1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.rob 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 24import utility._ 25import utils._ 26import xiangshan._ 27import xiangshan.backend.BackendParams 28import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 29import xiangshan.backend.fu.FuType 30import xiangshan.frontend.FtqPtr 31import xiangshan.mem.{LqPtr, SqPtr} 32import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 33 34class DebugMdpInfo(implicit p: Parameters) extends XSBundle{ 35 val ssid = UInt(SSIDWidth.W) 36 val waitAllStore = Bool() 37} 38 39class DebugLsInfo(implicit p: Parameters) extends XSBundle{ 40 val s1 = new Bundle{ 41 val isTlbFirstMiss = Bool() // in s1 42 val isBankConflict = Bool() // in s1 43 val isLoadToLoadForward = Bool() 44 val isReplayFast = Bool() 45 } 46 val s2 = new Bundle{ 47 val isDcacheFirstMiss = Bool() // in s2 (predicted result is in s1 when using WPU, real result is in s2) 48 val isForwardFail = Bool() // in s2 49 val isReplaySlow = Bool() 50 val isLoadReplayTLBMiss = Bool() 51 val isLoadReplayCacheMiss = Bool() 52 } 53 val replayCnt = UInt(XLEN.W) 54 55 def s1SignalEnable(ena: DebugLsInfo) = { 56 when(ena.s1.isTlbFirstMiss) { s1.isTlbFirstMiss := true.B } 57 when(ena.s1.isBankConflict) { s1.isBankConflict := true.B } 58 when(ena.s1.isLoadToLoadForward) { s1.isLoadToLoadForward := true.B } 59 when(ena.s1.isReplayFast) { 60 s1.isReplayFast := true.B 61 replayCnt := replayCnt + 1.U 62 } 63 } 64 65 def s2SignalEnable(ena: DebugLsInfo) = { 66 when(ena.s2.isDcacheFirstMiss) { s2.isDcacheFirstMiss := true.B } 67 when(ena.s2.isForwardFail) { s2.isForwardFail := true.B } 68 when(ena.s2.isLoadReplayTLBMiss) { s2.isLoadReplayTLBMiss := true.B } 69 when(ena.s2.isLoadReplayCacheMiss) { s2.isLoadReplayCacheMiss := true.B } 70 when(ena.s2.isReplaySlow) { 71 s2.isReplaySlow := true.B 72 replayCnt := replayCnt + 1.U 73 } 74 } 75} 76 77object DebugLsInfo{ 78 def init(implicit p: Parameters): DebugLsInfo = { 79 val lsInfo = Wire(new DebugLsInfo) 80 lsInfo.s1.isTlbFirstMiss := false.B 81 lsInfo.s1.isBankConflict := false.B 82 lsInfo.s1.isLoadToLoadForward := false.B 83 lsInfo.s1.isReplayFast := false.B 84 lsInfo.s2.isDcacheFirstMiss := false.B 85 lsInfo.s2.isForwardFail := false.B 86 lsInfo.s2.isReplaySlow := false.B 87 lsInfo.s2.isLoadReplayTLBMiss := false.B 88 lsInfo.s2.isLoadReplayCacheMiss := false.B 89 lsInfo.replayCnt := 0.U 90 lsInfo 91 } 92} 93 94class DebugLsInfoBundle(implicit p: Parameters) extends DebugLsInfo { 95 // unified processing at the end stage of load/store ==> s2 ==> bug that will write error robIdx data 96 val s1_robIdx = UInt(log2Ceil(RobSize).W) 97 val s2_robIdx = UInt(log2Ceil(RobSize).W) 98} 99 100class DebugLSIO(implicit p: Parameters) extends XSBundle { 101 val debugLsInfo = Vec(backendParams.LduCnt + backendParams.StaCnt, Output(new DebugLsInfoBundle)) 102} 103 104class RobPtr(entries: Int) extends CircularQueuePtr[RobPtr]( 105 entries 106) with HasCircularQueuePtrHelper { 107 108 def this()(implicit p: Parameters) = this(p(XSCoreParamsKey).RobSize) 109 110 def needFlush(redirect: Valid[Redirect]): Bool = { 111 val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx 112 redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx)) 113 } 114 115 def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR 116} 117 118object RobPtr { 119 def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = { 120 val ptr = Wire(new RobPtr) 121 ptr.flag := f 122 ptr.value := v 123 ptr 124 } 125} 126 127class RobCSRIO(implicit p: Parameters) extends XSBundle { 128 val intrBitSet = Input(Bool()) 129 val trapTarget = Input(UInt(VAddrBits.W)) 130 val isXRet = Input(Bool()) 131 val wfiEvent = Input(Bool()) 132 133 val fflags = Output(Valid(UInt(5.W))) 134 val vxsat = Output(Valid(Bool())) 135 val dirty_fs = Output(Bool()) 136 val perfinfo = new Bundle { 137 val retiredInstr = Output(UInt(3.W)) 138 } 139 140 val vcsrFlag = Output(Bool()) 141} 142 143class RobLsqIO(implicit p: Parameters) extends XSBundle { 144 val lcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 145 val scommit = Output(UInt(log2Up(CommitWidth + 1).W)) 146 val pendingld = Output(Bool()) 147 val pendingst = Output(Bool()) 148 val commit = Output(Bool()) 149 val pendingPtr = Output(new RobPtr) 150 151 val mmio = Input(Vec(LoadPipelineWidth, Bool())) 152 val uop = Input(Vec(LoadPipelineWidth, new DynInst)) 153} 154 155class RobEnqIO(implicit p: Parameters) extends XSBundle { 156 val canAccept = Output(Bool()) 157 val isEmpty = Output(Bool()) 158 // valid vector, for robIdx gen and walk 159 val needAlloc = Vec(RenameWidth, Input(Bool())) 160 val req = Vec(RenameWidth, Flipped(ValidIO(new DynInst))) 161 val resp = Vec(RenameWidth, Output(new RobPtr)) 162} 163 164class RobDispatchData(implicit p: Parameters) extends RobCommitInfo 165 166class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 167 val io = IO(new Bundle { 168 // for commits/flush 169 val state = Input(UInt(2.W)) 170 val deq_v = Vec(CommitWidth, Input(Bool())) 171 val deq_w = Vec(CommitWidth, Input(Bool())) 172 val exception_state = Flipped(ValidIO(new RobExceptionInfo)) 173 // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth) 174 val intrBitSetReg = Input(Bool()) 175 val hasNoSpecExec = Input(Bool()) 176 val interrupt_safe = Input(Bool()) 177 val blockCommit = Input(Bool()) 178 // output: the CommitWidth deqPtr 179 val out = Vec(CommitWidth, Output(new RobPtr)) 180 val next_out = Vec(CommitWidth, Output(new RobPtr)) 181 }) 182 183 val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr)))) 184 185 // for exceptions (flushPipe included) and interrupts: 186 // only consider the first instruction 187 val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe 188 val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0) 189 val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable) 190 191 // for normal commits: only to consider when there're no exceptions 192 // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions. 193 val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last) 194 val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i))) 195 val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B) 196 // when io.intrBitSetReg or there're possible exceptions in these instructions, 197 // only one instruction is allowed to commit 198 val allowOnlyOne = commit_exception || io.intrBitSetReg 199 val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt) 200 201 val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt)) 202 val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec) 203 204 deqPtrVec := deqPtrVec_next 205 206 io.next_out := deqPtrVec_next 207 io.out := deqPtrVec 208 209 when (io.state === 0.U) { 210 XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt) 211 } 212 213} 214 215class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 216 val io = IO(new Bundle { 217 // for input redirect 218 val redirect = Input(Valid(new Redirect)) 219 // for enqueue 220 val allowEnqueue = Input(Bool()) 221 val hasBlockBackward = Input(Bool()) 222 val enq = Vec(RenameWidth, Input(Bool())) 223 val out = Output(Vec(RenameWidth, new RobPtr)) 224 }) 225 226 val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr))) 227 228 // enqueue 