1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15* 16* 17* Acknowledgement 18* 19* This implementation is inspired by several key papers: 20* [1] James E. Smith, and Andrew R. Pleszkun. "[Implementation of precise interrupts in pipelined processors.] 21* (https://dl.acm.org/doi/10.5555/327010.327125)" 12th Annual International Symposium on Computer Architecture (ISCA). 22* 1985. 23***************************************************************************************/ 24 25package xiangshan.backend.rob 26 27import org.chipsalliance.cde.config.Parameters 28import chisel3._ 29import chisel3.util._ 30import chisel3.experimental.BundleLiterals._ 31import difftest._ 32import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 33import utility._ 34import utils._ 35import xiangshan._ 36import xiangshan.backend.GPAMemEntry 37import xiangshan.backend.{BackendParams, RatToVecExcpMod, RegWriteFromRab, VecExcpInfo} 38import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 39import xiangshan.backend.fu.{FuConfig, FuType} 40import xiangshan.frontend.FtqPtr 41import xiangshan.mem.{LqPtr, LsqEnqIO, SqPtr} 42import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 43import xiangshan.backend.ctrlblock.{DebugLSIO, DebugLsInfo, LsTopdownInfo} 44import xiangshan.backend.fu.vector.Bundles.VType 45import xiangshan.backend.rename.SnapshotGenerator 46import yunsuan.VfaluType 47import xiangshan.backend.rob.RobBundles._ 48import xiangshan.backend.trace._ 49import chisel3.experimental.BundleLiterals._ 50 51class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter { 52 override def shouldBeInlined: Boolean = false 53 54 lazy val module = new RobImp(this)(p, params) 55} 56 57class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper) 58 with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents with HasCriticalErrors { 59 60 private val LduCnt = params.LduCnt 61 private val StaCnt = params.StaCnt 62 private val HyuCnt = params.HyuCnt 63 64 val io = IO(new Bundle() { 65 val hartId = Input(UInt(hartIdLen.W)) 66 val redirect = Input(Valid(new Redirect)) 67 val enq = new RobEnqIO 68 val flushOut = ValidIO(new Redirect) 69 val exception = ValidIO(new ExceptionInfo) 70 // exu + brq 71 val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles) 72 val exuWriteback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles) 73 val writebackNums = Flipped(Vec(writeback.size - params.StdCnt, ValidIO(UInt(writeback.size.U.getWidth.W)))) 74 val writebackNeedFlush = Input(Vec(params.allExuParams.filter(_.needExceptionGen).length, Bool())) 75 val commits = Output(new RobCommitIO) 76 val rabCommits = Output(new RabCommitIO) 77 val diffCommits = if (backendParams.basicDebugEn) Some(Output(new DiffCommitIO)) else None 78 val isVsetFlushPipe = Output(Bool()) 79 val lsq = new RobLsqIO 80 val robDeqPtr = Output(new RobPtr) 81 val csr = new RobCSRIO 82 val snpt = Input(new SnapshotPort) 83 val robFull = Output(Bool()) 84 val headNotReady = Output(Bool()) 85 val cpu_halt = Output(Bool()) 86 val wfi_enable = Input(Bool()) 87 val toDecode = new Bundle { 88 val isResumeVType = Output(Bool()) 89 val walkToArchVType = Output(Bool()) 90 val walkVType = ValidIO(VType()) 91 val commitVType = new Bundle { 92 val vtype = ValidIO(VType()) 93 val hasVsetvl = Output(Bool()) 94 } 95 } 96 val fromVecExcpMod = Input(new Bundle { 97 val busy = Bool() 98 }) 99 val readGPAMemAddr = ValidIO(new Bundle { 100 val ftqPtr = new FtqPtr() 101 val ftqOffset = UInt(log2Up(PredictWidth).W) 102 }) 103 val readGPAMemData = Input(new GPAMemEntry) 104 val vstartIsZero = Input(Bool()) 105 106 val toVecExcpMod = Output(new Bundle { 107 val logicPhyRegMap = Vec(RabCommitWidth, ValidIO(new RegWriteFromRab)) 108 val excpInfo = ValidIO(new VecExcpInfo) 109 }) 110 val debug_ls = Flipped(new DebugLSIO) 111 val debugRobHead = Output(new DynInst) 112 val debugEnqLsq = Input(new LsqEnqIO) 113 val debugHeadLsIssue = Input(Bool()) 114 val lsTopdownInfo = Vec(LduCnt + HyuCnt, Input(new LsTopdownInfo)) 115 val debugTopDown = new Bundle { 116 val toCore = new RobCoreTopDownIO 117 val toDispatch = new RobDispatchTopDownIO 118 val robHeadLqIdx = Valid(new LqPtr) 119 } 120 val debugRolling = new RobDebugRollingIO 121 122 // store event difftest information 123 val storeDebugInfo = Vec(EnsbufferWidth, new Bundle { 124 val robidx = Input(new RobPtr) 125 val pc = Output(UInt(VAddrBits.W)) 126 }) 127 }) 128 129 val exuWBs: Seq[ValidIO[ExuOutput]] = io.exuWriteback.filter(!_.bits.params.hasStdFu).toSeq 130 val stdWBs: Seq[ValidIO[ExuOutput]] = io.exuWriteback.filter(_.bits.params.hasStdFu).toSeq 131 val fflagsWBs = io.exuWriteback.filter(x => x.bits.fflags.nonEmpty).toSeq 132 val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty).toSeq 133 val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty).toSeq 134 val vxsatWBs = io.exuWriteback.filter(x => x.bits.vxsat.nonEmpty).toSeq 135 val branchWBs = io.exuWriteback.filter(_.bits.params.hasBrhFu).toSeq 136 val csrWBs = io.exuWriteback.filter(x => x.bits.params.hasCSR).toSeq 137 138 val numExuWbPorts = exuWBs.length 139 val numStdWbPorts = stdWBs.length 140 val bankAddrWidth = log2Up(CommitWidth) 141 142 println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth") 143 144 val rab = Module(new RenameBuffer(RabSize)) 145 val vtypeBuffer = Module(new VTypeBuffer(VTypeBufferSize)) 146 val bankNum = 8 147 assert(RobSize % bankNum == 0, "RobSize % bankNum must be 0") 148 val robEntries = RegInit(VecInit.fill(RobSize)((new RobEntryBundle).Lit(_.valid -> false.B))) 149 // pointers 150 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 151 val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr)) 152 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 153 val deqPtrVec_next = Wire(Vec(CommitWidth, Output(new RobPtr))) 154 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 155 val walkPtrTrue = Reg(new RobPtr) 156 val lastWalkPtr = Reg(new RobPtr) 157 val allowEnqueue = RegInit(true.B) 158 val vecExcpInfo = RegInit(ValidIO(new VecExcpInfo).Lit( 159 _.valid -> false.B, 160 )) 161 162 /** 163 * Enqueue (from dispatch) 164 */ 165 // special cases 166 val hasBlockBackward = RegInit(false.B) 167 val hasWaitForward = RegInit(false.B) 168 val doingSvinval = RegInit(false.B) 169 val enqPtr = enqPtrVec(0) 170 val deqPtr = deqPtrVec(0) 171 val walkPtr = walkPtrVec(0) 172 val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.req.take(i).map(req => req.valid && req.bits.firstUop))))) 173 io.enq.canAccept := allowEnqueue && !hasBlockBackward && rab.io.canEnq && vtypeBuffer.io.canEnq && !io.fromVecExcpMod.busy 174 io.enq.resp := allocatePtrVec 175 val canEnqueue = VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop && io.enq.canAccept)) 176 val timer = GTimer() 177 // robEntries enqueue 178 for (i <- 0 until RobSize) { 179 val enqOH = VecInit(canEnqueue.zip(allocatePtrVec.map(_.value === i.U)).map(x => x._1 && x._2)) 180 assert(PopCount(enqOH) < 2.U, s"robEntries$i enqOH is not one hot") 181 when(enqOH.asUInt.orR && !io.redirect.valid){ 182 connectEnq(robEntries(i), Mux1H(enqOH, io.enq.req.map(_.bits))) 183 } 184 } 185 // robBanks0 include robidx : 0 8 16 24 32 ... 186 val robBanks = VecInit((0 until bankNum).map(i => VecInit(robEntries.zipWithIndex.filter(_._2 % bankNum == i).map(_._1)))) 187 // each Bank has 20 Entries, read addr is one hot 188 // all banks use same raddr 189 val eachBankEntrieNum = robBanks(0).length 190 val robBanksRaddrThisLine = RegInit(1.U(eachBankEntrieNum.W)) 191 val robBanksRaddrNextLine = Wire(UInt(eachBankEntrieNum.W)) 192 robBanksRaddrThisLine := robBanksRaddrNextLine 193 val bankNumWidth = log2Up(bankNum) 194 val deqPtrWidth = deqPtr.value.getWidth 195 val robIdxThisLine = VecInit((0 until bankNum).map(i => Cat(deqPtr.value(deqPtrWidth - 1, bankNumWidth), i.U(bankNumWidth.W)))) 196 val robIdxNextLine = VecInit((0 until bankNum).map(i => Cat(deqPtr.value(deqPtrWidth - 1, bankNumWidth) + 1.U, i.U(bankNumWidth.W)))) 197 // robBanks read 198 val robBanksRdataThisLine = VecInit(robBanks.map{ case bank => 199 Mux1H(robBanksRaddrThisLine, bank) 200 }) 201 val robBanksRdataNextLine = VecInit(robBanks.map{ case bank => 202 val shiftBank = bank.drop(1) :+ bank(0) 203 Mux1H(robBanksRaddrThisLine, shiftBank) 204 }) 205 val robBanksRdataThisLineUpdate = Wire(Vec(CommitWidth, new RobEntryBundle)) 206 val robBanksRdataNextLineUpdate = Wire(Vec(CommitWidth, new RobEntryBundle)) 207 val commitValidThisLine = Wire(Vec(CommitWidth, Bool())) 208 val hasCommitted = RegInit(VecInit(Seq.fill(CommitWidth)(false.B))) 209 val donotNeedWalk = RegInit(VecInit(Seq.fill(CommitWidth)(false.B))) 210 val allCommitted = Wire(Bool()) 211 212 when(allCommitted) { 213 hasCommitted := 0.U.asTypeOf(hasCommitted) 214 }.elsewhen(io.commits.isCommit){ 215 for (i <- 0 until CommitWidth){ 216 hasCommitted(i) := commitValidThisLine(i) || hasCommitted(i) 217 } 218 } 219 allCommitted := io.commits.isCommit && commitValidThisLine.last 220 val walkPtrHead = Wire(new RobPtr) 221 val changeBankAddrToDeqPtr = (walkPtrVec.head + CommitWidth.U) > lastWalkPtr 222 when(io.redirect.valid){ 223 robBanksRaddrNextLine := UIntToOH(walkPtrHead.value(walkPtrHead.value.getWidth-1, bankAddrWidth)) 224 }.elsewhen(allCommitted || io.commits.isWalk && !changeBankAddrToDeqPtr){ 225 robBanksRaddrNextLine := Mux(robBanksRaddrThisLine.head(1) === 1.U, 1.U, robBanksRaddrThisLine << 1) 226 }.elsewhen(io.commits.isWalk && changeBankAddrToDeqPtr){ 227 robBanksRaddrNextLine := UIntToOH(deqPtr.value(deqPtr.value.getWidth-1, bankAddrWidth)) 228 }.otherwise( 229 robBanksRaddrNextLine := robBanksRaddrThisLine 230 ) 231 val robDeqGroup = Reg(Vec(bankNum, new RobCommitEntryBundle)) 232 val rawInfo = VecInit((0 until CommitWidth).map(i => robDeqGroup(deqPtrVec(i).value(bankAddrWidth-1, 0)))).toSeq 233 val commitInfo = VecInit((0 until CommitWidth).map(i => robDeqGroup(deqPtrVec(i).value(bankAddrWidth-1,0)))).toSeq 234 val walkInfo = VecInit((0 until CommitWidth).map(i => robDeqGroup(walkPtrVec(i).value(bankAddrWidth-1, 0)))).toSeq 235 for (i <- 0 until CommitWidth) { 236 connectCommitEntry(robDeqGroup(i), robBanksRdataThisLineUpdate(i)) 237 when(allCommitted){ 238 connectCommitEntry(robDeqGroup(i), robBanksRdataNextLineUpdate(i)) 239 } 240 } 241 242 // In each robentry, the ftqIdx and ftqOffset belong to the first instruction that was compressed, 243 // That is Necessary when exceptions happen. 