xref: /XiangShan/src/main/scala/xiangshan/backend/rob/Rob.scala (revision a8db15d829fbeffc63c1e3101725a2131cedc087)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.backend.rob
18
19import chipsalliance.rocketchip.config.Parameters
20import chisel3._
21import chisel3.util._
22import difftest._
23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp}
24import utility._
25import utils._
26import xiangshan._
27import xiangshan.backend.BackendParams
28import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput}
29import xiangshan.backend.fu.FuType
30import xiangshan.frontend.FtqPtr
31import xiangshan.mem.{LqPtr, SqPtr}
32import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput}
33
34class DebugMdpInfo(implicit p: Parameters) extends XSBundle{
35  val ssid = UInt(SSIDWidth.W)
36  val waitAllStore = Bool()
37}
38
39class DebugLsInfo(implicit p: Parameters) extends XSBundle{
40  val s1 = new Bundle{
41    val isTlbFirstMiss = Bool() // in s1
42    val isBankConflict = Bool() // in s1
43    val isLoadToLoadForward = Bool()
44    val isReplayFast = Bool()
45  }
46  val s2 = new Bundle{
47    val isDcacheFirstMiss = Bool() // in s2 (predicted result is in s1 when using WPU, real result is in s2)
48    val isForwardFail = Bool() // in s2
49    val isReplaySlow = Bool()
50    val isLoadReplayTLBMiss = Bool()
51    val isLoadReplayCacheMiss = Bool()
52  }
53  val replayCnt = UInt(XLEN.W)
54
55  def s1SignalEnable(ena: DebugLsInfo) = {
56    when(ena.s1.isTlbFirstMiss) { s1.isTlbFirstMiss := true.B }
57    when(ena.s1.isBankConflict) { s1.isBankConflict := true.B }
58    when(ena.s1.isLoadToLoadForward) { s1.isLoadToLoadForward := true.B }
59    when(ena.s1.isReplayFast) {
60      s1.isReplayFast := true.B
61      replayCnt := replayCnt + 1.U
62    }
63  }
64
65  def s2SignalEnable(ena: DebugLsInfo) = {
66    when(ena.s2.isDcacheFirstMiss) { s2.isDcacheFirstMiss := true.B }
67    when(ena.s2.isForwardFail) { s2.isForwardFail := true.B }
68    when(ena.s2.isLoadReplayTLBMiss) { s2.isLoadReplayTLBMiss := true.B }
69    when(ena.s2.isLoadReplayCacheMiss) { s2.isLoadReplayCacheMiss := true.B }
70    when(ena.s2.isReplaySlow) {
71      s2.isReplaySlow := true.B
72      replayCnt := replayCnt + 1.U
73    }
74  }
75}
76
77object DebugLsInfo{
78  def init(implicit p: Parameters): DebugLsInfo = {
79    val lsInfo = Wire(new DebugLsInfo)
80    lsInfo.s1.isTlbFirstMiss := false.B
81    lsInfo.s1.isBankConflict := false.B
82    lsInfo.s1.isLoadToLoadForward := false.B
83    lsInfo.s1.isReplayFast := false.B
84    lsInfo.s2.isDcacheFirstMiss := false.B
85    lsInfo.s2.isForwardFail := false.B
86    lsInfo.s2.isReplaySlow := false.B
87    lsInfo.s2.isLoadReplayTLBMiss := false.B
88    lsInfo.s2.isLoadReplayCacheMiss := false.B
89    lsInfo.replayCnt := 0.U
90    lsInfo
91  }
92}
93
94class DebugLsInfoBundle(implicit p: Parameters) extends DebugLsInfo {
95  // unified processing at the end stage of load/store  ==> s2  ==> bug that will write error robIdx data
96  val s1_robIdx = UInt(log2Ceil(RobSize).W)
97  val s2_robIdx = UInt(log2Ceil(RobSize).W)
98}
99
100class DebugLSIO(implicit p: Parameters) extends XSBundle {
101  val debugLsInfo = Vec(backendParams.LduCnt + backendParams.StaCnt, Output(new DebugLsInfoBundle))
102}
103
104class RobPtr(entries: Int) extends CircularQueuePtr[RobPtr](
105  entries
106) with HasCircularQueuePtrHelper {
107
108  def this()(implicit p: Parameters) = this(p(XSCoreParamsKey).RobSize)
109
110  def needFlush(redirect: Valid[Redirect]): Bool = {
111    val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx
112    redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx))
113  }
114
115  def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR
116}
117
118object RobPtr {
119  def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = {
120    val ptr = Wire(new RobPtr)
121    ptr.flag := f
122    ptr.value := v
123    ptr
124  }
125}
126
127class RobCSRIO(implicit p: Parameters) extends XSBundle {
128  val intrBitSet = Input(Bool())
129  val trapTarget = Input(UInt(VAddrBits.W))
130  val isXRet     = Input(Bool())
131  val wfiEvent   = Input(Bool())
132
133  val fflags     = Output(Valid(UInt(5.W)))
134  val vxsat      = Output(Valid(Bool()))
135  val dirty_fs   = Output(Bool())
136  val perfinfo   = new Bundle {
137    val retiredInstr = Output(UInt(3.W))
138  }
139
140  val vcsrFlag   = Output(Bool())
141}
142
143class RobLsqIO(implicit p: Parameters) extends XSBundle {
144  val lcommit = Output(UInt(log2Up(CommitWidth + 1).W))
145  val scommit = Output(UInt(log2Up(CommitWidth + 1).W))
146  val pendingld = Output(Bool())
147  val pendingst = Output(Bool())
148  val commit = Output(Bool())
149}
150
151class RobEnqIO(implicit p: Parameters) extends XSBundle {
152  val canAccept = Output(Bool())
153  val isEmpty = Output(Bool())
154  // valid vector, for robIdx gen and walk
155  val needAlloc = Vec(RenameWidth, Input(Bool()))
156  val req = Vec(RenameWidth, Flipped(ValidIO(new DynInst)))
157  val resp = Vec(RenameWidth, Output(new RobPtr))
158}
159
160class RobDispatchData(implicit p: Parameters) extends RobCommitInfo
161
162class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
163  val io = IO(new Bundle {
164    // for commits/flush
165    val state = Input(UInt(2.W))
166    val deq_v = Vec(CommitWidth, Input(Bool()))
167    val deq_w = Vec(CommitWidth, Input(Bool()))
168    val exception_state = Flipped(ValidIO(new RobExceptionInfo))
169    // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth)
170    val intrBitSetReg = Input(Bool())
171    val hasNoSpecExec = Input(Bool())
172    val interrupt_safe = Input(Bool())
173    val blockCommit = Input(Bool())
174    // output: the CommitWidth deqPtr
175    val out = Vec(CommitWidth, Output(new RobPtr))
176    val next_out = Vec(CommitWidth, Output(new RobPtr))
177  })
178
179  val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr))))
180
181  // for exceptions (flushPipe included) and interrupts:
182  // only consider the first instruction
183  val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe
184  val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0)
185  val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable)
186
187  // for normal commits: only to consider when there're no exceptions
188  // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions.