229 val canAccept = io.allowEnqueue && !io.hasBlockBackward 230 val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U) 231 232 for ((ptr, i) <- enqPtrVec.zipWithIndex) { 233 when(io.redirect.valid) { 234 ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 235 }.otherwise { 236 ptr := ptr + dispatchNum 237 } 238 } 239 240 io.out := enqPtrVec 241 242} 243 244class RobExceptionInfo(implicit p: Parameters) extends XSBundle { 245 // val valid = Bool() 246 val robIdx = new RobPtr 247 val exceptionVec = ExceptionVec() 248 val flushPipe = Bool() 249 val isVset = Bool() 250 val replayInst = Bool() // redirect to that inst itself 251 val singleStep = Bool() // TODO add frontend hit beneath 252 val crossPageIPFFix = Bool() 253 val trigger = new TriggerCf 254 255// def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend 256// def trigger_after = trigger.getTimingBackend && trigger.getHitBackend 257 def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit 258 def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit 259 // only exceptions are allowed to writeback when enqueue 260 def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit 261} 262 263class ExceptionGen(params: BackendParams)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 264 val io = IO(new Bundle { 265 val redirect = Input(Valid(new Redirect)) 266 val flush = Input(Bool()) 267 val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo))) 268 // csr + load + store 269 val wb = Vec(params.numException, Flipped(ValidIO(new RobExceptionInfo))) 270 val out = ValidIO(new RobExceptionInfo) 271 val state = ValidIO(new RobExceptionInfo) 272 }) 273 274 def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = { 275 assert(valid.length == bits.length) 276 assert(isPow2(valid.length)) 277 if (valid.length == 1) { 278 (valid, bits) 279 } else if (valid.length == 2) { 280 val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0))))) 281 for (i <- res.indices) { 282 res(i).valid := valid(i) 283 res(i).bits := bits(i) 284 } 285 val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1)) 286 (Seq(oldest.valid), Seq(oldest.bits)) 287 } else { 288 val left = getOldest(valid.take(valid.length / 2), bits.take(valid.length / 2)) 289 val right = getOldest(valid.takeRight(valid.length / 2), bits.takeRight(valid.length / 2)) 290 getOldest(left._1 ++ right._1, left._2 ++ right._2) 291 } 292 } 293 294 val currentValid = RegInit(false.B) 295 val current = Reg(new RobExceptionInfo) 296 297 // orR the exceptionVec 298 val lastCycleFlush = RegNext(io.flush) 299 val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush)) 300 val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush) 301 302 // s0: compare wb(1)~wb(LoadPipelineWidth) and wb(1 + LoadPipelineWidth)~wb(LoadPipelineWidth + StorePipelineWidth) 303 val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) } 304 val csr_wb_bits = io.wb(0).bits 305 val load_wb_bits = getOldest(in_wb_valid.slice(1, 1 + LoadPipelineWidth), io.wb.map(_.bits).slice(1, 1 + LoadPipelineWidth))._2(0) 306 val store_wb_bits = getOldest(in_wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth), io.wb.map(_.bits).slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth))._2(0) 307 val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid.slice(1, 1 + LoadPipelineWidth).reduce(_ || _), wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth).reduce(_ || _)))) 308 val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits))) 309 310 // s1: compare last four and current flush 311 val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) }) 312 val compare_01_valid = s0_out_valid(0) || s0_out_valid(1) 313 val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0)) 314 val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2)) 315 val s1_out_bits = RegNext(compare_bits) 316 val s1_out_valid = RegNext(s1_valid.asUInt.orR) 317 318 val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 319 val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits))) 320 321 // s2: compare the input exception with the current one 322 // priorities: 323 // (1) system reset 324 // (2) current is valid: flush, remain, merge, update 325 // (3) current is not valid: s1 or enq 326 val current_flush = current.robIdx.needFlush(io.redirect) || io.flush 327 val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush 328 when (currentValid) { 329 when (current_flush) { 330 currentValid := Mux(s1_flush, false.B, s1_out_valid) 331 } 332 when (s1_out_valid && !s1_flush) { 333 when (isAfter(current.robIdx, s1_out_bits.robIdx)) { 334 current := s1_out_bits 335 }.elsewhen (current.robIdx === s1_out_bits.robIdx) { 336 current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec()) 337 current.flushPipe := s1_out_bits.flushPipe || current.flushPipe 338 current.replayInst := s1_out_bits.replayInst || current.replayInst 339 current.singleStep := s1_out_bits.singleStep || current.singleStep 340 current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf) 341 } 342 } 343 }.elsewhen (s1_out_valid && !s1_flush) { 344 currentValid := true.B 345 current := s1_out_bits 346 }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) { 347 currentValid := true.B 348 current := enq_bits 349 } 350 351 io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback 352 io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits) 353 io.state.valid := currentValid 354 io.state.bits := current 355 356} 357 358class RobFlushInfo(implicit p: Parameters) extends XSBundle { 359 val ftqIdx = new FtqPtr 360 val robIdx = new RobPtr 361 val ftqOffset = UInt(log2Up(PredictWidth).W) 362 val replayInst = Bool() 363} 364 365class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter { 366 367 lazy val module = new RobImp(this)(p, params) 368 // 369 // override def generateWritebackIO( 370 // thisMod: Option[HasWritebackSource] = None, 371 // thisModImp: Option[HasWritebackSourceImp] = None 372 // ): Unit = { 373 // val sources = writebackSinksImp(thisMod, thisModImp) 374 // module.io.writeback.zip(sources).foreach(x => x._1 := x._2) 375 // } 376 //} 377} 378 379class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper) 380 with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents { 381 382 val io = IO(new Bundle() { 383 val hartId = Input(UInt(8.W)) 384 val redirect = Input(Valid(new Redirect)) 385 val enq = new RobEnqIO 386 val flushOut = ValidIO(new Redirect) 387 val exception = ValidIO(new ExceptionInfo) 388 // exu + brq 389 val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles) 390 val commits = Output(new RobCommitIO) 391 val rabCommits = Output(new RobCommitIO) 392 val diffCommits = Output(new DiffCommitIO) 393 val isVsetFlushPipe = Output(Bool()) 394 val vconfigPdest = Output(UInt(PhyRegIdxWidth.W)) 395 val lsq = new RobLsqIO 396 val robDeqPtr = Output(new RobPtr) 397 val csr = new RobCSRIO 398 val robFull = Output(Bool()) 399 val cpu_halt = Output(Bool()) 400 val wfi_enable = Input(Bool()) 401 }) 402 403 val exuWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(!_.bits.params.hasStdFu) 404 val stdWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(_.bits.params.hasStdFu) 405 val fflagsWBs = io.writeback.filter(x => x.bits.fflags.nonEmpty) 406 val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty) 407 val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty) 408 409 val exuWbPorts = io.writeback.filter(!