1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.rob 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 24import utility._ 25import utils._ 26import xiangshan._ 27import xiangshan.backend.BackendParams 28import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 29import xiangshan.backend.fu.FuType 30import xiangshan.frontend.FtqPtr 31import xiangshan.mem.{LqPtr, SqPtr} 32import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 33 34class DebugMdpInfo(implicit p: Parameters) extends XSBundle{ 35 val ssid = UInt(SSIDWidth.W) 36 val waitAllStore = Bool() 37} 38 39class DebugLsInfo(implicit p: Parameters) extends XSBundle{ 40 val s1 = new Bundle{ 41 val isTlbFirstMiss = Bool() // in s1 42 val isBankConflict = Bool() // in s1 43 val isLoadToLoadForward = Bool() 44 val isReplayFast = Bool() 45 } 46 val s2 = new Bundle{ 47 val isDcacheFirstMiss = Bool() // in s2 (predicted result is in s1 when using WPU, real result is in s2) 48 val isForwardFail = Bool() // in s2 49 val isReplaySlow = Bool() 50 val isLoadReplayTLBMiss = Bool() 51 val isLoadReplayCacheMiss = Bool() 52 } 53 val replayCnt = UInt(XLEN.W) 54 55 def s1SignalEnable(ena: DebugLsInfo) = { 56 when(ena.s1.isTlbFirstMiss) { s1.isTlbFirstMiss := true.B } 57 when(ena.s1.isBankConflict) { s1.isBankConflict := true.B } 58 when(ena.s1.isLoadToLoadForward) { s1.isLoadToLoadForward := true.B } 59 when(ena.s1.isReplayFast) { 60 s1.isReplayFast := true.B 61 replayCnt := replayCnt + 1.U 62 } 63 } 64 65 def s2SignalEnable(ena: DebugLsInfo) = { 66 when(ena.s2.isDcacheFirstMiss) { s2.isDcacheFirstMiss := true.B } 67 when(ena.s2.isForwardFail) { s2.isForwardFail := true.B } 68 when(ena.s2.isLoadReplayTLBMiss) { s2.isLoadReplayTLBMiss := true.B } 69 when(ena.s2.isLoadReplayCacheMiss) { s2.isLoadReplayCacheMiss := true.B } 70 when(ena.s2.isReplaySlow) { 71 s2.isReplaySlow := true.B 72 replayCnt := replayCnt + 1.U 73 } 74 } 75} 76 77object DebugLsInfo{ 78 def init(implicit p: Parameters): DebugLsInfo = { 79 val lsInfo = Wire(new DebugLsInfo) 80 lsInfo.s1.isTlbFirstMiss := false.B 81 lsInfo.s1.isBankConflict := false.B 82 lsInfo.s1.isLoadToLoadForward := false.B 83 lsInfo.s1.isReplayFast := false.B 84 lsInfo.s2.isDcacheFirstMiss := false.B 85 lsInfo.s2.isForwardFail := false.B 86 lsInfo.s2.isReplaySlow := false.B 87 lsInfo.s2.isLoadReplayTLBMiss := false.B 88 lsInfo.s2.isLoadReplayCacheMiss := false.B 89 lsInfo.replayCnt := 0.U 90 lsInfo 91 } 92} 93 94class DebugLsInfoBundle(implicit p: Parameters) extends DebugLsInfo { 95 // unified processing at the end stage of load/store ==> s2 ==> bug that will write error robIdx data 96 val s1_robIdx = UInt(log2Ceil(RobSize).W) 97 val s2_robIdx = UInt(log2Ceil(RobSize).W) 98} 99 100class DebugLSIO(implicit p: Parameters) extends XSBundle { 101 val debugLsInfo = Vec(backendParams.LduCnt + backendParams.StaCnt, Output(new DebugLsInfoBundle)) 102} 103 104class RobPtr(entries: Int) extends CircularQueuePtr[RobPtr]( 105 entries 106) with HasCircularQueuePtrHelper { 107 108 def this()(implicit p: Parameters) = this(p(XSCoreParamsKey).RobSize) 109 110 def needFlush(redirect: Valid[Redirect]): Bool = { 111 val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx 112 redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx)) 113 } 114 115 def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR 116} 117 118object RobPtr { 119 def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = { 120 val ptr = Wire(new RobPtr) 121 ptr.flag := f 122 ptr.value := v 123 ptr 124 } 125} 126 127class RobCSRIO(implicit p: Parameters) extends XSBundle { 128 val intrBitSet = Input(Bool()) 129 val trapTarget = Input(UInt(VAddrBits.W)) 130 val isXRet = Input(Bool()) 131 val wfiEvent = Input(Bool()) 132 133 val fflags = Output(Valid(UInt(5.W))) 134 val vxsat = Output(Valid(Bool())) 135 val dirty_fs = Output(Bool()) 136 val perfinfo = new Bundle { 137 val retiredInstr = Output(UInt(3.W)) 138 } 139 140 val vcsrFlag = Output(Bool()) 141} 142 143class RobLsqIO(implicit p: Parameters) extends XSBundle { 144 val lcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 145 val scommit = Output(UInt(log2Up(CommitWidth + 1).W)) 146 val pendingld = Output(Bool()) 147 val pendingst = Output(Bool()) 148 val commit = Output(Bool()) 149} 150 151class RobEnqIO(implicit p: Parameters) extends XSBundle { 152 val canAccept = Output(Bool()) 153 val isEmpty = Output(Bool()) 154 // valid vector, for robIdx gen and walk 155 val needAlloc = Vec(RenameWidth, Input(Bool())) 156 val req = Vec(RenameWidth, Flipped(ValidIO(new DynInst))) 157 val resp = Vec(RenameWidth, Output(new RobPtr)) 158} 159 160class RobDispatchData(implicit p: Parameters) extends RobCommitInfo 161 162class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 163 val io = IO(new Bundle { 164 // for commits/flush 165 val state = Input(UInt(2.W)) 166 val deq_v = Vec(CommitWidth, Input(Bool())) 167 val deq_w = Vec(CommitWidth, Input(Bool())) 168 val exception_state = Flipped(ValidIO(new RobExceptionInfo)) 169 // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth) 170 val intrBitSetReg = Input(Bool()) 171 val hasNoSpecExec = Input(Bool()) 172 val interrupt_safe = Input(Bool()) 173 val blockCommit = Input(Bool()) 174 // output: the CommitWidth deqPtr 175 val out = Vec(CommitWidth, Output(new RobPtr)) 176 val next_out = Vec(CommitWidth, Output(new RobPtr)) 177 }) 178 179 val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr)))) 180 181 // for exceptions (flushPipe included) and interrupts: 182 // only consider the first instruction 183 val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe 184 val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0) 185 val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable) 186 187 // for normal commits: only to consider when there're no exceptions 188 // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions. 189 val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last) 190 val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i))) 191 val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B) 192 // when io.intrBitSetReg or there're possible exceptions in these instructions, 193 // only one instruction is allowed to commit 194 val allowOnlyOne = commit_exception || io.intrBitSetReg 195 val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt) 196 197 val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt)) 198 val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec) 199 200 deqPtrVec := deqPtrVec_next 201 202 io.next_out := deqPtrVec_next 203 io.out := deqPtrVec 204 205 when (io.state === 0.U) { 206 XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt) 207 } 208 209} 210 211class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 212 val io = IO(new Bundle { 213 // for input redirect 214 val redirect = Input(Valid(new Redirect)) 215 // for enqueue 216 val allowEnqueue = Input(Bool()) 217 val hasBlockBackward = Input(Bool()) 218 val enq = Vec(RenameWidth, Input(Bool())) 219 val out = Output(Vec(RenameWidth, new RobPtr)) 220 }) 221 222 val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr))) 223 224 // enqueue 