWidth).W) 383 }) 384 val readGPAMemData = Input(UInt(GPAddrBits.W)) 385 386 val debug_ls = Flipped(new DebugLSIO) 387 val debugRobHead = Output(new DynInst) 388 val debugEnqLsq = Input(new LsqEnqIO) 389 val debugHeadLsIssue = Input(Bool()) 390 val lsTopdownInfo = Vec(LduCnt + HyuCnt, Input(new LsTopdownInfo)) 391 val debugTopDown = new Bundle { 392 val toCore = new RobCoreTopDownIO 393 val toDispatch = new RobDispatchTopDownIO 394 val robHeadLqIdx = Valid(new LqPtr) 395 } 396 val debugRolling = new RobDebugRollingIO 397 }) 398 399 val exuWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(!_.bits.params.hasStdFu).toSeq 400 val stdWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(_.bits.params.hasStdFu).toSeq 401 val fflagsWBs = io.writeback.filter(x => x.bits.fflags.nonEmpty) 402 val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty) 403 val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty) 404 val vxsatWBs = io.writeback.filter(x => x.bits.vxsat.nonEmpty) 405 406 val numExuWbPorts = exuWBs.length 407 val numStdWbPorts = stdWBs.length 408 409 410 println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth") 411// println(s"exuPorts: ${exuWbs.map(_._1.map(_.name))}") 412// println(s"stdPorts: ${stdWbs.map(_._1.map(_.name))}") 413// println(s"fflagsPorts: ${fflagsWBs.map(_._1.map(_.name))}") 414 415 416 // instvalid field 417 val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 418 // writeback status 419 420 val stdWritebacked = Reg(Vec(RobSize, Bool())) 421 val commitTrigger = Mem(RobSize, Bool()) 422 val uopNumVec = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W)))) 423 val realDestSize = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W)))) 424 val fflagsDataModule = RegInit(VecInit(Seq.fill(RobSize)(0.U(5.W)))) 425 val vxsatDataModule = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 426 val vls = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 427 428 val stdWritebackedDeqGroup = Reg(Vec(CommitWidth, Bool())) 429 val uopNumVecDeqGroup = RegInit(VecInit(Seq.fill(CommitWidth)(0.U(log2Up(MaxUopSize + 1).W)))) 430 val realDestSizeDeqGroup = RegInit(VecInit(Seq.fill(CommitWidth)(0.U(log2Up(MaxUopSize + 1).W)))) 431 val fflagsDataModuleDeqGroup = RegInit(VecInit(Seq.fill(CommitWidth)(0.U(5.W)))) 432 val vxsatDataModuleDeqGroup = RegInit(VecInit(Seq.fill(CommitWidth)(false.B))) 433 def isWritebacked(ptr: UInt): Bool = { 434 !uopNumVec(ptr).orR && stdWritebacked(ptr) 435 } 436 437 def isUopWritebacked(ptr: UInt): Bool = { 438 !uopNumVec(ptr).orR 439 } 440 441 val mmio = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 442 443 // data for redirect, exception, etc. 444 val flagBkup = Mem(RobSize, Bool()) 445 // some instructions are not allowed to trigger interrupts 446 // They have side effects on the states of the processor before they write back 447 val interrupt_safe = RegInit(VecInit(Seq.fill(RobSize)(true.B))) 448 val interrupt_safeDeqGroup = Reg(Vec(CommitWidth, Bool())) 449 450 // data for debug 451 // Warn: debug_* prefix should not exist in generated verilog. 452 val debug_microOp = DebugMem(RobSize, new DynInst) 453 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug 454 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug 455 val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init))) 456 val debug_lsTopdownInfo = RegInit(VecInit(Seq.fill(RobSize)(LsTopdownInfo.init))) 457 val debug_lqIdxValid = RegInit(VecInit.fill(RobSize)(false.B)) 458 val debug_lsIssued = RegInit(VecInit.fill(RobSize)(false.B)) 459 460 // pointers 461 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 462 val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr)) 463 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 464 465 if(backendParams.debugEn) { 466 dontTouch(enqPtrVec) 467 dontTouch(deqPtrVec) 468 } 469 470 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 471 val lastWalkPtr = Reg(new RobPtr) 472 val allowEnqueue = RegInit(true.B) 473 474 val enqPtr = enqPtrVec.head 475 val deqPtr = deqPtrVec(0) 476 val walkPtr = walkPtrVec(0) 477 478 val isEmpty = enqPtr === deqPtr 479 val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level) 480 481 val snptEnq = io.enq.canAccept && io.enq.req.head.valid && io.enq.req.head.bits.snapshot 482 val snapshots = SnapshotGenerator(enqPtrVec, snptEnq, io.snpt.snptDeq, io.redirect.valid, io.snpt.flushVec) 483 val debug_lsIssue = WireDefault(debug_lsIssued) 484 debug_lsIssue(deqPtr.value) := io.debugHeadLsIssue 485 486 /** 487 * states of Rob 488 */ 489 val s_idle :: s_walk :: Nil = Enum(2) 490 val state = RegInit(s_idle) 491 492 /** 493 * Data Modules 494 * 495 * CommitDataModule: data from dispatch 496 * (1) read: commits/walk/exception 497 * (2) write: enqueue 498 * 499 * WritebackData: data from writeback 500 * (1) read: commits/walk/exception 501 * (2) write: write back from exe units 502 */ 503 private def hasRen: Boolean = true 504 val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth, hasRen = hasRen)) 505 val dispatchDataRead = dispatchData.io.rdata 506 507 val exceptionGen = Module(new ExceptionGen(params)) 508 val exceptionDataRead = exceptionGen.io.state 509 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 510 val vxsatDataRead = Wire(Vec(CommitWidth, Bool())) 511 512 io.robDeqPtr := deqPtr 513 io.debugRobHead := debug_microOp(deqPtr.value) 514 515 val rab = Module(new RenameBuffer(RabSize)) 516 val vtypeBuffer = Module(new VTypeBuffer(VTypeBufferSize)) 517 518 /** 519 * connection of [[rab]] 520 */ 521 rab.io.redirect.valid := io.redirect.valid 522 523 rab.io.req.zip(io.enq.req).map { case (dest, src) => 524 dest.bits := src.bits 525 dest.valid := src.valid && io.enq.canAccept 526 } 527 528 val commitDestSizeSeq = (0 until CommitWidth).map(i => realDestSize(deqPtrVec(i).value)) 529 val walkDestSizeSeq = (0 until CommitWidth).map(i => realDestSize(walkPtrVec(i).value)) 530 531 val walkDestSizeDeqGroup = RegInit(VecInit(Seq.fill(CommitWidth)(0.U(log2Up(MaxUopSize + 1).W)))) 532 val commitSizeSumSeq = (0 until CommitWidth).map(i => realDestSizeDeqGroup.take(i+1).reduce(_ +& _)) 533 val walkSizeSumSeq = (0 until CommitWidth).map(i => walkDestSizeDeqGroup.take(i+1).reduce(_ +& _)) 534 val commitSizeSumCond = io.commits.commitValid.map(_ && io.commits.isCommit) 535 val walkSizeSumCond = io.commits.walkValid.map(_ && io.commits.isWalk) 536 val commitSizeSum = PriorityMuxDefault(commitSizeSumCond.reverse.zip(commitSizeSumSeq.reverse), 0.U) 537 val walkSizeSum = PriorityMuxDefault(walkSizeSumCond.reverse.zip(walkSizeSumSeq.reverse), 0.U) 538 539 rab.io.fromRob.commitSize := commitSizeSum 540 rab.io.fromRob.walkSize := walkSizeSum 541 rab.io.snpt := io.snpt 542 rab.io.snpt.snptEnq := snptEnq 543 544 io.rabCommits := rab.io.commits 545 io.diffCommits.foreach(_ := rab.io.diffCommits.get) 546 547 /** 548 * connection of [[vtypeBuffer]] 549 */ 550 551 vtypeBuffer.io.redirect.valid := io.redirect.valid 552 553 vtypeBuffer.io.req.zip(io.enq.req).map { case (sink, source) => 554 sink.valid := source.valid && io.enq.canAccept 555 sink.bits := source.bits 556 } 557 558 private val commitIsVTypeVec = VecInit(io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => io.commits.isCommit && valid && info.isVset }) 559 private val walkIsVTypeVec = VecInit(io.commits.walkValid.zip(io.commits.info).map { case (valid, info) => io.commits.isWalk && valid && info.isVset }) 560 vtypeBuffer.io.fromRob.commitSize := PopCount(commitIsVTypeVec) 561 vtypeBuffer.io.fromRob.walkSize := PopCount(walkIsVTypeVec) 562 vtypeBuffer.io.snpt := io.snpt 563 vtypeBuffer.io.snpt.snptEnq := snptEnq 564 io.toDecode.isResumeVType := vtypeBuffer.io.toDecode.isResumeVType 565 io.toDecode.commitVType := vtypeBuffer.io.toDecode.commitVType 566 io.toDecode.walkVType := vtypeBuffer.io.toDecode.walkVType 567 568 /** 569 * Enqueue (from dispatch) 570 */ 571 // special cases 572 val hasBlockBackward = RegInit(false.B) 573 val hasWaitForward = RegInit(false.B) 574 val doingSvinval = RegInit(false.B) 575 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 576 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 577 when (isEmpty) { hasBlockBackward:= false.B } 578 // When any instruction commits, hasNoSpecExec should be set to false.B 579 when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasWaitForward:= false.B } 580 581 // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing. 582 // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle. 583 // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts. 584 val hasWFI = RegInit(false.B) 585 io.cpu_halt := hasWFI 586 // WFI Timeout: 2^20 = 1M cycles 587 val wfi_cycles = RegInit(0.U(20.W)) 588 when (hasWFI) { 589 wfi_cycles := wfi_cycles + 1.U 590 }.elsewhen (!hasWFI && RegNext(hasWFI)) { 591 wfi_cycles := 0.U 592 } 593 val wfi_timeout = wfi_cycles.andR 594 when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) { 595 hasWFI := false.B 596 } 597 598 val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.req.take(i).map(req => req.valid && req.bits.firstUop))))) 599 io.enq.canAccept := allowEnqueue && !hasBlockBackward && rab.io.canEnq && vtypeBuffer.io.canEnq 600 io.enq.resp := allocatePtrVec 601 val canEnqueue = VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop && io.enq.canAccept)) 602 val timer = GTimer() 603 for (i <- 0 until RenameWidth) { 604 // we don't check whether io.redirect is valid here since redirect has higher priority 605 when (canEnqueue(i)) { 606 val enqUop = io.enq.req(i).bits 607 val enqIndex = allocatePtrVec(i).value 608 // store uop in data module and debug_microOp Vec 609 debug_microOp(enqIndex) := enqUop 610 debug_microOp(enqIndex).debugInfo.dispatchTime := timer 611 debug_microOp(enqIndex).debugInfo.enqRsTime := timer 612 debug_microOp(enqIndex).debugInfo.selectTime := timer 613 debug_microOp(enqIndex).debugInfo.issueTime := timer 614 debug_microOp(enqIndex).debugInfo.writebackTime := timer 615 debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer 616 debug_microOp(enqIndex).debugInfo.tlbRespTime := timer 617 debug_lsInfo(enqIndex) := DebugLsInfo.init 618 debug_lsTopdownInfo(enqIndex) := LsTopdownInfo.init 619 debug_lqIdxValid(enqIndex) := false.B 620 debug_lsIssued(enqIndex) := false.B 621 622 when (enqUop.blockBackward) { 623 hasBlockBackward := true.B 624 } 625 when (enqUop.waitForward) { 626 hasWaitForward := true.B 627 } 628 val enqHasTriggerCanFire = io.enq.req(i).bits.trigger.getFrontendCanFire 629 val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR 630 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 631 when(!enqHasTriggerCanFire && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe)) 632 { 633 doingSvinval := true.B 634 } 635 // the end instruction of Svinval enqs so clear doingSvinval 636 when(!enqHasTriggerCanFire && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe)) 637 { 638 doingSvinval := false.B 639 } 640 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 641 assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe))) 642 when (enqUop.isWFI && !enqHasException && !enqHasTriggerCanFire) { 643 hasWFI := true.B 644 } 645 646 mmio(enqIndex) := false.B 647 648 vls(enqIndex) := enqUop.vlsInstr 649 } 650 } 651 val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(req => req.valid && req.bits.firstUop)), 0.U) 652 io.enq.isEmpty := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR) 653 654 when (!io.wfi_enable) { 655 hasWFI := false.B 656 } 657 // sel vsetvl's flush position 658 val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3) 659 val vsetvlState = RegInit(vs_idle) 660 661 val firstVInstrFtqPtr = RegInit(0.U.asTypeOf(new FtqPtr)) 662 val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W))) 663 val firstVInstrRobIdx = RegInit(0.U.asTypeOf(new RobPtr)) 664 665 val enq0 = io.enq.req(0) 666 val enq0IsVset = enq0.bits.isVset && enq0.bits.lastUop && canEnqueue(0) 667 val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe 668 val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVArith(req.bits.fuType) && fire} 669 // for vs_idle 670 val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType))) 671 // for vs_waitVinstr 672 val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1) 673 val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req) 674 when(vsetvlState === vs_idle){ 675 firstVInstrFtqPtr := firstVInstrIdle.bits.ftqPtr 676 firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset 677 firstVInstrRobIdx := firstVInstrIdle.bits.robIdx 678 }.elsewhen(vsetvlState === vs_waitVinstr){ 679 when(Cat(enqIsVInstrOrVset).orR){ 680 firstVInstrFtqPtr := firstVInstrWait.bits.ftqPtr 681 firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset 682 firstVInstrRobIdx := firstVInstrWait.bits.robIdx 683 } 684 } 685 686 val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR 687 when(vsetvlState === vs_idle && !io.redirect.valid){ 688 when(enq0IsVsetFlush){ 689 vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr) 690 } 691 }.elsewhen(vsetvlState === vs_waitVinstr){ 692 when(io.redirect.valid){ 693 vsetvlState := vs_idle 694 }.elsewhen(Cat(enqIsVInstrOrVset).orR){ 695 vsetvlState := vs_waitFlush 696 } 697 }.elsewhen(vsetvlState === vs_waitFlush){ 698 when(io.redirect.valid){ 699 vsetvlState := vs_idle 700 } 701 } 702 703 // lqEnq 704 io.debugEnqLsq.needAlloc.map(_(0)).zip(io.debugEnqLsq.req).foreach { case (alloc, req) => 705 when(io.debugEnqLsq.canAccept && alloc && req.valid) { 706 debug_microOp(req.bits.robIdx.value).lqIdx := req.bits.lqIdx 707 debug_lqIdxValid(req.bits.robIdx.value) := true.B 708 } 709 } 710 711 // lsIssue 712 when(io.debugHeadLsIssue) { 713 debug_lsIssued(deqPtr.value) := true.B 714 } 715 716 /** 717 * Writeback (from execution units) 718 */ 719 for (wb <- exuWBs) { 720 when (wb.valid) { 721 val wbIdx = wb.bits.robIdx.value 722 debug_exuData(wbIdx) := wb.bits.data 723 debug_exuDebug(wbIdx) := wb.bits.debug 724 debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime 725 debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime 726 debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime 727 debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime 728 729 // debug for lqidx and sqidx 730 debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr)) 731 debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr)) 732 733 val debug_Uop = debug_microOp(wbIdx) 734 XSInfo(true.B, 735 p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " + 736 p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " + 737 p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.robIdx}\n" 738 ) 739 } 740 } 741 742 val writebackNum = PopCount(exuWBs.map(_.valid)) 743 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 