_.bits.params.hasStdFu) 410 val stdWbPorts = io.writeback.filter(_.bits.params.hasStdFu) 411 val fflagsPorts = io.writeback.filter(x => x.bits.fflags.nonEmpty) 412 val vxsatPorts = io.writeback.filter(x => x.bits.vxsat.nonEmpty) 413 val exceptionPorts = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty) 414 val numExuWbPorts = exuWBs.length 415 val numStdWbPorts = stdWBs.length 416 417 418 println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth") 419// println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}") 420// println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}") 421// println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}") 422 423 424 // instvalid field 425 val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 426 // writeback status 427 428 val stdWritebacked = Reg(Vec(RobSize, Bool())) 429 val uopNumVec = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W)))) 430 val realDestSize = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W)))) 431 val fflagsDataModule = RegInit(VecInit(Seq.fill(RobSize)(0.U(5.W)))) 432 val vxsatDataModule = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 433 434 def isWritebacked(ptr: UInt): Bool = { 435 !uopNumVec(ptr).orR && stdWritebacked(ptr) 436 } 437 438 val mmio = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 439 440 // data for redirect, exception, etc. 441 val flagBkup = Mem(RobSize, Bool()) 442 // some instructions are not allowed to trigger interrupts 443 // They have side effects on the states of the processor before they write back 444 val interrupt_safe = Mem(RobSize, Bool()) 445 446 // data for debug 447 // Warn: debug_* prefix should not exist in generated verilog. 448 val debug_microOp = Mem(RobSize, new DynInst) 449 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug 450 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug 451 452 // pointers 453 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 454 val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr)) 455 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 456 457 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 458 val allowEnqueue = RegInit(true.B) 459 460 val enqPtr = enqPtrVec.head 461 val deqPtr = deqPtrVec(0) 462 val walkPtr = walkPtrVec(0) 463 464 val isEmpty = enqPtr === deqPtr 465 val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level) 466 467 /** 468 * states of Rob 469 */ 470 val s_idle :: s_walk :: Nil = Enum(2) 471 val state = RegInit(s_idle) 472 473 /** 474 * Data Modules 475 * 476 * CommitDataModule: data from dispatch 477 * (1) read: commits/walk/exception 478 * (2) write: enqueue 479 * 480 * WritebackData: data from writeback 481 * (1) read: commits/walk/exception 482 * (2) write: write back from exe units 483 */ 484 val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth)) 485 val dispatchDataRead = dispatchData.io.rdata 486 487 val exceptionGen = Module(new ExceptionGen(params)) 488 val exceptionDataRead = exceptionGen.io.state 489 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 490 val vxsatDataRead = Wire(Vec(CommitWidth, Bool())) 491 492 io.robDeqPtr := deqPtr 493 494 val rab = Module(new RenameBuffer(RabSize)) 495 rab.io.redirectValid := io.redirect.valid 496 rab.io.req.zip(io.enq.req).map { case (dest, src) => 497 dest.bits := src.bits 498 dest.valid := src.valid && io.enq.canAccept 499 } 500 501 val realDestSizeCandidates = (0 until CommitWidth).map(i => realDestSize(Mux(state === s_idle, deqPtrVec(i).value, walkPtrVec(i).value))) 502 val wbSizeSeq = io.commits.commitValid.zip(io.commits.walkValid).zip(realDestSizeCandidates).map { case ((commitValid, walkValid), realDestSize) => 503 Mux(io.commits.isCommit, Mux(commitValid, realDestSize, 0.U), Mux(walkValid, realDestSize, 0.U)) 504 } 505 val wbSizeSum = wbSizeSeq.reduce(_ + _) 506 rab.io.commitSize := wbSizeSum 507 rab.io.walkSize := wbSizeSum 508 509 io.rabCommits := rab.io.commits 510 io.diffCommits := rab.io.diffCommits 511 512 /** 513 * Enqueue (from dispatch) 514 */ 515 // special cases 516 val hasBlockBackward = RegInit(false.B) 517 val hasWaitForward = RegInit(false.B) 518 val doingSvinval = RegInit(false.B) 519 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 520 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 521 when (isEmpty) { hasBlockBackward:= false.B } 522 // When any instruction commits, hasNoSpecExec should be set to false.B 523 when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasWaitForward:= false.B } 524 525 // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing. 526 // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle. 527 // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts. 528 val hasWFI = RegInit(false.B) 529 io.cpu_halt := hasWFI 530 // WFI Timeout: 2^20 = 1M cycles 531 val wfi_cycles = RegInit(0.U(20.W)) 532 when (hasWFI) { 533 wfi_cycles := wfi_cycles + 1.U 534 }.elsewhen (!hasWFI && RegNext(hasWFI)) { 535 wfi_cycles := 0.U 536 } 537 val wfi_timeout = wfi_cycles.andR 538 when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) { 539 hasWFI := false.B 540 } 541 542 val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.req.take(i).map(req => req.valid && req.bits.firstUop))))) 543 io.enq.canAccept := allowEnqueue && !hasBlockBackward && rab.io.canEnq 544 io.enq.resp := allocatePtrVec 545 val canEnqueue = VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop && io.enq.canAccept)) 546 val timer = GTimer() 547 for (i <- 0 until RenameWidth) { 548 // we don't check whether io.redirect is valid here since redirect has higher priority 549 when (canEnqueue(i)) { 550 val enqUop = io.enq.req(i).bits 551 val enqIndex = allocatePtrVec(i).value 552 // store uop in data module and debug_microOp Vec 553 debug_microOp(enqIndex) := enqUop 554 debug_microOp(enqIndex).debugInfo.dispatchTime := timer 555 debug_microOp(enqIndex).debugInfo.enqRsTime := timer 556 debug_microOp(enqIndex).debugInfo.selectTime := timer 557 debug_microOp(enqIndex).debugInfo.issueTime := timer 558 debug_microOp(enqIndex).debugInfo.writebackTime := timer 559 when (enqUop.blockBackward) { 560 hasBlockBackward := true.B 561 } 562 when (enqUop.waitForward) { 563 hasWaitForward := true.B 564 } 565 val enqHasTriggerHit = false.B // io.enq.req(i).bits.cf.trigger.getHitFrontend 566 val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR 567 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 568 when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe)) 569 { 570 doingSvinval := true.B 571 } 572 // the end instruction of Svinval enqs so clear doingSvinval 573 when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe)) 574 { 575 doingSvinval := false.B 576 } 577 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 578 assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe))) 579 when (enqUop.isWFI && !enqHasException && !enqHasTriggerHit) { 580 hasWFI := true.B 581 } 582 583 mmio(enqIndex) := false.B 584 } 585 } 586 val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(req => req.valid && req.bits.firstUop)), 0.U) 587 io.enq.isEmpty := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR) 588 589 