xref: /XiangShan/src/main/scala/xiangshan/backend/rob/Rob.scala (revision 92b88f30156d46e844042eea94f7121557fd09a1)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.backend.rob
18
19import chipsalliance.rocketchip.config.Parameters
20import chisel3._
21import chisel3.util._
22import difftest._
23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp}
24import utility._
25import utils._
26import xiangshan._
27import xiangshan.backend.BackendParams
28import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput}
29import xiangshan.backend.fu.FuType
30import xiangshan.frontend.FtqPtr
31import xiangshan.mem.{LqPtr, SqPtr}
32import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput}
33
34class DebugMdpInfo(implicit p: Parameters) extends XSBundle{
35  val ssid = UInt(SSIDWidth.W)
36  val waitAllStore = Bool()
37}
38
39class DebugLsInfo(implicit p: Parameters) extends XSBundle{
40  val s1 = new Bundle{
41    val isTlbFirstMiss = Bool() // in s1
42    val isBankConflict = Bool() // in s1
43    val isLoadToLoadForward = Bool()
44    val isReplayFast = Bool()
45  }
46  val s2 = new Bundle{
47    val isDcacheFirstMiss = Bool() // in s2 (predicted result is in s1 when using WPU, real result is in s2)
48    val isForwardFail = Bool() // in s2
49    val isReplaySlow = Bool()
50    val isLoadReplayTLBMiss = Bool()
51    val isLoadReplayCacheMiss = Bool()
52  }
53  val replayCnt = UInt(XLEN.W)
54
55  def s1SignalEnable(ena: DebugLsInfo) = {
56    when(ena.s1.isTlbFirstMiss) { s1.isTlbFirstMiss := true.B }
57    when(ena.s1.isBankConflict) { s1.isBankConflict := true.B }
58    when(ena.s1.isLoadToLoadForward) { s1.isLoadToLoadForward := true.B }
59    when(ena.s1.isReplayFast) {
60      s1.isReplayFast := true.B
61      replayCnt := replayCnt + 1.U
62    }
63  }
64
65  def s2SignalEnable(ena: DebugLsInfo) = {
66    when(ena.s2.isDcacheFirstMiss) { s2.isDcacheFirstMiss := true.B }
67    when(ena.s2.isForwardFail) { s2.isForwardFail := true.B }
68    when(ena.s2.isLoadReplayTLBMiss) { s2.isLoadReplayTLBMiss := true.B }
69    when(ena.s2.isLoadReplayCacheMiss) { s2.isLoadReplayCacheMiss := true.B }
70    when(ena.s2.isReplaySlow) {
71      s2.isReplaySlow := true.B
72      replayCnt := replayCnt + 1.U
73    }
74  }
75}
76
77object DebugLsInfo{
78  def init(implicit p: Parameters): DebugLsInfo = {
79    val lsInfo = Wire(new DebugLsInfo)
80    lsInfo.s1.isTlbFirstMiss := false.B
81    lsInfo.s1.isBankConflict := false.B
82    lsInfo.s1.isLoadToLoadForward := false.B
83    lsInfo.s1.isReplayFast := false.B
84    lsInfo.s2.isDcacheFirstMiss := false.B
85    lsInfo.s2.isForwardFail := false.B
86    lsInfo.s2.isReplaySlow := false.B
87    lsInfo.s2.isLoadReplayTLBMiss := false.B
88    lsInfo.s2.isLoadReplayCacheMiss := false.B
89    lsInfo.replayCnt := 0.U
90    lsInfo
91  }
92}
93
94class DebugLsInfoBundle(implicit p: Parameters) extends DebugLsInfo {
95  // unified processing at the end stage of load/store  ==> s2  ==> bug that will write error robIdx data
96  val s1_robIdx = UInt(log2Ceil(RobSize).W)
97  val s2_robIdx = UInt(log2Ceil(RobSize).W)
98}
99
100class DebugLSIO(implicit p: Parameters) extends XSBundle {
101  val debugLsInfo = Vec(backendParams.LduCnt + backendParams.StaCnt, Output(new DebugLsInfoBundle))
102}
103
104class RobPtr(entries: Int) extends CircularQueuePtr[RobPtr](
105  entries
106) with HasCircularQueuePtrHelper {
107
108  def this()(implicit p: Parameters) = this(p(XSCoreParamsKey).RobSize)
109
110  def needFlush(redirect: Valid[Redirect]): Bool = {
111    val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx
112    redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx))
113  }
114
115  def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR
116}
117
118object RobPtr {
119  def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = {
120    val ptr = Wire(new RobPtr)
121    ptr.flag := f
122    ptr.value := v
123    ptr
124  }
125}
126
127class RobCSRIO(implicit p: Parameters) extends XSBundle {
128  val intrBitSet = Input(Bool())
129  val trapTarget = Input(UInt(VAddrBits.W))
130  val isXRet     = Input(Bool())
131  val wfiEvent   = Input(Bool())
132
133  val fflags     = Output(Valid(UInt(5.W)))
134  val vxsat      = Output(Valid(Bool()))
135  val dirty_fs   = Output(Bool())
136  val perfinfo   = new Bundle {
137    val retiredInstr = Output(UInt(3.W))
138  }
139
140  val vcsrFlag   = Output(Bool())
141}
142
143class RobLsqIO(implicit p: Parameters) extends XSBundle {
144  val lcommit = Output(UInt(log2Up(CommitWidth + 1).W))
145  val scommit = Output(UInt(log2Up(CommitWidth + 1).W))
146  val pendingld = Output(Bool())
147  val pendingst = Output(Bool())
148  val commit = Output(Bool())
149  val pendingPtr = Output(new RobPtr)
150
151  val mmio = Input(Vec(LoadPipelineWidth, Bool()))
152  val uop = Input(Vec(LoadPipelineWidth, new DynInst))
153}
154
155class RobEnqIO(implicit p: Parameters) extends XSBundle {
156  val canAccept = Output(Bool())
157  val isEmpty = Output(Bool())
158  // valid vector, for robIdx gen and walk
159  val needAlloc = Vec(RenameWidth, Input(Bool()))
160  val req = Vec(RenameWidth, Flipped(ValidIO(new DynInst)))
161  val resp = Vec(RenameWidth, Output(new RobPtr))
162}
163
164class RobDispatchData(implicit p: Parameters) extends RobCommitInfo
165
166class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
167  val io = IO(new Bundle {
168    // for commits/flush
169    val state = Input(UInt(2.W))
170    val deq_v = Vec(CommitWidth, Input(Bool()))
171    val deq_w = Vec(CommitWidth, Input(Bool()))
172    val exception_state = Flipped(ValidIO(new RobExceptionInfo))
173    // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth)
174    val intrBitSetReg = Input(Bool())
175    val hasNoSpecExec = Input(Bool())
176    val interrupt_safe = Input(Bool())
177    val blockCommit = Input(Bool())
178    // output: the CommitWidth deqPtr
179    val out = Vec(CommitWidth, Output(new RobPtr))
180    val next_out = Vec(CommitWidth, Output(new RobPtr))
181  })
182
183  val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr))))
184
185  // for exceptions (flushPipe included) and interrupts:
186  // only consider the first instruction
187  val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe
188  val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0)
189  val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable)
190
191  // for normal commits: only to consider when there're no exceptions
192  // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions.