244 // Update the ftqOffset to correctly notify the frontend which instructions have been committed. 245 // Instructions in multiple Ftq entries compressed to one RobEntry do not occur. 246 for (i <- 0 until CommitWidth) { 247 val lastOffset = (rawInfo(i).traceBlockInPipe.iretire - (1.U << rawInfo(i).traceBlockInPipe.ilastsize.asUInt).asUInt) + rawInfo(i).ftqOffset 248 commitInfo(i).ftqOffset := lastOffset 249 } 250 251 // data for debug 252 // Warn: debug_* prefix should not exist in generated verilog. 253 val debug_microOp = DebugMem(RobSize, new DynInst) 254 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W))) //for debug 255 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle)) //for debug 256 val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init))) 257 val debug_lsTopdownInfo = RegInit(VecInit(Seq.fill(RobSize)(LsTopdownInfo.init))) 258 val debug_lqIdxValid = RegInit(VecInit.fill(RobSize)(false.B)) 259 val debug_lsIssued = RegInit(VecInit.fill(RobSize)(false.B)) 260 261 val isEmpty = enqPtr === deqPtr 262 val snptEnq = io.enq.canAccept && io.enq.req.map(x => x.valid && x.bits.snapshot).reduce(_ || _) 263 val snapshotPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 264 snapshotPtrVec(0) := io.enq.req(0).bits.robIdx 265 for (i <- 1 until CommitWidth) { 266 snapshotPtrVec(i) := snapshotPtrVec(0) + i.U 267 } 268 val snapshots = SnapshotGenerator(snapshotPtrVec, snptEnq, io.snpt.snptDeq, io.redirect.valid, io.snpt.flushVec) 269 val debug_lsIssue = WireDefault(debug_lsIssued) 270 debug_lsIssue(deqPtr.value) := io.debugHeadLsIssue 271 272 /** 273 * states of Rob 274 */ 275 val s_idle :: s_walk :: Nil = Enum(2) 276 val state = RegInit(s_idle) 277 val state_next = Wire(chiselTypeOf(state)) 278 279 val tip_computing :: tip_stalled :: tip_walk :: tip_drained :: Nil = Enum(4) 280 val tip_state = WireInit(0.U(4.W)) 281 when(!isEmpty) { // One or more inst in ROB 282 when(state === s_walk || io.redirect.valid) { 283 tip_state := tip_walk 284 }.elsewhen(io.commits.isCommit && PopCount(io.commits.commitValid) =/= 0.U) { 285 tip_state := tip_computing 286 }.otherwise { 287 tip_state := tip_stalled 288 } 289 }.otherwise { 290 tip_state := tip_drained 291 } 292 class TipEntry()(implicit p: Parameters) extends XSBundle { 293 val state = UInt(4.W) 294 val commits = new RobCommitIO() // info of commit 295 val redirect = Valid(new Redirect) // info of redirect 296 val redirect_pc = UInt(VAddrBits.W) // PC of the redirect uop 297 val debugLsInfo = new DebugLsInfo() 298 } 299 val tip_table = ChiselDB.createTable("Tip_" + p(XSCoreParamsKey).HartId.toString, new TipEntry) 300 val tip_data = Wire(new TipEntry()) 301 tip_data.state := tip_state 302 tip_data.commits := io.commits 303 tip_data.redirect := io.redirect 304 tip_data.redirect_pc := debug_microOp(io.redirect.bits.robIdx.value).pc 305 tip_data.debugLsInfo := debug_lsInfo(io.commits.robIdx(0).value) 306 tip_table.log(tip_data, true.B, "", clock, reset) 307 308 val exceptionGen = Module(new ExceptionGen(params)) 309 val exceptionDataRead = exceptionGen.io.state 310 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 311 val vxsatDataRead = Wire(Vec(CommitWidth, Bool())) 312 io.robDeqPtr := deqPtr 313 io.debugRobHead := debug_microOp(deqPtr.value) 314 315 /** 316 * connection of [[rab]] 317 */ 318 rab.io.redirect.valid := io.redirect.valid 319 320 rab.io.req.zip(io.enq.req).map { case (dest, src) => 321 dest.bits := src.bits 322 dest.valid := src.valid && io.enq.canAccept 323 } 324 325 val walkDestSizeDeqGroup = RegInit(VecInit(Seq.fill(CommitWidth)(0.U(log2Up(MaxUopSize + 1).W)))) 326 val realDestSizeSeq = VecInit(robDeqGroup.zip(hasCommitted).map{case (r, h) => Mux(h, 0.U, r.realDestSize)}) 327 val walkDestSizeSeq = VecInit(robDeqGroup.zip(donotNeedWalk).map{case (r, d) => Mux(d, 0.U, r.realDestSize)}) 328 val commitSizeSumSeq = VecInit((0 until CommitWidth).map(i => realDestSizeSeq.take(i + 1).reduce(_ +& _))) 329 val walkSizeSumSeq = VecInit((0 until CommitWidth).map(i => walkDestSizeSeq.take(i + 1).reduce(_ +& _))) 330 val commitSizeSumCond = VecInit(commitValidThisLine.zip(hasCommitted).map{case (c,h) => (c || h) && io.commits.isCommit}) 331 val walkSizeSumCond = VecInit(io.commits.walkValid.zip(donotNeedWalk).map{case (w,d) => (w || d) && io.commits.isWalk}) 332 val commitSizeSum = PriorityMuxDefault(commitSizeSumCond.reverse.zip(commitSizeSumSeq.reverse), 0.U) 333 val walkSizeSum = PriorityMuxDefault(walkSizeSumCond.reverse.zip(walkSizeSumSeq.reverse), 0.U) 334 335 val deqVlsExceptionNeedCommit = RegInit(false.B) 336 val deqVlsExceptionCommitSize = RegInit(0.U(log2Up(MaxUopSize + 1).W)) 337 val deqVlsCanCommit= RegInit(false.B) 338 rab.io.fromRob.commitSize := Mux(deqVlsExceptionNeedCommit, deqVlsExceptionCommitSize, commitSizeSum) 339 rab.io.fromRob.walkSize := walkSizeSum 340 rab.io.fromRob.vecLoadExcp.valid := RegNext(exceptionDataRead.valid && exceptionDataRead.bits.isVecLoad) 341 rab.io.fromRob.vecLoadExcp.bits.isStrided := RegEnable(exceptionDataRead.bits.isStrided, exceptionDataRead.valid) 342 rab.io.fromRob.vecLoadExcp.bits.isVlm := RegEnable(exceptionDataRead.bits.isVlm, exceptionDataRead.valid) 343 rab.io.snpt := io.snpt 344 rab.io.snpt.snptEnq := snptEnq 345 346 io.rabCommits := rab.io.commits 347 io.diffCommits.foreach(_ := rab.io.diffCommits.get) 348 349 /** 350 * connection of [[vtypeBuffer]] 351 */ 352 353 vtypeBuffer.io.redirect.valid := io.redirect.valid 354 355 vtypeBuffer.io.req.zip(io.enq.req).map { case (sink, source) => 356 sink.valid := source.valid && io.enq.canAccept 357 sink.bits := source.bits 358 } 359 360 private val commitIsVTypeVec = VecInit(io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => io.commits.isCommit && valid && info.isVset }) 361 private val walkIsVTypeVec = VecInit(io.commits.walkValid.zip(walkInfo).map { case (valid, info) => io.commits.isWalk && valid && info.isVset }) 362 vtypeBuffer.io.fromRob.commitSize := PopCount(commitIsVTypeVec) 363 vtypeBuffer.io.fromRob.walkSize := PopCount(walkIsVTypeVec) 364 vtypeBuffer.io.snpt := io.snpt 365 vtypeBuffer.io.snpt.snptEnq := snptEnq 366 io.toDecode.isResumeVType := vtypeBuffer.io.toDecode.isResumeVType 367 io.toDecode.walkToArchVType := vtypeBuffer.io.toDecode.walkToArchVType 368 io.toDecode.commitVType := vtypeBuffer.io.toDecode.commitVType 369 io.toDecode.walkVType := vtypeBuffer.io.toDecode.walkVType 370 371 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 372 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 373 when(isEmpty) { 374 hasBlockBackward := false.B 375 } 376 // When any instruction commits, hasNoSpecExec should be set to false.B 377 when(io.commits.hasWalkInstr || io.commits.hasCommitInstr) { 378 hasWaitForward := false.B 379 } 380 381 // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing. 382 // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle. 383 // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts. 384 val hasWFI = RegInit(false.B) 385 io.cpu_halt := hasWFI 386 // WFI Timeout: 2^20 = 1M cycles 387 val wfi_cycles = RegInit(0.U(20.W)) 388 when(hasWFI) { 389 wfi_cycles := wfi_cycles + 1.U 390 }.elsewhen(!hasWFI && RegNext(hasWFI)) { 391 wfi_cycles := 0.U 392 } 393 val wfi_timeout = wfi_cycles.andR 394 when(RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) { 395 hasWFI := false.B 396 } 397 398 for (i <- 0 until RenameWidth) { 399 // we don't check whether io.redirect is valid here since redirect has higher priority 400 when(canEnqueue(i)) { 401 val enqUop = io.enq.req(i).bits 402 val enqIndex = allocatePtrVec(i).value 403 // store uop in data module and debug_microOp Vec 404 debug_microOp(enqIndex) := enqUop 405 debug_microOp(enqIndex).debugInfo.dispatchTime := timer 406 debug_microOp(enqIndex).debugInfo.enqRsTime := timer 407 debug_microOp(enqIndex).debugInfo.selectTime := timer 408 debug_microOp(enqIndex).debugInfo.issueTime := timer 409 debug_microOp(enqIndex).debugInfo.writebackTime := timer 410 debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer 411 debug_microOp(enqIndex).debugInfo.tlbRespTime := timer 412 debug_lsInfo(enqIndex) := DebugLsInfo.init 413 debug_lsTopdownInfo(enqIndex) := LsTopdownInfo.init 414 debug_lqIdxValid(enqIndex) := false.B 415 debug_lsIssued(enqIndex) := false.B 416 when (enqUop.waitForward) { 417 hasWaitForward := true.B 418 } 419 val enqTriggerActionIsDebugMode = TriggerAction.isDmode(io.enq.req(i).bits.trigger) 420 val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR 421 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 422 when(!enqTriggerActionIsDebugMode && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe)) { 423 doingSvinval := true.B 424 } 425 // the end instruction of Svinval enqs so clear doingSvinval 426 when(!enqTriggerActionIsDebugMode && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe)) { 427 doingSvinval := false.B 428 } 429 