when (!io.wfi_enable) { 590 hasWFI := false.B 591 } 592 // sel vsetvl's flush position 593 val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3) 594 val vsetvlState = RegInit(vs_idle) 595 596 val firstVInstrFtqPtr = RegInit(0.U.asTypeOf(new FtqPtr)) 597 val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W))) 598 val firstVInstrRobIdx = RegInit(0.U.asTypeOf(new RobPtr)) 599 600 val enq0 = io.enq.req(0) 601 val enq0IsVset = enq0.bits.isVset && enq0.bits.lastUop && canEnqueue(0) 602 val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe 603 val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVpu(req.bits.fuType) && fire} 604 // for vs_idle 605 val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType))) 606 // for vs_waitVinstr 607 val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1) 608 val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req) 609 when(vsetvlState === vs_idle){ 610 firstVInstrFtqPtr := firstVInstrIdle.bits.ftqPtr 611 firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset 612 firstVInstrRobIdx := firstVInstrIdle.bits.robIdx 613 }.elsewhen(vsetvlState === vs_waitVinstr){ 614 when(Cat(enqIsVInstrOrVset).orR){ 615 firstVInstrFtqPtr := firstVInstrWait.bits.ftqPtr 616 firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset 617 firstVInstrRobIdx := firstVInstrWait.bits.robIdx 618 } 619 } 620 621 val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR 622 when(vsetvlState === vs_idle && !io.redirect.valid){ 623 when(enq0IsVsetFlush){ 624 vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr) 625 } 626 }.elsewhen(vsetvlState === vs_waitVinstr){ 627 when(io.redirect.valid){ 628 vsetvlState := vs_idle 629 }.elsewhen(Cat(enqIsVInstrOrVset).orR){ 630 vsetvlState := vs_waitFlush 631 } 632 }.elsewhen(vsetvlState === vs_waitFlush){ 633 when(io.redirect.valid){ 634 vsetvlState := vs_idle 635 } 636 } 637 638 /** 639 * Writeback (from execution units) 640 */ 641 for (wb <- exuWBs) { 642 when (wb.valid) { 643 val wbIdx = wb.bits.robIdx.value 644 debug_exuData(wbIdx) := wb.bits.data 645 debug_exuDebug(wbIdx) := wb.bits.debug 646 debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime 647 debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime 648 debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime 649 debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime 650 651 // debug for lqidx and sqidx 652 debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr)) 653 debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr)) 654 655 val debug_Uop = debug_microOp(wbIdx) 656 XSInfo(true.B, 657 p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " + 658 p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " + 659 p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.robIdx}\n" 660 ) 661 } 662 } 663 664 val writebackNum = PopCount(exuWBs.map(_.valid)) 665 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 666 667 for (i <- 0 until LoadPipelineWidth) { 668 when (RegNext(io.lsq.mmio(i))) { 669 mmio(RegNext(io.lsq.uop(i).robIdx).value) := true.B 670 } 671 } 672 673 /** 674 * RedirectOut: Interrupt and Exceptions 675 */ 676 val deqDispatchData = dispatchDataRead(0) 677 val debug_deqUop = debug_microOp(deqPtr.value) 678 679 val intrBitSetReg = RegNext(io.csr.intrBitSet) 680 val intrEnable = intrBitSetReg && !hasWaitForward && interrupt_safe(deqPtr.value) 681 val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 682 val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR || 683 exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit) 684 val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe 685 val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst 686 val exceptionEnable = isWritebacked(deqPtr.value) && deqHasException 687 688 XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n") 689 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n") 690 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n") 691 692 val isFlushPipe = isWritebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst) 693 694 val isVsetFlushPipe = isWritebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset 695// val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush) 696 val needModifyFtqIdxOffset = false.B 697 io.isVsetFlushPipe := isVsetFlushPipe 698 io.vconfigPdest := rab.io.vconfigPdest 699 // io.flushOut will trigger redirect at the next cycle. 700 // Block any redirect or commit at the next cycle. 701 val lastCycleFlush = RegNext(io.flushOut.valid) 702 703 io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush 704 io.flushOut.bits := DontCare 705 io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr) 706 io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx) 707 io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset) 708 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next" 709 io.flushOut.bits.interrupt := true.B 710 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 711 XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable) 712 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 713 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 714 715 val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush 716 io.exception.valid := RegNext(exceptionHappen) 717 io.exception.bits.pc := RegEnable(debug_deqUop.pc, exceptionHappen) 718 io.exception.bits.instr := RegEnable(debug_deqUop.instr, exceptionHappen) 719 io.exception.bits.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 720 io.exception.bits.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 721 io.exception.bits.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 722 io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 723 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 724// io.exception.bits.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen) 725 726 XSDebug(io.flushOut.valid, 727 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " + 728 p"excp $exceptionEnable flushPipe $isFlushPipe " + 729 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 730 731 732 /** 733 * Commits (and walk) 734 * They share the same width. 735 */ 736 val walkCounter = Reg(UInt(log2Up(RobSize + 1).W)) 737 val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter)) 738 val walkFinished = walkCounter <= CommitWidth.U 739 rab.io.robWalkEnd := state === s_walk && walkFinished 740 741 require(RenameWidth <= CommitWidth) 742 743 // wiring to csr 744 val (wflags, fpWen) = (0 until CommitWidth).map(i => { 745 val v = io.commits.commitValid(i) 746 val info = io.commits.info(i) 747 (v & info.wflags, v & info.fpWen) 748 }).unzip 749 val fflags = Wire(Valid(UInt(5.W))) 750 fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR 751 fflags.bits := wflags.zip(fflagsDataRead).map({ 752 case (w, f) => Mux(w, f, 0.U) 753 }).reduce(_|_) 754 val dirty_fs = io.commits.isCommit && VecInit(fpWen).asUInt.orR 755 756 val vxsat = Wire(Valid(Bool())) 757 vxsat.valid := io.commits.isCommit && vxsat.bits 758 vxsat.bits := io.commits.commitValid.zip(vxsatDataRead).map { 759 case (valid, vxsat) => valid & vxsat 760 }.reduce(_ | _) 761 762 // when mispredict branches writeback, stop commit in the next 2 cycles 763 // TODO: don't check all exu write back 764 val misPredWb = Cat(VecInit(redirectWBs.map(wb => 765 wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid 766 ))).orR 767 val misPredBlockCounter = Reg(UInt(3.W)) 768 misPredBlockCounter := Mux(misPredWb, 769 "b111".U, 770 misPredBlockCounter >> 1.U 771 ) 772 val misPredBlock = misPredBlockCounter(0) 773 val blockCommit = misPredBlock && !io.flushOut.valid || isReplaying || lastCycleFlush || hasWFI 774 775 io.commits.isWalk := state === s_walk 776 io.commits.isCommit := state === s_idle && !blockCommit 777 val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value))) 778 val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value))) 779 // store will be commited iff both sta & std have been writebacked 780 val commit_w = VecInit(deqPtrVec.map(ptr => isWritebacked(ptr.value))) 781 val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last) 782 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i))) 783 val allowOnlyOneCommit = commit_exception || intrBitSetReg 784 // for instructions that may block others, we don't allow them to commit 785 for (i <- 0 until CommitWidth) { 786 // defaults: state === s_idle and instructions commit 787 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 788 val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst 789 io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked 790 io.commits.info(i) := dispatchDataRead(i) 791 792 when (state === s_walk) { 793 io.commits.walkValid(i) := shouldWalkVec(i) 794 when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) { 795 XSError(!walk_v(i), s"why not $i???\n") 796 } 797 } 798 799 XSInfo(io.commits.isCommit && io.commits.commitValid(i), 800 "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b vxsat: %b\n", 801 debug_microOp(deqPtrVec(i).value).pc, 802 io.commits.info(i).rfWen, 803 io.commits.info(i).ldest, 804 io.commits.info(i).pdest, 805 io.commits.info(i).old_pdest, 806 debug_exuData(deqPtrVec(i).value), 807 fflagsDataRead(i), 808 vxsatDataRead(i) 809 ) 810 XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n", 811 debug_microOp(walkPtrVec(i).value).pc, 812 io.commits.info(i).rfWen, 813 io.commits.info(i).ldest, 814 debug_exuData(walkPtrVec(i).value) 815 ) 816 } 817 if (env.EnableDifftest) { 818 io.commits.info.map(info => dontTouch(info.pc)) 819 } 820 821 // sync fflags/dirty_fs/vxsat to csr 822 io.csr.fflags := RegNext(fflags) 823 io.csr.dirty_fs := RegNext(dirty_fs) 824 io.csr.vxsat := RegNext(vxsat) 825 826 // sync v csr to csr 827 // for difftest 828 val isDiffWriteVconfigVec = io.diffCommits.commitValid.zip(io.diffCommits.info).map { case (valid, info) => valid && info.ldest === VCONFIG_IDX.U && info.vecWen }.reverse 829 io.csr.vcsrFlag := RegNext(io.diffCommits.isCommit && Cat(isDiffWriteVconfigVec).orR) 830 831 // commit load/store to lsq 832 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 833 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE)) 834 io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U)) 835 io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U)) 836 // indicate a pending load or store 837 io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value) && mmio(deqPtr.value)) 838 io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value)) 839 io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0)) 840 io.lsq.pendingPtr := RegNext(deqPtr) 841 842 /** 843 * state changes 844 * (1) redirect: switch to s_walk 845 * (2) walk: when walking comes to the end, switch to s_idle 846 */ 847 val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished && rab.io.rabWalkEnd, s_idle, state)) 848 XSPerfAccumulate("s_idle_to_idle", state === s_idle && state_next === s_idle) 849 XSPerfAccumulate("s_idle_to_walk", state === s_idle && state_next === s_walk) 850 XSPerfAccumulate("s_walk_to_idle", state === s_walk && state_next === s_idle) 851 XSPerfAccumulate("s_walk_to_walk", state === s_walk && state_next === s_walk) 852 state := state_next 853 854 /** 855 * pointers and counters 856 */ 857 val deqPtrGenModule = Module(new RobDeqPtrWrapper) 858 deqPtrGenModule.io.state := state 859 deqPtrGenModule.io.deq_v := commit_v 860 deqPtrGenModule.io.deq_w := commit_w 861 deqPtrGenModule.io.exception_state := exceptionDataRead 862 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 863 deqPtrGenModule.io.hasNoSpecExec := hasWaitForward 864 deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value) 865 deqPtrGenModule.io.blockCommit := blockCommit 866 deqPtrVec := deqPtrGenModule.io.out 867 val deqPtrVec_next = deqPtrGenModule.io.next_out 868 869 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 870 enqPtrGenModule.io.redirect := io.redirect 871 enqPtrGenModule.io.allowEnqueue := allowEnqueue 872 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 873 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop)) 874 enqPtrVec := enqPtrGenModule.io.out 875 876 val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U) 877 // next walkPtrVec: 878 // (1) redirect occurs: update according to state 879 // (2) walk: move forwards 880 val walkPtrVec_next = Mux(io.redirect.valid, 881 deqPtrVec_next, 882 Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec) 883 ) 884 walkPtrVec := walkPtrVec_next 885 886 val numValidEntries = distanceBetween(enqPtr, deqPtr) 887 val commitCnt = PopCount(io.commits.commitValid) 888 889 allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U 890 891 val currentWalkPtr = Mux(state === s_walk, walkPtr, deqPtrVec_next(0)) 892 val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0)) 893 when (io.redirect.valid) { 894 // full condition: 895 // +& is used here because: 896 // When rob is full and the tail instruction causes a misprediction, 897 // the redirect robIdx is the deqPtr - 1. In this case, redirectWalkDistance 898 // is RobSize - 1. 899 // Since misprediction does not flush the instruction itself, flushItSelf is false.B. 900 // Previously we use `+` to count the walk distance and it causes overflows 901 // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize. 902 // The width of walkCounter also needs to be changed. 903 // empty condition: 904 // When the last instruction in ROB commits and causes a flush, a redirect 905 // will be raised later. In such circumstances, the redirect robIdx is before 906 // the deqPtrVec_next(0) and will cause underflow. 