744 745 for (i <- 0 until LoadPipelineWidth) { 746 when (RegNext(io.lsq.mmio(i))) { 747 mmio(RegEnable(io.lsq.uop(i).robIdx, io.lsq.mmio(i)).value) := true.B 748 } 749 } 750 751 /** 752 * RedirectOut: Interrupt and Exceptions 753 */ 754 val deqDispatchData = dispatchDataRead(0) 755 val debug_deqUop = debug_microOp(deqPtr.value) 756 757 val intrBitSetReg = RegNext(io.csr.intrBitSet) 758 val intrEnable = intrBitSetReg && !hasWaitForward && interrupt_safeDeqGroup(0) 759 val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 760 val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR || 761 exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.canFire) 762 val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe 763 val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst 764 val exceptionEnable = isWritebacked(deqPtr.value) && deqHasException 765 766 XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n") 767 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getFrontendCanFire, "Debug Mode: Deq has frontend trigger exception\n") 768 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getBackendCanFire, "Debug Mode: Deq has backend trigger exception\n") 769 770 val isFlushPipe = isWritebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst) 771 772 val isVsetFlushPipe = isWritebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset 773// val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush) 774 val needModifyFtqIdxOffset = false.B 775 io.isVsetFlushPipe := isVsetFlushPipe 776 777 // io.flushOut will trigger redirect at the next cycle. 778 // Block any redirect or commit at the next cycle. 779 val lastCycleFlush = RegNext(io.flushOut.valid) 780 781 io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush 782 io.flushOut.bits := DontCare 783 io.flushOut.bits.isRVC := deqDispatchData.isRVC 784 io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr) 785 io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx) 786 io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset) 787 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next" 788 io.flushOut.bits.interrupt := true.B 789 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 790 XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable) 791 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 792 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 793 794 val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush 795 io.exception.valid := RegNext(exceptionHappen) 796 io.exception.bits.pc := RegEnable(debug_deqUop.pc, exceptionHappen) 797 io.exception.bits.gpaddr := io.readGPAMemData 798 io.exception.bits.instr := RegEnable(debug_deqUop.instr, exceptionHappen) 799 io.exception.bits.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 800 io.exception.bits.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 801 io.exception.bits.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 802 io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 803 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 804 io.exception.bits.isHls := RegEnable(deqDispatchData.isHls, exceptionHappen) 805 io.exception.bits.vls := RegEnable(vls(deqPtr.value), exceptionHappen) 806 io.exception.bits.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen) 807 io.csr.vstart.valid := RegEnable(exceptionDataRead.bits.vstartEn, false.B, exceptionHappen) 808 io.csr.vstart.bits := RegEnable(exceptionDataRead.bits.vstart, exceptionHappen) 809 810 // data will be one cycle after valid 811 io.readGPAMemAddr.valid := exceptionHappen 812 io.readGPAMemAddr.bits.ftqPtr := exceptionDataRead.bits.ftqPtr 813 io.readGPAMemAddr.bits.ftqOffset := exceptionDataRead.bits.ftqOffset 814 815 XSDebug(io.flushOut.valid, 816 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " + 817 p"excp $exceptionEnable flushPipe $isFlushPipe " + 818 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 819 820 821 /** 822 * Commits (and walk) 823 * They share the same width. 824 */ 825 val shouldWalkVec = VecInit(walkPtrVec.map(_ <= lastWalkPtr)) 826 val walkFinished = VecInit(walkPtrVec.map(_ >= lastWalkPtr)).asUInt.orR 827 rab.io.fromRob.walkEnd := state === s_walk && walkFinished 828 vtypeBuffer.io.fromRob.walkEnd := state === s_walk && walkFinished 829 830 require(RenameWidth <= CommitWidth) 831 832 // wiring to csr 833 val (wflags, dirtyFs) = (0 until CommitWidth).map(i => { 834 val v = io.commits.commitValid(i) 835 val info = io.commits.info(i) 836 (v & info.wflags, v & (info.dirtyFs | fflagsDataRead(i).orR)) 837 }).unzip 838 val fflags = Wire(Valid(UInt(5.W))) 839 fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR 840 fflags.bits := wflags.zip(fflagsDataRead).map({ 841 case (w, f) => Mux(w, f, 0.U) 842 }).reduce(_|_) 843 val dirty_fs = io.commits.isCommit && VecInit(dirtyFs).asUInt.orR 844 845 val vxsat = Wire(Valid(Bool())) 846 vxsat.valid := io.commits.isCommit && vxsat.bits 847 vxsat.bits := io.commits.commitValid.zip(vxsatDataRead).map { 848 case (valid, vxsat) => valid & vxsat 849 }.reduce(_ | _) 850 851 // when mispredict branches writeback, stop commit in the next 2 cycles 852 // TODO: don't check all exu write back 853 val misPredWb = Cat(VecInit(redirectWBs.map(wb => 854 wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid 855 ).toSeq)).orR 856 val misPredBlockCounter = Reg(UInt(3.W)) 857 misPredBlockCounter := Mux(misPredWb, 858 "b111".U, 859 misPredBlockCounter >> 1.U 860 ) 861 val misPredBlock = misPredBlockCounter(0) 862 val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI || io.redirect.valid 863 864 io.commits.isWalk := state === s_walk 865 io.commits.isCommit := state === s_idle && !blockCommit 866 val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value))) 867 val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value))) 868 if(backendParams.debugEn) { 869 dontTouch(commit_v) 870 } 871 val commit_vDeqGroup = Reg(chiselTypeOf(walk_v)) 872 // store will be commited iff both sta & std have been writebacked 873 val commit_w = VecInit(deqPtrVec.map(ptr => isWritebacked(ptr.value) && commitTrigger(ptr.value))) 874 val commit_wDeqGroup = Reg(chiselTypeOf(walk_v)) 875 val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last) 876 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_wDeqGroup(i))) 877 val allowOnlyOneCommit = commit_exception || intrBitSetReg 878 // for instructions that may block others, we don't allow them to commit 879 for (i <- 0 until CommitWidth) { 880 // defaults: state === s_idle and instructions commit 881 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 882 val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst 883 io.commits.commitValid(i) := commit_vDeqGroup(i) && commit_wDeqGroup(i) && !isBlocked 884 io.commits.info(i) := dispatchDataRead(i) 885 io.commits.robIdx(i) := deqPtrVec(i) 886 887 io.commits.walkValid(i) := shouldWalkVec(i) 888 when (state === s_walk) { 889 when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) { 890 XSError(!walk_v(i), s"The walking entry($i) should be valid\n") 891 } 892 } 893 894 XSInfo(io.commits.isCommit && io.commits.commitValid(i), 895 "retired pc %x wen %d ldest %d pdest %x data %x fflags: %b vxsat: %b\n", 896 debug_microOp(deqPtrVec(i).value).pc, 897 io.commits.info(i).rfWen, 898 io.commits.info(i).ldest, 899 io.commits.info(i).pdest, 900 debug_exuData(deqPtrVec(i).value), 