189  val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last)
190  val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i)))
191  val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B)
192  // when io.intrBitSetReg or there're possible exceptions in these instructions,
193  // only one instruction is allowed to commit
194  val allowOnlyOne = commit_exception || io.intrBitSetReg
195  val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt)
196
197  val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt))
198  val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec)
199
200  deqPtrVec := deqPtrVec_next
201
202  io.next_out := deqPtrVec_next
203  io.out      := deqPtrVec
204
205  when (io.state === 0.U) {
206    XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt)
207  }
208
209}
210
211class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
212  val io = IO(new Bundle {
213    // for input redirect
214    val redirect = Input(Valid(new Redirect))
215    // for enqueue
216    val allowEnqueue = Input(Bool())
217    val hasBlockBackward = Input(Bool())
218    val enq = Vec(RenameWidth, Input(Bool()))
219    val out = Output(Vec(RenameWidth, new RobPtr))
220  })
221
222  val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr)))
223
224  // enqueue
225  val canAccept = io.allowEnqueue && !io.hasBlockBackward
226  val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U)
227
228  for ((ptr, i) <- enqPtrVec.zipWithIndex) {
229    when(io.redirect.valid) {
230      ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
231    }.otherwise {
232      ptr := ptr + dispatchNum
233    }
234  }
235
236  io.out := enqPtrVec
237
238}
239
240class RobExceptionInfo(implicit p: Parameters) extends XSBundle {
241  // val valid = Bool()
242  val robIdx = new RobPtr
243  val exceptionVec = ExceptionVec()
244  val flushPipe = Bool()
245  val isVset = Bool()
246  val replayInst = Bool() // redirect to that inst itself
247  val singleStep = Bool() // TODO add frontend hit beneath
248  val crossPageIPFFix = Bool()
249  val trigger = new TriggerCf
250
251//  def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend
252//  def trigger_after = trigger.getTimingBackend && trigger.getHitBackend
253  def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit
254  def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit
255  // only exceptions are allowed to writeback when enqueue
256  def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit
257}
258
259class ExceptionGen(params: BackendParams)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
260  val io = IO(new Bundle {
261    val redirect = Input(Valid(new Redirect))
262    val flush = Input(Bool())
263    val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo)))
264    // csr + load + store
265    val wb = Vec(params.numException, Flipped(ValidIO(new RobExceptionInfo)))
266    val out = ValidIO(new RobExceptionInfo)
267    val state = ValidIO(new RobExceptionInfo)
268  })
269
270  def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = {
271    assert(valid.length == bits.length)
272    assert(isPow2(valid.length))
273    if (valid.length == 1) {
274      (valid, bits)
275    } else if (valid.length == 2) {
276      val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0)))))
277      for (i <- res.indices) {
278        res(i).valid := valid(i)
279        res(i).bits := bits(i)
280      }
281      val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1))
282      (Seq(oldest.valid), Seq(oldest.bits))
283    } else {
284      val left = getOldest(valid.take(valid.length / 2), bits.take(valid.length / 2))
285      val right = getOldest(valid.takeRight(valid.length / 2), bits.takeRight(valid.length / 2))
286      getOldest(left._1 ++ right._1, left._2 ++ right._2)
287    }
288  }
289
290  val currentValid = RegInit(false.B)
291  val current = Reg(new RobExceptionInfo)
292
293  // orR the exceptionVec
294  val lastCycleFlush = RegNext(io.flush)
295  val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush))
296  val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush)
297
298  // s0: compare wb(1)~wb(LoadPipelineWidth) and wb(1 + LoadPipelineWidth)~wb(LoadPipelineWidth + StorePipelineWidth)
299  val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }
300  val csr_wb_bits = io.wb(0).bits
301  val load_wb_bits = getOldest(in_wb_valid.slice(1, 1 + LoadPipelineWidth), io.wb.map(_.bits).slice(1, 1 + LoadPipelineWidth))._2(0)
302  val store_wb_bits = getOldest(in_wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth), io.wb.map(_.bits).slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth))._2(0)
303  val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid.slice(1, 1 + LoadPipelineWidth).reduce(_ || _), wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth).reduce(_ || _))))
304  val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits)))
305
306  // s1: compare last four and current flush
307  val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) })
308  val compare_01_valid = s0_out_valid(0) || s0_out_valid(1)
309  val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0))
310  val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2))
311  val s1_out_bits = RegNext(compare_bits)
312  val s1_out_valid = RegNext(s1_valid.asUInt.orR)
313
314  val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush)
315  val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits)))
316
317  // s2: compare the input exception with the current one
318  // priorities:
319  // (1) system reset
320  // (2) current is valid: flush, remain, merge, update
321  // (3) current is not valid: s1 or enq
322  val current_flush = current.robIdx.needFlush(io.redirect) || io.flush
323  val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush
324  when (currentValid) {
325    when (current_flush) {
326      currentValid := Mux(s1_flush, false.B, s1_out_valid)
327    }
328    when (s1_out_valid && !s1_flush) {
329      when (isAfter(current.robIdx, s1_out_bits.robIdx)) {
330        current := s1_out_bits
331      }.elsewhen (current.robIdx === s1_out_bits.robIdx) {
332        current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec())
333        current.flushPipe := s1_out_bits.flushPipe || current.flushPipe
334        current.replayInst := s1_out_bits.replayInst || current.replayInst
335        current.singleStep := s1_out_bits.singleStep || current.singleStep
336        current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf)
337      }
338    }
339  }.elsewhen (s1_out_valid && !s1_flush) {
340    currentValid := true.B
341    current := s1_out_bits
342  }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) {
343    currentValid := true.B
344    current := enq_bits
345  }
346
347  io.out.valid   := s1_out_valid || enq_valid && enq_bits.can_writeback
348  io.out.bits    := Mux(s1_out_valid, s1_out_bits, enq_bits)
349  io.state.valid := currentValid
350  io.state.bits  := current
351
352}
353
354class RobFlushInfo(implicit p: Parameters) extends XSBundle {
355  val ftqIdx = new FtqPtr
356  val robIdx = new RobPtr
357  val ftqOffset = UInt(log2Up(PredictWidth).W)
358  val replayInst = Bool()
359}
360
361class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter {
362
363  lazy val module = new RobImp(this)(p, params)
364  //
365  //  override def generateWritebackIO(
366  //    thisMod: Option[HasWritebackSource] = None,
367  //    thisModImp: Option[HasWritebackSourceImp] = None
368  //  ): Unit = {
369  //    val sources = writebackSinksImp(thisMod, thisModImp)
370  //    module.io.writeback.zip(sources).foreach(x => x._1 := x._2)
371  //  }
372  //}
373}
374
375class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper)
376  with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents {
377
378  val io = IO(new Bundle() {
379    val hartId = Input(UInt(8.W))
380    val redirect = Input(Valid(new Redirect))
381    val enq = new RobEnqIO
382    val flushOut = ValidIO(new Redirect)
383    val exception = ValidIO(new ExceptionInfo)
384    // exu + brq
385    val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles)
386    val commits = Output(new RobCommitIO)
387    val rabCommits = Output(new RobCommitIO)
388    val diffCommits = Output(new DiffCommitIO)
389    val isVsetFlushPipe = Output(Bool())
390    val vconfigPdest = Output(UInt(PhyRegIdxWidth.W))
391    val lsq = new RobLsqIO
392    val robDeqPtr = Output(new RobPtr)
393    val csr = new RobCSRIO
394    val robFull = Output(Bool())
395    val cpu_halt = Output(Bool())
396    val wfi_enable = Input(Bool())
397  })
398
399  val exuWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(!_.bits.params.hasStdFu)
400  val stdWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(_.bits.params.hasStdFu)
401  val fflagsWBs = io.writeback.filter(x => x.bits.fflags.nonEmpty)
402  val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty)
403  val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty)
404
405  val exuWbPorts = io.writeback.filter(!_.bits.params.hasStdFu)
406  val stdWbPorts = io.writeback.filter(_.bits.params.hasStdFu)
407  val fflagsPorts = io.writeback.filter(x => x.bits.fflags.nonEmpty)
408  val vxsatPorts = io.writeback.filter(x => x.bits.vxsat.nonEmpty)
409  val exceptionPorts = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty)
410  val numExuWbPorts = exuWBs.length
411  val numStdWbPorts = stdWBs.length
412
413
414  println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth")
415//  println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}")
416//  println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}")
417//  println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}")
418
419
420  // instvalid field
421  val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
422  // writeback status
423
424  val store_data_writebacked = Mem(RobSize, Bool())
425  val writebackedCounter = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W))))
426  val realDestSize       = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W))))
427  val fflagsDataModule   = RegInit(VecInit(Seq.fill(RobSize)(0.U(5.W))))
428  val vxsatDataModule    = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
429
430  def isWritebacked(ptr: UInt): Bool = {
431    !writebackedCounter(ptr).orR
432  }
433
434  // data for redirect, exception, etc.