907 walkCounter := Mux(isBefore(io.redirect.bits.robIdx, deqPtrVec_next(0)), 0.U, 908 redirectWalkDistance +& !io.redirect.bits.flushItself()) 909 }.elsewhen (state === s_walk) { 910 walkCounter := walkCounter - thisCycleWalkCount 911 XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n") 912 } 913 914 915 /** 916 * States 917 * We put all the stage bits changes here. 918 919 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 920 * All states: (1) valid; (2) writebacked; (3) flagBkup 921 */ 922 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 923 924 // redirect logic writes 6 valid 925 val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr)) 926 val redirectTail = Reg(new RobPtr) 927 val redirectIdle :: redirectBusy :: Nil = Enum(2) 928 val redirectState = RegInit(redirectIdle) 929 val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail)) 930 when(redirectState === redirectBusy) { 931 redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U) 932 redirectHeadVec zip invMask foreach { 933 case (redirectHead, inv) => when(inv) { 934 valid(redirectHead.value) := false.B 935 } 936 } 937 when(!invMask.last) { 938 redirectState := redirectIdle 939 } 940 } 941 when(io.redirect.valid) { 942 redirectState := redirectBusy 943 when(redirectState === redirectIdle) { 944 redirectTail := enqPtr 945 } 946 redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) => 947 redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 948 } 949 } 950 // enqueue logic writes 6 valid 951 for (i <- 0 until RenameWidth) { 952 when (canEnqueue(i) && !io.redirect.valid) { 953 valid(allocatePtrVec(i).value) := true.B 954 } 955 } 956 // dequeue logic writes 6 valid 957 for (i <- 0 until CommitWidth) { 958 val commitValid = io.commits.isCommit && io.commits.commitValid(i) 959 when (commitValid) { 960 valid(commitReadAddr(i)) := false.B 961 } 962 } 963 964 // writeback logic set numWbPorts writebacked to true 965 val blockWbSeq = Wire(Vec(exuWBs.length, Bool())) 966 blockWbSeq.map(_ := false.B) 967 for ((wb, blockWb) <- exuWBs.zip(blockWbSeq)) { 968 when(wb.valid) { 969 val wbHasException = wb.bits.exceptionVec.getOrElse(0.U).asUInt.orR 970 val wbHasTriggerHit = false.B //Todo: wb.bits.trigger.getHitBackend 971 val wbHasFlushPipe = wb.bits.flushPipe.getOrElse(false.B) 972 val wbHasReplayInst = wb.bits.replay.getOrElse(false.B) //Todo: && wb.bits.replayInst 973 blockWb := wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit 974 } 975 } 976 977 // if the first uop of an instruction is valid , write writebackedCounter 978 val uopEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid) 979 val instEnqValidSeq = io.enq.req.map (req => io.enq.canAccept && req.valid && req.bits.firstUop) 980 val enqNeedWriteRFSeq = io.enq.req.map(_.bits.needWriteRf) 981 val enqRobIdxSeq = io.enq.req.map(req => req.bits.robIdx.value) 982 val enqUopNumVec = VecInit(io.enq.req.map(req => req.bits.numUops)) 983 val enqEliminatedMoveVec = VecInit(io.enq.req.map(req => req.bits.eliminatedMove)) 984 985 private val enqWriteStdVec: Vec[Bool] = VecInit(io.enq.req.map { 986 req => FuType.isAMO(req.bits.fuType) || FuType.isStore(req.bits.fuType) 987 }) 988 val enqWbSizeSeq = io.enq.req.map { req => 989 val enqHasException = ExceptionNO.selectFrontend(req.bits.exceptionVec).asUInt.orR 990 val enqHasTriggerHit = req.bits.trigger.getHitFrontend 991 Mux(req.bits.eliminatedMove, Mux(enqHasException || enqHasTriggerHit, 1.U, 0.U), 992 Mux(FuType.isAMO(req.bits.fuType) || FuType.isStore(req.bits.fuType), 2.U, 1.U)) 993 } 994 val enqWbSizeSumSeq = enqRobIdxSeq.zipWithIndex.map { case (robIdx, idx) => 995 val addend = enqRobIdxSeq.zip(enqWbSizeSeq).take(idx + 1).map { case (uopRobIdx, uopWbSize) => Mux(robIdx === uopRobIdx, uopWbSize, 0.U) } 996 addend.reduce(_ +& _) 997 } 998 val fflags_wb = fflagsPorts 999 val vxsat_wb = vxsatPorts 1000 for(i <- 0 until RobSize){ 1001 1002 val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === i.U) 1003 val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch } 1004 val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch } 1005 val instCanEnqFlag = Cat(instCanEnqSeq).orR 1006 1007 realDestSize(i) := Mux(!valid(i) && instCanEnqFlag || valid(i), realDestSize(i) + PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map{ case(writeFlag, valid) => writeFlag && valid }), 0.U) 1008 1009 val enqUopNum = PriorityMux(instCanEnqSeq, enqUopNumVec) 1010 val enqEliminatedMove = PriorityMux(instCanEnqSeq, enqEliminatedMoveVec) 1011 val enqWriteStd = PriorityMux(instCanEnqSeq, enqWriteStdVec) 1012 1013 val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 1014 val canWbNoBlockSeq = canWbSeq.zip(blockWbSeq).map{ case(canWb, blockWb) => canWb && !blockWb } 1015 val canStdWbSeq = VecInit(stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)) 1016 val wbCnt = PopCount(canWbNoBlockSeq) 1017 when (exceptionGen.io.out.valid && exceptionGen.io.out.bits.robIdx.value === i.U) { 1018 // exception flush 1019 uopNumVec(i) := 0.U 1020 stdWritebacked(i) := true.B 1021 }.elsewhen(!valid(i) && instCanEnqFlag) { 1022 // enq set num of uops 1023 uopNumVec(i) := Mux(enqEliminatedMove, 0.U, enqUopNum) 1024 stdWritebacked(i) := Mux(enqWriteStd, false.B, true.B) 1025 }.elsewhen(valid(i)) { 1026 // update by writing back 1027 uopNumVec(i) := uopNumVec(i) - wbCnt 1028 when (canStdWbSeq.asUInt.orR) { 1029 stdWritebacked(i) := true.B 1030 } 1031 }.otherwise { 1032 uopNumVec(i) := 0.U 1033 } 1034 1035 val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 1036 val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.reduce(_ | _) 1037 fflagsDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, fflagsDataModule(i) | fflagsRes) 1038 1039 val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 1040 val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.reduce(_ | _) 1041 vxsatDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, vxsatDataModule(i) | vxsatRes) 1042 } 1043 1044 // flagBkup 1045 // enqueue logic set 6 flagBkup at most 1046 for (i <- 0 until RenameWidth) { 1047 when (canEnqueue(i)) { 1048 flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag 1049 } 1050 } 1051 1052 // interrupt_safe 1053 for (i <- 0 until RenameWidth) { 1054 // We RegNext the updates for better timing. 1055 // Note that instructions won't change the system's states in this cycle. 1056 when (RegNext(canEnqueue(i))) { 1057 // For now, we allow non-load-store instructions to trigger interrupts 1058 // For MMIO instructions, they should not trigger interrupts since they may 1059 // be sent to lower level before it writes back. 1060 // However, we cannot determine whether a load/store instruction is MMIO. 1061 // Thus, we don't allow load/store instructions to trigger an interrupt. 1062 // TODO: support non-MMIO load-store instructions to trigger interrupts 1063 val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType) 1064 interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts) 1065 } 1066 } 1067 1068 /** 1069 * read and write of data modules 1070 */ 1071 val commitReadAddr_next = Mux(state_next === s_idle, 1072 VecInit(deqPtrVec_next.map(_.value)), 1073 VecInit(walkPtrVec_next.map(_.value)) 1074 ) 1075 dispatchData.io.wen := canEnqueue 1076 dispatchData.io.waddr := allocatePtrVec.map(_.value) 1077 dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) => 1078 wdata.ldest := req.ldest 1079 wdata.rfWen := req.rfWen 1080 wdata.fpWen := req.fpWen 1081 wdata.vecWen := req.vecWen 1082 wdata.wflags := req.fpu.wflags 1083 wdata.commitType := req.commitType 1084 wdata.pdest := req.pdest 1085 wdata.old_pdest := req.oldPdest 1086 wdata.ftqIdx := req.ftqPtr 1087 wdata.ftqOffset := req.ftqOffset 1088 wdata.isMove := req.eliminatedMove 1089 wdata.pc := req.pc 1090 wdata.vtype := req.vpu.vtype 1091 wdata.isVset := req.isVset 1092 } 1093 dispatchData.io.raddr := commitReadAddr_next 1094 1095 exceptionGen.io.redirect <> io.redirect 1096 exceptionGen.io.flush := io.flushOut.valid 1097 1098 val canEnqueueEG = VecInit(io.enq.req.map(req => req.valid && io.enq.canAccept)) 1099 for (i <- 0 until RenameWidth) { 1100 exceptionGen.io.enq(i).valid := canEnqueueEG(i) 1101 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 1102 exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec) 