901 fflagsDataRead(i), 902 vxsatDataRead(i) 903 ) 904 XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n", 905 debug_microOp(walkPtrVec(i).value).pc, 906 io.commits.info(i).rfWen, 907 io.commits.info(i).ldest, 908 debug_exuData(walkPtrVec(i).value) 909 ) 910 } 911 if (env.EnableDifftest) { 912 io.commits.info.map(info => dontTouch(info.pc)) 913 } 914 915 // sync fflags/dirty_fs/vxsat to csr 916 io.csr.fflags := RegEnable(fflags, io.commits.isCommit) 917 io.csr.dirty_fs := RegEnable(dirty_fs, io.commits.isCommit) 918 io.csr.vxsat := RegEnable(vxsat, io.commits.isCommit) 919 920 // sync v csr to csr 921 // for difftest 922 if(env.AlwaysBasicDiff || env.EnableDifftest) { 923 val isDiffWriteVconfigVec = io.diffCommits.get.commitValid.zip(io.diffCommits.get.info).map { case (valid, info) => valid && info.ldest === VCONFIG_IDX.U && info.vecWen }.reverse 924 io.csr.vcsrFlag := RegNext(io.diffCommits.get.isCommit && Cat(isDiffWriteVconfigVec).orR) 925 } 926 else{ 927 io.csr.vcsrFlag := false.B 928 } 929 930 // commit load/store to lsq 931 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 932 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE)) 933 val deqPtrVec_next = Wire(Vec(CommitWidth, Output(new RobPtr))) 934 io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U)) 935 io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U)) 936 // indicate a pending load or store 937 io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value) && mmio(deqPtr.value)) 938 io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value)) 939 io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0)) 940 io.lsq.pendingPtr := RegNext(deqPtr) 941 io.lsq.pendingPtrNext := RegNext(deqPtrVec_next.head) 942 943 /** 944 * state changes 945 * (1) redirect: switch to s_walk 946 * (2) walk: when walking comes to the end, switch to s_idle 947 */ 948 val state_next = Mux( 949 io.redirect.valid, s_walk, 950 Mux( 951 state === s_walk && walkFinished && rab.io.status.walkEnd && vtypeBuffer.io.status.walkEnd, s_idle, 952 state 953 ) 954 ) 955 XSPerfAccumulate("s_idle_to_idle", state === s_idle && state_next === s_idle) 956 XSPerfAccumulate("s_idle_to_walk", state === s_idle && state_next === s_walk) 957 XSPerfAccumulate("s_walk_to_idle", state === s_walk && state_next === s_idle) 958 XSPerfAccumulate("s_walk_to_walk", state === s_walk && state_next === s_walk) 959 state := state_next 960 961 /** 962 * pointers and counters 963 */ 964 val deqPtrGenModule = Module(new RobDeqPtrWrapper) 965 deqPtrGenModule.io.state := state 966 deqPtrGenModule.io.deq_v := commit_vDeqGroup 967 deqPtrGenModule.io.deq_w := commit_wDeqGroup 968 deqPtrGenModule.io.exception_state := exceptionDataRead 969 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 970 deqPtrGenModule.io.hasNoSpecExec := hasWaitForward 971 deqPtrGenModule.io.interrupt_safe := interrupt_safeDeqGroup(0) 972 deqPtrGenModule.io.blockCommit := blockCommit 973 deqPtrVec := deqPtrGenModule.io.out 974 deqPtrVec_next := deqPtrGenModule.io.next_out 975 976 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 977 enqPtrGenModule.io.redirect := io.redirect 978 enqPtrGenModule.io.allowEnqueue := allowEnqueue && rab.io.canEnq 979 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 980 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop)) 981 enqPtrVec := enqPtrGenModule.io.out 982 983 // next walkPtrVec: 984 // (1) redirect occurs: update according to state 985 // (2) walk: move forwards 986 val walkPtrVec_next = Mux(io.redirect.valid, 987 Mux(io.snpt.useSnpt, snapshots(io.snpt.snptSelect), deqPtrVec_next), 988 Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec) 989 ) 990 walkPtrVec := walkPtrVec_next 991 walkDestSizeDeqGroup.zip(walkPtrVec_next).map{ 992 case (reg, ptrNext) => reg := realDestSize(ptrNext.value) 993 } 994 val numValidEntries = distanceBetween(enqPtr, deqPtr) 995 val commitCnt = PopCount(io.commits.commitValid) 996 997 allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U 998 999 val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0)) 1000 when (io.redirect.valid) { 1001 lastWalkPtr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx - 1.U, io.redirect.bits.robIdx) 1002 } 1003 1004 1005 /** 1006 * States 1007 * We put all the stage bits changes here. 1008 1009 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 1010 * All states: (1) valid; (2) writebacked; (3) flagBkup 1011 */ 1012 1013 // update commit_vDeqGroup 1014 val deqPtrValue = Wire(Vec(2 * CommitWidth, new RobPtr)) 1015 deqPtrValue.zipWithIndex.map{case (deq, i) => deq := deqPtrVec(0) + i.U} 1016 val commit_vReadVec = Wire(Vec(2 * CommitWidth, chiselTypeOf(commit_v(0)))) 1017 val commit_vNextVec = Wire(Vec(2 * CommitWidth, chiselTypeOf(commit_v(0)))) 1018 if(backendParams.debugEn) { 1019 dontTouch(commit_vDeqGroup) 1020 dontTouch(commit_vReadVec) 1021 dontTouch(commit_vNextVec) 1022 dontTouch(deqPtrValue) 1023 } 1024 for (i <- 0 until 2 * CommitWidth) { 1025 commit_vReadVec(i) := valid(deqPtrValue(i).value) 1026 commit_vNextVec(i) := commit_vReadVec(i) 1027 } 1028 (0 until CommitWidth).map { case i => 1029 val nextVec = commit_vNextVec 1030 val commitEn = deqPtrGenModule.io.commitEn 1031 val canCommitPriorityCond = deqPtrGenModule.io.canCommitPriorityCond 1032 val commit_wNextThis = nextVec.drop(i).take(CommitWidth+1) 1033 val originValue = nextVec(i) 1034 val ifCommitEnValue = PriorityMuxDefault(canCommitPriorityCond.zip(commit_wNextThis), originValue) 1035 commit_vDeqGroup(i) := Mux(commitEn, ifCommitEnValue, originValue) 1036 } 1037 // update commit_wDeqGroup 1038 val commit_wReadVec = Wire(Vec(2 * CommitWidth, chiselTypeOf(commit_w(0)))) 1039 val commit_wNextVec = Wire(Vec(2 * CommitWidth, chiselTypeOf(commit_w(0)))) 1040 if(backendParams.debugEn) { 1041 dontTouch(commit_wDeqGroup) 1042 dontTouch(commit_wReadVec) 1043 dontTouch(commit_wNextVec) 1044 dontTouch(commit_w) 1045 } 1046 for (i <- 0 until 2 * CommitWidth) { 1047 commit_wReadVec(i) := isWritebacked(deqPtrValue(i).value) 1048 commit_wNextVec(i) := commit_wReadVec(i) 1049 } 1050 (0 until CommitWidth).map { case i => 1051 val nextVec = commit_wNextVec 1052 val commitEn = deqPtrGenModule.io.commitEn 1053 val canCommitPriorityCond = deqPtrGenModule.io.canCommitPriorityCond 1054 val commit_wNextThis = nextVec.drop(i).take(CommitWidth+1) 1055 val originValue = nextVec(i) 1056 val ifCommitEnValue = PriorityMuxDefault(canCommitPriorityCond.zip(commit_wNextThis),originValue) 1057 commit_wDeqGroup(i) := Mux(commitEn, ifCommitEnValue, originValue) 1058 } 1059 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 1060 1061 // redirect logic writes 6 valid 1062 val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr)) 1063 val redirectTail = Reg(new RobPtr) 1064 val redirectIdle :: redirectBusy :: Nil = Enum(2) 1065 val redirectState = RegInit(redirectIdle) 1066 val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail)) 1067 when(redirectState === redirectBusy) { 1068 redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U) 1069 redirectHeadVec zip invMask foreach { 1070 case (redirectHead, inv) => when(inv) { 1071 valid(redirectHead.value) := false.B 1072 for (j <- 0 until 2 * CommitWidth) { 1073 when(redirectHead.value === deqPtrValue(j).value) { 1074 commit_vNextVec(j) := false.B 1075 } 1076 } 1077 } 1078 } 1079 when(!invMask.last) { 1080 