435  val flagBkup = Mem(RobSize, Bool())
436  // some instructions are not allowed to trigger interrupts
437  // They have side effects on the states of the processor before they write back
438  val interrupt_safe = Mem(RobSize, Bool())
439
440  // data for debug
441  // Warn: debug_* prefix should not exist in generated verilog.
442  val debug_microOp = Mem(RobSize, new DynInst)
443  val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug
444  val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug
445
446  // pointers
447  // For enqueue ptr, we don't duplicate it since only enqueue needs it.
448  val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr))
449  val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr))
450
451  val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr))
452  val allowEnqueue = RegInit(true.B)
453
454  val enqPtr = enqPtrVec.head
455  val deqPtr = deqPtrVec(0)
456  val walkPtr = walkPtrVec(0)
457
458  val isEmpty = enqPtr === deqPtr
459  val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level)
460
461  /**
462    * states of Rob
463    */
464  val s_idle :: s_walk :: Nil = Enum(2)
465  val state = RegInit(s_idle)
466
467  /**
468    * Data Modules
469    *
470    * CommitDataModule: data from dispatch
471    * (1) read: commits/walk/exception
472    * (2) write: enqueue
473    *
474    * WritebackData: data from writeback
475    * (1) read: commits/walk/exception
476    * (2) write: write back from exe units
477    */
478  val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth))
479  val dispatchDataRead = dispatchData.io.rdata
480
481  val exceptionGen = Module(new ExceptionGen(params))
482  val exceptionDataRead = exceptionGen.io.state
483  val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W)))
484  val vxsatDataRead = Wire(Vec(CommitWidth, Bool()))
485
486  io.robDeqPtr := deqPtr
487
488  val rab = Module(new RenameBuffer(RabSize))
489  rab.io.redirectValid := io.redirect.valid
490  rab.io.req.zip(io.enq.req).map { case (dest, src) =>
491    dest.bits := src.bits
492    dest.valid := src.valid && io.enq.canAccept
493  }
494
495  val realDestSizeCandidates = (0 until CommitWidth).map(i => realDestSize(Mux(state === s_idle, deqPtrVec(i).value, walkPtrVec(i).value)))
496  val wbSizeSeq = io.commits.commitValid.zip(io.commits.walkValid).zip(realDestSizeCandidates).map { case ((commitValid, walkValid), realDestSize) =>
497    Mux(io.commits.isCommit, Mux(commitValid, realDestSize, 0.U), Mux(walkValid, realDestSize, 0.U))
498  }
499  val wbSizeSum = wbSizeSeq.reduce(_ + _)
500  rab.io.commitSize := wbSizeSum
501  rab.io.walkSize := wbSizeSum
502
503  io.rabCommits := rab.io.commits
504  io.diffCommits := rab.io.diffCommits
505
506  /**
507    * Enqueue (from dispatch)
508    */
509  // special cases
510  val hasBlockBackward = RegInit(false.B)
511  val hasWaitForward = RegInit(false.B)
512  val doingSvinval = RegInit(false.B)
513  // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B
514  // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty.
515  when (isEmpty) { hasBlockBackward:= false.B }
516  // When any instruction commits, hasNoSpecExec should be set to false.B
517  when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasWaitForward:= false.B }
518
519  // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing.
520  // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle.
521  // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts.