193  val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last)
194  val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i)))
195  val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B)
196  // when io.intrBitSetReg or there're possible exceptions in these instructions,
197  // only one instruction is allowed to commit
198  val allowOnlyOne = commit_exception || io.intrBitSetReg
199  val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt)
200
201  val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt))
202  val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec)
203
204  deqPtrVec := deqPtrVec_next
205
206  io.next_out := deqPtrVec_next
207  io.out      := deqPtrVec
208
209  when (io.state === 0.U) {
210    XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt)
211  }
212
213}
214
215class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
216  val io = IO(new Bundle {
217    // for input redirect
218    val redirect = Input(Valid(new Redirect))
219    // for enqueue
220    val allowEnqueue = Input(Bool())
221    val hasBlockBackward = Input(Bool())
222    val enq = Vec(RenameWidth, Input(Bool()))
223    val out = Output(Vec(RenameWidth, new RobPtr))
224  })
225
226  val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr)))
227
228  // enqueue
229  val canAccept = io.allowEnqueue && !io.hasBlockBackward
230  val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U)
231
232  for ((ptr, i) <- enqPtrVec.zipWithIndex) {
233    when(io.redirect.valid) {
234      ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
235    }.otherwise {
236      ptr := ptr + dispatchNum
237    }
238  }
239
240  io.out := enqPtrVec
241
242}
243
244class RobExceptionInfo(implicit p: Parameters) extends XSBundle {
245  // val valid = Bool()
246  val robIdx = new RobPtr
247  val exceptionVec = ExceptionVec()
248  val flushPipe = Bool()
249  val isVset = Bool()
250  val replayInst = Bool() // redirect to that inst itself
251  val singleStep = Bool() // TODO add frontend hit beneath
252  val crossPageIPFFix = Bool()
253  val trigger = new TriggerCf
254
255//  def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend
256//  def trigger_after = trigger.getTimingBackend && trigger.getHitBackend
257  def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit
258  def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit
259  // only exceptions are allowed to writeback when enqueue
260  def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit
261}
262
263class ExceptionGen(params: BackendParams)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
264  val io = IO(new Bundle {
265    val redirect = Input(Valid(new Redirect))
266    val flush = Input(Bool())
267    val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo)))
268    // csr + load + store
269    val wb = Vec(params.numException, Flipped(ValidIO(new RobExceptionInfo)))
270    val out = ValidIO(new RobExceptionInfo)
271    val state = ValidIO(new RobExceptionInfo)
272  })
273
274  def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = {
275    assert(valid.length == bits.length)
276    assert(isPow2(valid.length))
277    if (valid.length == 1) {
278      (valid, bits)
279    } else if (valid.length == 2) {
280      val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0)))))
281      for (i <- res.indices) {
282        res(i).valid := valid(i)
283        res(i).bits := bits(i)
284      }
285      val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1))
286      (Seq(oldest.valid), Seq(oldest.bits))
287    } else {
288      val left = getOldest(valid.take(valid.length / 2), bits.take(valid.length / 2))
289      val right = getOldest(valid.takeRight(valid.length / 2), bits.takeRight(valid.length / 2))
290      getOldest(left._1 ++ right._1, left._2 ++ right._2)
291    }
292  }
293
294  val currentValid = RegInit(false.B)
295  val current = Reg(new RobExceptionInfo)
296
297  // orR the exceptionVec
298  val lastCycleFlush = RegNext(io.flush)
299  val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush))
300  val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush)
301
302  // s0: compare wb(1)~wb(LoadPipelineWidth) and wb(1 + LoadPipelineWidth)~wb(LoadPipelineWidth + StorePipelineWidth)
303  val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }
304  val csr_wb_bits = io.wb(0).bits
305  val load_wb_bits = getOldest(in_wb_valid.slice(1, 1 + LoadPipelineWidth), io.wb.map(_.bits).slice(1, 1 + LoadPipelineWidth))._2(0)
306  val store_wb_bits = getOldest(in_wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth), io.wb.map(_.bits).slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth))._2(0)
307  val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid.slice(1, 1 + LoadPipelineWidth).reduce(_ || _), wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth).reduce(_ || _))))
308  val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits)))
309
310  // s1: compare last four and current flush
311  val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) })
312  val compare_01_valid = s0_out_valid(0) || s0_out_valid(1)
313  val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0))
314  val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2))
315  val s1_out_bits = RegNext(compare_bits)
316  val s1_out_valid = RegNext(s1_valid.asUInt.orR)
317
318  val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush)
319  val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits)))
320
321  // s2: compare the input exception with the current one
322  // priorities:
323  // (1) system reset
324  // (2) current is valid: flush, remain, merge, update
325  // (3) current is not valid: s1 or enq
326  val current_flush = current.robIdx.needFlush(io.redirect) || io.flush
327  val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush
328  when (currentValid) {
329    when (current_flush) {
330      currentValid := Mux(s1_flush, false.B, s1_out_valid)
331    }
332    when (s1_out_valid && !s1_flush) {
333      when (isAfter(current.robIdx, s1_out_bits.robIdx)) {
334        current := s1_out_bits
335      }.elsewhen (current.robIdx === s1_out_bits.robIdx) {
336        current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec())
337        current.flushPipe := s1_out_bits.flushPipe || current.flushPipe
338        current.replayInst := s1_out_bits.replayInst || current.replayInst
339        current.singleStep := s1_out_bits.singleStep || current.singleStep
340        current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf)
341      }
342    }
343  }.elsewhen (s1_out_valid && !s1_flush) {
344    currentValid := true.B
345    current := s1_out_bits
346  }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) {
347    currentValid := true.B
348    current := enq_bits
349  }
350
351  io.out.valid   := s1_out_valid || enq_valid && enq_bits.can_writeback
352  io.out.bits    := Mux(s1_out_valid, s1_out_bits, enq_bits)
353  io.state.valid := currentValid
354  io.state.bits  := current
355
356}
357
358class RobFlushInfo(implicit p: Parameters) extends XSBundle {
359  val ftqIdx = new FtqPtr
360  val robIdx = new RobPtr
361  val ftqOffset = UInt(log2Up(PredictWidth).W)
362  val replayInst = Bool()
363}
364
365class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter {
366
367  lazy val module = new RobImp(this)(p, params)
368  //
369  //  override def generateWritebackIO(
370  //    thisMod: Option[HasWritebackSource] = None,
371  //    thisModImp: Option[HasWritebackSourceImp] = None
372  //  ): Unit = {
373  //    val sources = writebackSinksImp(thisMod, thisModImp)
374  //    module.io.writeback.zip(sources).foreach(x => x._1 := x._2)
375  //  }
376  //}
377}
378
379class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper)
380  with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents {
381
382  val io = IO(new Bundle() {
383    val hartId = Input(UInt(8.W))
384    val redirect = Input(Valid(new Redirect))
385    val enq = new RobEnqIO
386    val flushOut = ValidIO(new Redirect)
387    val exception = ValidIO(new ExceptionInfo)
388    // exu + brq
389    val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles)
390    val commits = Output(new RobCommitIO)
391    val rabCommits = Output(new RobCommitIO)
392    val diffCommits = Output(new DiffCommitIO)
393    val isVsetFlushPipe = Output(Bool())
394    val vconfigPdest = Output(UInt(PhyRegIdxWidth.W))
395    val lsq = new RobLsqIO
396    val robDeqPtr = Output(new RobPtr)
397    val csr = new RobCSRIO
398    val robFull = Output(Bool())
399    val cpu_halt = Output(Bool())
400    val wfi_enable = Input(Bool())
401  })
402
403  val exuWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(!_.bits.params.hasStdFu)
404  val stdWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(_.bits.params.hasStdFu)
405  val fflagsWBs = io.writeback.filter(x => x.bits.fflags.nonEmpty)
406  val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty)
407  val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty)
408
409  val exuWbPorts = io.writeback.filter(!_.bits.params.hasStdFu)
410  val stdWbPorts = io.writeback.filter(_.bits.params.hasStdFu)
411  val fflagsPorts = io.writeback.filter(x => x.bits.fflags.nonEmpty)
412  val vxsatPorts = io.writeback.filter(x => x.bits.vxsat.nonEmpty)
413  val exceptionPorts = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty)
414  val numExuWbPorts = exuWBs.length
415  val numStdWbPorts = stdWBs.length
416
417
418  println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth")
419//  println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}")
420//  println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}")
421//  println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}")
422
423
424  // instvalid field
425  val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
426  // writeback status
427
428  val stdWritebacked = Reg(Vec(RobSize, Bool()))
429  val uopNumVec          = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W))))
430  val realDestSize       = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W))))
431  val fflagsDataModule   = RegInit(VecInit(Seq.fill(RobSize)(0.U(5.W))))
432  val vxsatDataModule    = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
433
434  def isWritebacked(ptr: UInt): Bool = {
435    !uopNumVec(ptr).orR && stdWritebacked(ptr)
436  }
437
438  val mmio = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
439
440  // data for redirect, exception, etc.
