xref: /XiangShan/src/main/scala/xiangshan/backend/rob/Rob.scala (revision 8f1fa9b1f65ffa29fe1bf75176395cb8ecde6aa5)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.backend.rob
18
19import org.chipsalliance.cde.config.Parameters
20import chisel3._
21import chisel3.util._
22import difftest._
23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp}
24import utility._
25import utils._
26import xiangshan._
27import xiangshan.backend.BackendParams
28import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput}
29import xiangshan.backend.fu.{FuType, FuConfig}
30import xiangshan.frontend.FtqPtr
31import xiangshan.mem.{LqPtr, LsqEnqIO, SqPtr}
32import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput}
33import xiangshan.backend.ctrlblock.{DebugLSIO, DebugLsInfo, LsTopdownInfo}
34import xiangshan.backend.rename.SnapshotGenerator
35
36
37class RobPtr(entries: Int) extends CircularQueuePtr[RobPtr](
38  entries
39) with HasCircularQueuePtrHelper {
40
41  def this()(implicit p: Parameters) = this(p(XSCoreParamsKey).RobSize)
42
43  def needFlush(redirect: Valid[Redirect]): Bool = {
44    val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx
45    redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx))
46  }
47
48  def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR
49}
50
51object RobPtr {
52  def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = {
53    val ptr = Wire(new RobPtr)
54    ptr.flag := f
55    ptr.value := v
56    ptr
57  }
58}
59
60class RobCSRIO(implicit p: Parameters) extends XSBundle {
61  val intrBitSet = Input(Bool())
62  val trapTarget = Input(UInt(VAddrBits.W))
63  val isXRet     = Input(Bool())
64  val wfiEvent   = Input(Bool())
65
66  val fflags     = Output(Valid(UInt(5.W)))
67  val vxsat      = Output(Valid(Bool()))
68  val dirty_fs   = Output(Bool())
69  val perfinfo   = new Bundle {
70    val retiredInstr = Output(UInt(3.W))
71  }
72
73  val vcsrFlag   = Output(Bool())
74}
75
76class RobLsqIO(implicit p: Parameters) extends XSBundle {
77  val lcommit = Output(UInt(log2Up(CommitWidth + 1).W))
78  val scommit = Output(UInt(log2Up(CommitWidth + 1).W))
79  val pendingld = Output(Bool())
80  val pendingst = Output(Bool())
81  val commit = Output(Bool())
82  val pendingPtr = Output(new RobPtr)
83
84  val mmio = Input(Vec(LoadPipelineWidth, Bool()))
85  // Todo: what's this?
86  val uop = Input(Vec(LoadPipelineWidth, new DynInst))
87}
88
89class RobEnqIO(implicit p: Parameters) extends XSBundle {
90  val canAccept = Output(Bool())
91  val isEmpty = Output(Bool())
92  // valid vector, for robIdx gen and walk
93  val needAlloc = Vec(RenameWidth, Input(Bool()))
94  val req = Vec(RenameWidth, Flipped(ValidIO(new DynInst)))
95  val resp = Vec(RenameWidth, Output(new RobPtr))
96}
97
98class RobCoreTopDownIO(implicit p: Parameters) extends XSBundle {
99  val robHeadVaddr = Valid(UInt(VAddrBits.W))
100  val robHeadPaddr = Valid(UInt(PAddrBits.W))
101}
102
103class RobDispatchTopDownIO extends Bundle {
104  val robTrueCommit = Output(UInt(64.W))
105  val robHeadLsIssue = Output(Bool())
106}
107
108class RobDebugRollingIO extends Bundle {
109  val robTrueCommit = Output(UInt(64.W))
110}
111
112class RobDispatchData(implicit p: Parameters) extends RobCommitInfo {}
113
114class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
115  val io = IO(new Bundle {
116    // for commits/flush
117    val state = Input(UInt(2.W))
118    val deq_v = Vec(CommitWidth, Input(Bool()))
119    val deq_w = Vec(CommitWidth, Input(Bool()))
120    val exception_state = Flipped(ValidIO(new RobExceptionInfo))
121    // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth)
122    val intrBitSetReg = Input(Bool())
123    val hasNoSpecExec = Input(Bool())
124    val interrupt_safe = Input(Bool())
125    val blockCommit = Input(Bool())
126    // output: the CommitWidth deqPtr
127    val out = Vec(CommitWidth, Output(new RobPtr))
128    val next_out = Vec(CommitWidth, Output(new RobPtr))
129  })
130
131  val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr))))
132
133  // for exceptions (flushPipe included) and interrupts:
134  // only consider the first instruction
135  val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe
136  val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0)
137  val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable)
138
139  // for normal commits: only to consider when there're no exceptions
140  // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions.