225 val canAccept = io.allowEnqueue && !io.hasBlockBackward 226 val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U) 227 228 for ((ptr, i) <- enqPtrVec.zipWithIndex) { 229 when(io.redirect.valid) { 230 ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 231 }.otherwise { 232 ptr := ptr + dispatchNum 233 } 234 } 235 236 io.out := enqPtrVec 237 238} 239 240class RobExceptionInfo(implicit p: Parameters) extends XSBundle { 241 // val valid = Bool() 242 val robIdx = new RobPtr 243 val exceptionVec = ExceptionVec() 244 val flushPipe = Bool() 245 val isVset = Bool() 246 val replayInst = Bool() // redirect to that inst itself 247 val singleStep = Bool() // TODO add frontend hit beneath 248 val crossPageIPFFix = Bool() 249 val trigger = new TriggerCf 250 251// def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend 252// def trigger_after = trigger.getTimingBackend && trigger.getHitBackend 253 def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit 254 def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit 255 // only exceptions are allowed to writeback when enqueue 256 def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit 257} 258 259class ExceptionGen(params: BackendParams)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 260 val io = IO(new Bundle { 261 val redirect = Input(Valid(new Redirect)) 262 val flush = Input(Bool()) 263 val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo))) 264 // csr + load + store 265 val wb = Vec(params.numException, Flipped(ValidIO(new RobExceptionInfo))) 266 val out = ValidIO(new RobExceptionInfo) 267 val state = ValidIO(new RobExceptionInfo) 268 }) 269 270 def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = { 271 assert(valid.length == bits.length) 272 assert(isPow2(valid.length)) 273 if (valid.length == 1) { 274 (valid, bits) 275 } else if (valid.length == 2) { 276 val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0))))) 277 for (i <- res.indices) { 278 res(i).valid := valid(i) 279 res(i).bits := bits(i) 280 } 281 val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1)) 282 (Seq(oldest.valid), Seq(oldest.bits)) 283 } else { 284 val left = getOldest(valid.take(valid.length / 2), bits.take(valid.length / 2)) 285 val right = getOldest(valid.takeRight(valid.length / 2), bits.takeRight(valid.length / 2)) 286 getOldest(left._1 ++ right._1, left._2 ++ right._2) 287 } 288 } 289 290 val currentValid = RegInit(false.B) 291 val current = Reg(new RobExceptionInfo) 292 293 // orR the exceptionVec 294 val lastCycleFlush = RegNext(io.flush) 295 val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush)) 296 val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush) 297 298 // s0: compare wb(1)~wb(LoadPipelineWidth) and wb(1 + LoadPipelineWidth)~wb(LoadPipelineWidth + StorePipelineWidth) 299 val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) } 300 val csr_wb_bits = io.wb(0).bits 301 val load_wb_bits = getOldest(in_wb_valid.slice(1, 1 + LoadPipelineWidth), io.wb.map(_.bits).slice(1, 1 + LoadPipelineWidth))._2(0) 302 val store_wb_bits = getOldest(in_wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth), io.wb.map(_.bits).slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth))._2(0) 303 val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid.slice(1, 1 + LoadPipelineWidth).reduce(_ || _), wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth).reduce(_ || _)))) 304 val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits))) 305 306 // s1: compare last four and current flush 307 val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) }) 308 val compare_01_valid = s0_out_valid(0) || s0_out_valid(1) 309 val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0)) 310 val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2)) 311 val s1_out_bits = RegNext(compare_bits) 312 val s1_out_valid = RegNext(s1_valid.asUInt.orR) 313 314 val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 315 val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits))) 316 317 // s2: compare the input exception with the current one 318 // priorities: 319 // (1) system reset 320 // (2) current is valid: flush, remain, merge, update 321 // (3) current is not valid: s1 or enq 322 val current_flush = current.robIdx.needFlush(io.redirect) || io.flush 323 val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush 324 when (currentValid) { 325 when (current_flush) { 326 currentValid := Mux(s1_flush, false.B, s1_out_valid) 327 } 328 when (s1_out_valid && !s1_flush) { 329 when (isAfter(current.robIdx, s1_out_bits.robIdx)) { 330 current := s1_out_bits 331 }.elsewhen (current.robIdx === s1_out_bits.robIdx) { 332 current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec()) 333 current.flushPipe := s1_out_bits.flushPipe || current.flushPipe 334 current.replayInst := s1_out_bits.replayInst || current.replayInst 335 current.singleStep := s1_out_bits.singleStep || current.singleStep 336 current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf) 337 } 338 } 339 }.elsewhen (s1_out_valid && !s1_flush) { 340 currentValid := true.B 341 current := s1_out_bits 342 }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) { 343 currentValid := true.B 344 current := enq_bits 345 } 346 347 io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback 348 io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits) 349 io.state.valid := currentValid 350 io.state.bits := current 351 352} 353 354class RobFlushInfo(implicit p: Parameters) extends XSBundle { 355 val ftqIdx = new FtqPtr 356 val robIdx = new RobPtr 357 val ftqOffset = UInt(log2Up(PredictWidth).W) 358 val replayInst = Bool() 359} 360 361class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter { 362 363 lazy val module = new RobImp(this)(p, params) 364 // 365 // override def generateWritebackIO( 366 // thisMod: Option[HasWritebackSource] = None, 367 // thisModImp: Option[HasWritebackSourceImp] = None 368 // ): Unit = { 369 // val sources = writebackSinksImp(thisMod, thisModImp) 370 // module.io.writeback.zip(sources).foreach(x => x._1 := x._2) 371 // } 372 //} 373} 374 375class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper) 376 with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents { 377 378 val io = IO(new Bundle() { 379 val hartId = Input(UInt(8.W)) 380 val redirect = Input(Valid(new Redirect)) 381 val enq = new RobEnqIO 382 val flushOut = ValidIO(new Redirect) 383 val exception = ValidIO(new ExceptionInfo) 384 // exu + brq 385 val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles) 386 val commits = Output(new RobCommitIO) 387 val rabCommits = Output(new RobCommitIO) 388 val diffCommits = Output(new DiffCommitIO) 389 val isVsetFlushPipe = Output(Bool()) 390 val vconfigPdest = Output(UInt(PhyRegIdxWidth.W)) 391 val lsq = new RobLsqIO 392 val robDeqPtr = Output(new RobPtr) 393 val csr = new RobCSRIO 394 val robFull = Output(Bool()) 395 val cpu_halt = Output(Bool()) 396 val wfi_enable = Input(Bool()) 397 }) 398 399 val exuWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(!