441  val flagBkup = Mem(RobSize, Bool())
442  // some instructions are not allowed to trigger interrupts
443  // They have side effects on the states of the processor before they write back
444  val interrupt_safe = Mem(RobSize, Bool())
445
446  // data for debug
447  // Warn: debug_* prefix should not exist in generated verilog.
448  val debug_microOp = Mem(RobSize, new DynInst)
449  val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug
450  val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug
451
452  // pointers
453  // For enqueue ptr, we don't duplicate it since only enqueue needs it.
454  val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr))
455  val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr))
456
457  val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr))
458  val allowEnqueue = RegInit(true.B)
459
460  val enqPtr = enqPtrVec.head
461  val deqPtr = deqPtrVec(0)
462  val walkPtr = walkPtrVec(0)
463
464  val isEmpty = enqPtr === deqPtr
465  val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level)
466
467  /**
468    * states of Rob
469    */
470  val s_idle :: s_walk :: Nil = Enum(2)
471  val state = RegInit(s_idle)
472
473  /**
474    * Data Modules
475    *
476    * CommitDataModule: data from dispatch
477    * (1) read: commits/walk/exception
478    * (2) write: enqueue
479    *
480    * WritebackData: data from writeback
481    * (1) read: commits/walk/exception
482    * (2) write: write back from exe units
483    */
484  val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth))
485  val dispatchDataRead = dispatchData.io.rdata
486
487  val exceptionGen = Module(new ExceptionGen(params))
488  val exceptionDataRead = exceptionGen.io.state
489  val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W)))
490  val vxsatDataRead = Wire(Vec(CommitWidth, Bool()))
491
492  io.robDeqPtr := deqPtr
493
494  val rab = Module(new RenameBuffer(RabSize))
495  rab.io.redirectValid := io.redirect.valid
496  rab.io.req.zip(io.enq.req).map { case (dest, src) =>
497    dest.bits := src.bits
498    dest.valid := src.valid && io.enq.canAccept
499  }
500
501  val realDestSizeCandidates = (0 until CommitWidth).map(i => realDestSize(Mux(state === s_idle, deqPtrVec(i).value, walkPtrVec(i).value)))
502  val wbSizeSeq = io.commits.commitValid.zip(io.commits.walkValid).zip(realDestSizeCandidates).map { case ((commitValid, walkValid), realDestSize) =>
503    Mux(io.commits.isCommit, Mux(commitValid, realDestSize, 0.U), Mux(walkValid, realDestSize, 0.U))
504  }
505  val wbSizeSum = wbSizeSeq.reduce(_ + _)
506  rab.io.commitSize := wbSizeSum
507  rab.io.walkSize := wbSizeSum
508
509  io.rabCommits := rab.io.commits
510  io.diffCommits := rab.io.diffCommits
511
512  /**
513    * Enqueue (from dispatch)
514    */
515  // special cases
516  val hasBlockBackward = RegInit(false.B)
517  val hasWaitForward = RegInit(false.B)
518  val doingSvinval = RegInit(false.B)
519  // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B
520  // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty.
521  when (isEmpty) { hasBlockBackward:= false.B }
522  // When any instruction commits, hasNoSpecExec should be set to false.B
523  when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasWaitForward:= false.B }
524
525  // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing.
526  // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle.
527  // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts.
528  val hasWFI = RegInit(false.B)
529  io.cpu_halt := hasWFI
530  // WFI Timeout: 2^20 = 1M cycles
531  val wfi_cycles = RegInit(0.U(20.W))
532  when (hasWFI) {
533    wfi_cycles := wfi_cycles + 1.U
534  }.elsewhen (!hasWFI && RegNext(hasWFI)) {
535    wfi_cycles := 0.U
536  }
537  val wfi_timeout = wfi_cycles.andR
538  when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) {
539    hasWFI := false.B
540  }
541
542  val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.req.take(i).map(req => req.valid && req.bits.firstUop)))))
543  io.enq.canAccept := allowEnqueue && !hasBlockBackward && rab.io.canEnq
544  io.enq.resp      := allocatePtrVec
545  val canEnqueue = VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop && io.enq.canAccept))
546  val timer = GTimer()
547  for (i <- 0 until RenameWidth) {
548    // we don't check whether io.redirect is valid here since redirect has higher priority
549    when (canEnqueue(i)) {
550      val enqUop = io.enq.req(i).bits
551      val enqIndex = allocatePtrVec(i).value
552      // store uop in data module and debug_microOp Vec
553      debug_microOp(enqIndex) := enqUop
554      debug_microOp(enqIndex).debugInfo.dispatchTime := timer
555      debug_microOp(enqIndex).debugInfo.enqRsTime := timer
556      debug_microOp(enqIndex).debugInfo.selectTime := timer
557      debug_microOp(enqIndex).debugInfo.issueTime := timer
558      debug_microOp(enqIndex).debugInfo.writebackTime := timer
559      when (enqUop.blockBackward) {
560        hasBlockBackward := true.B
561      }
562      when (enqUop.waitForward) {
563        hasWaitForward := true.B
564      }
565      val enqHasTriggerHit = false.B // io.enq.req(i).bits.cf.trigger.getHitFrontend
566      val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR
567      // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process
568      when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe))
569      {
570        doingSvinval := true.B
571      }
572      // the end instruction of Svinval enqs so clear doingSvinval
573      when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe))
574      {
575        doingSvinval := false.B
576      }
577      // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear
578      assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe)))
579      when (enqUop.isWFI && !enqHasException && !enqHasTriggerHit) {
580        hasWFI := true.B
581      }
582
583      mmio(enqIndex) := false.B
584    }
585  }
586  val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(req => req.valid && req.bits.firstUop)), 0.U)
587  io.enq.isEmpty   := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR)
588
589  when (!io.wfi_enable) {
590    hasWFI := false.B
591  }
592  // sel vsetvl's flush position
593  val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3)
594  val vsetvlState = RegInit(vs_idle)
595