141  val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last)
142  val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i)))
143  val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B)
144  // when io.intrBitSetReg or there're possible exceptions in these instructions,
145  // only one instruction is allowed to commit
146  val allowOnlyOne = commit_exception || io.intrBitSetReg
147  val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt)
148
149  val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt))
150  val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec)
151
152  deqPtrVec := deqPtrVec_next
153
154  io.next_out := deqPtrVec_next
155  io.out      := deqPtrVec
156
157  when (io.state === 0.U) {
158    XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt)
159  }
160
161}
162
163class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
164  val io = IO(new Bundle {
165    // for input redirect
166    val redirect = Input(Valid(new Redirect))
167    // for enqueue
168    val allowEnqueue = Input(Bool())
169    val hasBlockBackward = Input(Bool())
170    val enq = Vec(RenameWidth, Input(Bool()))
171    val out = Output(Vec(RenameWidth, new RobPtr))
172  })
173
174  val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr)))
175
176  // enqueue
177  val canAccept = io.allowEnqueue && !io.hasBlockBackward
178  val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U)
179
180  for ((ptr, i) <- enqPtrVec.zipWithIndex) {
181    when(io.redirect.valid) {
182      ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
183    }.otherwise {
184      ptr := ptr + dispatchNum
185    }
186  }
187
188  io.out := enqPtrVec
189
190}
191
192class RobExceptionInfo(implicit p: Parameters) extends XSBundle {
193  // val valid = Bool()
194  val robIdx = new RobPtr
195  val exceptionVec = ExceptionVec()
196  val flushPipe = Bool()
197  val isVset = Bool()
198  val replayInst = Bool() // redirect to that inst itself
199  val singleStep = Bool() // TODO add frontend hit beneath
200  val crossPageIPFFix = Bool()
201  val trigger = new TriggerCf
202
203//  def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend
204//  def trigger_after = trigger.getTimingBackend && trigger.getHitBackend
205  def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit
206  def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit
207  // only exceptions are allowed to writeback when enqueue
208  def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit
209}
210
211class ExceptionGen(params: BackendParams)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
212  val io = IO(new Bundle {
213    val redirect = Input(Valid(new Redirect))
214    val flush = Input(Bool())
215    val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo)))
216    // csr + load + store
217    val wb = Vec(params.numException, Flipped(ValidIO(new RobExceptionInfo)))
218    val out = ValidIO(new RobExceptionInfo)
219    val state = ValidIO(new RobExceptionInfo)
220  })
221
222  val wbExuParams = params.allExuParams.filter(_.exceptionOut.nonEmpty)
223
224  def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): RobExceptionInfo = {
225    def getOldest_recursion(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = {
226      assert(valid.length == bits.length)
227      if (valid.length == 1) {
228        (valid, bits)
229      } else if (valid.length == 2) {
230        val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0)))))
231        for (i <- res.indices) {
232          res(i).valid := valid(i)
233          res(i).bits := bits(i)
234        }
235        val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1))
236        (Seq(oldest.valid), Seq(oldest.bits))
237      } else {
238        val left = getOldest_recursion(valid.take(valid.length / 2), bits.take(valid.length / 2))
239        val right = getOldest_recursion(valid.drop(valid.length / 2), bits.drop(valid.length / 2))
240        getOldest_recursion(left._1 ++ right._1, left._2 ++ right._2)
241      }
242    }
243    getOldest_recursion(valid, bits)._2.head
244  }
245
246
247  val currentValid = RegInit(false.B)
248  val current = Reg(new RobExceptionInfo)
249
250  // orR the exceptionVec
251  val lastCycleFlush = RegNext(io.flush)
252  val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush))
253
254  // s0: compare wb in 4 groups
255  val csrvldu_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(t => t.isCsr || t.fuType == FuType.vldu).nonEmpty).map(_._1)
256  val load_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.ldu).nonEmpty).map(_._1)
257  val store_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(t => t.isSta || t.fuType == FuType.mou).nonEmpty).map(_._1)
258  val varith_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.isVecArith).nonEmpty).map(_._1)
259  // TODO: vsta_wb = ???
260
261  val writebacks = Seq(csrvldu_wb, load_wb, store_wb, varith_wb)
262  val in_wb_valids = writebacks.map(_.map(w => w.valid && w.bits.has_exception && !lastCycleFlush))
263  val wb_valid = in_wb_valids.zip(writebacks).map { case (valid, wb) =>
264    valid.zip(wb.map(_.bits)).map { case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }.reduce(_ || _)
265  }
266  val wb_bits = in_wb_valids.zip(writebacks).map { case (valid, wb) => getOldest(valid, wb.map(_.bits))}
267
268  val s0_out_valid = wb_valid.map(x => RegNext(x))
269  val s0_out_bits = wb_bits.map(x => RegNext(x))
270
271  // s1: compare last four and current flush
272  val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) })
273  val s1_out_bits = RegNext(getOldest(s0_out_valid, s0_out_bits))
274  val s1_out_valid = RegNext(s1_valid.asUInt.orR)
275
276  val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush)
277  val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits)))
278
279  // s2: compare the input exception with the current one
280  // priorities:
281  // (1) system reset
282  // (2) current is valid: flush, remain, merge, update
283  // (3) current is not valid: s1 or enq
284  val current_flush = current.robIdx.needFlush(io.redirect) || io.flush