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 430 assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe) || enqUop.isNotSvinval)) 431 when(enqUop.isWFI && !enqHasException && !enqTriggerActionIsDebugMode) { 432 hasWFI := true.B 433 } 434 435 robEntries(enqIndex).mmio := false.B 436 robEntries(enqIndex).vls := enqUop.vlsInstr 437 } 438 } 439 440 for (i <- 0 until RenameWidth) { 441 val enqUop = io.enq.req(i) 442 when(enqUop.valid && enqUop.bits.blockBackward && io.enq.canAccept) { 443 hasBlockBackward := true.B 444 } 445 } 446 447 val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(req => req.valid && req.bits.firstUop)), 0.U) 448 io.enq.isEmpty := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR) 449 450 when(!io.wfi_enable) { 451 hasWFI := false.B 452 } 453 // sel vsetvl's flush position 454 val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3) 455 val vsetvlState = RegInit(vs_idle) 456 457 val firstVInstrFtqPtr = RegInit(0.U.asTypeOf(new FtqPtr)) 458 val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W))) 459 val firstVInstrRobIdx = RegInit(0.U.asTypeOf(new RobPtr)) 460 461 val enq0 = io.enq.req(0) 462 val enq0IsVset = enq0.bits.isVset && enq0.bits.lastUop && canEnqueue(0) 463 val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe 464 val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map { case (req, fire) => FuType.isVArith(req.bits.fuType) && fire } 465 // for vs_idle 466 val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType))) 467 // for vs_waitVinstr 468 val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1) 469 val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req) 470 when(vsetvlState === vs_idle) { 471 firstVInstrFtqPtr := firstVInstrIdle.bits.ftqPtr 472 firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset 473 firstVInstrRobIdx := firstVInstrIdle.bits.robIdx 474 }.elsewhen(vsetvlState === vs_waitVinstr) { 475 when(Cat(enqIsVInstrOrVset).orR) { 476 firstVInstrFtqPtr := firstVInstrWait.bits.ftqPtr 477 firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset 478 firstVInstrRobIdx := firstVInstrWait.bits.robIdx 479 } 480 } 481 482 val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR 483 when(vsetvlState === vs_idle && !io.redirect.valid) { 484 when(enq0IsVsetFlush) { 485 vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr) 486 } 487 }.elsewhen(vsetvlState === vs_waitVinstr) { 488 when(io.redirect.valid) { 489 vsetvlState := vs_idle 490 }.elsewhen(Cat(enqIsVInstrOrVset).orR) { 491 vsetvlState := vs_waitFlush 492 } 493 }.elsewhen(vsetvlState === vs_waitFlush) { 494 when(io.redirect.valid) { 495 vsetvlState := vs_idle 496 } 497 } 498 499 // lqEnq 500 io.debugEnqLsq.needAlloc.map(_(0)).zip(io.debugEnqLsq.req).foreach { case (alloc, req) => 501 when(io.debugEnqLsq.canAccept && alloc && req.valid) { 502 debug_microOp(req.bits.robIdx.value).lqIdx := req.bits.lqIdx 503 debug_lqIdxValid(req.bits.robIdx.value) := true.B 504 } 505 } 506 507 // lsIssue 508 when(io.debugHeadLsIssue) { 509 debug_lsIssued(deqPtr.value) := true.B 510 } 511 512 /** 513 * Writeback (from execution units) 514 */ 515 for (wb <- exuWBs) { 516 when(wb.valid) { 517 val wbIdx = wb.bits.robIdx.value 518 debug_exuData(wbIdx) := wb.bits.data(0) 519 debug_exuDebug(wbIdx) := wb.bits.debug 520 debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime 521 debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime 522 debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime 523 debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime 524 525 // debug for lqidx and sqidx 526 debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr)) 527 debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr)) 528 529 val debug_Uop = debug_microOp(wbIdx) 530 XSInfo(true.B, 531 p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " + 532 p"data 0x${Hexadecimal(wb.bits.data(0))} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " + 533 p"skip ${wb.bits.debug.isSkipDiff} robIdx: ${wb.bits.robIdx}\n" 534 ) 535 } 536 } 537 538 val writebackNum = PopCount(exuWBs.map(_.valid)) 539 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 540 541 for (i <- 0 until LoadPipelineWidth) { 542 when(RegNext(io.lsq.mmio(i))) { 543 robEntries(RegEnable(io.lsq.uop(i).robIdx, io.lsq.mmio(i)).value).mmio := true.B 544 } 545 } 546 547 548 /** 549 * RedirectOut: Interrupt and Exceptions 550 */ 551 val deqDispatchData = robEntries(deqPtr.value) 552 val debug_deqUop = debug_microOp(deqPtr.value) 553 554 val deqPtrEntry = robDeqGroup(deqPtr.value(bankAddrWidth-1,0)) 555 val deqPtrEntryValid = deqPtrEntry.commit_v 556 val deqHasFlushed = RegInit(false.B) 557 val intrBitSetReg = RegNext(io.csr.intrBitSet) 558 val intrEnable = intrBitSetReg && !hasWaitForward && deqPtrEntry.interrupt_safe && !deqHasFlushed 559 val deqNeedFlush = deqPtrEntry.needFlush && deqPtrEntry.commit_v && deqPtrEntry.commit_w 560 val deqHitExceptionGenState = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 561 val deqNeedFlushAndHitExceptionGenState = deqNeedFlush && deqHitExceptionGenState 562 val exceptionGenStateIsException = exceptionDataRead.bits.exceptionVec.asUInt.orR || exceptionDataRead.bits.singleStep || TriggerAction.isDmode(exceptionDataRead.bits.trigger) 563 val deqHasException = deqNeedFlushAndHitExceptionGenState && exceptionGenStateIsException 564 val deqHasFlushPipe = deqNeedFlushAndHitExceptionGenState && exceptionDataRead.bits.flushPipe && !deqHasException && (!deqPtrEntry.isVls || RegNext(RegNext(deqPtrEntry.commit_w))) 565 val deqHasReplayInst = deqNeedFlushAndHitExceptionGenState && exceptionDataRead.bits.replayInst 566 val deqIsVlsException = deqHasException && deqPtrEntry.isVls && !exceptionDataRead.bits.isEnqExcp 567 // delay 2 cycle wait exceptionGen out 568 // vls exception can be committed only when RAB commit all its reg pairs 569 deqVlsCanCommit := RegNext(RegNext(deqIsVlsException && deqPtrEntry.commit_w)) && rab.io.status.commitEnd 570 571 // lock at assertion of deqVlsExceptionNeedCommit until condition not assert 572 val deqVlsExcpLock = RegInit(false.B) 573 val handleVlsExcp = deqIsVlsException && deqVlsCanCommit && !deqVlsExcpLock && state === s_idle 574 when(handleVlsExcp) { 575 deqVlsExcpLock := true.B 576 }.elsewhen(deqPtrVec.head =/= deqPtrVec_next.head) { 577 deqVlsExcpLock := false.B 578 } 579 580 // Only assert once when deqVlsExcp occurs until condition not assert to avoid multi message passed to RAB 581 when (deqVlsExceptionNeedCommit) { 582 deqVlsExceptionNeedCommit := false.B 583 }.elsewhen(handleVlsExcp){ 584 deqVlsExceptionCommitSize := deqPtrEntry.realDestSize 585 deqVlsExceptionNeedCommit := true.B 586 } 587 588 XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n") 589 XSDebug(deqHasException && TriggerAction.isDmode(exceptionDataRead.bits.trigger), "Debug Mode: Deq has trigger entry debug Mode\n") 590 591 val isFlushPipe = deqPtrEntry.commit_w && (deqHasFlushPipe || deqHasReplayInst) 592 593 val isVsetFlushPipe = deqPtrEntry.commit_w && deqHasFlushPipe && exceptionDataRead.bits.isVset 594 // val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush) 595 val needModifyFtqIdxOffset = false.B 596 io.isVsetFlushPipe := isVsetFlushPipe 597 // io.flushOut will trigger redirect at the next cycle. 598 // Block any redirect or commit at the next cycle. 599 val lastCycleFlush = RegNext(io.flushOut.valid) 600 601 io.flushOut.valid := (state === s_idle) && deqPtrEntryValid && (intrEnable || deqHasException && (!deqIsVlsException || deqVlsCanCommit) || isFlushPipe) && !lastCycleFlush 602 io.flushOut.bits := DontCare 603 io.flushOut.bits.isRVC := deqDispatchData.isRVC 604 io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr) 605 io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx) 606 io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset) 607 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || deqHasException || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next" 608 io.flushOut.bits.interrupt := true.B 609 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 610 XSPerfAccumulate("exception_num", io.flushOut.valid && deqHasException) 611 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 612 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 613 614 val exceptionHappen = (state === s_idle) && deqPtrEntryValid && (intrEnable || deqHasException && (!deqIsVlsException || deqVlsCanCommit)) && !lastCycleFlush 615 io.exception.valid := RegNext(exceptionHappen) 616 io.exception.bits.pc := RegEnable(debug_deqUop.pc, exceptionHappen) 617 io.exception.bits.gpaddr := io.readGPAMemData.gpaddr 618 io.exception.bits.isForVSnonLeafPTE := io.readGPAMemData.isForVSnonLeafPTE 619 io.exception.bits.instr := RegEnable(debug_deqUop.instr, exceptionHappen) 620 io.exception.bits.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 621 io.exception.bits.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 622 // fetch trigger fire or execute ebreak 623 io.exception.bits.isPcBkpt := RegEnable( 624 exceptionDataRead.bits.exceptionVec(ExceptionNO.EX_BP) && ( 625 exceptionDataRead.bits.isEnqExcp || 626 exceptionDataRead.bits.trigger === TriggerAction.None 627 ), 628 exceptionHappen, 629 ) 630 io.exception.bits.isFetchMalAddr := RegEnable(exceptionDataRead.bits.isFetchMalAddr && deqHasException, exceptionHappen) 631 io.exception.bits.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 632 io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 633 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 634 io.exception.bits.isHls := RegEnable(deqDispatchData.isHls, exceptionHappen) 635 io.exception.bits.vls := RegEnable(robEntries(deqPtr.value).vls, exceptionHappen) 636 io.exception.bits.