1103 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe 1104 exceptionGen.io.enq(i).bits.isVset := io.enq.req(i).bits.isVset 1105 exceptionGen.io.enq(i).bits.replayInst := false.B 1106 XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst") 1107 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep 1108 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix 1109 exceptionGen.io.enq(i).bits.trigger.clear() 1110 exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.trigger.frontendHit 1111 } 1112 1113 println(s"ExceptionGen:") 1114 println(s"num of exceptions: ${params.numException}") 1115 require(exceptionWBs.length == exceptionGen.io.wb.length, 1116 f"exceptionWBs.length: ${exceptionWBs.length}, " + 1117 f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}") 1118 for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) { 1119 exc_wb.valid := wb.valid 1120 exc_wb.bits.robIdx := wb.bits.robIdx 1121 exc_wb.bits.exceptionVec := wb.bits.exceptionVec.get 1122 exc_wb.bits.flushPipe := wb.bits.flushPipe.getOrElse(false.B) 1123 exc_wb.bits.isVset := false.B 1124 exc_wb.bits.replayInst := wb.bits.replay.getOrElse(false.B) 1125 exc_wb.bits.singleStep := false.B 1126 exc_wb.bits.crossPageIPFFix := false.B 1127 exc_wb.bits.trigger := 0.U.asTypeOf(exc_wb.bits.trigger) // Todo 1128// println(s" [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " + 1129// s"flushPipe ${configs.exists(_.flushPipe)}, " + 1130// s"replayInst ${configs.exists(_.replayInst)}") 1131 } 1132 1133 fflagsDataRead := (0 until CommitWidth).map(i => fflagsDataModule(deqPtrVec(i).value)) 1134 vxsatDataRead := (0 until CommitWidth).map(i => vxsatDataModule(deqPtrVec(i).value)) 1135 1136 val instrCntReg = RegInit(0.U(64.W)) 1137 val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) }) 1138 val trueCommitCnt = RegNext(commitCnt) +& fuseCommitCnt 1139 val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U) 1140 val instrCnt = instrCntReg + retireCounter 1141 instrCntReg := instrCnt 1142 io.csr.perfinfo.retiredInstr := retireCounter 1143 io.robFull := !allowEnqueue 1144 1145 /** 1146 * debug info 1147 */ 1148 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 1149 XSDebug("") 1150 XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n") 1151 for(i <- 0 until RobSize){ 1152 XSDebug(false, !valid(i), "-") 1153 XSDebug(false, valid(i) && isWritebacked(i.U), "w") 1154 XSDebug(false, valid(i) && !isWritebacked(i.U), "v") 1155 } 1156 XSDebug(false, true.B, "\n") 1157 1158 for(i <- 0 until RobSize) { 1159 if(i % 4 == 0) XSDebug("") 1160 XSDebug(false, true.B, "%x ", debug_microOp(i).pc) 1161 XSDebug(false, !valid(i), "- ") 1162 XSDebug(false, valid(i) && isWritebacked(i.U), "w ") 1163 XSDebug(false, valid(i) && !isWritebacked(i.U), "v ") 1164 if(i % 4 == 3) XSDebug(false, true.B, "\n") 1165 } 1166 1167 def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U) 1168 def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U) 1169 1170 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 1171 XSPerfAccumulate("clock_cycle", 1.U) 1172 QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue) 1173 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 1174 XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt)) 1175 val commitIsMove = commitDebugUop.map(_.isMove) 1176 XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }))) 1177 val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) 1178 XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e }))) 1179 XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt)) 1180 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 1181 val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t } 1182 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 1183 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 1184 val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t } 1185 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 1186 val commitLoadWaitBit = commitDebugUop.map(_.loadWaitBit) 1187 XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))) 1188 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 1189 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }))) 1190 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && isWritebacked(i.U)))) 1191 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire))) 1192 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 1193 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)) 1194 XSPerfAccumulate("walkCycle", state === s_walk) 1195 val deqNotWritebacked = valid(deqPtr.value) && !isWritebacked(deqPtr.value) 1196 val deqUopCommitType = io.commits.info(0).commitType 1197 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 1198 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 1199 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 1200 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 1201 XSPerfAccumulate("robHeadPC", io.commits.info(0).pc) 1202 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 1203 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 1204 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 1205 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 1206 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 1207 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 1208 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 1209 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 1210 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 1211 } 1212 for (fuType <- FuType.functionNameMap.keys) { 1213 val fuName = FuType.functionNameMap(fuType) 1214 val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U ) 1215 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 1216 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 1217 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 1218 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 1219 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 1220 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 1221 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 1222 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 1223 if (fuType == FuType.fmac) { 1224 val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.fpu.ren3 ) 1225 XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma))) 1226 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency))) 1227 XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency))) 1228 } 1229 } 1230 1231 //difftest signals 1232 val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value 1233 1234 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1235 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1236 1237 for(i <- 0 until CommitWidth) { 1238 val idx = deqPtrVec(i).value 1239 wdata(i) := debug_exuData(idx) 1240 wpc(i) := SignExt(commitDebugUop(i).pc, XLEN) 1241 } 1242 1243 if (env.EnableDifftest) { 1244 for (i <- 0 until CommitWidth) { 1245 val difftest = Module(new DifftestInstrCommit) 1246 // assgin default value 1247 difftest.io := DontCare 1248 1249 difftest.io.clock := clock 1250 difftest.io.coreid := io.hartId 1251 difftest.io.index := i.U 1252 1253 val ptr = deqPtrVec(i).value 1254 val uop = commitDebugUop(i) 1255 val exuOut = debug_exuDebug(ptr) 1256 val exuData = debug_exuData(ptr) 1257 