285  val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush
286  when (currentValid) {
287    when (current_flush) {
288      currentValid := Mux(s1_flush, false.B, s1_out_valid)
289    }
290    when (s1_out_valid && !s1_flush) {
291      when (isAfter(current.robIdx, s1_out_bits.robIdx)) {
292        current := s1_out_bits
293      }.elsewhen (current.robIdx === s1_out_bits.robIdx) {
294        current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec())
295        current.flushPipe := s1_out_bits.flushPipe || current.flushPipe
296        current.replayInst := s1_out_bits.replayInst || current.replayInst
297        current.singleStep := s1_out_bits.singleStep || current.singleStep
298        current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf)
299      }
300    }
301  }.elsewhen (s1_out_valid && !s1_flush) {
302    currentValid := true.B
303    current := s1_out_bits
304  }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) {
305    currentValid := true.B
306    current := enq_bits
307  }
308
309  io.out.valid   := s1_out_valid || enq_valid && enq_bits.can_writeback
310  io.out.bits    := Mux(s1_out_valid, s1_out_bits, enq_bits)
311  io.state.valid := currentValid
312  io.state.bits  := current
313
314}
315
316class RobFlushInfo(implicit p: Parameters) extends XSBundle {
317  val ftqIdx = new FtqPtr
318  val robIdx = new RobPtr
319  val ftqOffset = UInt(log2Up(PredictWidth).W)
320  val replayInst = Bool()
321}
322
323class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter {
324  override def shouldBeInlined: Boolean = false
325
326  lazy val module = new RobImp(this)(p, params)
327}
328
329class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper)
330  with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents {
331
332  private val LduCnt = params.LduCnt
333  private val StaCnt = params.StaCnt
334
335  val io = IO(new Bundle() {
336    val hartId = Input(UInt(8.W))
337    val redirect = Input(Valid(new Redirect))
338    val enq = new RobEnqIO
339    val flushOut = ValidIO(new Redirect)
340    val exception = ValidIO(new ExceptionInfo)
341    // exu + brq
342    val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles)
343    val commits = Output(new RobCommitIO)
344    val rabCommits = Output(new RobCommitIO)
345    val diffCommits = Output(new DiffCommitIO)
346    val isVsetFlushPipe = Output(Bool())
347    val vconfigPdest = Output(UInt(PhyRegIdxWidth.W))
348    val lsq = new RobLsqIO
349    val robDeqPtr = Output(new RobPtr)
350    val csr = new RobCSRIO
351    val snpt = Input(new SnapshotPort)
352    val robFull = Output(Bool())
353    val headNotReady = Output(Bool())
354    val cpu_halt = Output(Bool())
355    val wfi_enable = Input(Bool())
356
357    val debug_ls = Flipped(new DebugLSIO)
358    val debugRobHead = Output(new DynInst)
359    val debugEnqLsq = Input(new LsqEnqIO)
360    val debugHeadLsIssue = Input(Bool())
361    val lsTopdownInfo = Vec(LduCnt, Input(new LsTopdownInfo))
362    val debugTopDown = new Bundle {
363      val toCore = new RobCoreTopDownIO
364      val toDispatch = new RobDispatchTopDownIO
365      val robHeadLqIdx = Valid(new LqPtr)
366    }
367    val debugRolling = new RobDebugRollingIO
368  })
369
370  val exuWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(!_.bits.params.hasStdFu).toSeq
371  val stdWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(_.bits.params.hasStdFu).toSeq
372  val fflagsWBs = io.writeback.filter(x => x.bits.fflags.nonEmpty)
373  val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty)
374  val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty)
375
376  val exuWbPorts = io.writeback.filter(!_.bits.params.hasStdFu)
377  val stdWbPorts = io.writeback.filter(_.bits.params.hasStdFu)
378  val fflagsPorts = io.writeback.filter(x => x.bits.fflags.nonEmpty)
379  val vxsatPorts = io.writeback.filter(x => x.bits.vxsat.nonEmpty)
380  val exceptionPorts = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty)
381  val numExuWbPorts = exuWBs.length
382  val numStdWbPorts = stdWBs.length
383
384
385  println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth")
386//  println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}")
387//  println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}")
388//  println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}")
389
390
391  // instvalid field
392  val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
393  // writeback status
394
395  val stdWritebacked = Reg(Vec(RobSize, Bool()))
396  val uopNumVec          = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W))))
397  val realDestSize       = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W))))
398  val fflagsDataModule   = RegInit(VecInit(Seq.fill(RobSize)(0.U(5.W))))
399  val vxsatDataModule    = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
400
401  def isWritebacked(ptr: UInt): Bool = {
402    !uopNumVec(ptr).orR && stdWritebacked(ptr)
403  }
404
405  def isUopWritebacked(ptr: UInt): Bool = {
406    !uopNumVec(ptr).orR
407  }
408
409  val mmio = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
410
411  // data for redirect, exception, etc.
412  val flagBkup = Mem(RobSize, Bool())
413  // some instructions are not allowed to trigger interrupts
414  // They have side effects on the states of the processor before they write back
415  val interrupt_safe = Mem(RobSize, Bool())
416
417  // data for debug
418  // Warn: debug_* prefix should not exist in generated verilog.
419  val debug_microOp = DebugMem(RobSize, new DynInst)
420  val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug
421  val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug
422  val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init)))
423  val debug_lsTopdownInfo = RegInit(VecInit(Seq.fill(RobSize)(LsTopdownInfo.init)))
424  val debug_lqIdxValid = RegInit(VecInit.fill(RobSize)(false.B))
425  val debug_lsIssued = RegInit(VecInit.fill(RobSize)(false.B))
426
427  // pointers
428  // For enqueue ptr, we don't duplicate it since only enqueue needs it.