522  val hasWFI = RegInit(false.B)
523  io.cpu_halt := hasWFI
524  // WFI Timeout: 2^20 = 1M cycles
525  val wfi_cycles = RegInit(0.U(20.W))
526  when (hasWFI) {
527    wfi_cycles := wfi_cycles + 1.U
528  }.elsewhen (!hasWFI && RegNext(hasWFI)) {
529    wfi_cycles := 0.U
530  }
531  val wfi_timeout = wfi_cycles.andR
532  when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) {
533    hasWFI := false.B
534  }
535
536  val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.req.take(i).map(req => req.valid && req.bits.firstUop)))))
537  io.enq.canAccept := allowEnqueue && !hasBlockBackward && rab.io.canEnq
538  io.enq.resp      := allocatePtrVec
539  val canEnqueue = VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop && io.enq.canAccept))
540  val timer = GTimer()
541  for (i <- 0 until RenameWidth) {
542    // we don't check whether io.redirect is valid here since redirect has higher priority
543    when (canEnqueue(i)) {
544      val enqUop = io.enq.req(i).bits
545      val enqIndex = allocatePtrVec(i).value
546      // store uop in data module and debug_microOp Vec
547      debug_microOp(enqIndex) := enqUop
548      debug_microOp(enqIndex).debugInfo.dispatchTime := timer
549      debug_microOp(enqIndex).debugInfo.enqRsTime := timer
550      debug_microOp(enqIndex).debugInfo.selectTime := timer
551      debug_microOp(enqIndex).debugInfo.issueTime := timer
552      debug_microOp(enqIndex).debugInfo.writebackTime := timer
553      when (enqUop.blockBackward) {
554        hasBlockBackward := true.B
555      }
556      when (enqUop.waitForward) {
557        hasWaitForward := true.B
558      }
559      val enqHasTriggerHit = false.B // io.enq.req(i).bits.cf.trigger.getHitFrontend
560      val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR
561      // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process
562      when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe))
563      {
564        doingSvinval := true.B
565      }
566      // the end instruction of Svinval enqs so clear doingSvinval
567      when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe))
568      {
569        doingSvinval := false.B
570      }
571      // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear
572      assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe)))
573      when (enqUop.isWFI && !enqHasException && !enqHasTriggerHit) {
574        hasWFI := true.B
575      }
576    }
577  }
578  val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(req => req.valid && req.bits.firstUop)), 0.U)
579  io.enq.isEmpty   := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR)
580
581  when (!io.wfi_enable) {
582    hasWFI := false.B
583  }
584  // sel vsetvl's flush position
585  val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3)
586  val vsetvlState = RegInit(vs_idle)
587
588  val firstVInstrFtqPtr    = RegInit(0.U.asTypeOf(new FtqPtr))
589  val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W)))
590  val firstVInstrRobIdx    = RegInit(0.U.asTypeOf(new RobPtr))
591
592  val enq0            = io.enq.req(0)
593  val enq0IsVset      = enq0.bits.isVset && enq0.bits.lastUop && canEnqueue(0)
594  val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe
595  val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVpu(req.bits.fuType) && fire}
596  // for vs_idle
597  val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType)))
598  // for vs_waitVinstr
599  val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1)
600  val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req)
601  when(vsetvlState === vs_idle){
602    firstVInstrFtqPtr    := firstVInstrIdle.bits.ftqPtr
603    firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset
604    firstVInstrRobIdx    := firstVInstrIdle.bits.robIdx
605  }.elsewhen(vsetvlState === vs_waitVinstr){
606    when(Cat(enqIsVInstrOrVset).orR){
607      firstVInstrFtqPtr := firstVInstrWait.bits.ftqPtr
608      firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset
609      firstVInstrRobIdx := firstVInstrWait.bits.robIdx
610    }
611  }
612
613  val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR
614  when(vsetvlState === vs_idle && !io.redirect.valid){
615    when(enq0IsVsetFlush){
616      vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr)
617    }
618  }.elsewhen(vsetvlState === vs_waitVinstr){
619    when(io.redirect.valid){
620      vsetvlState := vs_idle
621    }.elsewhen(Cat(enqIsVInstrOrVset).orR){
622      vsetvlState := vs_waitFlush
623    }
624  }.elsewhen(vsetvlState === vs_waitFlush){
625    when(io.redirect.valid){
626      vsetvlState := vs_idle
627    }
628  }
629
630  /**
631    * Writeback (from execution units)
632    */
633  for (wb <- exuWBs) {
634    when (wb.valid) {
635      val wbIdx = wb.bits.robIdx.value
636      debug_exuData(wbIdx) := wb.bits.data
637      debug_exuDebug(wbIdx) := wb.bits.debug
638      debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime
639      debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime
640      debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime
641      debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime
642
643      // debug for lqidx and sqidx
644      debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr))
645      debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr))
646
647      val debug_Uop = debug_microOp(wbIdx)
648      XSInfo(true.B,
649        p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " +
650        p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " +
651        p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.robIdx}\n"
652      )
653    }
654  }
655
656  val writebackNum = PopCount(exuWBs.map(_.valid))
657  XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum)
658
659
660  /**
661    * RedirectOut: Interrupt and Exceptions
662    */
663  val deqDispatchData = dispatchDataRead(0)
664  val debug_deqUop = debug_microOp(deqPtr.value)
665
666  val intrBitSetReg = RegNext(io.csr.intrBitSet)
667  val intrEnable = intrBitSetReg && !hasWaitForward && interrupt_safe(deqPtr.value)
668  val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr
669  val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR ||
670    exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit)
671  val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe
672  val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst
673  val exceptionEnable = isWritebacked(deqPtr.value) && deqHasException
674
675  XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n")
676  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n")
677  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n")
678
679  val isFlushPipe = isWritebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst)
680
681  val isVsetFlushPipe = isWritebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset
682//  val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush)
683  val needModifyFtqIdxOffset = false.B
684  io.isVsetFlushPipe := isVsetFlushPipe
685  io.vconfigPdest := rab.io.vconfigPdest
686  // io.flushOut will trigger redirect at the next cycle.
687  // Block any redirect or commit at the next cycle.
688  val lastCycleFlush = RegNext(io.flushOut.valid)
689
690  io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush
691  io.flushOut.bits := DontCare
692  io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr)
693  io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx)
694  io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset)
695  io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next"
696  io.flushOut.bits.interrupt := true.B
697  XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable)
698  XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable)
699  XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe)
700  XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst)
701
702  val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush
703  io.exception.valid                := RegNext(exceptionHappen)
704  io.exception.bits.pc              := RegEnable(debug_deqUop.pc, exceptionHappen)
705  io.exception.bits.instr           := RegEnable(debug_deqUop.instr, exceptionHappen)
706  io.exception.bits.commitType      := RegEnable(deqDispatchData.commitType, exceptionHappen)
707  io.exception.bits.exceptionVec    := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen)
708  io.exception.bits.singleStep      := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen)
709  io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen)
710  io.exception.bits.isInterrupt     := RegEnable(intrEnable, exceptionHappen)
711//  io.exception.bits.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen)
712
713  XSDebug(io.flushOut.valid,
714    p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " +
715    p"excp $exceptionEnable flushPipe $isFlushPipe " +
716    p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n")
717
718
719  /**
720    * Commits (and walk)
721    * They share the same width.