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen) 637 638 // data will be one cycle after valid 639 io.readGPAMemAddr.valid := exceptionHappen 640 io.readGPAMemAddr.bits.ftqPtr := exceptionDataRead.bits.ftqPtr 641 io.readGPAMemAddr.bits.ftqOffset := exceptionDataRead.bits.ftqOffset 642 643 XSDebug(io.flushOut.valid, 644 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " + 645 p"excp $deqHasException flushPipe $isFlushPipe " + 646 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget.pc)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 647 648 649 /** 650 * Commits (and walk) 651 * They share the same width. 652 */ 653 // T redirect.valid, T+1 use walkPtrVec read robEntries, T+2 start walk, shouldWalkVec used in T+2 654 val shouldWalkVec = Wire(Vec(CommitWidth,Bool())) 655 val walkingPtrVec = RegNext(walkPtrVec) 656 when(io.redirect.valid){ 657 shouldWalkVec := 0.U.asTypeOf(shouldWalkVec) 658 }.elsewhen(RegNext(io.redirect.valid)){ 659 shouldWalkVec := 0.U.asTypeOf(shouldWalkVec) 660 }.elsewhen(state === s_walk){ 661 shouldWalkVec := VecInit(walkingPtrVec.map(_ <= lastWalkPtr).zip(donotNeedWalk).map(x => x._1 && !x._2)) 662 }.otherwise( 663 shouldWalkVec := 0.U.asTypeOf(shouldWalkVec) 664 ) 665 val walkFinished = walkPtrTrue > lastWalkPtr 666 rab.io.fromRob.walkEnd := state === s_walk && walkFinished 667 vtypeBuffer.io.fromRob.walkEnd := state === s_walk && walkFinished 668 669 require(RenameWidth <= CommitWidth) 670 671 // wiring to csr 672 val (wflags, dirtyFs) = (0 until CommitWidth).map(i => { 673 val v = io.commits.commitValid(i) 674 val info = io.commits.info(i) 675 (v & info.wflags, v & info.dirtyFs) 676 }).unzip 677 val fflags = Wire(Valid(UInt(5.W))) 678 fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR 679 fflags.bits := wflags.zip(fflagsDataRead).map({ 680 case (w, f) => Mux(w, f, 0.U) 681 }).reduce(_ | _) 682 val dirtyVs = (0 until CommitWidth).map(i => { 683 val v = io.commits.commitValid(i) 684 val info = io.commits.info(i) 685 v & info.dirtyVs 686 }) 687 val dirty_fs = io.commits.isCommit && VecInit(dirtyFs).asUInt.orR 688 val dirty_vs = io.commits.isCommit && VecInit(dirtyVs).asUInt.orR 689 690 val resetVstart = dirty_vs && !io.vstartIsZero 691 692 vecExcpInfo.valid := exceptionHappen && !intrEnable && exceptionDataRead.bits.vstartEn && exceptionDataRead.bits.isVecLoad && !exceptionDataRead.bits.isEnqExcp 693 when (exceptionHappen) { 694 vecExcpInfo.bits.nf := exceptionDataRead.bits.nf 695 vecExcpInfo.bits.vsew := exceptionDataRead.bits.vsew 696 vecExcpInfo.bits.veew := exceptionDataRead.bits.veew 697 vecExcpInfo.bits.vlmul := exceptionDataRead.bits.vlmul 698 vecExcpInfo.bits.isStride := exceptionDataRead.bits.isStrided 699 vecExcpInfo.bits.isIndexed := exceptionDataRead.bits.isIndexed 700 vecExcpInfo.bits.isWhole := exceptionDataRead.bits.isWhole 701 vecExcpInfo.bits.isVlm := exceptionDataRead.bits.isVlm 702 vecExcpInfo.bits.vstart := exceptionDataRead.bits.vstart 703 } 704 705 io.csr.vstart.valid := RegNext(Mux(exceptionHappen && deqHasException, exceptionDataRead.bits.vstartEn, resetVstart)) 706 io.csr.vstart.bits := RegNext(Mux(exceptionHappen && deqHasException, exceptionDataRead.bits.vstart, 0.U)) 707 708 val vxsat = Wire(Valid(Bool())) 709 vxsat.valid := io.commits.isCommit && vxsat.bits 710 vxsat.bits := io.commits.commitValid.zip(vxsatDataRead).map { 711 case (valid, vxsat) => valid & vxsat 712 }.reduce(_ | _) 713 714 // when mispredict branches writeback, stop commit in the next 2 cycles 715 // TODO: don't check all exu write back 716 val misPredWb = Cat(VecInit(redirectWBs.map(wb => 717 wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid 718 ).toSeq)).orR 719 val misPredBlockCounter = Reg(UInt(3.W)) 720 misPredBlockCounter := Mux(misPredWb, 721 "b111".U, 722 misPredBlockCounter >> 1.U 723 ) 724 val misPredBlock = misPredBlockCounter(0) 725 val deqFlushBlockCounter = Reg(UInt(3.W)) 726 val deqFlushBlock = deqFlushBlockCounter(0) 727 val deqHasCommitted = io.commits.isCommit && io.commits.commitValid(0) 728 // TODO *** WARNING *** 729 // Blocking commit. Don't change this before we fully understand the logic. 730 val deqHitRedirectReg = RegNext(io.redirect.valid && io.redirect.bits.robIdx === deqPtr) || RegNext(RegNext(io.redirect.valid && io.redirect.bits.robIdx === deqPtr)) 731 val criticalErrorState = io.csr.criticalErrorState 732 when(deqNeedFlush && deqHitRedirectReg){ 733 deqFlushBlockCounter := "b111".U 734 }.otherwise{ 735 deqFlushBlockCounter := deqFlushBlockCounter >> 1.U 736 } 737 when(deqHasCommitted){ 738 deqHasFlushed := false.B 739 }.elsewhen(deqNeedFlush && io.flushOut.valid && !io.flushOut.bits.flushItself()){ 740 deqHasFlushed := true.B 741 } 742 val blockCommit = misPredBlock || lastCycleFlush || hasWFI || io.redirect.valid || 743 (deqNeedFlush && !deqHasFlushed) || deqFlushBlock || criticalErrorState 744 745 io.commits.isWalk := state === s_walk 746 io.commits.isCommit := state === s_idle && !blockCommit 747 748 val walk_v = VecInit(walkingPtrVec.map(ptr => robEntries(ptr.value).valid)) 749 val commit_vDeqGroup = VecInit(robDeqGroup.map(_.commit_v)) 750 val commit_wDeqGroup = VecInit(robDeqGroup.map(_.commit_w)) 751 val realCommitLast = deqPtrVec(0).lineHeadPtr + Fill(bankAddrWidth, 1.U) 752 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_wDeqGroup(i) && !hasCommitted(i))) 753 val allowOnlyOneCommit = VecInit(robDeqGroup.map(x => x.commit_v && x.needFlush)).asUInt.orR || intrBitSetReg 754 // for instructions that may block others, we don't allow them to commit 755 io.commits.commitValid := PriorityMux(commitValidThisLine, (0 until CommitWidth).map(i => (commitValidThisLine.asUInt >> i).asUInt.asTypeOf(io.commits.commitValid))) 756 757 for (i <- 0 until CommitWidth) { 758 // defaults: state === s_idle and instructions commit 759 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 760 val isBlocked = intrEnable || (deqNeedFlush && !deqHasFlushed && !deqHasFlushPipe) 761 val isBlockedByOlder = if (i != 0) commit_block.asUInt(i, 0).orR || allowOnlyOneCommit && !hasCommitted.asUInt(i - 1, 0).andR else false.B 762 commitValidThisLine(i) := commit_vDeqGroup(i) && commit_wDeqGroup(i) && !isBlocked && !isBlockedByOlder && !hasCommitted(i) 763 io.commits.info(i) := commitInfo(i) 764 io.commits.robIdx(i) := deqPtrVec(i) 765 766 io.commits.walkValid(i) := shouldWalkVec(i) 767 when(state === s_walk) { 768 when(io.commits.isWalk && state === s_walk && shouldWalkVec(i)) { 769 XSError(!walk_v(i), s"The walking entry($i) should be valid\n") 770 } 771 } 772 773 XSInfo(io.commits.isCommit && io.commits.commitValid(i), 774 "retired pc %x wen %d ldest %d pdest %x data %x fflags: %b vxsat: %b\n", 775 debug_microOp(deqPtrVec(i).value).pc, 776 io.commits.info(i).rfWen, 777 io.commits.info(i).debug_ldest.getOrElse(0.U), 778 io.commits.info(i).debug_pdest.getOrElse(0.U), 779 debug_exuData(deqPtrVec(i).value), 780 fflagsDataRead(i), 781 vxsatDataRead(i) 782 ) 783 XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n", 784 debug_microOp(walkPtrVec(i).value).pc, 785 io.commits.info(i).rfWen, 786 io.commits.info(i).debug_ldest.getOrElse(0.U), 787 debug_exuData(walkPtrVec(i).value) 788 ) 789 } 790 791 // sync fflags/dirty_fs/vxsat to csr 792 io.csr.fflags := RegNextWithEnable(fflags) 793 io.csr.dirty_fs := GatedValidRegNext(dirty_fs) 794 io.csr.dirty_vs := GatedValidRegNext(dirty_vs) 795 io.csr.vxsat := RegNextWithEnable(vxsat) 796 797 // commit load/store to lsq 798 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 799 // TODO: Check if meet the require that only set scommit when commit scala store uop 800 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE && !robEntries(deqPtrVec(i).value).vls )) 801 io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U)) 802 io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U)) 803 // indicate a pending load or store 804 io.lsq.pendingMMIOld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && robEntries(deqPtr.value).valid && robEntries(deqPtr.value).mmio) 805 io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && robEntries(deqPtr.value).valid) 806 // TODO: Check if need deassert pendingst when it is vst 807 io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && robEntries(deqPtr.value).valid) 808 // TODO: Check if set correctly when vector store is at the head of ROB 809 io.lsq.pendingVst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && robEntries(deqPtr.value).valid && robEntries(deqPtr.value).vls) 810 io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0)) 811 io.lsq.pendingPtr := RegNext(deqPtr) 812 io.lsq.pendingPtrNext := RegNext(deqPtrVec_next.head) 813 814 /** 815 * state changes 816 * (1) redirect: switch to s_walk 817 * (2) walk: when walking comes to the end, switch to s_idle 818 */ 819 state_next := Mux( 820 io.redirect.valid || RegNext(io.redirect.valid), s_walk, 821 Mux( 822 state === s_walk && walkFinished && rab.io.status.walkEnd && vtypeBuffer.io.status.walkEnd, s_idle, 823 state 824 ) 825 ) 826 XSPerfAccumulate("s_idle_to_idle", state === s_idle && state_next === s_idle) 827 XSPerfAccumulate("s_idle_to_walk", state === s_idle && state_next === s_walk) 828 XSPerfAccumulate("s_walk_to_idle", state === s_walk && state_next === s_idle) 829 XSPerfAccumulate("s_walk_to_walk", state === s_walk && state_next === s_walk) 830 state := state_next 831 832 /** 833 * pointers and counters 834 */ 835 val deqPtrGenModule = Module(new NewRobDeqPtrWrapper) 836 deqPtrGenModule.io.state := state 837 deqPtrGenModule.io.deq_v := commit_vDeqGroup 838 deqPtrGenModule.io.deq_w := commit_wDeqGroup 839 