429  val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr))
430  val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr))
431
432  dontTouch(enqPtrVec)
433  dontTouch(deqPtrVec)
434
435  val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr))
436  val lastWalkPtr = Reg(new RobPtr)
437  val allowEnqueue = RegInit(true.B)
438
439  val enqPtr = enqPtrVec.head
440  val deqPtr = deqPtrVec(0)
441  val walkPtr = walkPtrVec(0)
442
443  val isEmpty = enqPtr === deqPtr
444  val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level)
445
446  val snptEnq = io.enq.canAccept && io.enq.req.head.valid && io.enq.req.head.bits.snapshot
447  val snapshots = SnapshotGenerator(enqPtrVec, snptEnq, io.snpt.snptDeq, io.redirect.valid, io.snpt.flushVec)
448  val debug_lsIssue = WireDefault(debug_lsIssued)
449  debug_lsIssue(deqPtr.value) := io.debugHeadLsIssue
450
451  /**
452    * states of Rob
453    */
454  val s_idle :: s_walk :: Nil = Enum(2)
455  val state = RegInit(s_idle)
456
457  /**
458    * Data Modules
459    *
460    * CommitDataModule: data from dispatch
461    * (1) read: commits/walk/exception
462    * (2) write: enqueue
463    *
464    * WritebackData: data from writeback
465    * (1) read: commits/walk/exception
466    * (2) write: write back from exe units
467    */
468  val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth))
469  val dispatchDataRead = dispatchData.io.rdata
470
471  val exceptionGen = Module(new ExceptionGen(params))
472  val exceptionDataRead = exceptionGen.io.state
473  val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W)))
474  val vxsatDataRead = Wire(Vec(CommitWidth, Bool()))
475
476  io.robDeqPtr := deqPtr
477  io.debugRobHead := debug_microOp(deqPtr.value)
478
479  val rab = Module(new RenameBuffer(RabSize))
480
481  rab.io.redirect.valid := io.redirect.valid
482
483  rab.io.req.zip(io.enq.req).map { case (dest, src) =>
484    dest.bits := src.bits
485    dest.valid := src.valid && io.enq.canAccept
486  }
487
488  val commitDestSizeSeq = (0 until CommitWidth).map(i => realDestSize(deqPtrVec(i).value))
489  val walkDestSizeSeq = (0 until CommitWidth).map(i => realDestSize(walkPtrVec(i).value))
490
491  val commitSizeSum = io.commits.commitValid.zip(commitDestSizeSeq).map { case (commitValid, destSize) =>
492    Mux(io.commits.isCommit && commitValid, destSize, 0.U)
493  }.reduce(_ +& _)
494  val walkSizeSum = io.commits.walkValid.zip(walkDestSizeSeq).map { case (walkValid, destSize) =>
495    Mux(io.commits.isWalk && walkValid, destSize, 0.U)
496  }.reduce(_ +& _)
497
498  rab.io.fromRob.commitSize := commitSizeSum
499  rab.io.fromRob.walkSize := walkSizeSum
500  rab.io.snpt := io.snpt
501  rab.io.snpt.snptEnq := snptEnq
502
503  io.rabCommits := rab.io.commits
504  io.diffCommits := rab.io.diffCommits
505
506  /**
507    * Enqueue (from dispatch)
508    */
509  // special cases
510  val hasBlockBackward = RegInit(false.B)
511  val hasWaitForward = RegInit(false.B)
512  val doingSvinval = RegInit(false.B)
513  // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B
514  // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty.
515  when (isEmpty) { hasBlockBackward:= false.B }
516  // When any instruction commits, hasNoSpecExec should be set to false.B
517  when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasWaitForward:= false.B }
518
519  // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing.
520  // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle.
521  // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts.
522  val hasWFI = RegInit(false.B)
523  io.cpu_halt := hasWFI
524  // WFI Timeout: 2^20 = 1M cycles
525  val wfi_cycles = RegInit(0.U(20.W))
526  when (hasWFI) {
527    wfi_cycles := wfi_cycles + 1.U
528  }.elsewhen (!hasWFI && RegNext(hasWFI)) {
529    wfi_cycles := 0.U
530  }
531  val wfi_timeout = wfi_cycles.andR
532  when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) {
533    hasWFI := false.B
534  }
535
536  val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.req.take(i).map(req => req.valid && req.bits.firstUop)))))
537  io.enq.canAccept := allowEnqueue && !hasBlockBackward && rab.io.canEnq
538  io.enq.resp      := allocatePtrVec
539  val canEnqueue = VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop && io.enq.canAccept))
540  val timer = GTimer()
541  for (i <- 0 until RenameWidth) {
542    // we don't check whether io.redirect is valid here since redirect has higher priority
543    when (canEnqueue(i)) {
544      val enqUop = io.enq.req(i).bits
545      val enqIndex = allocatePtrVec(i).value
546      // store uop in data module and debug_microOp Vec
547      debug_microOp(enqIndex) := enqUop
548      debug_microOp(enqIndex).debugInfo.dispatchTime := timer
549      debug_microOp(enqIndex).debugInfo.enqRsTime := timer
550      debug_microOp(enqIndex).debugInfo.selectTime := timer
551      debug_microOp(enqIndex).debugInfo.issueTime := timer
552      debug_microOp(enqIndex).debugInfo.writebackTime := timer
553      debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer
554      debug_microOp(enqIndex).debugInfo.tlbRespTime := timer
555      debug_lsInfo(enqIndex) := DebugLsInfo.init
556      debug_lsTopdownInfo(enqIndex) := LsTopdownInfo.init
557      debug_lqIdxValid(enqIndex) := false.B
558      debug_lsIssued(enqIndex) := false.B
559
560      when (enqUop.blockBackward) {
561        hasBlockBackward := true.B
562      }
563      when (enqUop.waitForward) {
564        hasWaitForward := true.B
565      }
566      val enqHasTriggerHit = false.B // io.enq.req(i).bits.cf.trigger.getHitFrontend
567      val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR
568      // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process
569      when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe))
570      {
571        doingSvinval := true.B