_.bits.params.hasStdFu) 400 val stdWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(_.bits.params.hasStdFu) 401 val fflagsWBs = io.writeback.filter(x => x.bits.fflags.nonEmpty) 402 val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty) 403 val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty) 404 405 val exuWbPorts = io.writeback.filter(!_.bits.params.hasStdFu) 406 val stdWbPorts = io.writeback.filter(_.bits.params.hasStdFu) 407 val fflagsPorts = io.writeback.filter(x => x.bits.fflags.nonEmpty) 408 val vxsatPorts = io.writeback.filter(x => x.bits.vxsat.nonEmpty) 409 val exceptionPorts = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty) 410 val numExuWbPorts = exuWBs.length 411 val numStdWbPorts = stdWBs.length 412 413 414 println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth") 415// println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}") 416// println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}") 417// println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}") 418 419 420 // instvalid field 421 val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 422 // writeback status 423 424 val store_data_writebacked = Mem(RobSize, Bool()) 425 val writebackedCounter = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W)))) 426 val realDestSize = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W)))) 427 val fflagsDataModule = RegInit(VecInit(Seq.fill(RobSize)(0.U(5.W)))) 428 val vxsatDataModule = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 429 430 def isWritebacked(ptr: UInt): Bool = { 431 !writebackedCounter(ptr).orR 432 } 433 434 // data for redirect, exception, etc. 435 val flagBkup = Mem(RobSize, Bool()) 436 // some instructions are not allowed to trigger interrupts 437 // They have side effects on the states of the processor before they write back 438 val interrupt_safe = Mem(RobSize, Bool()) 439 440 // data for debug 441 // Warn: debug_* prefix should not exist in generated verilog. 442 val debug_microOp = Mem(RobSize, new DynInst) 443 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug 444 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug 445 446 // pointers 447 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 448 val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr)) 449 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 450 451 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 452 val allowEnqueue = RegInit(true.B) 453 454 val enqPtr = enqPtrVec.head 455 val deqPtr = deqPtrVec(0) 456 val walkPtr = walkPtrVec(0) 457 458 val isEmpty = enqPtr === deqPtr 459 val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level) 460 461 /** 462 * states of Rob 463 */ 464 val s_idle :: s_walk :: Nil = Enum(2) 465 val state = RegInit(s_idle) 466 467 /** 468 * Data Modules 469 * 470 * CommitDataModule: data from dispatch 471 * (1) read: commits/walk/exception 472 * (2) write: enqueue 473 * 474 * WritebackData: data from writeback 475 * (1) read: commits/walk/exception 476 * (2) write: write back from exe units 477 */ 478 val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth)) 479 val dispatchDataRead = dispatchData.io.rdata 480 481 val exceptionGen = Module(new ExceptionGen(params)) 482 val exceptionDataRead = exceptionGen.io.state 483 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 484 val vxsatDataRead = Wire(Vec(CommitWidth, Bool())) 485 486 io.robDeqPtr := deqPtr 487 488 val rab = Module(new RenameBuffer(RabSize)) 489 rab.io.redirectValid := io.redirect.valid 490 rab.io.req.zip(io.enq.req).map { case (dest, src) => 491 dest.bits := src.bits 492 dest.valid := src.valid && io.enq.canAccept 493 } 494 495 val realDestSizeCandidates = (0 until CommitWidth).map(i => realDestSize(Mux(state === s_idle, deqPtrVec(i).value, walkPtrVec(i).value))) 496 val wbSizeSeq = io.commits.commitValid.zip(io.commits.walkValid).zip(realDestSizeCandidates).map { case ((commitValid, walkValid), realDestSize) => 497 Mux(io.commits.isCommit, Mux(commitValid, realDestSize, 0.U), Mux(walkValid, realDestSize, 0.U)) 498 } 499 val wbSizeSum = wbSizeSeq.reduce(_ + _) 500 rab.io.commitSize := wbSizeSum 501 rab.io.walkSize := wbSizeSum 502 503 io.rabCommits := rab.io.commits 504 io.diffCommits := rab.io.diffCommits 505 506 /** 507 * Enqueue (from dispatch) 508 */ 509 // special cases 510 val hasBlockBackward = RegInit(false.B) 511 val hasWaitForward = RegInit(false.B) 512 val doingSvinval = RegInit(false.B) 513 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 514 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 515 when (isEmpty) { hasBlockBackward:= false.B } 516 // When any instruction commits, hasNoSpecExec should be set to false.B 517 when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasWaitForward:= false.B } 518 519 // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing. 520 // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle. 521 // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts. 522 val hasWFI = RegInit(false.B) 523 io.cpu_halt := hasWFI 524 // WFI Timeout: 2^20 = 1M cycles 525 val wfi_cycles = RegInit(0.U(20.W)) 526 when (hasWFI) { 527 wfi_cycles := wfi_cycles + 1.U 528 }.elsewhen (!hasWFI && RegNext(hasWFI)) { 529 wfi_cycles := 0.U 530 } 531 val wfi_timeout = wfi_cycles.andR 532 when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) { 533 hasWFI := false.B 534 } 535 536 val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.req.take(i).map(req => req.valid && req.bits.firstUop))))) 537 io.enq.canAccept := allowEnqueue && !hasBlockBackward && rab.io.canEnq 538 io.enq.resp := allocatePtrVec 539 val canEnqueue = VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop && io.enq.canAccept)) 540 val timer = GTimer() 541 for (i <- 0 until RenameWidth) { 542 // we don't check whether io.redirect is valid here since redirect has higher priority 543 when (canEnqueue(i)) { 544 val enqUop = io.enq.req(i).bits 545 val enqIndex = allocatePtrVec(i).value 546 // store uop in data module and debug_microOp Vec 547 debug_microOp(enqIndex) := enqUop 548 debug_microOp(enqIndex).debugInfo.dispatchTime := timer 549 debug_microOp(enqIndex).debugInfo.enqRsTime := timer 550 debug_microOp(enqIndex).debugInfo.selectTime := timer 551 debug_microOp(enqIndex).debugInfo.issueTime := timer 552 debug_microOp(enqIndex).debugInfo.writebackTime := timer 553 when (enqUop.blockBackward) { 554 hasBlockBackward := true.B 555 } 556 when (enqUop.waitForward) { 557 hasWaitForward := true.B 558 } 559 val enqHasTriggerHit = false.B // io.enq.req(i).bits.cf.trigger.getHitFrontend 560 val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR 561 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 562 when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe)) 563 { 564 doingSvinval := true.B 565 } 566 // the end instruction of Svinval enqs so clear doingSvinval 567 when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe)) 568 { 569 doingSvinval := false.B 570 } 571 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 572 assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe))) 573 when (enqUop.isWFI && !enqHasException && !enqHasTriggerHit) { 574 hasWFI := true.B 575 } 576 } 