722    */
723  val walkCounter = Reg(UInt(log2Up(RobSize + 1).W))
724  val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter))
725  val walkFinished = walkCounter <= CommitWidth.U
726  rab.io.robWalkEnd := state === s_walk && walkFinished
727
728  require(RenameWidth <= CommitWidth)
729
730  // wiring to csr
731  val (wflags, fpWen) = (0 until CommitWidth).map(i => {
732    val v = io.commits.commitValid(i)
733    val info = io.commits.info(i)
734    (v & info.wflags, v & info.fpWen)
735  }).unzip
736  val fflags = Wire(Valid(UInt(5.W)))
737  fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR
738  fflags.bits := wflags.zip(fflagsDataRead).map({
739    case (w, f) => Mux(w, f, 0.U)
740  }).reduce(_|_)
741  val dirty_fs = io.commits.isCommit && VecInit(fpWen).asUInt.orR
742
743  val vxsat = Wire(Valid(Bool()))
744  vxsat.valid := io.commits.isCommit && vxsat.bits
745  vxsat.bits := io.commits.commitValid.zip(vxsatDataRead).map {
746    case (valid, vxsat) => valid & vxsat
747  }.reduce(_ | _)
748
749  // when mispredict branches writeback, stop commit in the next 2 cycles
750  // TODO: don't check all exu write back
751  val misPredWb = Cat(VecInit(redirectWBs.map(wb =>
752    wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid
753  ))).orR
754  val misPredBlockCounter = Reg(UInt(3.W))
755  misPredBlockCounter := Mux(misPredWb,
756    "b111".U,
757    misPredBlockCounter >> 1.U
758  )
759  val misPredBlock = misPredBlockCounter(0)
760  val blockCommit = misPredBlock && !io.flushOut.valid || isReplaying || lastCycleFlush || hasWFI
761
762  io.commits.isWalk := state === s_walk
763  io.commits.isCommit := state === s_idle && !blockCommit
764  val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value)))
765  val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value)))
766  // store will be commited iff both sta & std have been writebacked
767  val commit_w = VecInit(deqPtrVec.map(ptr => isWritebacked(ptr.value)))
768  val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last)
769  val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i)))
770  val allowOnlyOneCommit = commit_exception || intrBitSetReg
771  // for instructions that may block others, we don't allow them to commit
772  for (i <- 0 until CommitWidth) {
773    // defaults: state === s_idle and instructions commit
774    // when intrBitSetReg, allow only one instruction to commit at each clock cycle
775    val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst
776    io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked
777    io.commits.info(i)  := dispatchDataRead(i)
778
779    when (state === s_walk) {
780      io.commits.walkValid(i) := shouldWalkVec(i)
781      when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) {
782        XSError(!walk_v(i), s"why not $i???\n")
783      }
784    }
785
786    XSInfo(io.commits.isCommit && io.commits.commitValid(i),
787      "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b vxsat: %b\n",
788      debug_microOp(deqPtrVec(i).value).pc,
789      io.commits.info(i).rfWen,
790      io.commits.info(i).ldest,
791      io.commits.info(i).pdest,
792      io.commits.info(i).old_pdest,
793      debug_exuData(deqPtrVec(i).value),
794      fflagsDataRead(i),
795      vxsatDataRead(i)
796    )
797    XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n",
798      debug_microOp(walkPtrVec(i).value).pc,
799      io.commits.info(i).rfWen,
800      io.commits.info(i).ldest,
801      debug_exuData(walkPtrVec(i).value)
802    )
803  }
804  if (env.EnableDifftest) {
805    io.commits.info.map(info => dontTouch(info.pc))
806  }
807
808  // sync fflags/dirty_fs/vxsat to csr
809  io.csr.fflags := RegNext(fflags)
810  io.csr.dirty_fs := RegNext(dirty_fs)
811  io.csr.vxsat := RegNext(vxsat)
812
813  // sync v csr to csr
814  // for difftest
815  val VEC_VCONFIG = VecLogicRegs - 1
816  val isDiffWriteVconfigVec = io.diffCommits.commitValid.zip(io.diffCommits.info).map { case (valid, info) => valid && info.ldest === VEC_VCONFIG.U && info.vecWen }.reverse
817  io.csr.vcsrFlag := RegNext(io.diffCommits.isCommit && Cat(isDiffWriteVconfigVec).orR)
818
819  // commit load/store to lsq
820  val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD))
821  val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE))
822  io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U))
823  io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U))
824  // indicate a pending load or store
825  io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value))
826  io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value))
827  io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0))
828
829  /**
830    * state changes
831    * (1) redirect: switch to s_walk
832    * (2) walk: when walking comes to the end, switch to s_idle
833    */
834  val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished && rab.io.rabWalkEnd, s_idle, state))
835  XSPerfAccumulate("s_idle_to_idle",            state === s_idle && state_next === s_idle)
836  XSPerfAccumulate("s_idle_to_walk",            state === s_idle && state_next === s_walk)
837  XSPerfAccumulate("s_walk_to_idle",            state === s_walk && state_next === s_idle)
838  XSPerfAccumulate("s_walk_to_walk",            state === s_walk && state_next === s_walk)
839  state := state_next
840
841  /**
842    * pointers and counters
843    */
844  val deqPtrGenModule = Module(new RobDeqPtrWrapper)
845  deqPtrGenModule.io.state := state
846  deqPtrGenModule.io.deq_v := commit_v
847  deqPtrGenModule.io.deq_w := commit_w
848  deqPtrGenModule.io.exception_state := exceptionDataRead
849  deqPtrGenModule.io.intrBitSetReg := intrBitSetReg
850  deqPtrGenModule.io.hasNoSpecExec := hasWaitForward
851  deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value)
852  deqPtrGenModule.io.blockCommit := blockCommit
853  deqPtrVec := deqPtrGenModule.io.out
854  val deqPtrVec_next = deqPtrGenModule.io.next_out
855
856  val enqPtrGenModule = Module(new RobEnqPtrWrapper)
857  enqPtrGenModule.io.redirect := io.redirect
858  enqPtrGenModule.io.allowEnqueue := allowEnqueue
859  enqPtrGenModule.io.hasBlockBackward := hasBlockBackward
860  enqPtrGenModule.io.enq := VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop))
861  enqPtrVec := enqPtrGenModule.io.out
862
863  val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U)
864  // next walkPtrVec:
865  // (1) redirect occurs: update according to state
866  // (2) walk: move forwards
867  val walkPtrVec_next = Mux(io.redirect.valid,
868    deqPtrVec_next,
869    Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec)
870  )
871  walkPtrVec := walkPtrVec_next
872
873  val numValidEntries = distanceBetween(enqPtr, deqPtr)
874  val commitCnt = PopCount(io.commits.commitValid)
875
876  allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U
877
878  val currentWalkPtr = Mux(state === s_walk, walkPtr, deqPtrVec_next(0))
879  val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0))
880  when (io.redirect.valid) {
881    // full condition:
882    // +& is used here because:
883    // When rob is full and the tail instruction causes a misprediction,
884    // the redirect robIdx is the deqPtr - 1. In this case, redirectWalkDistance
885    // is RobSize - 1.
886    // Since misprediction does not flush the instruction itself, flushItSelf is false.B.
887    // Previously we use `+` to count the walk distance and it causes overflows
888    // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize.
889    // The width of walkCounter also needs to be changed.
890    // empty condition:
891    // When the last instruction in ROB commits and causes a flush, a redirect
892    // will be raised later. In such circumstances, the redirect robIdx is before
893    // the deqPtrVec_next(0) and will cause underflow.
894    walkCounter := Mux(isBefore(io.redirect.bits.robIdx, deqPtrVec_next(0)), 0.U,
895                       redirectWalkDistance +& !io.redirect.bits.flushItself())
896  }.elsewhen (state === s_walk) {
897    walkCounter := walkCounter - thisCycleWalkCount
898    XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n")
899  }
900
901
902  /**
903    * States
904    * We put all the stage bits changes here.