572      }
573      // the end instruction of Svinval enqs so clear doingSvinval
574      when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe))
575      {
576        doingSvinval := false.B
577      }
578      // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear
579      assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe)))
580      when (enqUop.isWFI && !enqHasException && !enqHasTriggerHit) {
581        hasWFI := true.B
582      }
583
584      mmio(enqIndex) := false.B
585    }
586  }
587  val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(req => req.valid && req.bits.firstUop)), 0.U)
588  io.enq.isEmpty   := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR)
589
590  when (!io.wfi_enable) {
591    hasWFI := false.B
592  }
593  // sel vsetvl's flush position
594  val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3)
595  val vsetvlState = RegInit(vs_idle)
596
597  val firstVInstrFtqPtr    = RegInit(0.U.asTypeOf(new FtqPtr))
598  val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W)))
599  val firstVInstrRobIdx    = RegInit(0.U.asTypeOf(new RobPtr))
600
601  val enq0            = io.enq.req(0)
602  val enq0IsVset      = enq0.bits.isVset && enq0.bits.lastUop && canEnqueue(0)
603  val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe
604  val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVArith(req.bits.fuType) && fire}
605  // for vs_idle
606  val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType)))
607  // for vs_waitVinstr
608  val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1)
609  val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req)
610  when(vsetvlState === vs_idle){
611    firstVInstrFtqPtr    := firstVInstrIdle.bits.ftqPtr
612    firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset
613    firstVInstrRobIdx    := firstVInstrIdle.bits.robIdx
614  }.elsewhen(vsetvlState === vs_waitVinstr){
615    when(Cat(enqIsVInstrOrVset).orR){
616      firstVInstrFtqPtr := firstVInstrWait.bits.ftqPtr
617      firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset
618      firstVInstrRobIdx := firstVInstrWait.bits.robIdx
619    }
620  }
621
622  val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR
623  when(vsetvlState === vs_idle && !io.redirect.valid){
624    when(enq0IsVsetFlush){
625      vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr)
626    }
627  }.elsewhen(vsetvlState === vs_waitVinstr){
628    when(io.redirect.valid){
629      vsetvlState := vs_idle
630    }.elsewhen(Cat(enqIsVInstrOrVset).orR){
631      vsetvlState := vs_waitFlush
632    }
633  }.elsewhen(vsetvlState === vs_waitFlush){
634    when(io.redirect.valid){
635      vsetvlState := vs_idle
636    }
637  }
638
639  // lqEnq
640  io.debugEnqLsq.needAlloc.map(_(0)).zip(io.debugEnqLsq.req).foreach { case (alloc, req) =>
641    when(io.debugEnqLsq.canAccept && alloc && req.valid) {
642      debug_microOp(req.bits.robIdx.value).lqIdx := req.bits.lqIdx
643      debug_lqIdxValid(req.bits.robIdx.value) := true.B
644    }
645  }
646
647  // lsIssue
648  when(io.debugHeadLsIssue) {
649    debug_lsIssued(deqPtr.value) := true.B
650  }
651
652  /**
653    * Writeback (from execution units)
654    */
655  for (wb <- exuWBs) {
656    when (wb.valid) {
657      val wbIdx = wb.bits.robIdx.value
658      debug_exuData(wbIdx) := wb.bits.data
659      debug_exuDebug(wbIdx) := wb.bits.debug
660      debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime
661      debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime
662      debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime
663      debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime
664
665      // debug for lqidx and sqidx
666      debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr))
667      debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr))
668
669      val debug_Uop = debug_microOp(wbIdx)
670      XSInfo(true.B,
671        p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " +
672        p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " +
673        p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.robIdx}\n"
674      )
675    }
676  }
677
678  val writebackNum = PopCount(exuWBs.map(_.valid))
679  XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum)
680
681  for (i <- 0 until LoadPipelineWidth) {
682    when (RegNext(io.lsq.mmio(i))) {
683      mmio(RegNext(io.lsq.uop(i).robIdx).value) := true.B
684    }
685  }
686
687  /**
688    * RedirectOut: Interrupt and Exceptions
689    */
690  val deqDispatchData = dispatchDataRead(0)
691  val debug_deqUop = debug_microOp(deqPtr.value)
692
693  val intrBitSetReg = RegNext(io.csr.intrBitSet)
694  val intrEnable = intrBitSetReg && !hasWaitForward && interrupt_safe(deqPtr.value)
695  val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr
696  val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR ||
697    exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit)
698  val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe
699  val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst
700  val exceptionEnable = isWritebacked(deqPtr.value) && deqHasException
701
702  XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n")
703  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n")
704  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n")
705
706  val isFlushPipe = isWritebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst)
707
708  val isVsetFlushPipe = isWritebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset
709//  val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush)
710  val needModifyFtqIdxOffset = false.B
711  io.isVsetFlushPipe := isVsetFlushPipe
712  io.vconfigPdest := rab.io.vconfigPdest
713  // io.flushOut will trigger redirect at the next cycle.
714  // Block any redirect or commit at the next cycle.