596  val firstVInstrFtqPtr    = RegInit(0.U.asTypeOf(new FtqPtr))
597  val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W)))
598  val firstVInstrRobIdx    = RegInit(0.U.asTypeOf(new RobPtr))
599
600  val enq0            = io.enq.req(0)
601  val enq0IsVset      = enq0.bits.isVset && enq0.bits.lastUop && canEnqueue(0)
602  val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe
603  val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVpu(req.bits.fuType) && fire}
604  // for vs_idle
605  val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType)))
606  // for vs_waitVinstr
607  val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1)
608  val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req)
609  when(vsetvlState === vs_idle){
610    firstVInstrFtqPtr    := firstVInstrIdle.bits.ftqPtr
611    firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset
612    firstVInstrRobIdx    := firstVInstrIdle.bits.robIdx
613  }.elsewhen(vsetvlState === vs_waitVinstr){
614    when(Cat(enqIsVInstrOrVset).orR){
615      firstVInstrFtqPtr := firstVInstrWait.bits.ftqPtr
616      firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset
617      firstVInstrRobIdx := firstVInstrWait.bits.robIdx
618    }
619  }
620
621  val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR
622  when(vsetvlState === vs_idle && !io.redirect.valid){
623    when(enq0IsVsetFlush){
624      vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr)
625    }
626  }.elsewhen(vsetvlState === vs_waitVinstr){
627    when(io.redirect.valid){
628      vsetvlState := vs_idle
629    }.elsewhen(Cat(enqIsVInstrOrVset).orR){
630      vsetvlState := vs_waitFlush
631    }
632  }.elsewhen(vsetvlState === vs_waitFlush){
633    when(io.redirect.valid){
634      vsetvlState := vs_idle
635    }
636  }
637
638  /**
639    * Writeback (from execution units)
640    */
641  for (wb <- exuWBs) {
642    when (wb.valid) {
643      val wbIdx = wb.bits.robIdx.value
644      debug_exuData(wbIdx) := wb.bits.data
645      debug_exuDebug(wbIdx) := wb.bits.debug
646      debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime
647      debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime
648      debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime
649      debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime
650
651      // debug for lqidx and sqidx
652      debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr))
653      debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr))
654
655      val debug_Uop = debug_microOp(wbIdx)
656      XSInfo(true.B,
657        p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " +
658        p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " +
659        p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.robIdx}\n"
660      )
661    }
662  }
663
664  val writebackNum = PopCount(exuWBs.map(_.valid))
665  XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum)
666
667  for (i <- 0 until LoadPipelineWidth) {
668    when (RegNext(io.lsq.mmio(i))) {
669      mmio(RegNext(io.lsq.uop(i).robIdx).value) := true.B
670    }
671  }
672
673  /**
674    * RedirectOut: Interrupt and Exceptions
675    */
676  val deqDispatchData = dispatchDataRead(0)
677  val debug_deqUop = debug_microOp(deqPtr.value)
678
679  val intrBitSetReg = RegNext(io.csr.intrBitSet)
680  val intrEnable = intrBitSetReg && !hasWaitForward && interrupt_safe(deqPtr.value)
681  val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr
682  val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR ||
683    exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit)
684  val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe
685  val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst
686  val exceptionEnable = isWritebacked(deqPtr.value) && deqHasException
687
688  XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n")
689  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n")
690  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n")
691
692  val isFlushPipe = isWritebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst)
693
694  val isVsetFlushPipe = isWritebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset
695//  val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush)
696  val needModifyFtqIdxOffset = false.B
697  io.isVsetFlushPipe := isVsetFlushPipe
698  io.vconfigPdest := rab.io.vconfigPdest
699  // io.flushOut will trigger redirect at the next cycle.
700  // Block any redirect or commit at the next cycle.
701  val lastCycleFlush = RegNext(io.flushOut.valid)
702
703  io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush
704  io.flushOut.bits := DontCare
705  io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr)
706  io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx)
707  io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset)
708  io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next"
709  io.flushOut.bits.interrupt := true.B
710  XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable)
711  XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable)
712  XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe)
713  XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst)
714
715  val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush
716  io.exception.valid                := RegNext(exceptionHappen)
717  io.exception.bits.pc              := RegEnable(debug_deqUop.pc, exceptionHappen)
718  io.exception.bits.instr           := RegEnable(debug_deqUop.instr, exceptionHappen)
719  io.exception.bits.commitType      := RegEnable(deqDispatchData.commitType, exceptionHappen)
720  io.exception.bits.exceptionVec    := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen)
721  io.exception.bits.singleStep      := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen)
722  io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen)
723  io.exception.bits.isInterrupt     := RegEnable(intrEnable, exceptionHappen)
724//  io.exception.bits.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen)
725
726  XSDebug(io.flushOut.valid,
727    p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " +
728    p"excp $exceptionEnable flushPipe $isFlushPipe " +
729    p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n")
730
731
732  /**
733    * Commits (and walk)
734    * They share the same width.