577 } 578 val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(req => req.valid && req.bits.firstUop)), 0.U) 579 io.enq.isEmpty := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR) 580 581 when (!io.wfi_enable) { 582 hasWFI := false.B 583 } 584 // sel vsetvl's flush position 585 val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3) 586 val vsetvlState = RegInit(vs_idle) 587 588 val firstVInstrFtqPtr = RegInit(0.U.asTypeOf(new FtqPtr)) 589 val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W))) 590 val firstVInstrRobIdx = RegInit(0.U.asTypeOf(new RobPtr)) 591 592 val enq0 = io.enq.req(0) 593 val enq0IsVset = enq0.bits.isVset && enq0.bits.lastUop && canEnqueue(0) 594 val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe 595 val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVpu(req.bits.fuType) && fire} 596 // for vs_idle 597 val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType))) 598 // for vs_waitVinstr 599 val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1) 600 val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req) 601 when(vsetvlState === vs_idle){ 602 firstVInstrFtqPtr := firstVInstrIdle.bits.ftqPtr 603 firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset 604 firstVInstrRobIdx := firstVInstrIdle.bits.robIdx 605 }.elsewhen(vsetvlState === vs_waitVinstr){ 606 when(Cat(enqIsVInstrOrVset).orR){ 607 firstVInstrFtqPtr := firstVInstrWait.bits.ftqPtr 608 firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset 609 firstVInstrRobIdx := firstVInstrWait.bits.robIdx 610 } 611 } 612 613 val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR 614 when(vsetvlState === vs_idle && !io.redirect.valid){ 615 when(enq0IsVsetFlush){ 616 vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr) 617 } 618 }.elsewhen(vsetvlState === vs_waitVinstr){ 619 when(io.redirect.valid){ 620 vsetvlState := vs_idle 621 }.elsewhen(Cat(enqIsVInstrOrVset).orR){ 622 vsetvlState := vs_waitFlush 623 } 624 }.elsewhen(vsetvlState === vs_waitFlush){ 625 when(io.redirect.valid){ 626 vsetvlState := vs_idle 627 } 628 } 629 630 /** 631 * Writeback (from execution units) 632 */ 633 for (wb <- exuWBs) { 634 when (wb.valid) { 635 val wbIdx = wb.bits.robIdx.value 636 debug_exuData(wbIdx) := wb.bits.data 637 debug_exuDebug(wbIdx) := wb.bits.debug 638 debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime 639 debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime 640 debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime 641 debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime 642 643 // debug for lqidx and sqidx 644 debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr)) 645 debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr)) 646 647 val debug_Uop = debug_microOp(wbIdx) 648 XSInfo(true.B, 649 p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " + 650 p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " + 651 p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.robIdx}\n" 652 ) 653 } 654 } 655 656 val writebackNum = PopCount(exuWBs.map(_.valid)) 657 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 658 659 660 /** 661 * RedirectOut: Interrupt and Exceptions 662 */ 663 val deqDispatchData = dispatchDataRead(0) 664 val debug_deqUop = debug_microOp(deqPtr.value) 665 666 val intrBitSetReg = RegNext(io.csr.intrBitSet) 667 val intrEnable = intrBitSetReg && !hasWaitForward && interrupt_safe(deqPtr.value) 668 val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 669 val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR || 670 exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit) 671 val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe 672 val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst 673 val exceptionEnable = isWritebacked(deqPtr.value) && deqHasException 674 675 XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n") 676 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n") 677 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n") 678 679 val isFlushPipe = isWritebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst) 680 681 val isVsetFlushPipe = isWritebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset 682// val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush) 683 val needModifyFtqIdxOffset = false.B 684 io.isVsetFlushPipe := isVsetFlushPipe 685 io.vconfigPdest := rab.io.vconfigPdest 686 // io.flushOut will trigger redirect at the next cycle. 687 // Block any redirect or commit at the next cycle. 688 val lastCycleFlush = RegNext(io.flushOut.valid) 689 690 io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush 691 io.flushOut.bits := DontCare 692 io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr) 693 io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx) 694 io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset) 695 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next" 696 io.flushOut.bits.interrupt := true.B 697 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 698 XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable) 699 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 700 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 701 702 val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush 703 io.exception.valid := RegNext(exceptionHappen) 704 io.exception.bits.pc := RegEnable(debug_deqUop.pc, exceptionHappen) 705 io.exception.bits.instr := RegEnable(debug_deqUop.instr, exceptionHappen) 706 io.exception.bits.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 707 io.exception.bits.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 708 io.exception.bits.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 709 io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 710 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 711// io.exception.bits.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen) 712 713 XSDebug(io.flushOut.valid, 714 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " + 715 p"excp $exceptionEnable flushPipe $isFlushPipe " + 716 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 717 718 719 /** 720 * Commits (and walk) 721 * They share the same width. 