905
906    * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit);
907    * All states: (1) valid; (2) writebacked; (3) flagBkup
908    */
909  val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value)))
910
911  // redirect logic writes 6 valid
912  val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr))
913  val redirectTail = Reg(new RobPtr)
914  val redirectIdle :: redirectBusy :: Nil = Enum(2)
915  val redirectState = RegInit(redirectIdle)
916  val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail))
917  when(redirectState === redirectBusy) {
918    redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U)
919    redirectHeadVec zip invMask foreach {
920      case (redirectHead, inv) => when(inv) {
921        valid(redirectHead.value) := false.B
922      }
923    }
924    when(!invMask.last) {
925      redirectState := redirectIdle
926    }
927  }
928  when(io.redirect.valid) {
929    redirectState := redirectBusy
930    when(redirectState === redirectIdle) {
931      redirectTail := enqPtr
932    }
933    redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) =>
934      redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
935    }
936  }
937  // enqueue logic writes 6 valid
938  for (i <- 0 until RenameWidth) {
939    when (canEnqueue(i) && !io.redirect.valid) {
940      valid(allocatePtrVec(i).value) := true.B
941    }
942  }
943  // dequeue logic writes 6 valid
944  for (i <- 0 until CommitWidth) {
945    val commitValid = io.commits.isCommit && io.commits.commitValid(i)
946    when (commitValid) {
947      valid(commitReadAddr(i)) := false.B
948    }
949  }
950
951  // writeback logic set numWbPorts writebacked to true
952  val blockWbSeq = Wire(Vec(exuWBs.length, Bool()))
953  blockWbSeq.map(_ := false.B)
954  for ((wb, blockWb) <- exuWBs.zip(blockWbSeq)) {
955    when(wb.valid) {
956      val wbHasException = wb.bits.exceptionVec.getOrElse(0.U).asUInt.orR
957      val wbHasTriggerHit = false.B //Todo: wb.bits.trigger.getHitBackend
958      val wbHasFlushPipe = wb.bits.flushPipe.getOrElse(false.B)
959      val wbHasReplayInst = wb.bits.replay.getOrElse(false.B) //Todo: && wb.bits.replayInst
960      blockWb := wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit
961    }
962  }
963
964  // if the first uop of an instruction is valid , write writebackedCounter
965  val uopEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid)
966  val instEnqValidSeq = io.enq.req.map (req => io.enq.canAccept && req.valid && req.bits.firstUop)
967  val enqNeedWriteRFSeq = io.enq.req.map(_.bits.needWriteRf)
968  val enqRobIdxSeq = io.enq.req.map(req => req.bits.robIdx.value)
969
970  val enqWbSizeSeq = io.enq.req.map { req =>
971    val enqHasException = ExceptionNO.selectFrontend(req.bits.exceptionVec).asUInt.orR
972    val enqHasTriggerHit = req.bits.trigger.getHitFrontend
973    Mux(req.bits.eliminatedMove, Mux(enqHasException || enqHasTriggerHit, 1.U, 0.U),
974      Mux(FuType.isAMO(req.bits.fuType) || FuType.isStore(req.bits.fuType), 2.U, 1.U))
975  }
976  val enqWbSizeSumSeq = enqRobIdxSeq.zipWithIndex.map { case (robIdx, idx) =>
977    val addend = enqRobIdxSeq.zip(enqWbSizeSeq).take(idx + 1).map { case (uopRobIdx, uopWbSize) => Mux(robIdx === uopRobIdx, uopWbSize, 0.U) }
978    addend.reduce(_ +& _)
979  }
980  val fflags_wb = fflagsPorts
981  val vxsat_wb = vxsatPorts
982  for(i <- 0 until RobSize){
983
984    val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === i.U)
985    val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch }
986    val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch }
987    val instCanEnqFlag = Cat(instCanEnqSeq).orR
988
989    realDestSize(i) := Mux(!valid(i) && instCanEnqFlag || valid(i), realDestSize(i) + PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map{ case(writeFlag, valid) => writeFlag && valid }), 0.U)
990
991    val enqCnt = ParallelPriorityMux(uopCanEnqSeq.reverse :+ true.B, enqWbSizeSumSeq.reverse :+ 0.U)
992
993    val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)
994    val canWbNoBlockSeq = canWbSeq.zip(blockWbSeq).map{ case(canWb, blockWb) => canWb && !blockWb }
995    val canStuWbSeq = stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)
996    val wbCnt = PopCount(canWbNoBlockSeq ++ canStuWbSeq)
997    writebackedCounter(i) := Mux(!valid(i) && instCanEnqFlag || valid(i), Mux(exceptionGen.io.out.valid && exceptionGen.io.out.bits.robIdx.value === i.U, 0.U, writebackedCounter(i) + enqCnt - wbCnt), 0.U)
998
999    val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)
1000    val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.reduce(_ | _)
1001    fflagsDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, fflagsDataModule(i) | fflagsRes)
1002
1003    val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)
1004//    val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.reduce(_ | _)
1005    val vxsatRes = 0.U
1006    vxsatDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, vxsatDataModule(i) | vxsatRes)
1007  }
1008
1009  // flagBkup
1010  // enqueue logic set 6 flagBkup at most
1011  for (i <- 0 until RenameWidth) {
1012    when (canEnqueue(i)) {
1013      flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag
1014    }
1015  }
1016
1017  // interrupt_safe
1018  for (i <- 0 until RenameWidth) {
1019    // We RegNext the updates for better timing.
1020    // Note that instructions won't change the system's states in this cycle.
1021    when (RegNext(canEnqueue(i))) {
1022      // For now, we allow non-load-store instructions to trigger interrupts
1023      // For MMIO instructions, they should not trigger interrupts since they may
1024      // be sent to lower level before it writes back.
1025      // However, we cannot determine whether a load/store instruction is MMIO.
1026      // Thus, we don't allow load/store instructions to trigger an interrupt.