redirectState := redirectIdle 1081 } 1082 } 1083 when(io.redirect.valid) { 1084 redirectState := redirectBusy 1085 when(redirectState === redirectIdle) { 1086 redirectTail := enqPtr 1087 } 1088 redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) => 1089 redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 1090 } 1091 } 1092 // enqueue logic writes 6 valid 1093 for (i <- 0 until RenameWidth) { 1094 when (canEnqueue(i) && !io.redirect.valid) { 1095 valid(allocatePtrVec(i).value) := true.B 1096 } 1097 } 1098 // dequeue logic writes 6 valid 1099 for (i <- 0 until CommitWidth) { 1100 val commitValid = io.commits.isCommit && io.commits.commitValid(i) 1101 when (commitValid) { 1102 valid(commitReadAddr(i)) := false.B 1103 for (j <- 0 until 2 * CommitWidth) { 1104 when(commitReadAddr(i) === deqPtrValue(j).value) { 1105 commit_vNextVec(j) := false.B 1106 } 1107 } 1108 } 1109 } 1110 1111 // debug_inst update 1112 for(i <- 0 until (LduCnt + StaCnt)) { 1113 debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i)) 1114 debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i)) 1115 debug_lsInfo(io.debug_ls.debugLsInfo(i).s3_robIdx).s3SignalEnable(io.debug_ls.debugLsInfo(i)) 1116 } 1117 for (i <- 0 until LduCnt) { 1118 debug_lsTopdownInfo(io.lsTopdownInfo(i).s1.robIdx).s1SignalEnable(io.lsTopdownInfo(i)) 1119 debug_lsTopdownInfo(io.lsTopdownInfo(i).s2.robIdx).s2SignalEnable(io.lsTopdownInfo(i)) 1120 } 1121 1122 // status field: writebacked 1123 // enqueue logic set 6 writebacked to false 1124 for (i <- 0 until RenameWidth) { 1125 when(canEnqueue(i)) { 1126 val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec).asUInt.orR 1127 val enqHasTriggerCanFire = io.enq.req(i).bits.trigger.getFrontendCanFire 1128 val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove 1129 val isStu = FuType.isStore(io.enq.req(i).bits.fuType) 1130 commitTrigger(allocatePtrVec(i).value) := enqIsWritebacked && !enqHasException && !enqHasTriggerCanFire && !isStu 1131 } 1132 } 1133 when(exceptionGen.io.out.valid) { 1134 val wbIdx = exceptionGen.io.out.bits.robIdx.value 1135 commitTrigger(wbIdx) := true.B 1136 } 1137 1138 // writeback logic set numWbPorts writebacked to true 1139 val blockWbSeq = Wire(Vec(exuWBs.length, Bool())) 1140 blockWbSeq.map(_ := false.B) 1141 for ((wb, blockWb) <- exuWBs.zip(blockWbSeq)) { 1142 when(wb.valid) { 1143 val wbIdx = wb.bits.robIdx.value 1144 val wbHasException = wb.bits.exceptionVec.getOrElse(0.U).asUInt.orR 1145 val wbHasTriggerCanFire = wb.bits.trigger.getOrElse(0.U).asTypeOf(io.enq.req(0).bits.trigger).getBackendCanFire //Todo: wb.bits.trigger.getHitBackend 1146 val wbHasFlushPipe = wb.bits.flushPipe.getOrElse(false.B) 1147 val wbHasReplayInst = wb.bits.replay.getOrElse(false.B) //Todo: && wb.bits.replayInst 1148 blockWb := wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerCanFire 1149 commitTrigger(wbIdx) := !blockWb 1150 } 1151 } 1152 1153 // if the first uop of an instruction is valid , write writebackedCounter 1154 val uopEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid) 1155 val instEnqValidSeq = io.enq.req.map (req => io.enq.canAccept && req.valid && req.bits.firstUop) 1156 val enqNeedWriteRFSeq = io.enq.req.map(_.bits.needWriteRf) 1157 val enqRobIdxSeq = io.enq.req.map(req => req.bits.robIdx.value) 1158 val enqUopNumVec = VecInit(io.enq.req.map(req => req.bits.numUops)) 1159 val enqWBNumVec = VecInit(io.enq.req.map(req => req.bits.numWB)) 1160 val enqEliminatedMoveVec = VecInit(io.enq.req.map(req => req.bits.eliminatedMove)) 1161 1162 private val enqWriteStdVec: Vec[Bool] = VecInit(io.enq.req.map { 1163 req => FuType.isAMO(req.bits.fuType) || FuType.isStore(req.bits.fuType) 1164 }) 1165 val fflags_wb = fflagsWBs 1166 val vxsat_wb = vxsatWBs 1167 for(i <- 0 until RobSize){ 1168 1169 val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === i.U) 1170 val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch } 1171 val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch } 1172 val instCanEnqFlag = Cat(instCanEnqSeq).orR 1173 1174 realDestSize(i) := Mux(!valid(i) && instCanEnqFlag || valid(i), realDestSize(i) + PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map{ case(writeFlag, valid) => writeFlag && valid }), 0.U) 1175 1176 val enqUopNum = PriorityMux(instCanEnqSeq, enqUopNumVec) 1177 val enqWBNum = PriorityMux(instCanEnqSeq, enqWBNumVec) 1178 val enqEliminatedMove = PriorityMux(instCanEnqSeq, enqEliminatedMoveVec) 1179 val enqWriteStd = PriorityMux(instCanEnqSeq, enqWriteStdVec) 1180 1181 val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 1182 val canWbNoBlockSeq = canWbSeq.zip(blockWbSeq).map{ case(canWb, blockWb) => canWb && !blockWb } 1183 val canStdWbSeq = VecInit(stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)) 1184 val wbCnt = Mux1H(canWbNoBlockSeq, io.writebackNums.map(_.bits)) 1185 1186 val exceptionHas = RegInit(false.B) 1187 val exceptionHasWire = Wire(Bool()) 1188 exceptionHasWire := MuxCase(exceptionHas, Seq( 1189 (valid(i) && exceptionGen.io.out.valid && exceptionGen.io.out.bits.robIdx.value === i.U) -> true.B, 1190 !valid(i) -> false.B 1191 )) 1192 exceptionHas := exceptionHasWire 1193 1194 when (exceptionHas || exceptionHasWire) { 1195 // exception flush 1196 uopNumVec(i) := 0.U 1197 stdWritebacked(i) := true.B 1198 for (j <- 0 until 2 * CommitWidth) { 1199 when(i.U === deqPtrValue(j).value) { 1200 commit_wNextVec(j) := true.B 1201 } 1202 } 1203 }.elsewhen(!valid(i) && instCanEnqFlag) { 1204 // enq set num of uops 1205 uopNumVec(i) := enqWBNum 1206 stdWritebacked(i) := Mux(enqWriteStd, false.B, true.B) 1207 }.elsewhen(valid(i)) { 1208 // update by writing back 1209 uopNumVec(i) := uopNumVec(i) - wbCnt 1210 assert(!(uopNumVec(i) - wbCnt > uopNumVec(i)), s"Overflow! robIdx=$i") 1211 for (j <- 0 until 2 * CommitWidth) { 1212 when(i.U === deqPtrValue(j).value) { 1213 commit_wNextVec(j) := (uopNumVec(i) === wbCnt) && stdWritebacked(i) 1214 } 1215 } 1216 when (canStdWbSeq.asUInt.orR) { 1217 stdWritebacked(i) := true.B 1218 for (j <- 0 until 2 * CommitWidth) { 1219 when(i.U === deqPtrValue(j).value) { 1220 commit_wNextVec(j) := uopNumVec(i) === wbCnt 1221 } 1222 } 1223 } 1224 }.otherwise { 1225 uopNumVec(i) := 0.U 1226 for (j <- 0 until 2 * CommitWidth) { 1227 when(i.U === deqPtrValue(j).value) { 1228 commit_wNextVec(j) := stdWritebacked(i) 1229 } 1230 } 1231 } 1232 1233 val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U && writeback.bits.wflags.getOrElse(false.B)) 1234 val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.fold(false.B)(_ | _) 1235 fflagsDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, fflagsDataModule(i) | fflagsRes) 1236 1237 val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 1238 val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.fold(false.B)(_ | _) 1239 vxsatDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, vxsatDataModule(i) | vxsatRes) 1240 } 1241 // update uopNumVecDeqGroup 1242 val realDestSizeReadVec = Wire(Vec(2*CommitWidth, chiselTypeOf(realDestSize(0)))) 1243 val realDestSizeNextVec = Wire(Vec(2*CommitWidth, chiselTypeOf(realDestSize(0)))) 1244 for(i <- 0 until 2*CommitWidth) { 1245 val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === deqPtrValue(i).value) 1246 val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map { case (valid, isMatch) => valid && isMatch } 1247 