722 */ 723 val walkCounter = Reg(UInt(log2Up(RobSize + 1).W)) 724 val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter)) 725 val walkFinished = walkCounter <= CommitWidth.U 726 rab.io.robWalkEnd := state === s_walk && walkFinished 727 728 require(RenameWidth <= CommitWidth) 729 730 // wiring to csr 731 val (wflags, fpWen) = (0 until CommitWidth).map(i => { 732 val v = io.commits.commitValid(i) 733 val info = io.commits.info(i) 734 (v & info.wflags, v & info.fpWen) 735 }).unzip 736 val fflags = Wire(Valid(UInt(5.W))) 737 fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR 738 fflags.bits := wflags.zip(fflagsDataRead).map({ 739 case (w, f) => Mux(w, f, 0.U) 740 }).reduce(_|_) 741 val dirty_fs = io.commits.isCommit && VecInit(fpWen).asUInt.orR 742 743 val vxsat = Wire(Valid(Bool())) 744 vxsat.valid := io.commits.isCommit && vxsat.bits 745 vxsat.bits := io.commits.commitValid.zip(vxsatDataRead).map { 746 case (valid, vxsat) => valid & vxsat 747 }.reduce(_ | _) 748 749 // when mispredict branches writeback, stop commit in the next 2 cycles 750 // TODO: don't check all exu write back 751 val misPredWb = Cat(VecInit(redirectWBs.map(wb => 752 wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid 753 ))).orR 754 val misPredBlockCounter = Reg(UInt(3.W)) 755 misPredBlockCounter := Mux(misPredWb, 756 "b111".U, 757 misPredBlockCounter >> 1.U 758 ) 759 val misPredBlock = misPredBlockCounter(0) 760 val blockCommit = misPredBlock && !io.flushOut.valid || isReplaying || lastCycleFlush || hasWFI 761 762 io.commits.isWalk := state === s_walk 763 io.commits.isCommit := state === s_idle && !blockCommit 764 val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value))) 765 val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value))) 766 // store will be commited iff both sta & std have been writebacked 767 val commit_w = VecInit(deqPtrVec.map(ptr => isWritebacked(ptr.value))) 768 val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last) 769 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i))) 770 val allowOnlyOneCommit = commit_exception || intrBitSetReg 771 // for instructions that may block others, we don't allow them to commit 772 for (i <- 0 until CommitWidth) { 773 // defaults: state === s_idle and instructions commit 774 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 775 val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst 776 io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked 777 io.commits.info(i) := dispatchDataRead(i) 778 779 when (state === s_walk) { 780 io.commits.walkValid(i) := shouldWalkVec(i) 781 when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) { 782 XSError(!walk_v(i), s"why not $i???\n") 783 } 784 } 785 786 XSInfo(io.commits.isCommit && io.commits.commitValid(i), 787 "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b vxsat: %b\n", 788 debug_microOp(deqPtrVec(i).value).pc, 789 io.commits.info(i).rfWen, 790 io.commits.info(i).ldest, 791 io.commits.info(i).pdest, 792 io.commits.info(i).old_pdest, 793 debug_exuData(deqPtrVec(i).value), 794 fflagsDataRead(i), 795 vxsatDataRead(i) 796 ) 797 XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n", 798 debug_microOp(walkPtrVec(i).value).pc, 799 io.commits.info(i).rfWen, 800 io.commits.info(i).ldest, 801 debug_exuData(walkPtrVec(i).value) 802 ) 803 } 804 if (env.EnableDifftest) { 805 io.commits.info.map(info => dontTouch(info.pc)) 806 } 807 808 // sync fflags/dirty_fs/vxsat to csr 809 io.csr.fflags := RegNext(fflags) 810 io.csr.dirty_fs := RegNext(dirty_fs) 811 io.csr.vxsat := RegNext(vxsat) 812 813 // sync v csr to csr 814 // for difftest 815 val VEC_VCONFIG = VecLogicRegs - 1 816 val isDiffWriteVconfigVec = io.diffCommits.commitValid.zip(io.diffCommits.info).map { case (valid, info) => valid && info.ldest === VEC_VCONFIG.U && info.vecWen }.reverse 817 io.csr.vcsrFlag := RegNext(io.diffCommits.isCommit && Cat(isDiffWriteVconfigVec).orR) 818 819 // commit load/store to lsq 820 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 821 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE)) 822 io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U)) 823 io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U)) 824 // indicate a pending load or store 825 io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value)) 826 io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value)) 827 io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0)) 828 829 /** 830 * state changes 831 * (1) redirect: switch to s_walk 832 * (2) walk: when walking comes to the end, switch to s_idle 833 */ 834 val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished && rab.io.rabWalkEnd, s_idle, state)) 835 XSPerfAccumulate("s_idle_to_idle", state === s_idle && state_next === s_idle) 836 XSPerfAccumulate("s_idle_to_walk", state === s_idle && state_next === s_walk) 837 XSPerfAccumulate("s_walk_to_idle", state === s_walk && state_next === s_idle) 838 XSPerfAccumulate("s_walk_to_walk", state === s_walk && state_next === s_walk) 839 state := state_next 840 841 /** 842 * pointers and counters 843 */ 844 val deqPtrGenModule = Module(new RobDeqPtrWrapper) 845 deqPtrGenModule.io.state := state 846 deqPtrGenModule.io.deq_v := commit_v 847 deqPtrGenModule.io.deq_w := commit_w 848 deqPtrGenModule.io.exception_state := exceptionDataRead 849 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 850 deqPtrGenModule.io.hasNoSpecExec := hasWaitForward 851 deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value) 852 deqPtrGenModule.io.blockCommit := blockCommit 853 deqPtrVec := deqPtrGenModule.io.out 854 val deqPtrVec_next = deqPtrGenModule.io.next_out 855 856 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 857 enqPtrGenModule.io.redirect := io.redirect 858 enqPtrGenModule.io.allowEnqueue := allowEnqueue 859 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 860 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop)) 861 enqPtrVec := enqPtrGenModule.io.out 862 863 val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U) 864 // next walkPtrVec: 865 // (1) redirect occurs: update according to state 866 // (2) walk: move forwards 867 val walkPtrVec_next = Mux(io.redirect.valid, 868 deqPtrVec_next, 869 Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec) 870 ) 871 walkPtrVec := walkPtrVec_next 872 873 val numValidEntries = distanceBetween(enqPtr, deqPtr) 874 val commitCnt = PopCount(io.commits.commitValid) 875 876 allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U 877 878 val currentWalkPtr = Mux(state === s_walk, walkPtr, deqPtrVec_next(0)) 879 val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0)) 880 when (io.redirect.valid) { 881 // full condition: 882 // +& is used here because: 883 // When rob is full and the tail instruction causes a misprediction, 884 // the redirect robIdx is the deqPtr - 1. In this case, redirectWalkDistance 885 // is RobSize - 1. 886 // Since misprediction does not flush the instruction itself, flushItSelf is false.B. 887 // Previously we use `+` to count the walk distance and it causes overflows 888 // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize. 889 // The width of walkCounter also needs to be changed. 890 // empty condition: 891 // When the last instruction in ROB commits and causes a flush, a redirect 892 // will be raised later. In such circumstances, the redirect robIdx is before 893 // the deqPtrVec_next(0) and will cause underflow. 