1027      // TODO: support non-MMIO load-store instructions to trigger interrupts
1028      val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType)
1029      interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts)
1030    }
1031  }
1032
1033  /**
1034    * read and write of data modules
1035    */
1036  val commitReadAddr_next = Mux(state_next === s_idle,
1037    VecInit(deqPtrVec_next.map(_.value)),
1038    VecInit(walkPtrVec_next.map(_.value))
1039  )
1040  dispatchData.io.wen := canEnqueue
1041  dispatchData.io.waddr := allocatePtrVec.map(_.value)
1042  dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) =>
1043    wdata.ldest := req.ldest
1044    wdata.rfWen := req.rfWen
1045    wdata.fpWen := req.fpWen
1046    wdata.vecWen := req.vecWen
1047    wdata.wflags := req.fpu.wflags
1048    wdata.commitType := req.commitType
1049    wdata.pdest := req.pdest
1050    wdata.old_pdest := req.oldPdest
1051    wdata.ftqIdx := req.ftqPtr
1052    wdata.ftqOffset := req.ftqOffset
1053    wdata.isMove := req.eliminatedMove
1054    wdata.pc := req.pc
1055    wdata.vtype := req.vtype
1056    wdata.isVset := req.isVset
1057  }
1058  dispatchData.io.raddr := commitReadAddr_next
1059
1060  exceptionGen.io.redirect <> io.redirect
1061  exceptionGen.io.flush := io.flushOut.valid
1062
1063  val canEnqueueEG = VecInit(io.enq.req.map(req => req.valid && io.enq.canAccept))
1064  for (i <- 0 until RenameWidth) {
1065    exceptionGen.io.enq(i).valid := canEnqueueEG(i)
1066    exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx
1067    exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec)
1068    exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe
1069    exceptionGen.io.enq(i).bits.isVset := io.enq.req(i).bits.isVset
1070    exceptionGen.io.enq(i).bits.replayInst := false.B
1071    XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst")
1072    exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep
1073    exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix
1074    exceptionGen.io.enq(i).bits.trigger.clear()
1075    exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.trigger.frontendHit
1076  }
1077
1078  println(s"ExceptionGen:")
1079  println(s"num of exceptions: ${params.numException}")
1080  require(exceptionWBs.length == exceptionGen.io.wb.length,
1081    f"exceptionWBs.length: ${exceptionWBs.length}, " +
1082      f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}")
1083  for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) {
1084    exc_wb.valid                := wb.valid
1085    exc_wb.bits.robIdx          := wb.bits.robIdx
1086    exc_wb.bits.exceptionVec    := wb.bits.exceptionVec.get
1087    exc_wb.bits.flushPipe       := wb.bits.flushPipe.getOrElse(false.B)
1088    exc_wb.bits.isVset          := false.B
1089    exc_wb.bits.replayInst      := wb.bits.replay.getOrElse(false.B)
1090    exc_wb.bits.singleStep      := false.B
1091    exc_wb.bits.crossPageIPFFix := false.B
1092    exc_wb.bits.trigger         := 0.U.asTypeOf(exc_wb.bits.trigger) // Todo
1093//    println(s"  [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " +
1094//      s"flushPipe ${configs.exists(_.flushPipe)}, " +
1095//      s"replayInst ${configs.exists(_.replayInst)}")
1096  }
1097
1098  fflagsDataRead := (0 until CommitWidth).map(i => fflagsDataModule(deqPtrVec(i).value))
1099  vxsatDataRead := (0 until CommitWidth).map(i => vxsatDataModule(deqPtrVec(i).value))
1100
1101  val instrCntReg = RegInit(0.U(64.W))
1102  val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) })
1103  val trueCommitCnt = RegNext(commitCnt) +& fuseCommitCnt
1104  val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U)
1105  val instrCnt = instrCntReg + retireCounter
1106  instrCntReg := instrCnt
1107  io.csr.perfinfo.retiredInstr := retireCounter
1108  io.robFull := !allowEnqueue
1109
1110  /**
1111    * debug info
1112    */
1113  XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n")
1114  XSDebug("")
1115  XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n")
1116  for(i <- 0 until RobSize){
1117    XSDebug(false, !valid(i), "-")
1118    XSDebug(false, valid(i) && isWritebacked(i.U), "w")
1119    XSDebug(false, valid(i) && !isWritebacked(i.U), "v")
1120  }
1121  XSDebug(false, true.B, "\n")
1122
1123  for(i <- 0 until RobSize) {
1124    if(i % 4 == 0) XSDebug("")
1125    XSDebug(false, true.B, "%x ", debug_microOp(i).pc)
1126    XSDebug(false, !valid(i), "- ")
1127    XSDebug(false, valid(i) && isWritebacked(i.U), "w ")
1128    XSDebug(false, valid(i) && !isWritebacked(i.U), "v ")
1129    if(i % 4 == 3) XSDebug(false, true.B, "\n")
1130  }
1131
1132  def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U)
1133  def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U)
1134
1135  val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_))
1136  XSPerfAccumulate("clock_cycle", 1.U)
1137  QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue)
1138  XSPerfAccumulate("commitUop", ifCommit(commitCnt))
1139  XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt))
1140  val commitIsMove = commitDebugUop.map(_.isMove)
1141  XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })))
1142  val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove)
1143  XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e })))
1144  XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt))
1145  val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD)
1146  val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t }
1147  XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid)))
1148  val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH)
1149  val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t }
1150  XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid)))
1151  val commitLoadWaitBit = commitDebugUop.map(_.loadWaitBit)
1152  XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })))
1153  val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE)
1154  XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })))
1155  XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && isWritebacked(i.U))))
1156  // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire)))
1157  // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready)))
1158  XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U))
1159  XSPerfAccumulate("walkCycle", state === s_walk)
1160  val deqNotWritebacked = valid(deqPtr.value) && !isWritebacked(deqPtr.value)
1161  val deqUopCommitType = io.commits.info(0).commitType
1162  XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL)
1163  XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH)
1164  XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD)
1165  XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE)
1166  XSPerfAccumulate("robHeadPC", io.commits.info(0).pc)
1167  val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime)
1168  val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime)
1169  val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime)
1170  val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime)
1171  val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime)
1172  val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime)
1173  val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime)
1174  def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = {
1175    cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _)
1176  }
1177  for (fuType <- FuType.functionNameMap.keys) {
1178    val fuName = FuType.functionNameMap(fuType)
1179    val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U )
1180    XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType)))
1181    XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency)))
1182    XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency)))
1183    XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency)))
1184    XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency)))
1185    XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency)))
1186    XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency)))
1187    XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency)))
1188    if (fuType == FuType.fmac) {
1189      val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.fpu.ren3 )
1190      XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma)))
1191      XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency)))
1192      XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency)))
1193    }
1194  }
1195
1196  //difftest signals
1197  val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value
1198
1199  val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1200  val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1201
1202  for(i <- 0 until CommitWidth) {
1203    val idx = deqPtrVec(i).value
1204    wdata(i) := debug_exuData(idx)
1205    wpc(i) := SignExt(commitDebugUop(i).pc, XLEN)
1206  }
1207
1208  if (env.EnableDifftest) {
1209    for (i <- 0 until CommitWidth) {
1210      val difftest = Module(new DifftestInstrCommit)
1211      // assgin default value
1212      difftest.io := DontCare
1213
1214      difftest.io.clock    := clock
1215      difftest.io.coreid   := io.hartId
1216      difftest.io.index    := i.U
1217
1218      val ptr = deqPtrVec(i).value
1219      val uop = commitDebugUop(i)
1220      val exuOut = debug_exuDebug(ptr)
1221      val exuData = debug_exuData(ptr)
1222      difftest.io.valid    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1223      difftest.io.pc       := RegNext(RegNext(RegNext(SignExt(uop.pc, XLEN))))
1224      difftest.io.instr    := RegNext(RegNext(RegNext(uop.instr)))
1225      difftest.io.robIdx   := RegNext(RegNext(RegNext(ZeroExt(ptr, 10))))
1226      difftest.io.lqIdx    := RegNext(RegNext(RegNext(ZeroExt(uop.lqIdx.value, 7))))
1227      difftest.io.sqIdx    := RegNext(RegNext(RegNext(ZeroExt(uop.sqIdx.value, 7))))
1228      difftest.io.isLoad   := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.LOAD)))
1229      difftest.io.isStore  := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.STORE)))
1230      difftest.io.special  := RegNext(RegNext(RegNext(CommitType.isFused(io.commits.info(i).commitType))))
1231      // when committing an eliminated move instruction,
1232      // we must make sure that skip is properly set to false (output from EXU is random value)
1233      difftest.io.skip     := RegNext(RegNext(RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))))
1234      difftest.io.isRVC    := RegNext(RegNext(RegNext(uop.preDecodeInfo.isRVC)))
1235      difftest.io.rfwen    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U)))
1236      difftest.io.fpwen    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).fpWen)))
1237      difftest.io.wpdest   := RegNext(RegNext(RegNext(io.commits.info(i).pdest)))
1238      difftest.io.wdest    := RegNext(RegNext(RegNext(io.commits.info(i).ldest)))
1239      // // runahead commit hint
1240      // val runahead_commit = Module(new DifftestRunaheadCommitEvent)
1241      // runahead_commit.io.clock := clock
1242      // runahead_commit.io.coreid := io.hartId
1243      // runahead_commit.io.index := i.U
1244      // runahead_commit.io.valid := difftest.io.valid &&
1245      //   (commitBranchValid(i) || commitIsStore(i))
1246      // // TODO: is branch or store
1247      // runahead_commit.io.pc    := difftest.io.pc
1248    }
1249  }
1250  else if (env.AlwaysBasicDiff) {
1251    // These are the structures used by difftest only and should be optimized after synthesis.