deqPtrGenModule.io.exception_state := exceptionDataRead 840 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 841 deqPtrGenModule.io.hasNoSpecExec := hasWaitForward 842 deqPtrGenModule.io.allowOnlyOneCommit := allowOnlyOneCommit 843 deqPtrGenModule.io.interrupt_safe := robDeqGroup(deqPtr.value(bankAddrWidth-1,0)).interrupt_safe 844 deqPtrGenModule.io.blockCommit := blockCommit 845 deqPtrGenModule.io.hasCommitted := hasCommitted 846 deqPtrGenModule.io.allCommitted := allCommitted 847 deqPtrVec := deqPtrGenModule.io.out 848 deqPtrVec_next := deqPtrGenModule.io.next_out 849 850 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 851 enqPtrGenModule.io.redirect := io.redirect 852 enqPtrGenModule.io.allowEnqueue := allowEnqueue && rab.io.canEnq && !io.fromVecExcpMod.busy 853 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 854 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop)) 855 enqPtrVec := enqPtrGenModule.io.out 856 857 // next walkPtrVec: 858 // (1) redirect occurs: update according to state 859 // (2) walk: move forwards 860 val deqPtrReadBank = deqPtrVec_next(0).lineHeadPtr 861 val deqPtrVecForWalk = VecInit((0 until CommitWidth).map(i => deqPtrReadBank + i.U)) 862 val snapPtrReadBank = snapshots(io.snpt.snptSelect)(0).lineHeadPtr 863 val snapPtrVecForWalk = VecInit((0 until CommitWidth).map(i => snapPtrReadBank + i.U)) 864 val walkPtrVec_next: Vec[RobPtr] = Mux(io.redirect.valid, 865 Mux(io.snpt.useSnpt, snapPtrVecForWalk, deqPtrVecForWalk), 866 Mux((state === s_walk) && !walkFinished, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec) 867 ) 868 val walkPtrTrue_next: RobPtr = Mux(io.redirect.valid, 869 Mux(io.snpt.useSnpt, snapshots(io.snpt.snptSelect)(0), deqPtrVec_next(0)), 870 Mux((state === s_walk) && !walkFinished, walkPtrVec_next.head, walkPtrTrue) 871 ) 872 walkPtrHead := walkPtrVec_next.head 873 walkPtrVec := walkPtrVec_next 874 walkPtrTrue := walkPtrTrue_next 875 // T io.redirect.valid, T+1 walkPtrLowBits update, T+2 donotNeedWalk update 876 val walkPtrLowBits = Reg(UInt(bankAddrWidth.W)) 877 when(io.redirect.valid){ 878 walkPtrLowBits := Mux(io.snpt.useSnpt, snapshots(io.snpt.snptSelect)(0).value(bankAddrWidth-1, 0), deqPtrVec_next(0).value(bankAddrWidth-1, 0)) 879 } 880 when(io.redirect.valid) { 881 donotNeedWalk := Fill(donotNeedWalk.length, true.B).asTypeOf(donotNeedWalk) 882 }.elsewhen(RegNext(io.redirect.valid)){ 883 donotNeedWalk := (0 until CommitWidth).map(i => (i.U < walkPtrLowBits)) 884 }.otherwise{ 885 donotNeedWalk := 0.U.asTypeOf(donotNeedWalk) 886 } 887 walkDestSizeDeqGroup.zip(walkPtrVec_next).map { 888 case (reg, ptrNext) => reg := robEntries(deqPtr.value).realDestSize 889 } 890 val numValidEntries = distanceBetween(enqPtr, deqPtr) 891 val commitCnt = PopCount(io.commits.commitValid) 892 893 allowEnqueue := numValidEntries + dispatchNum <= (RobSize - CommitWidth).U 894 895 val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0)) 896 when(io.redirect.valid) { 897 lastWalkPtr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx - 1.U, io.redirect.bits.robIdx) 898 } 899 900 901 /** 902 * States 903 * We put all the stage bits changes here. 904 * 905 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 906 * All states: (1) valid; (2) writebacked; (3) flagBkup 907 */ 908 909 val deqPtrGroup = Wire(Vec(2 * CommitWidth, new RobPtr)) 910 deqPtrGroup.zipWithIndex.map { case (deq, i) => deq := deqPtrVec(0) + i.U } 911 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 912 913 val redirectValidReg = RegNext(io.redirect.valid) 914 val redirectBegin = Reg(UInt(log2Up(RobSize).W)) 915 val redirectEnd = Reg(UInt(log2Up(RobSize).W)) 916 when(io.redirect.valid){ 917 redirectBegin := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx.value - 1.U, io.redirect.bits.robIdx.value) 918 redirectEnd := enqPtr.value 919 } 920 921 // update robEntries valid 922 for (i <- 0 until RobSize) { 923 val enqOH = VecInit(canEnqueue.zip(allocatePtrVec.map(_.value === i.U)).map(x => x._1 && x._2)) 924 val commitCond = io.commits.isCommit && io.commits.commitValid.zip(deqPtrVec.map(_.value === i.U)).map(x => x._1 && x._2).reduce(_ || _) 925 assert(PopCount(enqOH) < 2.U, s"robEntries$i enqOH is not one hot") 926 val needFlush = redirectValidReg && Mux( 927 redirectEnd > redirectBegin, 928 (i.U > redirectBegin) && (i.U < redirectEnd), 929 (i.U > redirectBegin) || (i.U < redirectEnd) 930 ) 931 when(commitCond) { 932 robEntries(i).valid := false.B 933 }.elsewhen(enqOH.asUInt.orR && !io.redirect.valid) { 934 robEntries(i).valid := true.B 935 }.elsewhen(needFlush){ 936 robEntries(i).valid := false.B 937 } 938 } 939 940 // debug_inst update 941 for (i <- 0 until (LduCnt + StaCnt)) { 942 debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i)) 943 debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i)) 944 debug_lsInfo(io.debug_ls.debugLsInfo(i).s3_robIdx).s3SignalEnable(io.debug_ls.debugLsInfo(i)) 945 } 946 for (i <- 0 until LduCnt) { 947 debug_lsTopdownInfo(io.lsTopdownInfo(i).s1.robIdx).s1SignalEnable(io.lsTopdownInfo(i)) 948 debug_lsTopdownInfo(io.lsTopdownInfo(i).s2.robIdx).s2SignalEnable(io.lsTopdownInfo(i)) 949 } 950 951 // status field: writebacked 952 // enqueue logic set 6 writebacked to false 953 954 // writeback logic set numWbPorts writebacked to true 955 956 // if the first uop of an instruction is valid , write writebackedCounter 957 val uopEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid) 958 val instEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid && req.bits.firstUop) 959 val enqNeedWriteRFSeq = io.enq.req.map(_.bits.needWriteRf) 960 val enqHasExcpSeq = io.enq.req.map(_.bits.hasException) 961 val enqRobIdxSeq = io.enq.req.map(req => req.bits.robIdx.value) 962 val enqUopNumVec = VecInit(io.enq.req.map(req => req.bits.numUops)) 963 val enqWBNumVec = VecInit(io.enq.req.map(req => req.bits.numWB)) 964 965 private val enqWriteStdVec: Vec[Bool] = VecInit(io.enq.req.map { 966 req => FuType.isStore(req.bits.fuType) 967 }) 968 val fflags_wb = fflagsWBs 969 val vxsat_wb = vxsatWBs 970 for (i <- 0 until RobSize) { 971 972 val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === i.U) 973 val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map { case (valid, isMatch) => valid && isMatch } 974 val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map { case (valid, isMatch) => valid && isMatch } 975 val instCanEnqFlag = Cat(instCanEnqSeq).orR 976 val hasExcpSeq = enqHasExcpSeq.lazyZip(robIdxMatchSeq).lazyZip(uopEnqValidSeq).map { case (excp, isMatch, valid) => excp && isMatch && valid } 977 val hasExcpFlag = Cat(hasExcpSeq).orR 978 val isFirstEnq = !robEntries(i).valid && instCanEnqFlag 979 val realDestEnqNum = PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map { case (writeFlag, valid) => writeFlag && valid }) 980 when(isFirstEnq){ 981 robEntries(i).realDestSize := Mux(hasExcpFlag, 0.U, realDestEnqNum) 982 }.elsewhen(robEntries(i).valid && Cat(uopCanEnqSeq).orR){ 983 robEntries(i).realDestSize := robEntries(i).realDestSize + realDestEnqNum 984 } 985 val enqUopNum = PriorityMux(instCanEnqSeq, enqUopNumVec) 986 val enqWBNum = PriorityMux(instCanEnqSeq, enqWBNumVec) 987 val enqWriteStd = PriorityMux(instCanEnqSeq, enqWriteStdVec) 988 989 val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 990 val canStdWbSeq = VecInit(stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)) 991 val wbCnt = Mux1H(canWbSeq, io.writebackNums.map(_.bits)) 992 993 val canWbExceptionSeq = exceptionWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 994 val needFlush = robEntries(i).needFlush 995 val needFlushWriteBack = Wire(Bool()) 996 needFlushWriteBack := Mux1H(canWbExceptionSeq, io.writebackNeedFlush) 997 when(robEntries(i).valid){ 998 needFlush := needFlush || needFlushWriteBack 999 } 1000 1001 when(robEntries(i).valid && (needFlush || needFlushWriteBack)) { 1002 // exception flush 1003 robEntries(i).uopNum := robEntries(i).uopNum - wbCnt 1004 robEntries(i).stdWritebacked := true.B 1005 }.elsewhen(!robEntries(i).valid && instCanEnqFlag) { 1006 // enq set num of uops 1007 robEntries(i).uopNum := enqWBNum 1008 robEntries(i).stdWritebacked := Mux(enqWriteStd, false.B, true.B) 1009 }.elsewhen(robEntries(i).valid) { 1010 // update by writing back 1011 robEntries(i).uopNum := robEntries(i).uopNum - wbCnt 1012 assert(!(robEntries(i).uopNum - wbCnt > robEntries(i).uopNum), s"robEntries $i uopNum is overflow!") 1013 when(canStdWbSeq.asUInt.orR) { 1014 robEntries(i).stdWritebacked := true.B 1015 } 1016 } 1017 1018 val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U && writeback.bits.wflags.getOrElse(false.B)) 1019 val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.fold(false.B)(_ | _) 1020 when(isFirstEnq) { 1021 robEntries(i).fflags := 0.U 1022 }.elsewhen(fflagsRes.orR) { 1023 robEntries(i).fflags := robEntries(i).fflags | fflagsRes 1024 } 1025 1026 val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 1027 val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.fold(false.B)(_ | _) 1028 when(isFirstEnq) { 1029 robEntries(i).vxsat := 0.U 1030 }.elsewhen(vxsatRes.orR) { 1031 robEntries(i).vxsat := robEntries(i).vxsat | vxsatRes 1032 } 1033 1034 // trace 1035 val taken = branchWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U && writeback.bits.redirect.get.bits.cfiUpdate.taken).reduce(_ || _) 1036 val xret = csrWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U && io.csr.isXRet).reduce(_ || _) 1037 1038 when(xret){ 1039 robEntries(i).traceBlockInPipe.itype := Itype.ExpIntReturn 1040 }.elsewhen(Itype.isBranchType(robEntries(i).traceBlockInPipe.itype)){ 1041 // BranchType code(itype = 5) must be correctly replaced! 