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1258 difftest.io.pc := RegNext(RegNext(RegNext(SignExt(uop.pc, XLEN)))) 1259 difftest.io.instr := RegNext(RegNext(RegNext(uop.instr))) 1260 difftest.io.robIdx := RegNext(RegNext(RegNext(ZeroExt(ptr, 10)))) 1261 difftest.io.lqIdx := RegNext(RegNext(RegNext(ZeroExt(uop.lqIdx.value, 7)))) 1262 difftest.io.sqIdx := RegNext(RegNext(RegNext(ZeroExt(uop.sqIdx.value, 7)))) 1263 difftest.io.isLoad := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.LOAD))) 1264 difftest.io.isStore := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.STORE))) 1265 difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(io.commits.info(i).commitType)))) 1266 // when committing an eliminated move instruction, 1267 // we must make sure that skip is properly set to false (output from EXU is random value) 1268 difftest.io.skip := RegNext(RegNext(RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)))) 1269 difftest.io.isRVC := RegNext(RegNext(RegNext(uop.preDecodeInfo.isRVC))) 1270 difftest.io.rfwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U))) 1271 difftest.io.fpwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).fpWen))) 1272 difftest.io.wpdest := RegNext(RegNext(RegNext(io.commits.info(i).pdest))) 1273 difftest.io.wdest := RegNext(RegNext(RegNext(io.commits.info(i).ldest))) 1274 // // runahead commit hint 1275 // val runahead_commit = Module(new DifftestRunaheadCommitEvent) 1276 // runahead_commit.io.clock := clock 1277 // runahead_commit.io.coreid := io.hartId 1278 // runahead_commit.io.index := i.U 1279 // runahead_commit.io.valid := difftest.io.valid && 1280 // (commitBranchValid(i) || commitIsStore(i)) 1281 // // TODO: is branch or store 1282 // runahead_commit.io.pc := difftest.io.pc 1283 } 1284 } 1285 else if (env.AlwaysBasicDiff) { 1286 // These are the structures used by difftest only and should be optimized after synthesis. 1287 val dt_eliminatedMove = Mem(RobSize, Bool()) 1288 val dt_isRVC = Mem(RobSize, Bool()) 1289 val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) 1290 for (i <- 0 until RenameWidth) { 1291 when (canEnqueue(i)) { 1292 dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 1293 dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC 1294 } 1295 } 1296 for (wb <- exuWBs) { 1297 when (wb.valid) { 1298 val wbIdx = wb.bits.robIdx.value 1299 dt_exuDebug(wbIdx) := wb.bits.debug 1300 } 1301 } 1302 // Always instantiate basic difftest modules. 1303 for (i <- 0 until CommitWidth) { 1304 val commitInfo = io.commits.info(i) 1305 val ptr = deqPtrVec(i).value 1306 val exuOut = dt_exuDebug(ptr) 1307 val eliminatedMove = dt_eliminatedMove(ptr) 1308 val isRVC = dt_isRVC(ptr) 1309 1310 val difftest = Module(new DifftestBasicInstrCommit) 1311 difftest.io.clock := clock 1312 difftest.io.coreid := io.hartId 1313 difftest.io.index := i.U 1314 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1315 difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(commitInfo.commitType)))) 1316 difftest.io.skip := RegNext(RegNext(RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)))) 1317 difftest.io.isRVC := RegNext(RegNext(RegNext(isRVC))) 1318 difftest.io.rfwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U))) 1319 difftest.io.fpwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.fpWen))) 1320 difftest.io.wpdest := RegNext(RegNext(RegNext(commitInfo.pdest))) 1321 difftest.io.wdest := RegNext(RegNext(RegNext(commitInfo.ldest))) 1322 } 1323 } 1324 1325 if (env.EnableDifftest) { 1326 for (i <- 0 until CommitWidth) { 1327 val difftest = Module(new DifftestLoadEvent) 1328 difftest.io.clock := clock 1329 difftest.io.coreid := io.hartId 1330 difftest.io.index := i.U 1331 1332 val ptr = deqPtrVec(i).value 1333 val uop = commitDebugUop(i) 1334 val exuOut = debug_exuDebug(ptr) 1335 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1336 difftest.io.paddr := RegNext(RegNext(RegNext(exuOut.paddr))) 1337 difftest.io.opType := RegNext(RegNext(RegNext(uop.fuOpType))) 1338 difftest.io.fuType := RegNext(RegNext(RegNext(uop.fuType))) 1339 } 1340 } 1341 1342 // Always instantiate basic difftest modules. 1343 if (env.EnableDifftest) { 1344 val dt_isXSTrap = Mem(RobSize, Bool()) 1345 for (i <- 0 until RenameWidth) { 1346 when (canEnqueue(i)) { 1347 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap 1348 } 1349 } 1350 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) } 1351 val hitTrap = trapVec.reduce(_||_) 1352 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 1353 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN) 1354 val difftest = Module(new DifftestTrapEvent) 1355 difftest.io.clock := clock 1356 difftest.io.coreid := io.hartId 1357 difftest.io.valid := hitTrap 1358 difftest.io.code := trapCode 1359 difftest.io.pc := trapPC 1360 difftest.io.cycleCnt := timer 1361 difftest.io.instrCnt := instrCnt 1362 difftest.io.hasWFI := hasWFI 1363 } 1364 else if (env.AlwaysBasicDiff) { 1365 val dt_isXSTrap = Mem(RobSize, Bool()) 1366 for (i <- 0 until RenameWidth) { 1367 when (canEnqueue(i)) { 1368 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap 1369 } 1370 } 1371 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) } 1372 val hitTrap = trapVec.reduce(_||_) 1373 val difftest = Module(new DifftestBasicTrapEvent) 1374 difftest.io.clock := clock 1375 difftest.io.coreid := io.hartId 1376 difftest.io.valid := hitTrap 1377 difftest.io.cycleCnt := timer 1378 difftest.io.instrCnt := instrCnt 1379 } 1380 1381 val validEntriesBanks = (0 until (RobSize + 63) / 64).map(i => RegNext(PopCount(valid.drop(i * 64).take(64)))) 1382 val validEntries = RegNext(ParallelOperation(validEntriesBanks, (a: UInt, b: UInt) => a +& b)) 1383 val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }) 1384 val commitLoadVec = VecInit(commitLoadValid) 1385 val commitBranchVec = VecInit(commitBranchValid) 1386 val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }) 1387 val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }) 1388 val perfEvents = Seq( 1389 ("rob_interrupt_num ", io.flushOut.valid && intrEnable ), 1390 ("rob_exception_num ", io.flushOut.valid && exceptionEnable ), 1391 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe ), 1392 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst ), 1393 ("rob_commitUop ", ifCommit(commitCnt) ), 1394 ("rob_commitInstr ", ifCommitReg(trueCommitCnt) ), 1395 ("rob_commitInstrMove ", ifCommitReg(PopCount(RegNext(commitMoveVec))) ), 1396 ("rob_commitInstrFused ", ifCommitReg(fuseCommitCnt) ), 1397 ("rob_commitInstrLoad ", ifCommitReg(PopCount(RegNext(commitLoadVec))) ), 1398 ("rob_commitInstrBranch ", ifCommitReg(PopCount(RegNext(commitBranchVec))) ), 1399 ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec))) ), 1400 ("rob_commitInstrStore ", ifCommitReg(PopCount(RegNext(commitStoreVec))) ), 1401 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U) ), 1402 ("rob_walkCycle ", (state === s_walk) ), 1403 ("rob_1_4_valid ", validEntries <= (RobSize / 4).U ), 1404 ("rob_2_4_valid ", validEntries > (RobSize / 4).U && validEntries <= (RobSize / 2).U ), 1405 ("rob_3_4_valid ", validEntries > (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U), 1406 ("rob_4_4_valid ", validEntries > (RobSize * 3 / 4).U ), 1407 ) 1408 generatePerfEvent() 1409} 1410