735    */
736  val walkCounter = Reg(UInt(log2Up(RobSize + 1).W))
737  val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter))
738  val walkFinished = walkCounter <= CommitWidth.U
739  rab.io.robWalkEnd := state === s_walk && walkFinished
740
741  require(RenameWidth <= CommitWidth)
742
743  // wiring to csr
744  val (wflags, fpWen) = (0 until CommitWidth).map(i => {
745    val v = io.commits.commitValid(i)
746    val info = io.commits.info(i)
747    (v & info.wflags, v & info.fpWen)
748  }).unzip
749  val fflags = Wire(Valid(UInt(5.W)))
750  fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR
751  fflags.bits := wflags.zip(fflagsDataRead).map({
752    case (w, f) => Mux(w, f, 0.U)
753  }).reduce(_|_)
754  val dirty_fs = io.commits.isCommit && VecInit(fpWen).asUInt.orR
755
756  val vxsat = Wire(Valid(Bool()))
757  vxsat.valid := io.commits.isCommit && vxsat.bits
758  vxsat.bits := io.commits.commitValid.zip(vxsatDataRead).map {
759    case (valid, vxsat) => valid & vxsat
760  }.reduce(_ | _)
761
762  // when mispredict branches writeback, stop commit in the next 2 cycles
763  // TODO: don't check all exu write back
764  val misPredWb = Cat(VecInit(redirectWBs.map(wb =>
765    wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid
766  ))).orR
767  val misPredBlockCounter = Reg(UInt(3.W))
768  misPredBlockCounter := Mux(misPredWb,
769    "b111".U,
770    misPredBlockCounter >> 1.U
771  )
772  val misPredBlock = misPredBlockCounter(0)
773  val blockCommit = misPredBlock && !io.flushOut.valid || isReplaying || lastCycleFlush || hasWFI
774
775  io.commits.isWalk := state === s_walk
776  io.commits.isCommit := state === s_idle && !blockCommit
777  val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value)))
778  val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value)))
779  // store will be commited iff both sta & std have been writebacked
780  val commit_w = VecInit(deqPtrVec.map(ptr => isWritebacked(ptr.value)))
781  val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last)
782  val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i)))
783  val allowOnlyOneCommit = commit_exception || intrBitSetReg
784  // for instructions that may block others, we don't allow them to commit
785  for (i <- 0 until CommitWidth) {
786    // defaults: state === s_idle and instructions commit
787    // when intrBitSetReg, allow only one instruction to commit at each clock cycle
788    val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst
789    io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked
790    io.commits.info(i)  := dispatchDataRead(i)
791
792    when (state === s_walk) {
793      io.commits.walkValid(i) := shouldWalkVec(i)
794      when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) {
795        XSError(!walk_v(i), s"why not $i???\n")
796      }
797    }
798
799    XSInfo(io.commits.isCommit && io.commits.commitValid(i),
800      "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b vxsat: %b\n",
801      debug_microOp(deqPtrVec(i).value).pc,
802      io.commits.info(i).rfWen,
803      io.commits.info(i).ldest,
804      io.commits.info(i).pdest,
805      io.commits.info(i).old_pdest,
806      debug_exuData(deqPtrVec(i).value),
807      fflagsDataRead(i),
808      vxsatDataRead(i)
809    )
810    XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n",
811      debug_microOp(walkPtrVec(i).value).pc,
812      io.commits.info(i).rfWen,
813      io.commits.info(i).ldest,
814      debug_exuData(walkPtrVec(i).value)
815    )
816  }
817  if (env.EnableDifftest) {
818    io.commits.info.map(info => dontTouch(info.pc))
819  }
820
821  // sync fflags/dirty_fs/vxsat to csr
822  io.csr.fflags := RegNext(fflags)
823  io.csr.dirty_fs := RegNext(dirty_fs)
824  io.csr.vxsat := RegNext(vxsat)
825
826  // sync v csr to csr
827  // for difftest
828  val isDiffWriteVconfigVec = io.diffCommits.commitValid.zip(io.diffCommits.info).map { case (valid, info) => valid && info.ldest === VCONFIG_IDX.U && info.vecWen }.reverse
829  io.csr.vcsrFlag := RegNext(io.diffCommits.isCommit && Cat(isDiffWriteVconfigVec).orR)
830
831  // commit load/store to lsq
832  val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD))
833  val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE))
834  io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U))
835  io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U))
836  // indicate a pending load or store
837  io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value) && mmio(deqPtr.value))
838  io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value))
839  io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0))
840  io.lsq.pendingPtr := RegNext(deqPtr)
841
842  /**
843    * state changes
844    * (1) redirect: switch to s_walk
845    * (2) walk: when walking comes to the end, switch to s_idle
846    */
847  val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished && rab.io.rabWalkEnd, s_idle, state))
848  XSPerfAccumulate("s_idle_to_idle",            state === s_idle && state_next === s_idle)
849  XSPerfAccumulate("s_idle_to_walk",            state === s_idle && state_next === s_walk)
850  XSPerfAccumulate("s_walk_to_idle",            state === s_walk && state_next === s_idle)
851  XSPerfAccumulate("s_walk_to_walk",            state === s_walk && state_next === s_walk)
852  state := state_next
853
854  /**
855    * pointers and counters
856    */
857  val deqPtrGenModule = Module(new RobDeqPtrWrapper)
858  deqPtrGenModule.io.state := state
859  deqPtrGenModule.io.deq_v := commit_v
860  deqPtrGenModule.io.deq_w := commit_w
861  deqPtrGenModule.io.exception_state := exceptionDataRead
862  deqPtrGenModule.io.intrBitSetReg := intrBitSetReg
863  deqPtrGenModule.io.hasNoSpecExec := hasWaitForward
864  deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value)
865  deqPtrGenModule.io.blockCommit := blockCommit
866  deqPtrVec := deqPtrGenModule.io.out
867  val deqPtrVec_next = deqPtrGenModule.io.next_out
868
869  val enqPtrGenModule = Module(new RobEnqPtrWrapper)
870  enqPtrGenModule.io.redirect := io.redirect
871  enqPtrGenModule.io.allowEnqueue := allowEnqueue
872  enqPtrGenModule.io.hasBlockBackward := hasBlockBackward
873  enqPtrGenModule.io.enq := VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop))
874  enqPtrVec := enqPtrGenModule.io.out
875
876  val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U)
877  // next walkPtrVec:
878  // (1) redirect occurs: update according to state
879  // (2) walk: move forwards
880  val walkPtrVec_next = Mux(io.redirect.valid,
881    deqPtrVec_next,
882    Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec)
883  )
884  walkPtrVec := walkPtrVec_next
885
886  val numValidEntries = distanceBetween(enqPtr, deqPtr)
887  val commitCnt = PopCount(io.commits.commitValid)
888
889  allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U
890
891  val currentWalkPtr = Mux(state === s_walk, walkPtr, deqPtrVec_next(0))
892  val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0))
893  when (io.redirect.valid) {
894    // full condition:
895    // +& is used here because:
896    // When rob is full and the tail instruction causes a misprediction,
897    // the redirect robIdx is the deqPtr - 1. In this case, redirectWalkDistance
898    // is RobSize - 1.
899    // Since misprediction does not flush the instruction itself, flushItSelf is false.B.
900    // Previously we use `+` to count the walk distance and it causes overflows
901    // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize.
902    // The width of walkCounter also needs to be changed.
903    // empty condition:
904    // When the last instruction in ROB commits and causes a flush, a redirect
905    // will be raised later. In such circumstances, the redirect robIdx is before
906    // the deqPtrVec_next(0) and will cause underflow.
907    walkCounter := Mux(isBefore(io.redirect.bits.robIdx, deqPtrVec_next(0)), 0.U,
908                       redirectWalkDistance +& !io.redirect.bits.flushItself())
909  }.elsewhen (state === s_walk) {
910    walkCounter := walkCounter - thisCycleWalkCount
911    XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n")
912  }
913
914
915  /**
916    * States
917    * We put all the stage bits changes here.