894 walkCounter := Mux(isBefore(io.redirect.bits.robIdx, deqPtrVec_next(0)), 0.U, 895 redirectWalkDistance +& !io.redirect.bits.flushItself()) 896 }.elsewhen (state === s_walk) { 897 walkCounter := walkCounter - thisCycleWalkCount 898 XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n") 899 } 900 901 902 /** 903 * States 904 * We put all the stage bits changes here. 905 906 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 907 * All states: (1) valid; (2) writebacked; (3) flagBkup 908 */ 909 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 910 911 // redirect logic writes 6 valid 912 val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr)) 913 val redirectTail = Reg(new RobPtr) 914 val redirectIdle :: redirectBusy :: Nil = Enum(2) 915 val redirectState = RegInit(redirectIdle) 916 val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail)) 917 when(redirectState === redirectBusy) { 918 redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U) 919 redirectHeadVec zip invMask foreach { 920 case (redirectHead, inv) => when(inv) { 921 valid(redirectHead.value) := false.B 922 } 923 } 924 when(!invMask.last) { 925 redirectState := redirectIdle 926 } 927 } 928 when(io.redirect.valid) { 929 redirectState := redirectBusy 930 when(redirectState === redirectIdle) { 931 redirectTail := enqPtr 932 } 933 redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) => 934 redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 935 } 936 } 937 // enqueue logic writes 6 valid 938 for (i <- 0 until RenameWidth) { 939 when (canEnqueue(i) && !io.redirect.valid) { 940 valid(allocatePtrVec(i).value) := true.B 941 } 942 } 943 // dequeue logic writes 6 valid 944 for (i <- 0 until CommitWidth) { 945 val commitValid = io.commits.isCommit && io.commits.commitValid(i) 946 when (commitValid) { 947 valid(commitReadAddr(i)) := false.B 948 } 949 } 950 951 // writeback logic set numWbPorts writebacked to true 952 val blockWbSeq = Wire(Vec(exuWBs.length, Bool())) 953 blockWbSeq.map(_ := false.B) 954 for ((wb, blockWb) <- exuWBs.zip(blockWbSeq)) { 955 when(wb.valid) { 956 val wbHasException = wb.bits.exceptionVec.getOrElse(0.U).asUInt.orR 957 val wbHasTriggerHit = false.B //Todo: wb.bits.trigger.getHitBackend 958 val wbHasFlushPipe = wb.bits.flushPipe.getOrElse(false.B) 959 val wbHasReplayInst = wb.bits.replay.getOrElse(false.B) //Todo: && wb.bits.replayInst 960 blockWb := wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit 961 } 962 } 963 964 // if the first uop of an instruction is valid , write writebackedCounter 965 val uopEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid) 966 val instEnqValidSeq = io.enq.req.map (req => io.enq.canAccept && req.valid && req.bits.firstUop) 967 val enqNeedWriteRFSeq = io.enq.req.map(_.bits.needWriteRf) 968 val enqRobIdxSeq = io.enq.req.map(req => req.bits.robIdx.value) 969 970 val enqWbSizeSeq = io.enq.req.map { req => 971 val enqHasException = ExceptionNO.selectFrontend(req.bits.exceptionVec).asUInt.orR 972 val enqHasTriggerHit = req.bits.trigger.getHitFrontend 973 Mux(req.bits.eliminatedMove, Mux(enqHasException || enqHasTriggerHit, 1.U, 0.U), 974 Mux(FuType.isAMO(req.bits.fuType) || FuType.isStore(req.bits.fuType), 2.U, 1.U)) 975 } 976 val enqWbSizeSumSeq = enqRobIdxSeq.zipWithIndex.map { case (robIdx, idx) => 977 val addend = enqRobIdxSeq.zip(enqWbSizeSeq).take(idx + 1).map { case (uopRobIdx, uopWbSize) => Mux(robIdx === uopRobIdx, uopWbSize, 0.U) } 978 addend.reduce(_ +& _) 979 } 980 val fflags_wb = fflagsPorts 981 val vxsat_wb = vxsatPorts 982 for(i <- 0 until RobSize){ 983 984 val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === i.U) 985 val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch } 986 val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch } 987 val instCanEnqFlag = Cat(instCanEnqSeq).orR 988 989 realDestSize(i) := Mux(!valid(i) && instCanEnqFlag || valid(i), realDestSize(i) + PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map{ case(writeFlag, valid) => writeFlag && valid }), 0.U) 990 991 val enqCnt = ParallelPriorityMux(uopCanEnqSeq.reverse :+ true.B, enqWbSizeSumSeq.reverse :+ 0.U) 992 993 val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 994 val canWbNoBlockSeq = canWbSeq.zip(blockWbSeq).map{ case(canWb, blockWb) => canWb && !blockWb } 995 val canStuWbSeq = stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 996 val wbCnt = PopCount(canWbNoBlockSeq ++ canStuWbSeq) 997 writebackedCounter(i) := Mux(!valid(i) && instCanEnqFlag || valid(i), Mux(exceptionGen.io.out.valid && exceptionGen.io.out.bits.robIdx.value === i.U, 0.U, writebackedCounter(i) + enqCnt - wbCnt), 0.U) 998 999 val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 1000 val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.reduce(_ | _) 1001 fflagsDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, fflagsDataModule(i) | fflagsRes) 1002 1003 val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 1004// val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.reduce(_ | _) 1005 val vxsatRes = 0.U 1006 vxsatDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, vxsatDataModule(i) | vxsatRes) 1007 } 1008 1009 // flagBkup 1010 // enqueue logic set 6 flagBkup at most 1011 for (i <- 0 until RenameWidth) { 1012 when (canEnqueue(i)) { 1013 flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag 1014 } 1015 } 1016 1017 // interrupt_safe 1018 for (i <- 0 until RenameWidth) { 1019 // We RegNext the updates for better timing. 1020 // Note that instructions won't change the system's states in this cycle. 1021 when (RegNext(canEnqueue(i))) { 1022 // For now, we allow non-load-store instructions to trigger interrupts 1023 // For MMIO instructions, they should not trigger interrupts since they may 1024 // be sent to lower level before it writes back. 1025 // However, we cannot determine whether a load/store instruction is MMIO. 1026 // Thus, we don't allow load/store instructions to trigger an interrupt. 1027 // TODO: support non-MMIO load-store instructions to trigger interrupts 1028 val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType) 1029 interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts) 1030 } 1031 } 1032 1033 /** 1034 * read and write of data modules 1035 */ 1036 val commitReadAddr_next = Mux(state_next === s_idle, 1037 VecInit(deqPtrVec_next.map(_.value)), 1038 VecInit(walkPtrVec_next.map(_.value)) 1039 ) 1040 dispatchData.io.wen := canEnqueue 1041 dispatchData.io.waddr := allocatePtrVec.map(_.value) 1042 dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) => 1043 wdata.ldest := req.ldest 1044 wdata.rfWen := req.rfWen 1045 wdata.fpWen := req.fpWen 1046 wdata.vecWen := req.vecWen 1047 wdata.wflags := req.fpu.wflags 1048 wdata.commitType := req.commitType 1049 wdata.pdest := req.pdest 1050 wdata.old_pdest := req.oldPdest 1051 wdata.ftqIdx := req.ftqPtr 1052 wdata.ftqOffset := req.ftqOffset 1053 wdata.isMove := req.eliminatedMove 1054 wdata.pc := req.pc 1055 wdata.vtype := req.vtype 1056 wdata.isVset := req.isVset 1057 } 1058 dispatchData.io.raddr := commitReadAddr_next 1059 1060 exceptionGen.io.redirect <> io.redirect 1061 exceptionGen.io.flush := io.flushOut.valid 1062 1063 val canEnqueueEG = VecInit(io.enq.req.map(req => req.valid && io.enq.canAccept)) 1064 for (i <- 0 until RenameWidth) { 1065 exceptionGen.io.enq(i).valid := canEnqueueEG(i) 1066 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 1067 exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec) 1068 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe 1069 exceptionGen.io.enq(i).bits.isVset := io.enq.req(i).bits.isVset 1070 exceptionGen.io.enq(i).bits.replayInst := false.B 1071 XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst") 1072 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep 1073 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix 1074 exceptionGen.io.enq(i).bits.trigger.clear() 1075 exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.trigger.frontendHit 1076 } 1077 1078 println(s"ExceptionGen:") 1079 println(s"num of exceptions: ${params.numException}") 1080 require(exceptionWBs.length == exceptionGen.io.wb.length, 1081 f"exceptionWBs.length: ${exceptionWBs.length}, " + 1082 f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}") 1083 for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) { 1084 exc_wb.valid := wb.valid 1085 exc_wb.bits.robIdx := wb.bits.robIdx 1086 exc_wb.bits.exceptionVec := wb.bits.exceptionVec.get 1087 exc_wb.bits.flushPipe := wb.bits.flushPipe.getOrElse(false.B) 1088 exc_wb.bits.isVset := false.B 1089 exc_wb.bits.replayInst := wb.bits.replay.getOrElse(false.B) 1090 exc_wb.bits.singleStep := false.B 1091 exc_wb.bits.crossPageIPFFix := false.B 1092 exc_wb.bits.trigger := 0.U.asTypeOf(exc_wb.bits.trigger) // Todo 1093// println(s" [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " + 1094// s"flushPipe ${configs.exists(_.flushPipe)}, " + 1095// s"replayInst ${configs.exists(_.replayInst)}") 1096 } 1097 1098 fflagsDataRead := (0 until CommitWidth).map(i => fflagsDataModule(deqPtrVec(i).value)) 1099 vxsatDataRead := (0 until CommitWidth).map(i => vxsatDataModule(deqPtrVec(i).value)) 1100 1101 val instrCntReg = RegInit(0.U(64.W)) 1102 val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) }) 1103 val trueCommitCnt = RegNext(commitCnt) +& fuseCommitCnt 1104 val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U) 1105 val instrCnt = instrCntReg + retireCounter 1106 instrCntReg := instrCnt 1107 io.csr.perfinfo.retiredInstr := retireCounter 1108 io.robFull := !allowEnqueue 1109 1110 /** 1111 * debug info 1112 */ 1113 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 1114 XSDebug("") 1115 XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n") 1116 for(i <- 0 until RobSize){ 1117 XSDebug(false, !valid(i), "-") 1118 XSDebug(false, valid(i) && isWritebacked(i.U), "w") 1119 XSDebug(false, valid(i) && !isWritebacked(i.U), "v") 1120 } 1121 XSDebug(false, true.B, "\n") 1122 1123 for(i <- 0 until RobSize) { 1124 if(i % 4 == 0) XSDebug("") 1125 XSDebug(false, true.B, "%x ", debug_microOp(i).pc) 1126 XSDebug(false, !valid(i), "- ") 1127 XSDebug(false, valid(i) && isWritebacked(i.U), "w ") 1128 XSDebug(false, valid(i) && !isWritebacked(i.U), "v ") 1129 if(i % 4 == 3) XSDebug(false, true.B, "\n") 1130 } 1131 1132 def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U) 1133 def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U) 1134 1135 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 1136 XSPerfAccumulate("clock_cycle", 1.U) 1137 QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue) 1138 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 1139 XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt)) 1140 val commitIsMove = commitDebugUop.map(_.isMove) 1141 XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }))) 1142 val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) 1143 XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e }))) 1144 XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt)) 1145 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 1146 val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t } 1147 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 1148 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 1149 val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t } 1150 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 1151 val commitLoadWaitBit = commitDebugUop.map(_.loadWaitBit) 1152 XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))) 1153 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 1154 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }))) 1155 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && isWritebacked(i.U)))) 1156 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire))) 1157 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 1158 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)) 1159 XSPerfAccumulate("walkCycle", state === s_walk) 1160 val deqNotWritebacked = valid(deqPtr.value) && !isWritebacked(deqPtr.value) 1161 val deqUopCommitType = io.commits.info(0).commitType 1162 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 1163 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 1164 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 1165 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 1166 XSPerfAccumulate("robHeadPC", io.commits.info(0).pc) 1167 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 1168 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 1169 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 1170 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 1171 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 1172 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 1173 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 1174 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 1175 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 1176 } 1177 for (fuType <- FuType.functionNameMap.keys) { 1178 val fuName = FuType.functionNameMap(fuType) 1179 val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U ) 1180 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 1181 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 1182 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 1183 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 1184 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 1185 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 1186 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 1187 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 1188 if (fuType == FuType.fmac) { 1189 val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.fpu.ren3 ) 1190 XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma))) 1191 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency))) 1192 XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency))) 1193 } 1194 } 1195 1196 //difftest signals 1197 val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value 1198 1199 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1200 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1201 1202 for(i <- 0 until CommitWidth) { 1203 val idx = deqPtrVec(i).value 1204 wdata(i) := debug_exuData(idx) 1205 wpc(i) := SignExt(commitDebugUop(i).pc, XLEN) 1206 } 1207 1208 if (env.EnableDifftest) { 1209 for (i <- 0 until CommitWidth) { 1210 val difftest = Module(new DifftestInstrCommit) 1211 // assgin default value 1212 difftest.io := DontCare 1213 1214 difftest.io.clock := clock 1215 difftest.io.coreid := io.hartId 1216 difftest.io.index := i.U 1217 1218 val ptr = deqPtrVec(i).value 1219 val uop = commitDebugUop(i) 1220 val exuOut = debug_exuDebug(ptr) 1221 val exuData = debug_exuData(ptr) 1222 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1223 difftest.io.pc := RegNext(RegNext(RegNext(SignExt(uop.pc, XLEN)))) 1224 difftest.io.instr := RegNext(RegNext(RegNext(uop.instr))) 1225 difftest.io.robIdx := RegNext(RegNext(RegNext(ZeroExt(ptr, 10)))) 1226 difftest.io.lqIdx := RegNext(RegNext(RegNext(ZeroExt(uop.lqIdx.value, 7)))) 1227 difftest.io.sqIdx := RegNext(RegNext(RegNext(ZeroExt(uop.sqIdx.value, 7)))) 1228 difftest.io.isLoad := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.LOAD))) 1229 difftest.io.isStore := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.STORE))) 1230 difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(io.commits.info(i).commitType)))) 1231 // when committing an eliminated move instruction, 1232 // we must make sure that skip is properly set to false (output from EXU is random value) 1233 difftest.io.skip := RegNext(RegNext(RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)))) 1234 difftest.io.isRVC := RegNext(RegNext(RegNext(uop.preDecodeInfo.isRVC))) 1235 difftest.io.rfwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U))) 1236 difftest.io.fpwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).fpWen))) 1237 difftest.io.wpdest := RegNext(RegNext(RegNext(io.commits.info(i).pdest))) 1238 difftest.io.wdest := RegNext(RegNext(RegNext(io.commits.info(i).ldest))) 1239 // // runahead commit hint 1240 // val runahead_commit = Module(new DifftestRunaheadCommitEvent) 1241 // runahead_commit.io.clock := clock 1242 // runahead_commit.io.coreid := io.hartId 1243 // runahead_commit.io.index := i.U 1244 // runahead_commit.io.valid := difftest.io.valid && 1245 // (commitBranchValid(i) || commitIsStore(i)) 1246 // // TODO: is branch or store 1247 // runahead_commit.io.pc := difftest.io.pc 1248 } 1249 } 1250 else if (env.AlwaysBasicDiff) { 1251 // These are the structures used by difftest only and should be optimized after synthesis. 1252 val dt_eliminatedMove = Mem(RobSize, Bool()) 1253 val dt_isRVC = Mem(RobSize, Bool()) 1254 val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) 1255 for (i <- 0 until RenameWidth) { 1256 when (canEnqueue(i)) { 1257 dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 1258 dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC 1259 } 1260 } 1261 for (wb <- exuWBs) { 1262 when (wb.valid) { 1263 val wbIdx = wb.bits.robIdx.value 1264 dt_exuDebug(wbIdx) := wb.bits.debug 1265 } 1266 } 1267 // Always instantiate basic difftest modules. 1268 for (i <- 0 until CommitWidth) { 1269 val commitInfo = io.commits.info(i) 1270 val ptr = deqPtrVec(i).value 1271 val exuOut = dt_exuDebug(ptr) 1272 val eliminatedMove = dt_eliminatedMove(ptr) 1273 val isRVC = dt_isRVC(ptr) 1274 1275 val difftest = Module(new DifftestBasicInstrCommit) 1276 difftest.io.clock := clock 1277 difftest.io.coreid := io.hartId 1278 difftest.io.index := i.U 1279 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1280 difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(commitInfo.commitType)))) 1281 difftest.io.skip := RegNext(RegNext(RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)))) 1282 difftest.io.isRVC := RegNext(RegNext(RegNext(isRVC))) 1283 difftest.io.rfwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U))) 1284 difftest.io.fpwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.fpWen))) 1285 difftest.io.wpdest := RegNext(RegNext(RegNext(commitInfo.pdest))) 1286 difftest.io.wdest := RegNext(RegNext(RegNext(commitInfo.ldest))) 1287 } 1288 } 1289 1290 if (env.EnableDifftest) { 1291 for (i <- 0 until CommitWidth) { 1292 val difftest = Module(new DifftestLoadEvent) 1293 difftest.io.clock := clock 1294 difftest.io.coreid := io.hartId 1295 difftest.io.index := i.U 1296 1297 val ptr = deqPtrVec(i).value 1298 val uop = commitDebugUop(i) 1299 val exuOut = debug_exuDebug(ptr) 1300 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1301 difftest.io.paddr := RegNext(RegNext(RegNext(exuOut.paddr))) 1302 difftest.io.opType := RegNext(RegNext(RegNext(uop.fuOpType))) 1303 difftest.io.fuType := RegNext(RegNext(RegNext(uop.fuType))) 1304 } 1305 } 1306 1307 // Always instantiate basic difftest modules. 1308 if (env.EnableDifftest) { 1309 val dt_isXSTrap = Mem(RobSize, Bool()) 1310 for (i <- 0 until RenameWidth) { 1311 when (canEnqueue(i)) { 1312 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap 1313 } 1314 } 1315 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) } 1316 val hitTrap = trapVec.reduce(_||_) 1317 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 1318 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN) 1319 val difftest = Module(new DifftestTrapEvent) 1320 difftest.io.clock := clock 1321 difftest.io.coreid := io.hartId 1322 difftest.io.valid := hitTrap 1323 difftest.io.code := trapCode 1324 difftest.io.pc := trapPC 1325 difftest.io.cycleCnt := timer 1326 difftest.io.instrCnt := instrCnt 1327 difftest.io.hasWFI := hasWFI 1328 } 1329 else if (env.AlwaysBasicDiff) { 1330 val dt_isXSTrap = Mem(RobSize, Bool()) 1331 for (i <- 0 until RenameWidth) { 1332 when (canEnqueue(i)) { 1333 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap 1334 } 1335 } 1336 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) } 1337 val hitTrap = trapVec.reduce(_||_) 1338 val difftest = Module(new DifftestBasicTrapEvent) 1339 difftest.io.clock := clock 1340 difftest.io.coreid := io.hartId 1341 difftest.io.valid := hitTrap 1342 difftest.io.cycleCnt := timer 1343 difftest.io.instrCnt := instrCnt 1344 } 1345 1346 val validEntriesBanks = (0 until (RobSize + 63) / 64).map(i => RegNext(PopCount(valid.drop(i * 64).take(64)))) 1347 val validEntries = RegNext(ParallelOperation(validEntriesBanks, (a: UInt, b: UInt) => a +& b)) 1348 val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }) 1349 val commitLoadVec = VecInit(commitLoadValid) 1350 val commitBranchVec = VecInit(commitBranchValid) 1351 val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }) 1352 val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }) 1353 val perfEvents = Seq( 1354 ("rob_interrupt_num ", io.flushOut.valid && intrEnable ), 1355 ("rob_exception_num ", io.flushOut.valid && exceptionEnable ), 1356 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe ), 1357 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst ), 1358 ("rob_commitUop ", ifCommit(commitCnt) ), 1359 ("rob_commitInstr ", ifCommitReg(trueCommitCnt) ), 1360 ("rob_commitInstrMove ", ifCommitReg(PopCount(RegNext(commitMoveVec))) ), 1361 ("rob_commitInstrFused ", ifCommitReg(fuseCommitCnt) ), 1362 ("rob_commitInstrLoad ", ifCommitReg(PopCount(RegNext(commitLoadVec))) ), 1363 ("rob_commitInstrBranch ", ifCommitReg(PopCount(RegNext(commitBranchVec))) ), 1364 ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec))) ), 1365 ("rob_commitInstrStore ", ifCommitReg(PopCount(RegNext(commitStoreVec))) ), 1366 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U) ), 1367 ("rob_walkCycle ", (state === s_walk) ), 1368 ("rob_1_4_valid ", validEntries <= (RobSize / 4).U ), 1369 ("rob_2_4_valid ", validEntries > (RobSize / 4).U && validEntries <= (RobSize / 2).U ), 1370 ("rob_3_4_valid ", validEntries > (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U), 1371 ("rob_4_4_valid ", validEntries > (RobSize * 3 / 4).U ), 1372 ) 1373 generatePerfEvent() 1374} 1375