715  val lastCycleFlush = RegNext(io.flushOut.valid)
716
717  io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush
718  io.flushOut.bits := DontCare
719  io.flushOut.bits.isRVC := deqDispatchData.isRVC
720  io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr)
721  io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx)
722  io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset)
723  io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next"
724  io.flushOut.bits.interrupt := true.B
725  XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable)
726  XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable)
727  XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe)
728  XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst)
729
730  val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush
731  io.exception.valid                := RegNext(exceptionHappen)
732  io.exception.bits.pc              := RegEnable(debug_deqUop.pc, exceptionHappen)
733  io.exception.bits.instr           := RegEnable(debug_deqUop.instr, exceptionHappen)
734  io.exception.bits.commitType      := RegEnable(deqDispatchData.commitType, exceptionHappen)
735  io.exception.bits.exceptionVec    := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen)
736  io.exception.bits.singleStep      := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen)
737  io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen)
738  io.exception.bits.isInterrupt     := RegEnable(intrEnable, exceptionHappen)
739//  io.exception.bits.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen)
740
741  XSDebug(io.flushOut.valid,
742    p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " +
743    p"excp $exceptionEnable flushPipe $isFlushPipe " +
744    p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n")
745
746
747  /**
748    * Commits (and walk)
749    * They share the same width.
750    */
751  val shouldWalkVec = VecInit(walkPtrVec.map(_ <= lastWalkPtr))
752  val walkFinished = VecInit(walkPtrVec.map(_ >= lastWalkPtr)).asUInt.orR
753  rab.io.fromRob.walkEnd := state === s_walk && walkFinished
754
755  require(RenameWidth <= CommitWidth)
756
757  // wiring to csr
758  val (wflags, dirtyFs) = (0 until CommitWidth).map(i => {
759    val v = io.commits.commitValid(i)
760    val info = io.commits.info(i)
761    (v & info.wflags, v & info.dirtyFs)
762  }).unzip
763  val fflags = Wire(Valid(UInt(5.W)))
764  fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR
765  fflags.bits := wflags.zip(fflagsDataRead).map({
766    case (w, f) => Mux(w, f, 0.U)
767  }).reduce(_|_)
768  val dirty_fs = io.commits.isCommit && VecInit(dirtyFs).asUInt.orR
769
770  val vxsat = Wire(Valid(Bool()))
771  vxsat.valid := io.commits.isCommit && vxsat.bits
772  vxsat.bits := io.commits.commitValid.zip(vxsatDataRead).map {
773    case (valid, vxsat) => valid & vxsat
774  }.reduce(_ | _)
775
776  // when mispredict branches writeback, stop commit in the next 2 cycles
777  // TODO: don't check all exu write back
778  val misPredWb = Cat(VecInit(redirectWBs.map(wb =>
779    wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid
780  ).toSeq)).orR
781  val misPredBlockCounter = Reg(UInt(3.W))
782  misPredBlockCounter := Mux(misPredWb,
783    "b111".U,
784    misPredBlockCounter >> 1.U
785  )
786  val misPredBlock = misPredBlockCounter(0)
787  val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI || io.redirect.valid
788
789  io.commits.isWalk := state === s_walk
790  io.commits.isCommit := state === s_idle && !blockCommit
791  val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value)))
792  val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value)))
793  // store will be commited iff both sta & std have been writebacked
794  val commit_w = VecInit(deqPtrVec.map(ptr => isWritebacked(ptr.value)))
795  val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last)
796  val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i)))
797  val allowOnlyOneCommit = commit_exception || intrBitSetReg
798  // for instructions that may block others, we don't allow them to commit
799  for (i <- 0 until CommitWidth) {
800    // defaults: state === s_idle and instructions commit
801    // when intrBitSetReg, allow only one instruction to commit at each clock cycle
802    val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst
803    io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked
804    io.commits.info(i) := dispatchDataRead(i)
805    io.commits.robIdx(i) := deqPtrVec(i)
806
807    io.commits.walkValid(i) := shouldWalkVec(i)
808    when (state === s_walk) {
809      when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) {
810        XSError(!walk_v(i), s"The walking entry($i) should be valid\n")
811      }
812    }
813
814    XSInfo(io.commits.isCommit && io.commits.commitValid(i),
815      "retired pc %x wen %d ldest %d pdest %x data %x fflags: %b vxsat: %b\n",
816      debug_microOp(deqPtrVec(i).value).pc,
817      io.commits.info(i).rfWen,
818      io.commits.info(i).ldest,
819      io.commits.info(i).pdest,
820      debug_exuData(deqPtrVec(i).value),
821      fflagsDataRead(i),
822      vxsatDataRead(i)
823    )
824    XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n",
825      debug_microOp(walkPtrVec(i).value).pc,
826      io.commits.info(i).rfWen,
827      io.commits.info(i).ldest,
828      debug_exuData(walkPtrVec(i).value)
829    )
830  }
831  if (env.EnableDifftest) {
832    io.commits.info.map(info => dontTouch(info.pc))
833  }
834
835  // sync fflags/dirty_fs/vxsat to csr
836  io.csr.fflags := RegNext(fflags)
837  io.csr.dirty_fs := RegNext(dirty_fs)
838  io.csr.vxsat := RegNext(vxsat)
839
840  // sync v csr to csr
841  // for difftest
842  if(env.AlwaysBasicDiff || env.EnableDifftest) {