918
919    * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit);
920    * All states: (1) valid; (2) writebacked; (3) flagBkup
921    */
922  val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value)))
923
924  // redirect logic writes 6 valid
925  val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr))
926  val redirectTail = Reg(new RobPtr)
927  val redirectIdle :: redirectBusy :: Nil = Enum(2)
928  val redirectState = RegInit(redirectIdle)
929  val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail))
930  when(redirectState === redirectBusy) {
931    redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U)
932    redirectHeadVec zip invMask foreach {
933      case (redirectHead, inv) => when(inv) {
934        valid(redirectHead.value) := false.B
935      }
936    }
937    when(!invMask.last) {
938      redirectState := redirectIdle
939    }
940  }
941  when(io.redirect.valid) {
942    redirectState := redirectBusy
943    when(redirectState === redirectIdle) {
944      redirectTail := enqPtr
945    }
946    redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) =>
947      redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
948    }
949  }
950  // enqueue logic writes 6 valid
951  for (i <- 0 until RenameWidth) {
952    when (canEnqueue(i) && !io.redirect.valid) {
953      valid(allocatePtrVec(i).value) := true.B
954    }
955  }
956  // dequeue logic writes 6 valid
957  for (i <- 0 until CommitWidth) {
958    val commitValid = io.commits.isCommit && io.commits.commitValid(i)
959    when (commitValid) {
960      valid(commitReadAddr(i)) := false.B
961    }
962  }
963
964  // writeback logic set numWbPorts writebacked to true
965  val blockWbSeq = Wire(Vec(exuWBs.length, Bool()))
966  blockWbSeq.map(_ := false.B)
967  for ((wb, blockWb) <- exuWBs.zip(blockWbSeq)) {
968    when(wb.valid) {
969      val wbHasException = wb.bits.exceptionVec.getOrElse(0.U).asUInt.orR
970      val wbHasTriggerHit = false.B //Todo: wb.bits.trigger.getHitBackend
971      val wbHasFlushPipe = wb.bits.flushPipe.getOrElse(false.B)
972      val wbHasReplayInst = wb.bits.replay.getOrElse(false.B) //Todo: && wb.bits.replayInst
973      blockWb := wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit
974    }
975  }
976
977  // if the first uop of an instruction is valid , write writebackedCounter
978  val uopEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid)
979  val instEnqValidSeq = io.enq.req.map (req => io.enq.canAccept && req.valid && req.bits.firstUop)
980  val enqNeedWriteRFSeq = io.enq.req.map(_.bits.needWriteRf)
981  val enqRobIdxSeq = io.enq.req.map(req => req.bits.robIdx.value)
982  val enqUopNumVec = VecInit(io.enq.req.map(req => req.bits.numUops))
983  val enqEliminatedMoveVec = VecInit(io.enq.req.map(req => req.bits.eliminatedMove))
984
985  private val enqWriteStdVec: Vec[Bool] = VecInit(io.enq.req.map {
986    req => FuType.isAMO(req.bits.fuType) || FuType.isStore(req.bits.fuType)
987  })
988  val enqWbSizeSeq = io.enq.req.map { req =>
989    val enqHasException = ExceptionNO.selectFrontend(req.bits.exceptionVec).asUInt.orR
990    val enqHasTriggerHit = req.bits.trigger.getHitFrontend
991    Mux(req.bits.eliminatedMove, Mux(enqHasException || enqHasTriggerHit, 1.U, 0.U),
992      Mux(FuType.isAMO(req.bits.fuType) || FuType.isStore(req.bits.fuType), 2.U, 1.U))
993  }
994  val enqWbSizeSumSeq = enqRobIdxSeq.zipWithIndex.map { case (robIdx, idx) =>
995    val addend = enqRobIdxSeq.zip(enqWbSizeSeq).take(idx + 1).map { case (uopRobIdx, uopWbSize) => Mux(robIdx === uopRobIdx, uopWbSize, 0.U) }
996    addend.reduce(_ +& _)
997  }
998  val fflags_wb = fflagsPorts
999  val vxsat_wb = vxsatPorts
1000  for(i <- 0 until RobSize){
1001
1002    val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === i.U)
1003    val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch }
1004    val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch }
1005    val instCanEnqFlag = Cat(instCanEnqSeq).orR
1006
1007    realDestSize(i) := Mux(!valid(i) && instCanEnqFlag || valid(i), realDestSize(i) + PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map{ case(writeFlag, valid) => writeFlag && valid }), 0.U)
1008
1009    val enqUopNum = PriorityMux(instCanEnqSeq, enqUopNumVec)
1010    val enqEliminatedMove = PriorityMux(instCanEnqSeq, enqEliminatedMoveVec)
1011    val enqWriteStd = PriorityMux(instCanEnqSeq, enqWriteStdVec)
1012
1013    val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)
1014    val canWbNoBlockSeq = canWbSeq.zip(blockWbSeq).map{ case(canWb, blockWb) => canWb && !blockWb }
1015    val canStdWbSeq = VecInit(stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U))
1016    val wbCnt = PopCount(canWbNoBlockSeq)
1017    when (exceptionGen.io.out.valid && exceptionGen.io.out.bits.robIdx.value === i.U) {
1018      // exception flush
1019      uopNumVec(i) := 0.U
1020      stdWritebacked(i) := true.B
1021    }.elsewhen(!valid(i) && instCanEnqFlag) {
1022      // enq set num of uops
1023      uopNumVec(i) := Mux(enqEliminatedMove, 0.U, enqUopNum)
1024      stdWritebacked(i) := Mux(enqWriteStd, false.B, true.B)
1025    }.elsewhen(valid(i)) {
1026      // update by writing back
1027      uopNumVec(i) := uopNumVec(i) - wbCnt
1028      when (canStdWbSeq.asUInt.orR) {
1029        stdWritebacked(i) := true.B
1030      }
1031    }.otherwise {
1032      uopNumVec(i) := 0.U
1033    }
1034
1035    val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)
1036    val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.reduce(_ | _)
1037    fflagsDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, fflagsDataModule(i) | fflagsRes)
1038
1039    val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)
1040    val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.reduce(_ | _)
1041    vxsatDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, vxsatDataModule(i) | vxsatRes)
1042  }
1043
1044  // flagBkup
1045  // enqueue logic set 6 flagBkup at most
1046  for (i <- 0 until RenameWidth) {
1047    when (canEnqueue(i)) {
1048      flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag
1049    }
1050  }
1051
1052  // interrupt_safe
1053  for (i <- 0 until RenameWidth) {
1054    // We RegNext the updates for better timing.
1055    // Note that instructions won't change the system's states in this cycle.
1056    when (RegNext(canEnqueue(i))) {
1057      // For now, we allow non-load-store instructions to trigger interrupts
1058      // For MMIO instructions, they should not trigger interrupts since they may
1059      // be sent to lower level before it writes back.
1060      // However, we cannot determine whether a load/store instruction is MMIO.
1061      // Thus, we don't allow load/store instructions to trigger an interrupt.