val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map { case (valid, isMatch) => valid && isMatch } 1248 val instCanEnqFlag = Cat(instCanEnqSeq).orR 1249 realDestSizeReadVec(i) := realDestSize(deqPtrValue(i).value) 1250 realDestSizeNextVec(i) := Mux(valid(deqPtrValue(i).value) || instCanEnqFlag, realDestSizeReadVec(i) + PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map { case (writeFlag, valid) => writeFlag && valid }), 0.U) 1251 } 1252 (0 until CommitWidth).map{ case i => 1253 val nextVec = realDestSizeNextVec 1254 val commitEn = deqPtrGenModule.io.commitEn 1255 val canCommitPriorityCond = deqPtrGenModule.io.canCommitPriorityCond 1256 val commit_wNextThis = nextVec.drop(i).take(CommitWidth+1) 1257 val originValue = nextVec(i) 1258 val ifCommitEnValue = PriorityMuxDefault(canCommitPriorityCond.zip(commit_wNextThis), originValue) 1259 realDestSizeDeqGroup(i) := Mux(commitEn, ifCommitEnValue, originValue) 1260 } 1261 // flagBkup 1262 // enqueue logic set 6 flagBkup at most 1263 for (i <- 0 until RenameWidth) { 1264 when (canEnqueue(i)) { 1265 flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag 1266 } 1267 } 1268 1269 // interrupt_safe 1270 1271 val interrupt_safeReadVec = Wire(Vec(2 * CommitWidth, chiselTypeOf(interrupt_safe(0)))) 1272 val interrupt_safeNextVec = Wire(Vec(2 * CommitWidth, chiselTypeOf(interrupt_safe(0)))) 1273 if(backendParams.debugEn){ 1274 dontTouch(interrupt_safeDeqGroup) 1275 dontTouch(interrupt_safeReadVec) 1276 dontTouch(interrupt_safeNextVec) 1277 } 1278 for (i <- 0 until 2 * CommitWidth) { 1279 interrupt_safeReadVec(i) := interrupt_safe(deqPtrValue(i).value) 1280 interrupt_safeNextVec(i) := interrupt_safeReadVec(i) 1281 } 1282 (0 until CommitWidth).map { case i => 1283 val nextVec = interrupt_safeNextVec 1284 val commitEn = deqPtrGenModule.io.commitEn 1285 val canCommitPriorityCond = deqPtrGenModule.io.canCommitPriorityCond 1286 val commit_wNextThis = nextVec.drop(i).take(CommitWidth+1) 1287 val originValue = nextVec(i) 1288 val ifCommitEnValue = PriorityMuxDefault(canCommitPriorityCond.zip(commit_wNextThis), originValue) 1289 interrupt_safeDeqGroup(i) := Mux(commitEn, ifCommitEnValue, originValue) 1290 } 1291 for (i <- 0 until RenameWidth) { 1292 // We RegNext the updates for better timing. 1293 // Note that instructions won't change the system's states in this cycle. 1294 when (RegNext(canEnqueue(i))) { 1295 // For now, we allow non-load-store instructions to trigger interrupts 1296 // For MMIO instructions, they should not trigger interrupts since they may 1297 // be sent to lower level before it writes back. 1298 // However, we cannot determine whether a load/store instruction is MMIO. 1299 // Thus, we don't allow load/store instructions to trigger an interrupt. 1300 // TODO: support non-MMIO load-store instructions to trigger interrupts 1301 val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType) 1302 interrupt_safe(RegEnable(allocatePtrVec(i).value, canEnqueue(i))) := RegEnable(allow_interrupts, canEnqueue(i)) 1303 for (j <- 0 until 2 * CommitWidth) { 1304 when(RegNext(allocatePtrVec(i).value) === deqPtrValue(j).value) { 1305 interrupt_safeNextVec(j) := RegEnable(allow_interrupts, canEnqueue(i)) 1306 } 1307 } 1308 } 1309 } 1310 1311 /** 1312 * read and write of data modules 1313 */ 1314 val commitReadAddr_next = Mux(state_next === s_idle, 1315 VecInit(deqPtrVec_next.map(_.value)), 1316 VecInit(walkPtrVec_next.map(_.value)) 1317 ) 1318 dispatchData.io.wen := canEnqueue 1319 dispatchData.io.waddr := allocatePtrVec.map(_.value) 1320 dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).zipWithIndex.foreach { case ((wdata, req), portIdx) => 1321 wdata.ldest := req.ldest 1322 wdata.rfWen := req.rfWen 1323 wdata.dirtyFs := req.dirtyFs 1324 wdata.vecWen := req.vecWen 1325 wdata.wflags := req.wfflags 1326 wdata.commitType := req.commitType 1327 wdata.pdest := req.pdest 1328 wdata.ftqIdx := req.ftqPtr 1329 wdata.ftqOffset := req.ftqOffset 1330 wdata.isMove := req.eliminatedMove 1331 wdata.isRVC := req.preDecodeInfo.isRVC 1332 wdata.pc := req.pc 1333 wdata.vtype := req.vpu.vtype 1334 wdata.isVset := req.isVset 1335 wdata.isHls := req.isHls 1336 wdata.instrSize := req.instrSize 1337 } 1338 for (i <- 0 until CommitWidth) { 1339 dispatchData.io.ren.get(i) := deqPtrGenModule.io.commitEn || io.redirect.valid || state === s_walk 1340 } 1341 dispatchData.io.raddr := commitReadAddr_next 1342 1343 exceptionGen.io.redirect <> io.redirect 1344 exceptionGen.io.flush := io.flushOut.valid 1345 1346 val canEnqueueEG = VecInit(io.enq.req.map(req => req.valid && io.enq.canAccept)) 1347 for (i <- 0 until RenameWidth) { 1348 exceptionGen.io.enq(i).valid := canEnqueueEG(i) 1349 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 1350 exceptionGen.io.enq(i).bits.ftqPtr := io.enq.req(i).bits.ftqPtr 1351 exceptionGen.io.enq(i).bits.ftqOffset := io.enq.req(i).bits.ftqOffset 1352 exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec) 1353 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe 1354 exceptionGen.io.enq(i).bits.isVset := io.enq.req(i).bits.isVset 1355 exceptionGen.io.enq(i).bits.replayInst := false.B 1356 XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst") 1357 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep 1358 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix 1359 exceptionGen.io.enq(i).bits.trigger.clear() 1360 exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.trigger.frontendHit 1361 exceptionGen.io.enq(i).bits.trigger.frontendCanFire := io.enq.req(i).bits.trigger.frontendCanFire 1362 exceptionGen.io.enq(i).bits.vstartEn := false.B //DontCare 1363 exceptionGen.io.enq(i).bits.vstart := 0.U //DontCare 1364 } 1365 1366 println(s"ExceptionGen:") 1367 println(s"num of exceptions: ${params.numException}") 1368 require(exceptionWBs.length == exceptionGen.io.wb.length, 1369 f"exceptionWBs.length: ${exceptionWBs.length}, " + 1370 f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}") 1371 for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) { 1372 exc_wb.valid := wb.valid 1373 exc_wb.bits.robIdx := wb.bits.robIdx 1374 // only enq inst use ftqPtr to read gpa 1375 exc_wb.bits.ftqPtr := 0.U.asTypeOf(exc_wb.bits.ftqPtr) 1376 exc_wb.bits.ftqOffset := 0.U.asTypeOf(exc_wb.bits.ftqOffset) 1377 exc_wb.bits.exceptionVec := wb.bits.exceptionVec.get 1378 exc_wb.bits.flushPipe := wb.bits.flushPipe.getOrElse(false.B) 1379 exc_wb.bits.isVset := false.B 1380 exc_wb.bits.replayInst := wb.bits.replay.getOrElse(false.B) 1381 exc_wb.bits.singleStep := false.B 1382 exc_wb.bits.crossPageIPFFix := false.B 1383 // TODO: make trigger configurable 1384 val trigger = wb.bits.trigger.getOrElse(0.U).asTypeOf(exc_wb.bits.trigger) 1385 exc_wb.bits.trigger.clear() // Don't care frontend timing, chain, hit and canFire 1386 exc_wb.bits.trigger.backendHit := trigger.backendHit 1387 exc_wb.bits.trigger.backendCanFire := trigger.backendCanFire 1388 exc_wb.bits.vstartEn := false.B //wb.bits.vstartEn.getOrElse(false.B) // todo need add vstart in ExuOutput 1389 exc_wb.bits.vstart := 0.U //wb.bits.vstart.getOrElse(0.U) 1390// println(s" [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " + 1391// s"flushPipe ${configs.exists(_.flushPipe)}, " + 1392// s"replayInst ${configs.exists(_.replayInst)}") 1393 } 1394 1395 fflagsDataRead := (0 until CommitWidth).map(i => fflagsDataModule(deqPtrVec(i).value)) 