1252    val dt_eliminatedMove = Mem(RobSize, Bool())
1253    val dt_isRVC = Mem(RobSize, Bool())
1254    val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle))
1255    for (i <- 0 until RenameWidth) {
1256      when (canEnqueue(i)) {
1257        dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove
1258        dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC
1259      }
1260    }
1261    for (wb <- exuWBs) {
1262      when (wb.valid) {
1263        val wbIdx = wb.bits.robIdx.value
1264        dt_exuDebug(wbIdx) := wb.bits.debug
1265      }
1266    }
1267    // Always instantiate basic difftest modules.
1268    for (i <- 0 until CommitWidth) {
1269      val commitInfo = io.commits.info(i)
1270      val ptr = deqPtrVec(i).value
1271      val exuOut = dt_exuDebug(ptr)
1272      val eliminatedMove = dt_eliminatedMove(ptr)
1273      val isRVC = dt_isRVC(ptr)
1274
1275      val difftest = Module(new DifftestBasicInstrCommit)
1276      difftest.io.clock   := clock
1277      difftest.io.coreid  := io.hartId
1278      difftest.io.index   := i.U
1279      difftest.io.valid   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1280      difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(commitInfo.commitType))))
1281      difftest.io.skip    := RegNext(RegNext(RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))))
1282      difftest.io.isRVC   := RegNext(RegNext(RegNext(isRVC)))
1283      difftest.io.rfwen   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U)))
1284      difftest.io.fpwen   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.fpWen)))
1285      difftest.io.wpdest  := RegNext(RegNext(RegNext(commitInfo.pdest)))
1286      difftest.io.wdest   := RegNext(RegNext(RegNext(commitInfo.ldest)))
1287    }
1288  }
1289
1290  if (env.EnableDifftest) {
1291    for (i <- 0 until CommitWidth) {
1292      val difftest = Module(new DifftestLoadEvent)
1293      difftest.io.clock  := clock
1294      difftest.io.coreid := io.hartId
1295      difftest.io.index  := i.U
1296
1297      val ptr = deqPtrVec(i).value
1298      val uop = commitDebugUop(i)
1299      val exuOut = debug_exuDebug(ptr)
1300      difftest.io.valid  := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1301      difftest.io.paddr  := RegNext(RegNext(RegNext(exuOut.paddr)))
1302      difftest.io.opType := RegNext(RegNext(RegNext(uop.fuOpType)))
1303      difftest.io.fuType := RegNext(RegNext(RegNext(uop.fuType)))
1304    }
1305  }
1306
1307  // Always instantiate basic difftest modules.
1308  if (env.EnableDifftest) {
1309    val dt_isXSTrap = Mem(RobSize, Bool())
1310    for (i <- 0 until RenameWidth) {
1311      when (canEnqueue(i)) {
1312        dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap
1313      }
1314    }
1315    val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) }
1316    val hitTrap = trapVec.reduce(_||_)
1317    val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1))
1318    val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN)
1319    val difftest = Module(new DifftestTrapEvent)
1320    difftest.io.clock    := clock
1321    difftest.io.coreid   := io.hartId
1322    difftest.io.valid    := hitTrap
1323    difftest.io.code     := trapCode
1324    difftest.io.pc       := trapPC
1325    difftest.io.cycleCnt := timer
1326    difftest.io.instrCnt := instrCnt
1327    difftest.io.hasWFI   := hasWFI
1328  }
1329  else if (env.AlwaysBasicDiff) {
1330    val dt_isXSTrap = Mem(RobSize, Bool())
1331    for (i <- 0 until RenameWidth) {
1332      when (canEnqueue(i)) {
1333        dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap
1334      }
1335    }
1336    val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) }
1337    val hitTrap = trapVec.reduce(_||_)
1338    val difftest = Module(new DifftestBasicTrapEvent)
1339    difftest.io.clock    := clock
1340    difftest.io.coreid   := io.hartId
1341    difftest.io.valid    := hitTrap
1342    difftest.io.cycleCnt := timer
1343    difftest.io.instrCnt := instrCnt
1344  }
1345
1346  val validEntriesBanks = (0 until (RobSize + 63) / 64).map(i => RegNext(PopCount(valid.drop(i * 64).take(64))))
1347  val validEntries = RegNext(ParallelOperation(validEntriesBanks, (a: UInt, b: UInt) => a +& b))
1348  val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })
1349  val commitLoadVec = VecInit(commitLoadValid)
1350  val commitBranchVec = VecInit(commitBranchValid)
1351  val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })
1352  val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })
1353  val perfEvents = Seq(
1354    ("rob_interrupt_num      ", io.flushOut.valid && intrEnable                                       ),
1355    ("rob_exception_num      ", io.flushOut.valid && exceptionEnable                                  ),
1356    ("rob_flush_pipe_num     ", io.flushOut.valid && isFlushPipe                                      ),
1357    ("rob_replay_inst_num    ", io.flushOut.valid && isFlushPipe && deqHasReplayInst                  ),
1358    ("rob_commitUop          ", ifCommit(commitCnt)                                                   ),
1359    ("rob_commitInstr        ", ifCommitReg(trueCommitCnt)                                            ),
1360    ("rob_commitInstrMove    ", ifCommitReg(PopCount(RegNext(commitMoveVec)))                         ),
1361    ("rob_commitInstrFused   ", ifCommitReg(fuseCommitCnt)                                            ),
1362    ("rob_commitInstrLoad    ", ifCommitReg(PopCount(RegNext(commitLoadVec)))                         ),
1363    ("rob_commitInstrBranch  ", ifCommitReg(PopCount(RegNext(commitBranchVec)))                       ),
1364    ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec)))                     ),
1365    ("rob_commitInstrStore   ", ifCommitReg(PopCount(RegNext(commitStoreVec)))                        ),
1366    ("rob_walkInstr          ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)           ),
1367    ("rob_walkCycle          ", (state === s_walk)                                                    ),
1368    ("rob_1_4_valid          ", validEntries <= (RobSize / 4).U                                       ),
1369    ("rob_2_4_valid          ", validEntries >  (RobSize / 4).U && validEntries <= (RobSize / 2).U    ),
1370    ("rob_3_4_valid          ", validEntries >  (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U),
1371    ("rob_4_4_valid          ", validEntries >  (RobSize * 3 / 4).U                                   ),
1372  )
1373  generatePerfEvent()
1374}
1375