1062      // TODO: support non-MMIO load-store instructions to trigger interrupts
1063      val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType)
1064      interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts)
1065    }
1066  }
1067
1068  /**
1069    * read and write of data modules
1070    */
1071  val commitReadAddr_next = Mux(state_next === s_idle,
1072    VecInit(deqPtrVec_next.map(_.value)),
1073    VecInit(walkPtrVec_next.map(_.value))
1074  )
1075  dispatchData.io.wen := canEnqueue
1076  dispatchData.io.waddr := allocatePtrVec.map(_.value)
1077  dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) =>
1078    wdata.ldest := req.ldest
1079    wdata.rfWen := req.rfWen
1080    wdata.fpWen := req.fpWen
1081    wdata.vecWen := req.vecWen
1082    wdata.wflags := req.fpu.wflags
1083    wdata.commitType := req.commitType
1084    wdata.pdest := req.pdest
1085    wdata.old_pdest := req.oldPdest
1086    wdata.ftqIdx := req.ftqPtr
1087    wdata.ftqOffset := req.ftqOffset
1088    wdata.isMove := req.eliminatedMove
1089    wdata.pc := req.pc
1090    wdata.vtype := req.vpu.vtype
1091    wdata.isVset := req.isVset
1092  }
1093  dispatchData.io.raddr := commitReadAddr_next
1094
1095  exceptionGen.io.redirect <> io.redirect
1096  exceptionGen.io.flush := io.flushOut.valid
1097
1098  val canEnqueueEG = VecInit(io.enq.req.map(req => req.valid && io.enq.canAccept))
1099  for (i <- 0 until RenameWidth) {
1100    exceptionGen.io.enq(i).valid := canEnqueueEG(i)
1101    exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx
1102    exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec)
1103    exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe
1104    exceptionGen.io.enq(i).bits.isVset := io.enq.req(i).bits.isVset
1105    exceptionGen.io.enq(i).bits.replayInst := false.B
1106    XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst")
1107    exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep
1108    exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix
1109    exceptionGen.io.enq(i).bits.trigger.clear()
1110    exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.trigger.frontendHit
1111  }
1112
1113  println(s"ExceptionGen:")
1114  println(s"num of exceptions: ${params.numException}")
1115  require(exceptionWBs.length == exceptionGen.io.wb.length,
1116    f"exceptionWBs.length: ${exceptionWBs.length}, " +
1117      f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}")
1118  for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) {
1119    exc_wb.valid                := wb.valid
1120    exc_wb.bits.robIdx          := wb.bits.robIdx
1121    exc_wb.bits.exceptionVec    := wb.bits.exceptionVec.get
1122    exc_wb.bits.flushPipe       := wb.bits.flushPipe.getOrElse(false.B)
1123    exc_wb.bits.isVset          := false.B
1124    exc_wb.bits.replayInst      := wb.bits.replay.getOrElse(false.B)
1125    exc_wb.bits.singleStep      := false.B
1126    exc_wb.bits.crossPageIPFFix := false.B
1127    exc_wb.bits.trigger         := 0.U.asTypeOf(exc_wb.bits.trigger) // Todo
1128//    println(s"  [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " +
1129//      s"flushPipe ${configs.exists(_.flushPipe)}, " +
1130//      s"replayInst ${configs.exists(_.replayInst)}")
1131  }
1132
1133  fflagsDataRead := (0 until CommitWidth).map(i => fflagsDataModule(deqPtrVec(i).value))
1134  vxsatDataRead := (0 until CommitWidth).map(i => vxsatDataModule(deqPtrVec(i).value))
1135
1136  val instrCntReg = RegInit(0.U(64.W))
1137  val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) })
1138  val trueCommitCnt = RegNext(commitCnt) +& fuseCommitCnt
1139  val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U)
1140  val instrCnt = instrCntReg + retireCounter
1141  instrCntReg := instrCnt
1142  io.csr.perfinfo.retiredInstr := retireCounter
1143  io.robFull := !allowEnqueue
1144
1145  /**
1146    * debug info
1147    */
1148  XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n")
1149  XSDebug("")
1150  XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n")
1151  for(i <- 0 until RobSize){
1152    XSDebug(false, !valid(i), "-")
1153    XSDebug(false, valid(i) && isWritebacked(i.U), "w")
1154    XSDebug(false, valid(i) && !isWritebacked(i.U), "v")
1155  }
1156  XSDebug(false, true.B, "\n")
1157
1158  for(i <- 0 until RobSize) {
1159    if(i % 4 == 0) XSDebug("")
1160    XSDebug(false, true.B, "%x ", debug_microOp(i).pc)
1161    XSDebug(false, !valid(i), "- ")
1162    XSDebug(false, valid(i) && isWritebacked(i.U), "w ")
1163    XSDebug(false, valid(i) && !isWritebacked(i.U), "v ")
1164    if(i % 4 == 3) XSDebug(false, true.B, "\n")
1165  }
1166
1167  def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U)
1168  def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U)
1169
1170  val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_))
1171  XSPerfAccumulate("clock_cycle", 1.U)
1172  QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue)
1173  XSPerfAccumulate("commitUop", ifCommit(commitCnt))
1174  XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt))
1175  val commitIsMove = commitDebugUop.map(_.isMove)
1176  XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })))
1177  val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove)
1178  XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e })))
1179  XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt))
1180  val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD)
1181  val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t }
1182  XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid)))
1183  val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH)
1184  val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t }
1185  XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid)))
1186  val commitLoadWaitBit = commitDebugUop.map(_.loadWaitBit)
1187  XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })))
1188  val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE)
1189  XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })))
1190  XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && isWritebacked(i.U))))
1191  // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire)))
1192  // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready)))
1193  XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U))
1194  XSPerfAccumulate("walkCycle", state === s_walk)
1195  val deqNotWritebacked = valid(deqPtr.value) && !isWritebacked(deqPtr.value)
1196  val deqUopCommitType = io.commits.info(0).commitType
1197  XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL)
1198  XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH)
1199  XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD)
1200  XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE)
1201  XSPerfAccumulate("robHeadPC", io.commits.info(0).pc)
1202  val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime)
1203  val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime)
1204  val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime)
1205  val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime)
1206  val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime)
1207  val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime)
1208  val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime)
1209  def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = {
1210    cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _)
1211  }
1212  for (fuType <- FuType.functionNameMap.keys) {
1213    val fuName = FuType.functionNameMap(fuType)
1214    val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U )
1215    XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType)))
1216    XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency)))
1217    XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency)))
1218    XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency)))
1219    XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency)))
1220    XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency)))
1221    XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency)))
1222    XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency)))
1223    if (fuType == FuType.fmac) {
1224      val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.fpu.ren3 )
1225      XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma)))
1226      XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency)))
1227      XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency)))
1228    }
1229  }
1230
1231  //difftest signals
1232  val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value
1233
1234  val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1235  val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1236
1237  for(i <- 0 until CommitWidth) {
1238    val idx = deqPtrVec(i).value
1239    wdata(i) := debug_exuData(idx)
1240    wpc(i) := SignExt(commitDebugUop(i).pc, XLEN)
1241  }
1242
1243  if (env.EnableDifftest) {
1244    for (i <- 0 until CommitWidth) {
1245      val difftest = Module(new DifftestInstrCommit)
1246      // assgin default value
1247      difftest.io := DontCare
1248
1249      difftest.io.clock    := clock
1250      difftest.io.coreid   := io.hartId
1251      difftest.io.index    := i.U
1252
1253      val ptr = deqPtrVec(i).value
1254      val uop = commitDebugUop(i)
1255      val exuOut = debug_exuDebug(ptr)
1256      val exuData = debug_exuData(ptr)
1257      difftest.io.valid    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1258      difftest.io.pc       := RegNext(RegNext(RegNext(SignExt(uop.pc, XLEN))))
1259      difftest.io.instr    := RegNext(RegNext(RegNext(uop.instr)))
1260      difftest.io.robIdx   := RegNext(RegNext(RegNext(ZeroExt(ptr, 10))))
1261      difftest.io.lqIdx    := RegNext(RegNext(RegNext(ZeroExt(uop.lqIdx.value, 7))))
1262      difftest.io.sqIdx    := RegNext(RegNext(RegNext(ZeroExt(uop.sqIdx.value, 7))))
1263      difftest.io.isLoad   := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.LOAD)))
1264      difftest.io.isStore  := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.STORE)))
1265      difftest.io.special  := RegNext(RegNext(RegNext(CommitType.isFused(io.commits.info(i).commitType))))
1266      // when committing an eliminated move instruction,
1267      // we must make sure that skip is properly set to false (output from EXU is random value)
1268      difftest.io.skip     := RegNext(RegNext(RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))))
1269      difftest.io.isRVC    := RegNext(RegNext(RegNext(uop.preDecodeInfo.isRVC)))
1270      difftest.io.rfwen    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U)))
1271      difftest.io.fpwen    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).fpWen)))
1272      difftest.io.wpdest   := RegNext(RegNext(RegNext(io.commits.info(i).pdest)))
1273      difftest.io.wdest    := RegNext(RegNext(RegNext(io.commits.info(i).ldest)))
1274      // // runahead commit hint
1275      // val runahead_commit = Module(new DifftestRunaheadCommitEvent)
1276      // runahead_commit.io.clock := clock
1277      // runahead_commit.io.coreid := io.hartId
1278      // runahead_commit.io.index := i.U
1279      // runahead_commit.io.valid := difftest.io.valid &&
1280      //   (commitBranchValid(i) || commitIsStore(i))
1281      // // TODO: is branch or store
1282      // runahead_commit.io.pc    := difftest.io.pc
1283    }
1284  }
1285  else if (env.AlwaysBasicDiff) {
1286    // These are the structures used by difftest only and should be optimized after synthesis.