1396 vxsatDataRead := (0 until CommitWidth).map(i => vxsatDataModule(deqPtrVec(i).value)) 1397 1398 val instrCntReg = RegInit(0.U(64.W)) 1399 val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) }) 1400 val trueCommitCnt = RegNext(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => Mux(v, i.instrSize, 0.U) }.reduce(_ +& _)) +& fuseCommitCnt 1401 val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U) 1402 val instrCnt = instrCntReg + retireCounter 1403 instrCntReg := instrCnt 1404 io.csr.perfinfo.retiredInstr := retireCounter 1405 io.robFull := !allowEnqueue 1406 io.headNotReady := commit_vDeqGroup.head && !commit_wDeqGroup.head 1407 1408 /** 1409 * debug info 1410 */ 1411 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 1412 XSDebug("") 1413 XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n") 1414 for(i <- 0 until RobSize) { 1415 XSDebug(false, !valid(i), "-") 1416 XSDebug(false, valid(i) && isWritebacked(i.U), "w") 1417 XSDebug(false, valid(i) && !isWritebacked(i.U), "v") 1418 } 1419 XSDebug(false, true.B, "\n") 1420 1421 for(i <- 0 until RobSize) { 1422 if (i % 4 == 0) XSDebug("") 1423 XSDebug(false, true.B, "%x ", debug_microOp(i).pc) 1424 XSDebug(false, !valid(i), "- ") 1425 XSDebug(false, valid(i) && isWritebacked(i.U), "w ") 1426 XSDebug(false, valid(i) && !isWritebacked(i.U), "v ") 1427 if (i % 4 == 3) XSDebug(false, true.B, "\n") 1428 } 1429 1430 def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U) 1431 def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U) 1432 1433 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 1434 XSPerfAccumulate("clock_cycle", 1.U) 1435 QueuePerf(RobSize, numValidEntries, numValidEntries === RobSize.U) 1436 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 1437 XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt)) 1438 XSPerfRolling("ipc", ifCommitReg(trueCommitCnt), 1000, clock, reset) 1439 XSPerfRolling("cpi", perfCnt = 1.U/*Cycle*/, eventTrigger = ifCommitReg(trueCommitCnt), granularity = 1000, clock, reset) 1440 val commitIsMove = commitDebugUop.map(_.isMove) 1441 XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }))) 1442 val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) 1443 XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e }))) 1444 XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt)) 1445 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 1446 val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t } 1447 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 1448 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 1449 val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t } 1450 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 1451 val commitLoadWaitBit = commitDebugUop.map(_.loadWaitBit) 1452 XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))) 1453 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 1454 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }))) 1455 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && isWritebacked(i.U)))) 1456 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire))) 1457 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 1458 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)) 1459 XSPerfAccumulate("walkCycleTotal", state === s_walk) 1460 XSPerfAccumulate("waitRabWalkEnd", state === s_walk && walkFinished && !rab.io.status.walkEnd) 1461 private val walkCycle = RegInit(0.U(8.W)) 1462 private val waitRabWalkCycle = RegInit(0.U(8.W)) 1463 walkCycle := Mux(io.redirect.valid, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U)) 1464 waitRabWalkCycle := Mux(state === s_walk && walkFinished, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U)) 1465 1466 XSPerfHistogram("walkRobCycleHist", walkCycle, state === s_walk && walkFinished, 0, 32) 1467 XSPerfHistogram("walkRabExtraCycleHist", waitRabWalkCycle, state === s_walk && walkFinished && rab.io.status.walkEnd, 0, 32) 1468 XSPerfHistogram("walkTotalCycleHist", walkCycle, state === s_walk && state_next === s_idle, 0, 32) 1469 1470 private val deqNotWritebacked = valid(deqPtr.value) && !isWritebacked(deqPtr.value) 1471 private val deqStdNotWritebacked = valid(deqPtr.value) && !stdWritebacked(deqPtr.value) 1472 private val deqUopNotWritebacked = valid(deqPtr.value) && !isUopWritebacked(deqPtr.value) 1473 private val deqHeadInfo = debug_microOp(deqPtr.value) 1474 val deqUopCommitType = io.commits.info(0).commitType 1475 1476 XSPerfAccumulate("waitAluCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.alu.U) 1477 XSPerfAccumulate("waitMulCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.mul.U) 1478 XSPerfAccumulate("waitDivCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.div.U) 1479 XSPerfAccumulate("waitBrhCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.brh.U) 1480 XSPerfAccumulate("waitJmpCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.jmp.U) 1481 XSPerfAccumulate("waitCsrCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.csr.U) 1482 XSPerfAccumulate("waitFenCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.fence.U) 1483 XSPerfAccumulate("waitBkuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.bku.U) 1484 XSPerfAccumulate("waitLduCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.ldu.U) 1485 XSPerfAccumulate("waitStuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1486 XSPerfAccumulate("waitStaCycle", deqUopNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1487 XSPerfAccumulate("waitStdCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1488 XSPerfAccumulate("waitAtmCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.mou.U) 1489 1490 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 1491 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 1492 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 1493 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 1494 XSPerfAccumulate("robHeadPC", io.commits.info(0).pc) 1495 XSPerfAccumulate("commitCompressCntAll", PopCount(io.commits.commitValid.zip(io.commits.info).map{case(valid, info) => io.commits.isCommit && valid && info.instrSize > 1.U})) 1496 (2 to RenameWidth).foreach(i => 1497 XSPerfAccumulate(s"commitCompressCnt${i}", PopCount(io.commits.commitValid.zip(io.commits.info).map{case(valid, info) => io.commits.isCommit && valid && info.instrSize === i.U})) 1498 ) 1499 XSPerfAccumulate("compressSize", io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => Mux(io.commits.isCommit && valid && info.instrSize > 1.U, info.instrSize, 0.U) }.reduce(_ +& _)) 1500 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 1501 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 1502 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 1503 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 1504 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 1505 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 1506 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 1507 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 1508 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 1509 } 1510 for (fuType <- FuType.functionNameMap.keys) { 1511 val fuName = FuType.functionNameMap(fuType) 1512 val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U ) 1513 XSPerfRolling(s"ipc_futype_${fuName}", ifCommit(PopCount(commitIsFuType)), 1000, clock, reset) 1514 