1042 robEntries(i).traceBlockInPipe.itype := Mux(taken, Itype.Taken, Itype.NonTaken) 1043 } 1044 } 1045 1046 // begin update robBanksRdata 1047 val robBanksRdata = VecInit(robBanksRdataThisLine ++ robBanksRdataNextLine) 1048 val needUpdate = Wire(Vec(2 * CommitWidth, new RobEntryBundle)) 1049 needUpdate := VecInit(robBanksRdataThisLine ++ robBanksRdataNextLine) 1050 val needUpdateRobIdx = robIdxThisLine ++ robIdxNextLine 1051 for (i <- 0 until 2 * CommitWidth) { 1052 val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === needUpdateRobIdx(i)) 1053 val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map { case (valid, isMatch) => valid && isMatch } 1054 val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map { case (valid, isMatch) => valid && isMatch } 1055 val instCanEnqFlag = Cat(instCanEnqSeq).orR 1056 val realDestEnqNum = PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map { case (writeFlag, valid) => writeFlag && valid }) 1057 when(!needUpdate(i).valid && instCanEnqFlag) { 1058 needUpdate(i).realDestSize := realDestEnqNum 1059 }.elsewhen(needUpdate(i).valid && instCanEnqFlag) { 1060 needUpdate(i).realDestSize := robBanksRdata(i).realDestSize + realDestEnqNum 1061 } 1062 val enqUopNum = PriorityMux(instCanEnqSeq, enqUopNumVec) 1063 val enqWBNum = PriorityMux(instCanEnqSeq, enqWBNumVec) 1064 val enqWriteStd = PriorityMux(instCanEnqSeq, enqWriteStdVec) 1065 1066 val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === needUpdateRobIdx(i)) 1067 val canStdWbSeq = VecInit(stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === needUpdateRobIdx(i))) 1068 val wbCnt = Mux1H(canWbSeq, io.writebackNums.map(_.bits)) 1069 1070 val canWbExceptionSeq = exceptionWBs.map(writeback => writeback.valid && (writeback.bits.robIdx.value === needUpdateRobIdx(i))) 1071 val needFlush = robBanksRdata(i).needFlush 1072 val needFlushWriteBack = Wire(Bool()) 1073 needFlushWriteBack := Mux1H(canWbExceptionSeq, io.writebackNeedFlush) 1074 when(needUpdate(i).valid) { 1075 needUpdate(i).needFlush := needFlush || needFlushWriteBack 1076 } 1077 1078 when(needUpdate(i).valid && (needFlush || needFlushWriteBack)) { 1079 // exception flush 1080 needUpdate(i).uopNum := robBanksRdata(i).uopNum - wbCnt 1081 needUpdate(i).stdWritebacked := true.B 1082 }.elsewhen(!needUpdate(i).valid && instCanEnqFlag) { 1083 // enq set num of uops 1084 needUpdate(i).uopNum := enqWBNum 1085 needUpdate(i).stdWritebacked := Mux(enqWriteStd, false.B, true.B) 1086 }.elsewhen(needUpdate(i).valid) { 1087 // update by writing back 1088 needUpdate(i).uopNum := robBanksRdata(i).uopNum - wbCnt 1089 when(canStdWbSeq.asUInt.orR) { 1090 needUpdate(i).stdWritebacked := true.B 1091 } 1092 } 1093 1094 val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === needUpdateRobIdx(i) && writeback.bits.wflags.getOrElse(false.B)) 1095 val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.fold(false.B)(_ | _) 1096 needUpdate(i).fflags := Mux(!robBanksRdata(i).valid && instCanEnqFlag, 0.U, robBanksRdata(i).fflags | fflagsRes) 1097 1098 val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === needUpdateRobIdx(i)) 1099 val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.fold(false.B)(_ | _) 1100 needUpdate(i).vxsat := Mux(!robBanksRdata(i).valid && instCanEnqFlag, 0.U, robBanksRdata(i).vxsat | vxsatRes) 1101 } 1102 robBanksRdataThisLineUpdate := VecInit(needUpdate.take(8)) 1103 robBanksRdataNextLineUpdate := VecInit(needUpdate.drop(8)) 1104 // end update robBanksRdata 1105 1106 // interrupt_safe 1107 for (i <- 0 until RenameWidth) { 1108 when(canEnqueue(i)) { 1109 // For now, we allow non-load-store instructions to trigger interrupts 1110 // For MMIO instructions, they should not trigger interrupts since they may 1111 // be sent to lower level before it writes back. 1112 // However, we cannot determine whether a load/store instruction is MMIO. 1113 // Thus, we don't allow load/store instructions to trigger an interrupt. 1114 // TODO: support non-MMIO load-store instructions to trigger interrupts 1115 val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType) && !FuType.isFence(io.enq.req(i).bits.fuType) && !FuType.isCsr(io.enq.req(i).bits.fuType) && !FuType.isVset(io.enq.req(i).bits.fuType) 1116 robEntries(allocatePtrVec(i).value).interrupt_safe := allow_interrupts 1117 } 1118 } 1119 1120 /** 1121 * read and write of data modules 1122 */ 1123 val commitReadAddr_next = Mux(state_next === s_idle, 1124 VecInit(deqPtrVec_next.map(_.value)), 1125 VecInit(walkPtrVec_next.map(_.value)) 1126 ) 1127 1128 exceptionGen.io.redirect <> io.redirect 1129 exceptionGen.io.flush := io.flushOut.valid 1130 1131 val canEnqueueEG = VecInit(io.enq.req.map(req => req.valid && io.enq.canAccept)) 1132 for (i <- 0 until RenameWidth) { 1133 exceptionGen.io.enq(i).valid := canEnqueueEG(i) 1134 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 1135 exceptionGen.io.enq(i).bits.ftqPtr := io.enq.req(i).bits.ftqPtr 1136 exceptionGen.io.enq(i).bits.ftqOffset := io.enq.req(i).bits.ftqOffset 1137 exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec) 1138 exceptionGen.io.enq(i).bits.hasException := io.enq.req(i).bits.hasException 1139 exceptionGen.io.enq(i).bits.isEnqExcp := io.enq.req(i).bits.hasException 1140 exceptionGen.io.enq(i).bits.isFetchMalAddr := io.enq.req(i).bits.isFetchMalAddr 1141 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe 1142 exceptionGen.io.enq(i).bits.isVset := io.enq.req(i).bits.isVset 1143 exceptionGen.io.enq(i).bits.replayInst := false.B 1144 XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst") 1145 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep 1146 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix 1147 exceptionGen.io.enq(i).bits.trigger := io.enq.req(i).bits.trigger 1148 exceptionGen.io.enq(i).bits.vstartEn := false.B //DontCare 1149 exceptionGen.io.enq(i).bits.vstart := 0.U //DontCare 1150 exceptionGen.io.enq(i).bits.vuopIdx := 0.U 1151 exceptionGen.io.enq(i).bits.isVecLoad := false.B 1152 exceptionGen.io.enq(i).bits.isVlm := false.B 1153 exceptionGen.io.enq(i).bits.isStrided := false.B 1154 exceptionGen.io.enq(i).bits.isIndexed := false.B 1155 exceptionGen.io.enq(i).bits.isWhole := false.B 1156 exceptionGen.io.enq(i).bits.nf := 0.U 1157 exceptionGen.io.enq(i).bits.vsew := 0.U 1158 exceptionGen.io.enq(i).bits.veew := 0.U 1159 exceptionGen.io.enq(i).bits.vlmul := 0.U 1160 } 1161 1162 println(s"ExceptionGen:") 1163 println(s"num of exceptions: ${params.numException}") 1164 require(exceptionWBs.length == exceptionGen.io.wb.length, 1165 f"exceptionWBs.length: ${exceptionWBs.length}, " + 1166 f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}") 1167 for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) { 1168 exc_wb.valid := wb.valid 1169 exc_wb.bits.robIdx := wb.bits.robIdx 1170 // only enq inst use ftqPtr to read gpa 1171 exc_wb.bits.ftqPtr := 0.U.asTypeOf(exc_wb.bits.ftqPtr) 1172 exc_wb.bits.ftqOffset := 0.U.asTypeOf(exc_wb.bits.ftqOffset) 1173 exc_wb.bits.exceptionVec := wb.bits.exceptionVec.get 1174 exc_wb.bits.hasException := wb.bits.exceptionVec.get.asUInt.orR // Todo: use io.writebackNeedFlush(i) instead 1175 exc_wb.bits.isEnqExcp := false.B 1176 exc_wb.bits.isFetchMalAddr := false.B 1177 exc_wb.bits.flushPipe := wb.bits.flushPipe.getOrElse(false.B) 1178 exc_wb.bits.isVset := false.B 1179 exc_wb.bits.replayInst := wb.bits.replay.getOrElse(false.B) 1180 exc_wb.bits.singleStep := false.B 1181 exc_wb.bits.crossPageIPFFix := false.B 1182 val trigger = wb.bits.trigger.getOrElse(TriggerAction.None).asTypeOf(exc_wb.bits.trigger) 1183 exc_wb.bits.trigger := trigger 1184 exc_wb.bits.vstartEn := (if (wb.bits.vls.nonEmpty) wb.bits.exceptionVec.get.asUInt.orR || TriggerAction.isDmode(trigger) else 0.U) 1185 exc_wb.bits.vstart := (if (wb.bits.vls.nonEmpty) wb.bits.vls.get.vpu.vstart else 0.U) 1186 exc_wb.bits.vuopIdx := (if (wb.bits.vls.nonEmpty) wb.bits.vls.get.vpu.vuopIdx else 0.U) 1187 exc_wb.bits.isVecLoad := wb.bits.vls.map(_.isVecLoad).getOrElse(false.B) 1188 exc_wb.bits.isVlm := wb.bits.vls.map(_.isVlm).getOrElse(false.B) 1189 exc_wb.bits.isStrided := wb.bits.vls.map(_.isStrided).getOrElse(false.B) // strided need two mode tmp vreg 1190 exc_wb.bits.isIndexed := wb.bits.vls.map(_.isIndexed).getOrElse(false.B) // indexed and nf=0 need non-sequential uopidx -> vdidx 1191 exc_wb.bits.isWhole := wb.bits.vls.map(_.isWhole).getOrElse(false.B) // indexed and nf=0 need non-sequential uopidx -> vdidx 1192 exc_wb.bits.nf := wb.bits.vls.map(_.vpu.nf).getOrElse(0.U) 1193 exc_wb.bits.vsew := wb.bits.vls.map(_.vpu.vsew).getOrElse(0.U) 1194 exc_wb.bits.veew := wb.bits.vls.map(_.vpu.veew).getOrElse(0.U) 1195 exc_wb.bits.vlmul := wb.bits.vls.map(_.vpu.vlmul).getOrElse(0.U) 1196 } 1197 1198 fflagsDataRead := (0 until CommitWidth).map(i => robEntries(deqPtrVec(i).value).fflags) 1199 vxsatDataRead := (0 until CommitWidth).map(i => robEntries(deqPtrVec(i).value).vxsat) 1200 1201 val isCommit = io.commits.isCommit 1202 val isCommitReg = GatedValidRegNext(io.commits.isCommit) 1203 val instrCntReg = RegInit(0.U(64.W)) 1204 val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map { case (v, i) => RegEnable(v && CommitType.isFused(i.commitType), isCommit) }) 1205 val trueCommitCnt = RegEnable(io.commits.commitValid.zip(io.commits.info).map { case (v, i) => Mux(v, i.instrSize, 0.U) }.reduce(_ +& _), isCommit) +& fuseCommitCnt 1206 val retireCounter = Mux(isCommitReg, trueCommitCnt, 0.U) 1207 val instrCnt = instrCntReg + retireCounter 1208 when(isCommitReg){ 1209 instrCntReg := instrCnt 1210 } 1211 io.csr.perfinfo.retiredInstr := retireCounter 1212 io.robFull := !allowEnqueue 