1287    val dt_eliminatedMove = Mem(RobSize, Bool())
1288    val dt_isRVC = Mem(RobSize, Bool())
1289    val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle))
1290    for (i <- 0 until RenameWidth) {
1291      when (canEnqueue(i)) {
1292        dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove
1293        dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC
1294      }
1295    }
1296    for (wb <- exuWBs) {
1297      when (wb.valid) {
1298        val wbIdx = wb.bits.robIdx.value
1299        dt_exuDebug(wbIdx) := wb.bits.debug
1300      }
1301    }
1302    // Always instantiate basic difftest modules.
1303    for (i <- 0 until CommitWidth) {
1304      val commitInfo = io.commits.info(i)
1305      val ptr = deqPtrVec(i).value
1306      val exuOut = dt_exuDebug(ptr)
1307      val eliminatedMove = dt_eliminatedMove(ptr)
1308      val isRVC = dt_isRVC(ptr)
1309
1310      val difftest = Module(new DifftestBasicInstrCommit)
1311      difftest.io.clock   := clock
1312      difftest.io.coreid  := io.hartId
1313      difftest.io.index   := i.U
1314      difftest.io.valid   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1315      difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(commitInfo.commitType))))
1316      difftest.io.skip    := RegNext(RegNext(RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))))
1317      difftest.io.isRVC   := RegNext(RegNext(RegNext(isRVC)))
1318      difftest.io.rfwen   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U)))
1319      difftest.io.fpwen   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.fpWen)))
1320      difftest.io.wpdest  := RegNext(RegNext(RegNext(commitInfo.pdest)))
1321      difftest.io.wdest   := RegNext(RegNext(RegNext(commitInfo.ldest)))
1322    }
1323  }
1324
1325  if (env.EnableDifftest) {
1326    for (i <- 0 until CommitWidth) {
1327      val difftest = Module(new DifftestLoadEvent)
1328      difftest.io.clock  := clock
1329      difftest.io.coreid := io.hartId
1330      difftest.io.index  := i.U
1331
1332      val ptr = deqPtrVec(i).value
1333      val uop = commitDebugUop(i)
1334      val exuOut = debug_exuDebug(ptr)
1335      difftest.io.valid  := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1336      difftest.io.paddr  := RegNext(RegNext(RegNext(exuOut.paddr)))
1337      difftest.io.opType := RegNext(RegNext(RegNext(uop.fuOpType)))
1338      difftest.io.fuType := RegNext(RegNext(RegNext(uop.fuType)))
1339    }
1340  }
1341
1342  // Always instantiate basic difftest modules.
1343  if (env.EnableDifftest) {
1344    val dt_isXSTrap = Mem(RobSize, Bool())
1345    for (i <- 0 until RenameWidth) {
1346      when (canEnqueue(i)) {
1347        dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap
1348      }
1349    }
1350    val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) }
1351    val hitTrap = trapVec.reduce(_||_)
1352    val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1))
1353    val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN)
1354    val difftest = Module(new DifftestTrapEvent)
1355    difftest.io.clock    := clock
1356    difftest.io.coreid   := io.hartId
1357    difftest.io.valid    := hitTrap
1358    difftest.io.code     := trapCode
1359    difftest.io.pc       := trapPC
1360    difftest.io.cycleCnt := timer
1361    difftest.io.instrCnt := instrCnt
1362    difftest.io.hasWFI   := hasWFI
1363  }
1364  else if (env.AlwaysBasicDiff) {
1365    val dt_isXSTrap = Mem(RobSize, Bool())
1366    for (i <- 0 until RenameWidth) {
1367      when (canEnqueue(i)) {
1368        dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap
1369      }
1370    }
1371    val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) }
1372    val hitTrap = trapVec.reduce(_||_)
1373    val difftest = Module(new DifftestBasicTrapEvent)
1374    difftest.io.clock    := clock
1375    difftest.io.coreid   := io.hartId
1376    difftest.io.valid    := hitTrap
1377    difftest.io.cycleCnt := timer
1378    difftest.io.instrCnt := instrCnt
1379  }
1380
1381  val validEntriesBanks = (0 until (RobSize + 63) / 64).map(i => RegNext(PopCount(valid.drop(i * 64).take(64))))
1382  val validEntries = RegNext(ParallelOperation(validEntriesBanks, (a: UInt, b: UInt) => a +& b))
1383  val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })
1384  val commitLoadVec = VecInit(commitLoadValid)
1385  val commitBranchVec = VecInit(commitBranchValid)
1386  val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })
1387  val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })
1388  val perfEvents = Seq(
1389    ("rob_interrupt_num      ", io.flushOut.valid && intrEnable                                       ),
1390    ("rob_exception_num      ", io.flushOut.valid && exceptionEnable                                  ),
1391    ("rob_flush_pipe_num     ", io.flushOut.valid && isFlushPipe                                      ),
1392    ("rob_replay_inst_num    ", io.flushOut.valid && isFlushPipe && deqHasReplayInst                  ),
1393    ("rob_commitUop          ", ifCommit(commitCnt)                                                   ),
1394    ("rob_commitInstr        ", ifCommitReg(trueCommitCnt)                                            ),
1395    ("rob_commitInstrMove    ", ifCommitReg(PopCount(RegNext(commitMoveVec)))                         ),
1396    ("rob_commitInstrFused   ", ifCommitReg(fuseCommitCnt)                                            ),
1397    ("rob_commitInstrLoad    ", ifCommitReg(PopCount(RegNext(commitLoadVec)))                         ),
1398    ("rob_commitInstrBranch  ", ifCommitReg(PopCount(RegNext(commitBranchVec)))                       ),
1399    ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec)))                     ),
1400    ("rob_commitInstrStore   ", ifCommitReg(PopCount(RegNext(commitStoreVec)))                        ),
1401    ("rob_walkInstr          ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)           ),
1402    ("rob_walkCycle          ", (state === s_walk)                                                    ),
1403    ("rob_1_4_valid          ", validEntries <= (RobSize / 4).U                                       ),
1404    ("rob_2_4_valid          ", validEntries >  (RobSize / 4).U && validEntries <= (RobSize / 2).U    ),
1405    ("rob_3_4_valid          ", validEntries >  (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U),
1406    ("rob_4_4_valid          ", validEntries >  (RobSize * 3 / 4).U                                   ),
1407  )
1408  generatePerfEvent()
1409}
1410