843    val isDiffWriteVconfigVec = io.diffCommits.commitValid.zip(io.diffCommits.info).map { case (valid, info) => valid && info.ldest === VCONFIG_IDX.U && info.vecWen }.reverse
844    io.csr.vcsrFlag := RegNext(io.diffCommits.isCommit && Cat(isDiffWriteVconfigVec).orR)
845  }
846  else{
847    io.csr.vcsrFlag := false.B
848  }
849
850  // commit load/store to lsq
851  val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD))
852  val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE))
853  io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U))
854  io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U))
855  // indicate a pending load or store
856  io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value) && mmio(deqPtr.value))
857  io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value))
858  io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0))
859  io.lsq.pendingPtr := RegNext(deqPtr)
860
861  /**
862    * state changes
863    * (1) redirect: switch to s_walk
864    * (2) walk: when walking comes to the end, switch to s_idle
865    */
866  val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished && rab.io.status.walkEnd, s_idle, state))
867  XSPerfAccumulate("s_idle_to_idle",            state === s_idle && state_next === s_idle)
868  XSPerfAccumulate("s_idle_to_walk",            state === s_idle && state_next === s_walk)
869  XSPerfAccumulate("s_walk_to_idle",            state === s_walk && state_next === s_idle)
870  XSPerfAccumulate("s_walk_to_walk",            state === s_walk && state_next === s_walk)
871  state := state_next
872
873  /**
874    * pointers and counters
875    */
876  val deqPtrGenModule = Module(new RobDeqPtrWrapper)
877  deqPtrGenModule.io.state := state
878  deqPtrGenModule.io.deq_v := commit_v
879  deqPtrGenModule.io.deq_w := commit_w
880  deqPtrGenModule.io.exception_state := exceptionDataRead
881  deqPtrGenModule.io.intrBitSetReg := intrBitSetReg
882  deqPtrGenModule.io.hasNoSpecExec := hasWaitForward
883  deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value)
884  deqPtrGenModule.io.blockCommit := blockCommit
885  deqPtrVec := deqPtrGenModule.io.out
886  val deqPtrVec_next = deqPtrGenModule.io.next_out
887
888  val enqPtrGenModule = Module(new RobEnqPtrWrapper)
889  enqPtrGenModule.io.redirect := io.redirect
890  enqPtrGenModule.io.allowEnqueue := allowEnqueue && rab.io.canEnq
891  enqPtrGenModule.io.hasBlockBackward := hasBlockBackward
892  enqPtrGenModule.io.enq := VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop))
893  enqPtrVec := enqPtrGenModule.io.out
894
895  // next walkPtrVec:
896  // (1) redirect occurs: update according to state
897  // (2) walk: move forwards
898  val walkPtrVec_next = Mux(io.redirect.valid,
899    Mux(io.snpt.useSnpt, snapshots(io.snpt.snptSelect), deqPtrVec_next),
900    Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec)
901  )
902  walkPtrVec := walkPtrVec_next
903
904  val numValidEntries = distanceBetween(enqPtr, deqPtr)
905  val commitCnt = PopCount(io.commits.commitValid)
906
907  allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U
908
909  val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0))
910  when (io.redirect.valid) {
911    lastWalkPtr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx - 1.U, io.redirect.bits.robIdx)
912  }
913
914
915  /**
916    * States
917    * We put all the stage bits changes here.
918
919    * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit);
920    * All states: (1) valid; (2) writebacked; (3) flagBkup
921    */
922  val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value)))
923
924  // redirect logic writes 6 valid
925  val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr))
926  val redirectTail = Reg(new RobPtr)
927  val redirectIdle :: redirectBusy :: Nil = Enum(2)
928  val redirectState = RegInit(redirectIdle)
929  val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail))
930  when(redirectState === redirectBusy) {
931    redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U)
932    redirectHeadVec zip invMask foreach {
933      case (redirectHead, inv) => when(inv) {
934        valid(redirectHead.value) := false.B
935      }
936    }
937    when(!invMask.last) {
938      redirectState := redirectIdle
939    }
940  }
941  when(io.redirect.valid) {
942    redirectState := redirectBusy
943    when(redirectState === redirectIdle) {
944      redirectTail := enqPtr
945    }
946    redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) =>
947      redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
948    }
949  }
950  // enqueue logic writes 6 valid
951  for (i <- 0 until RenameWidth) {
952    when (canEnqueue(i) && !io.redirect.valid) {
953      valid(allocatePtrVec(i).value) := true.B
954    }
955  }
956  // dequeue logic writes 6 valid
957  for (i <- 0 until CommitWidth) {
958    val commitValid = io.commits.isCommit && io.commits.commitValid(i)
959    when (commitValid) {
960      valid(commitReadAddr(i)) := false.B
961    }
962  }
963
964  // debug_inst update
965  for(i <- 0 until (LduCnt + StaCnt)) {
966    debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i))
967    debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i))
968  }
969  for (i <- 0 until LduCnt) {
970    debug_lsTopdownInfo(io.lsTopdownInfo(i).s1.robIdx).s1SignalEnable(io.lsTopdownInfo(i))
971    debug_lsTopdownInfo(io.lsTopdownInfo(i).s2.robIdx).s2SignalEnable(io.lsTopdownInfo(i))
972  }
973
974  // writeback logic set numWbPorts writebacked to true
975  val blockWbSeq = Wire(Vec(exuWBs.length, Bool()))
976  blockWbSeq.map(_ := false.B)
977  for ((wb, blockWb) <- exuWBs.zip(blockWbSeq)) {
978    when(wb.valid) {
979      val wbHasException = wb.bits.exceptionVec.getOrElse(0.U).asUInt.orR