1213 io.headNotReady := commit_vDeqGroup(deqPtr.value(bankNumWidth-1, 0)) && !commit_wDeqGroup(deqPtr.value(bankNumWidth-1, 0)) 1214 1215 io.toVecExcpMod.logicPhyRegMap := rab.io.toVecExcpMod.logicPhyRegMap 1216 io.toVecExcpMod.excpInfo := vecExcpInfo 1217 1218 /** 1219 * debug info 1220 */ 1221 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 1222 XSDebug("") 1223 XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n") 1224 for (i <- 0 until RobSize) { 1225 XSDebug(false, !robEntries(i).valid, "-") 1226 XSDebug(false, robEntries(i).valid && robEntries(i).isWritebacked, "w") 1227 XSDebug(false, robEntries(i).valid && !robEntries(i).isWritebacked, "v") 1228 } 1229 XSDebug(false, true.B, "\n") 1230 1231 for (i <- 0 until RobSize) { 1232 if (i % 4 == 0) XSDebug("") 1233 XSDebug(false, true.B, "%x ", debug_microOp(i).pc) 1234 XSDebug(false, !robEntries(i).valid, "- ") 1235 XSDebug(false, robEntries(i).valid && robEntries(i).isWritebacked, "w ") 1236 XSDebug(false, robEntries(i).valid && !robEntries(i).isWritebacked, "v ") 1237 if (i % 4 == 3) XSDebug(false, true.B, "\n") 1238 } 1239 1240 def ifCommit(counter: UInt): UInt = Mux(isCommit, counter, 0.U) 1241 1242 def ifCommitReg(counter: UInt): UInt = Mux(isCommitReg, counter, 0.U) 1243 1244 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 1245 XSPerfAccumulate("clock_cycle", 1.U) 1246 QueuePerf(RobSize, numValidEntries, numValidEntries === RobSize.U) 1247 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 1248 XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt)) 1249 XSPerfRolling("ipc", ifCommitReg(trueCommitCnt), 1000, clock, reset) 1250 XSPerfRolling("cpi", perfCnt = 1.U /*Cycle*/ , eventTrigger = ifCommitReg(trueCommitCnt), granularity = 1000, clock, reset) 1251 XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt)) 1252 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 1253 val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map { case (v, t) => v && t } 1254 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 1255 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 1256 val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map { case (v, t) => v && t } 1257 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 1258 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 1259 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map { case (v, t) => v && t }))) 1260 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => robEntries(i).valid && robEntries(i).isWritebacked))) 1261 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire))) 1262 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 1263 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)) 1264 XSPerfAccumulate("walkCycleTotal", state === s_walk) 1265 XSPerfAccumulate("waitRabWalkEnd", state === s_walk && walkFinished && !rab.io.status.walkEnd) 1266 private val walkCycle = RegInit(0.U(8.W)) 1267 private val waitRabWalkCycle = RegInit(0.U(8.W)) 1268 walkCycle := Mux(io.redirect.valid, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U)) 1269 waitRabWalkCycle := Mux(state === s_walk && walkFinished, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U)) 1270 1271 XSPerfHistogram("walkRobCycleHist", walkCycle, state === s_walk && walkFinished, 0, 32) 1272 XSPerfHistogram("walkRabExtraCycleHist", waitRabWalkCycle, state === s_walk && walkFinished && rab.io.status.walkEnd, 0, 32) 1273 XSPerfHistogram("walkTotalCycleHist", walkCycle, state === s_walk && state_next === s_idle, 0, 32) 1274 1275 private val deqNotWritebacked = robEntries(deqPtr.value).valid && !robEntries(deqPtr.value).isWritebacked 1276 private val deqStdNotWritebacked = robEntries(deqPtr.value).valid && !robEntries(deqPtr.value).stdWritebacked 1277 private val deqUopNotWritebacked = robEntries(deqPtr.value).valid && !robEntries(deqPtr.value).isUopWritebacked 1278 private val deqHeadInfo = debug_microOp(deqPtr.value) 1279 val deqUopCommitType = debug_microOp(deqPtr.value).commitType 1280 1281 XSPerfAccumulate("waitAluCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.alu.U) 1282 XSPerfAccumulate("waitMulCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.mul.U) 1283 XSPerfAccumulate("waitDivCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.div.U) 1284 XSPerfAccumulate("waitBrhCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.brh.U) 1285 XSPerfAccumulate("waitJmpCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.jmp.U) 1286 XSPerfAccumulate("waitCsrCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.csr.U) 1287 XSPerfAccumulate("waitFenCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.fence.U) 1288 XSPerfAccumulate("waitBkuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.bku.U) 1289 XSPerfAccumulate("waitLduCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.ldu.U) 1290 XSPerfAccumulate("waitStuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1291 XSPerfAccumulate("waitStaCycle", deqUopNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1292 XSPerfAccumulate("waitStdCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1293 XSPerfAccumulate("waitAtmCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.mou.U) 1294 1295 XSPerfAccumulate("waitVfaluCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.vfalu.U) 1296 XSPerfAccumulate("waitVfmaCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.vfma.U) 1297 XSPerfAccumulate("waitVfdivCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.vfdiv.U) 1298 1299 val vfalufuop = Seq(VfaluType.vfadd, VfaluType.vfwadd, VfaluType.vfwadd_w, VfaluType.vfsub, VfaluType.vfwsub, VfaluType.vfwsub_w, VfaluType.vfmin, VfaluType.vfmax, 1300 VfaluType.vfmerge, VfaluType.vfmv, VfaluType.vfsgnj, VfaluType.vfsgnjn, VfaluType.vfsgnjx, VfaluType.vfeq, VfaluType.vfne, VfaluType.vflt, VfaluType.vfle, VfaluType.vfgt, 1301 VfaluType.vfge, VfaluType.vfclass, VfaluType.vfmv_f_s, VfaluType.vfmv_s_f, VfaluType.vfredusum, VfaluType.vfredmax, VfaluType.vfredmin, VfaluType.vfredosum, VfaluType.vfwredosum) 1302 1303 vfalufuop.zipWithIndex.map{ 1304 case(fuoptype,i) => XSPerfAccumulate(s"waitVfalu_${i}Cycle", deqStdNotWritebacked && deqHeadInfo.fuOpType === fuoptype && deqHeadInfo.fuType === FuType.vfalu.U) 1305 } 1306 1307 1308 1309 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 1310 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 1311 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 1312 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 1313 XSPerfAccumulate("robHeadPC", io.commits.info(0).debug_pc.getOrElse(0.U)) 1314 XSPerfAccumulate("commitCompressCntAll", PopCount(io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => io.commits.isCommit && valid && info.instrSize > 1.U })) 1315 (2 to RenameWidth).foreach(i => 1316 XSPerfAccumulate(s"commitCompressCnt${i}", PopCount(io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => io.commits.isCommit && valid && info.instrSize === i.U })) 1317 ) 1318 XSPerfAccumulate("compressSize", io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => Mux(io.commits.isCommit && valid && info.instrSize > 1.U, info.instrSize, 0.U) }.reduce(_ +& _)) 1319 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 1320 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 1321 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 1322 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 1323 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 1324 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 1325 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 1326 1327 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 1328 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 1329 } 1330 1331 for (fuType <- FuType.functionNameMap.keys) { 1332 val fuName = FuType.functionNameMap(fuType) 1333 val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U) 1334 XSPerfRolling(s"ipc_futype_${fuName}", ifCommit(PopCount(commitIsFuType)), 1000, clock, reset) 1335 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 1336 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 1337 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 1338 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 1339 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 1340 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 1341 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 1342 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 1343 } 1344 XSPerfAccumulate(s"redirect_use_snapshot", io.redirect.valid && io.snpt.useSnpt) 1345 1346 // top-down info 1347 io.debugTopDown.toCore.robHeadVaddr.valid := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_valid 1348 io.debugTopDown.toCore.robHeadVaddr.bits := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_bits 1349 io.debugTopDown.toCore.robHeadPaddr.valid := debug_lsTopdownInfo(deqPtr.value).s2.paddr_valid 1350 io.debugTopDown.toCore.robHeadPaddr.bits := debug_lsTopdownInfo(deqPtr.value).s2.paddr_bits 1351 io.debugTopDown.toDispatch.robTrueCommit := ifCommitReg(trueCommitCnt) 1352 io.debugTopDown.toDispatch.robHeadLsIssue := debug_lsIssue(deqPtr.value) 1353 io.debugTopDown.robHeadLqIdx.valid := debug_lqIdxValid(deqPtr.value) 1354 io.debugTopDown.robHeadLqIdx.bits := debug_microOp(deqPtr.value).lqIdx 1355 1356 // rolling 1357 io.debugRolling.robTrueCommit := ifCommitReg(trueCommitCnt) 1358 1359 /** 1360 * DataBase info: 1361 * log trigger is at writeback valid 1362 * */ 1363 if (!env.FPGAPlatform) { 1364 val instTableName = "InstTable" + p(XSCoreParamsKey).HartId.toString 1365 val instSiteName = "Rob" + p(XSCoreParamsKey).HartId.toString 1366 val debug_instTable = ChiselDB.createTable(instTableName, new InstInfoEntry) 