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 1515 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 1516 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 1517 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 1518 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 1519 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 1520 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 1521 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 1522 } 1523 XSPerfAccumulate(s"redirect_use_snapshot", io.redirect.valid && io.snpt.useSnpt) 1524 1525 // top-down info 1526 io.debugTopDown.toCore.robHeadVaddr.valid := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_valid 1527 io.debugTopDown.toCore.robHeadVaddr.bits := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_bits 1528 io.debugTopDown.toCore.robHeadPaddr.valid := debug_lsTopdownInfo(deqPtr.value).s2.paddr_valid 1529 io.debugTopDown.toCore.robHeadPaddr.bits := debug_lsTopdownInfo(deqPtr.value).s2.paddr_bits 1530 io.debugTopDown.toDispatch.robTrueCommit := ifCommitReg(trueCommitCnt) 1531 io.debugTopDown.toDispatch.robHeadLsIssue := debug_lsIssue(deqPtr.value) 1532 io.debugTopDown.robHeadLqIdx.valid := debug_lqIdxValid(deqPtr.value) 1533 io.debugTopDown.robHeadLqIdx.bits := debug_microOp(deqPtr.value).lqIdx 1534 1535 // rolling 1536 io.debugRolling.robTrueCommit := ifCommitReg(trueCommitCnt) 1537 1538 /** 1539 * DataBase info: 1540 * log trigger is at writeback valid 1541 * */ 1542 1543 /** 1544 * @todo add InstInfoEntry back 1545 * @author Maxpicca-Li 1546 */ 1547 1548 //difftest signals 1549 val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value 1550 1551 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1552 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1553 1554 for(i <- 0 until CommitWidth) { 1555 val idx = deqPtrVec(i).value 1556 wdata(i) := debug_exuData(idx) 1557 wpc(i) := SignExt(commitDebugUop(i).pc, XLEN) 1558 } 1559 1560 if (env.EnableDifftest || env.AlwaysBasicDiff) { 1561 // These are the structures used by difftest only and should be optimized after synthesis. 1562 val dt_eliminatedMove = Mem(RobSize, Bool()) 1563 val dt_isRVC = Mem(RobSize, Bool()) 1564 val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) 1565 for (i <- 0 until RenameWidth) { 1566 when (canEnqueue(i)) { 1567 dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 1568 dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC 1569 } 1570 } 1571 for (wb <- exuWBs) { 1572 when (wb.valid) { 1573 val wbIdx = wb.bits.robIdx.value 1574 dt_exuDebug(wbIdx) := wb.bits.debug 1575 } 1576 } 1577 // Always instantiate basic difftest modules. 1578 for (i <- 0 until CommitWidth) { 1579 val uop = commitDebugUop(i) 1580 val commitInfo = io.commits.info(i) 1581 val ptr = deqPtrVec(i).value 1582 val exuOut = dt_exuDebug(ptr) 1583 val eliminatedMove = dt_eliminatedMove(ptr) 1584 val isRVC = dt_isRVC(ptr) 1585 1586 val difftest = DifftestModule(new DiffInstrCommit(MaxPhyPregs), delay = 3, dontCare = true) 1587 difftest.coreid := io.hartId 1588 difftest.index := i.U 1589 difftest.valid := io.commits.commitValid(i) && io.commits.isCommit 1590 difftest.skip := Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt) 1591 difftest.isRVC := isRVC 1592 difftest.rfwen := io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U 1593 difftest.fpwen := io.commits.commitValid(i) && uop.fpWen 1594 difftest.wpdest := commitInfo.pdest 1595 difftest.wdest := commitInfo.ldest 1596 difftest.nFused := CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize - 1.U 1597 when(difftest.valid) { 1598 assert(CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize >= 1.U) 1599 } 1600 if (env.EnableDifftest) { 1601 val uop = commitDebugUop(i) 1602 difftest.pc := SignExt(uop.pc, XLEN) 1603 difftest.instr := uop.instr 1604 difftest.robIdx := ZeroExt(ptr, 10) 1605 difftest.lqIdx := ZeroExt(uop.lqIdx.value, 7) 1606 difftest.sqIdx := ZeroExt(uop.sqIdx.value, 7) 1607 difftest.isLoad := io.commits.info(i).commitType === CommitType.LOAD 1608 difftest.isStore := io.commits.info(i).commitType === CommitType.STORE 1609 } 1610 } 1611 } 1612 1613 if (env.EnableDifftest) { 1614 for (i <- 0 until CommitWidth) { 1615 val difftest = DifftestModule(new DiffLoadEvent, delay = 3) 1616 difftest.coreid := io.hartId 1617 difftest.index := i.U 1618 1619 val ptr = deqPtrVec(i).value 1620 val uop = commitDebugUop(i) 1621 val exuOut = debug_exuDebug(ptr) 1622 difftest.valid := io.commits.commitValid(i) && io.commits.isCommit 1623 difftest.paddr := exuOut.paddr 1624 difftest.opType := uop.fuOpType 1625 difftest.isAtomic := FuType.isAMO(uop.fuType) 1626 difftest.isLoad := FuType.isLoad(uop.fuType) 1627 } 1628 } 1629 1630 if (env.EnableDifftest || env.AlwaysBasicDiff) { 1631 val dt_isXSTrap = Mem(RobSize, Bool()) 1632 for (i <- 0 until RenameWidth) { 1633 when (canEnqueue(i)) { 1634 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap 1635 } 1636 } 1637 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => 1638 io.commits.isCommit && v && dt_isXSTrap(d.value) 1639 } 1640 val hitTrap = trapVec.reduce(_||_) 1641 val difftest = DifftestModule(new DiffTrapEvent, dontCare = true) 1642 difftest.coreid := io.hartId 1643 difftest.hasTrap := hitTrap 1644 difftest.cycleCnt := timer 1645 difftest.instrCnt := instrCnt 1646 difftest.hasWFI := hasWFI 1647 1648 if (env.EnableDifftest) { 1649 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 1650 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN) 1651 difftest.code := trapCode 1652 difftest.pc := trapPC 1653 } 1654 } 1655 1656 val validEntriesBanks = (0 until (RobSize + 31) / 32).map(i => RegNext(PopCount(valid.drop(i * 32).take(32)))) 1657 val validEntries = RegNext(VecInit(validEntriesBanks).reduceTree(_ +& _)) 1658 val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }) 1659 val commitLoadVec = VecInit(commitLoadValid) 1660 val commitBranchVec = VecInit(commitBranchValid) 1661 val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }) 1662 val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }) 1663 val perfEvents = Seq( 1664 ("rob_interrupt_num ", io.flushOut.valid && intrEnable ), 1665 ("rob_exception_num ", io.flushOut.valid && exceptionEnable ), 1666 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe ), 1667 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst ), 1668 ("rob_commitUop ", ifCommit(commitCnt) ), 1669 ("rob_commitInstr ", ifCommitReg(trueCommitCnt) ), 1670 ("rob_commitInstrMove ", ifCommitReg(PopCount(RegNext(commitMoveVec))) ), 1671 ("rob_commitInstrFused ", ifCommitReg(fuseCommitCnt) ), 1672 ("rob_commitInstrLoad ", ifCommitReg(PopCount(RegNext(commitLoadVec))) ), 1673 ("rob_commitInstrBranch ", ifCommitReg(PopCount(RegNext(commitBranchVec))) ), 1674 ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec))) ), 1675 ("rob_commitInstrStore ", ifCommitReg(PopCount(RegNext(commitStoreVec))) ), 1676 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U) ), 1677 ("rob_walkCycle ", (state === s_walk) ), 1678 ("rob_1_4_valid ", validEntries <= (RobSize / 4).U ), 1679 ("rob_2_4_valid ", validEntries > (RobSize / 4).U && validEntries <= (RobSize / 2).U ), 1680 ("rob_3_4_valid ", validEntries > (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U), 1681 ("rob_4_4_valid ", validEntries > (RobSize * 3 / 4).U ), 1682 ) 1683 generatePerfEvent() 1684} 1685