1367 for (wb <- exuWBs) { 1368 when(wb.valid) { 1369 val debug_instData = Wire(new InstInfoEntry) 1370 val idx = wb.bits.robIdx.value 1371 debug_instData.robIdx := idx 1372 debug_instData.dvaddr := wb.bits.debug.vaddr 1373 debug_instData.dpaddr := wb.bits.debug.paddr 1374 debug_instData.issueTime := wb.bits.debugInfo.issueTime 1375 debug_instData.writebackTime := wb.bits.debugInfo.writebackTime 1376 debug_instData.dispatchLatency := wb.bits.debugInfo.dispatchTime - wb.bits.debugInfo.renameTime 1377 debug_instData.enqRsLatency := wb.bits.debugInfo.enqRsTime - wb.bits.debugInfo.dispatchTime 1378 debug_instData.selectLatency := wb.bits.debugInfo.selectTime - wb.bits.debugInfo.enqRsTime 1379 debug_instData.issueLatency := wb.bits.debugInfo.issueTime - wb.bits.debugInfo.selectTime 1380 debug_instData.executeLatency := wb.bits.debugInfo.writebackTime - wb.bits.debugInfo.issueTime 1381 debug_instData.rsFuLatency := wb.bits.debugInfo.writebackTime - wb.bits.debugInfo.enqRsTime 1382 debug_instData.tlbLatency := wb.bits.debugInfo.tlbRespTime - wb.bits.debugInfo.tlbFirstReqTime 1383 debug_instData.exceptType := Cat(wb.bits.exceptionVec.getOrElse(ExceptionVec(false.B))) 1384 debug_instData.lsInfo := debug_lsInfo(idx) 1385 // debug_instData.globalID := wb.bits.uop.ctrl.debug_globalID 1386 // debug_instData.instType := wb.bits.uop.ctrl.fuType 1387 // debug_instData.ivaddr := wb.bits.uop.cf.pc 1388 // debug_instData.mdpInfo.ssid := wb.bits.uop.cf.ssid 1389 // debug_instData.mdpInfo.waitAllStore := wb.bits.uop.cf.loadWaitStrict && wb.bits.uop.cf.loadWaitBit 1390 debug_instTable.log( 1391 data = debug_instData, 1392 en = wb.valid, 1393 site = instSiteName, 1394 clock = clock, 1395 reset = reset 1396 ) 1397 } 1398 } 1399 } 1400 1401 1402 //difftest signals 1403 val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value 1404 1405 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1406 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1407 1408 for (i <- 0 until CommitWidth) { 1409 val idx = deqPtrVec(i).value 1410 wdata(i) := debug_exuData(idx) 1411 wpc(i) := SignExt(commitDebugUop(i).pc, XLEN) 1412 } 1413 1414 if (env.EnableDifftest || env.AlwaysBasicDiff) { 1415 // These are the structures used by difftest only and should be optimized after synthesis. 1416 val dt_eliminatedMove = Mem(RobSize, Bool()) 1417 val dt_isRVC = Mem(RobSize, Bool()) 1418 val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) 1419 for (i <- 0 until RenameWidth) { 1420 when(canEnqueue(i)) { 1421 dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 1422 dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC 1423 } 1424 } 1425 for (wb <- exuWBs) { 1426 when(wb.valid) { 1427 val wbIdx = wb.bits.robIdx.value 1428 dt_exuDebug(wbIdx) := wb.bits.debug 1429 } 1430 } 1431 // Always instantiate basic difftest modules. 1432 for (i <- 0 until CommitWidth) { 1433 val uop = commitDebugUop(i) 1434 val commitInfo = io.commits.info(i) 1435 val ptr = deqPtrVec(i).value 1436 val exuOut = dt_exuDebug(ptr) 1437 val eliminatedMove = dt_eliminatedMove(ptr) 1438 val isRVC = dt_isRVC(ptr) 1439 1440 val difftest = DifftestModule(new DiffInstrCommit(MaxPhyRegs), delay = 3, dontCare = true) 1441 val dt_skip = Mux(eliminatedMove, false.B, exuOut.isSkipDiff) 1442 difftest.coreid := io.hartId 1443 difftest.index := i.U 1444 difftest.valid := io.commits.commitValid(i) && io.commits.isCommit 1445 difftest.skip := dt_skip 1446 difftest.isRVC := isRVC 1447 difftest.rfwen := io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.debug_ldest.get =/= 0.U 1448 difftest.fpwen := io.commits.commitValid(i) && uop.fpWen 1449 difftest.wpdest := commitInfo.debug_pdest.get 1450 difftest.wdest := commitInfo.debug_ldest.get 1451 difftest.nFused := CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize - 1.U 1452 when(difftest.valid) { 1453 assert(CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize >= 1.U) 1454 } 1455 if (env.EnableDifftest) { 1456 val uop = commitDebugUop(i) 1457 difftest.pc := SignExt(uop.pc, XLEN) 1458 difftest.instr := uop.instr 1459 difftest.robIdx := ZeroExt(ptr, 10) 1460 difftest.lqIdx := ZeroExt(uop.lqIdx.value, 7) 1461 difftest.sqIdx := ZeroExt(uop.sqIdx.value, 7) 1462 difftest.isLoad := io.commits.info(i).commitType === CommitType.LOAD 1463 difftest.isStore := io.commits.info(i).commitType === CommitType.STORE 1464 // Check LoadEvent only when isAmo or isLoad and skip MMIO 1465 val difftestLoadEvent = DifftestModule(new DiffLoadEvent, delay = 3) 1466 difftestLoadEvent.coreid := io.hartId 1467 difftestLoadEvent.index := i.U 1468 val loadCheck = (FuType.isAMO(uop.fuType) || FuType.isLoad(uop.fuType)) && !dt_skip 1469 difftestLoadEvent.valid := io.commits.commitValid(i) && io.commits.isCommit && loadCheck 1470 difftestLoadEvent.paddr := exuOut.paddr 1471 difftestLoadEvent.opType := uop.fuOpType 1472 difftestLoadEvent.isAtomic := FuType.isAMO(uop.fuType) 1473 difftestLoadEvent.isLoad := FuType.isLoad(uop.fuType) 1474 } 1475 } 1476 } 1477 1478 if (env.EnableDifftest || env.AlwaysBasicDiff) { 1479 val dt_isXSTrap = Mem(RobSize, Bool()) 1480 for (i <- 0 until RenameWidth) { 1481 when(canEnqueue(i)) { 1482 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap 1483 } 1484 } 1485 val trapVec = io.commits.commitValid.zip(deqPtrVec).map { case (v, d) => 1486 io.commits.isCommit && v && dt_isXSTrap(d.value) 1487 } 1488 val hitTrap = trapVec.reduce(_ || _) 1489 val difftest = DifftestModule(new DiffTrapEvent, dontCare = true) 1490 difftest.coreid := io.hartId 1491 difftest.hasTrap := hitTrap 1492 difftest.cycleCnt := timer 1493 difftest.instrCnt := instrCnt 1494 difftest.hasWFI := hasWFI 1495 1496 if (env.EnableDifftest) { 1497 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 1498 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 -> x._1)), XLEN) 1499 difftest.code := trapCode 1500 difftest.pc := trapPC 1501 } 1502 } 1503 1504 //store evetn difftest information 1505 io.storeDebugInfo := DontCare 1506 if (env.EnableDifftest) { 1507 io.storeDebugInfo.map{port => 1508 port.pc := debug_microOp(port.robidx.value).pc 1509 } 1510 } 1511 1512 val commitLoadVec = VecInit(commitLoadValid) 1513 val commitBranchVec = VecInit(commitBranchValid) 1514 val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map { case (v, t) => v && t }) 1515 val perfEvents = Seq( 1516 ("rob_interrupt_num ", io.flushOut.valid && intrEnable), 1517 ("rob_exception_num ", io.flushOut.valid && deqHasException), 1518 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe), 1519 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst), 1520 ("rob_commitUop ", ifCommit(commitCnt)), 1521 ("rob_commitInstr ", ifCommitReg(trueCommitCnt)), 1522 ("rob_commitInstrFused ", ifCommitReg(fuseCommitCnt)), 1523 ("rob_commitInstrLoad ", ifCommitReg(PopCount(RegEnable(commitLoadVec, isCommit)))), 1524 ("rob_commitInstrBranch ", ifCommitReg(PopCount(RegEnable(commitBranchVec, isCommit)))), 1525 ("rob_commitInstrStore ", ifCommitReg(PopCount(RegEnable(commitStoreVec, isCommit)))), 1526 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)), 1527 ("rob_walkCycle ", (state === s_walk)), 1528 ("rob_1_4_valid ", numValidEntries <= (RobSize / 4).U), 1529 ("rob_2_4_valid ", numValidEntries > (RobSize / 4).U && numValidEntries <= (RobSize / 2).U), 1530 ("rob_3_4_valid ", numValidEntries > (RobSize / 2).U && numValidEntries <= (RobSize * 3 / 4).U), 1531 ("rob_4_4_valid ", numValidEntries > (RobSize * 3 / 4).U), 1532 ) 1533 generatePerfEvent() 1534 1535 // max commit-stuck cycle 1536 val deqismmio = Mux(robEntries(deqPtr.value).valid, robEntries(deqPtr.value).mmio, false.B) 1537 val commitStuck = (!io.commits.commitValid.reduce(_ || _) || !io.commits.isCommit) && !deqismmio 1538 val commitStuckCycle = RegInit(0.U(log2Up(maxCommitStuck).W)) 1539 when(commitStuck) { 1540 commitStuckCycle := commitStuckCycle + 1.U 1541 }.elsewhen(!commitStuck && RegNext(commitStuck)) { 1542 commitStuckCycle := 0.U 1543 } 1544 // check if stuck > 2^maxCommitStuckCycle 1545 val commitStuck_overflow = commitStuckCycle.andR 1546 val criticalErrors = Seq( 1547 ("rob_commit_stuck ", commitStuck_overflow), 1548 ) 1549 generateCriticalErrors() 1550 1551 1552 // dontTouch for debug 1553 if (backendParams.debugEn) { 1554 dontTouch(enqPtrVec) 1555 dontTouch(deqPtrVec) 1556 dontTouch(robEntries) 1557 dontTouch(robDeqGroup) 1558 dontTouch(robBanks) 1559 dontTouch(robBanksRaddrThisLine) 1560 dontTouch(robBanksRaddrNextLine) 1561 dontTouch(robBanksRdataThisLine) 1562 dontTouch(robBanksRdataNextLine) 1563 dontTouch(robBanksRdataThisLineUpdate) 1564 dontTouch(robBanksRdataNextLineUpdate) 1565 dontTouch(needUpdate) 1566 val exceptionWBsVec = MixedVecInit(exceptionWBs) 1567 dontTouch(exceptionWBsVec) 1568 dontTouch(commit_wDeqGroup) 1569 dontTouch(commit_vDeqGroup) 1570 dontTouch(commitSizeSumSeq) 1571 dontTouch(walkSizeSumSeq) 1572 dontTouch(commitSizeSumCond) 1573 dontTouch(walkSizeSumCond) 1574 dontTouch(commitSizeSum) 1575 dontTouch(walkSizeSum) 1576 dontTouch(realDestSizeSeq) 1577 dontTouch(walkDestSizeSeq) 1578 dontTouch(io.commits) 1579 dontTouch(commitIsVTypeVec) 1580 dontTouch(walkIsVTypeVec) 1581 dontTouch(commitValidThisLine) 1582 dontTouch(commitReadAddr_next) 1583 dontTouch(donotNeedWalk) 1584 dontTouch(walkPtrVec_next) 1585 dontTouch(walkPtrVec) 1586 dontTouch(deqPtrVec_next) 1587 dontTouch(deqPtrVecForWalk) 1588 dontTouch(snapPtrReadBank) 1589 dontTouch(snapPtrVecForWalk) 1590 dontTouch(shouldWalkVec) 1591 dontTouch(walkFinished) 1592 dontTouch(changeBankAddrToDeqPtr) 1593 } 1594 if (env.EnableDifftest) { 1595 io.commits.info.map(info => dontTouch(info.debug_pc.get)) 1596 } 1597} 1598