980      val wbHasTriggerHit = false.B //Todo: wb.bits.trigger.getHitBackend
981      val wbHasFlushPipe = wb.bits.flushPipe.getOrElse(false.B)
982      val wbHasReplayInst = wb.bits.replay.getOrElse(false.B) //Todo: && wb.bits.replayInst
983      blockWb := wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit
984    }
985  }
986
987  // if the first uop of an instruction is valid , write writebackedCounter
988  val uopEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid)
989  val instEnqValidSeq = io.enq.req.map (req => io.enq.canAccept && req.valid && req.bits.firstUop)
990  val enqNeedWriteRFSeq = io.enq.req.map(_.bits.needWriteRf)
991  val enqRobIdxSeq = io.enq.req.map(req => req.bits.robIdx.value)
992  val enqUopNumVec = VecInit(io.enq.req.map(req => req.bits.numUops))
993  val enqEliminatedMoveVec = VecInit(io.enq.req.map(req => req.bits.eliminatedMove))
994
995  private val enqWriteStdVec: Vec[Bool] = VecInit(io.enq.req.map {
996    req => FuType.isAMO(req.bits.fuType) || FuType.isStore(req.bits.fuType)
997  })
998  val fflags_wb = fflagsPorts
999  val vxsat_wb = vxsatPorts
1000  for(i <- 0 until RobSize){
1001
1002    val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === i.U)
1003    val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch }
1004    val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch }
1005    val instCanEnqFlag = Cat(instCanEnqSeq).orR
1006
1007    realDestSize(i) := Mux(!valid(i) && instCanEnqFlag || valid(i), realDestSize(i) + PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map{ case(writeFlag, valid) => writeFlag && valid }), 0.U)
1008
1009    val enqUopNum = PriorityMux(instCanEnqSeq, enqUopNumVec)
1010    val enqEliminatedMove = PriorityMux(instCanEnqSeq, enqEliminatedMoveVec)
1011    val enqWriteStd = PriorityMux(instCanEnqSeq, enqWriteStdVec)
1012
1013    val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)
1014    val canWbNoBlockSeq = canWbSeq.zip(blockWbSeq).map{ case(canWb, blockWb) => canWb && !blockWb }
1015    val canStdWbSeq = VecInit(stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U))
1016    val wbCnt = PopCount(canWbNoBlockSeq)
1017
1018    val exceptionHas = RegInit(false.B)
1019    val exceptionHasWire = Wire(Bool())
1020    exceptionHasWire := MuxCase(exceptionHas, Seq(
1021      (valid(i) && exceptionGen.io.out.valid && exceptionGen.io.out.bits.robIdx.value === i.U) -> true.B,
1022      !valid(i) -> false.B
1023    ))
1024    exceptionHas := exceptionHasWire
1025
1026    when (exceptionHas || exceptionHasWire) {
1027      // exception flush
1028      uopNumVec(i) := 0.U
1029      stdWritebacked(i) := true.B
1030    }.elsewhen(!valid(i) && instCanEnqFlag) {
1031      // enq set num of uops
1032      uopNumVec(i) := enqUopNum
1033      stdWritebacked(i) := Mux(enqWriteStd, false.B, true.B)
1034    }.elsewhen(valid(i)) {
1035      // update by writing back
1036      uopNumVec(i) := uopNumVec(i) - wbCnt
1037      when (canStdWbSeq.asUInt.orR) {
1038        stdWritebacked(i) := true.B
1039      }
1040    }.otherwise {
1041      uopNumVec(i) := 0.U
1042    }
1043
1044    val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U && writeback.bits.wflags.getOrElse(false.B))
1045    val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.fold(false.B)(_ | _)
1046    fflagsDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, fflagsDataModule(i) | fflagsRes)
1047
1048    val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)
1049    val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.fold(false.B)(_ | _)
1050    vxsatDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, vxsatDataModule(i) | vxsatRes)
1051  }
1052
1053  // flagBkup
1054  // enqueue logic set 6 flagBkup at most
1055  for (i <- 0 until RenameWidth) {
1056    when (canEnqueue(i)) {
1057      flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag
1058    }
1059  }
1060
1061  // interrupt_safe
1062  for (i <- 0 until RenameWidth) {
1063    // We RegNext the updates for better timing.
1064    // Note that instructions won't change the system's states in this cycle.
1065    when (RegNext(canEnqueue(i))) {
1066      // For now, we allow non-load-store instructions to trigger interrupts
1067      // For MMIO instructions, they should not trigger interrupts since they may
1068      // be sent to lower level before it writes back.
1069      // However, we cannot determine whether a load/store instruction is MMIO.
1070      // Thus, we don't allow load/store instructions to trigger an interrupt.
1071      // TODO: support non-MMIO load-store instructions to trigger interrupts
1072      val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType)
1073      interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts)
1074    }
1075  }
1076
1077  /**
1078    * read and write of data modules
1079    */
1080  val commitReadAddr_next = Mux(state_next === s_idle,
1081    VecInit(deqPtrVec_next.map(_.value)),
1082    VecInit(walkPtrVec_next.map(_.value))
1083  )
1084  dispatchData.io.wen := canEnqueue
1085  dispatchData.io.waddr := allocatePtrVec.map(_.value)
1086  dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).zipWithIndex.foreach { case ((wdata, req), portIdx) =>
1087    wdata.ldest := req.ldest
1088    wdata.rfWen := req.rfWen
1089    wdata.dirtyFs := req.dirtyFs
1090    wdata.vecWen := req.vecWen
1091    wdata.wflags := req.wfflags
1092    wdata.commitType := req.commitType
1093    wdata.pdest := req.pdest
1094    wdata.ftqIdx := req.ftqPtr
1095    wdata.ftqOffset := req.ftqOffset
1096    wdata.isMove := req.eliminatedMove
1097    wdata.isRVC := req.preDecodeInfo.isRVC
1098    wdata.pc := req.pc
1099    wdata.vtype := req.vpu.vtype
1100    wdata.isVset := req.isVset
1101    wdata.instrSize := req.instrSize
1102  }
1103  dispatchData.io.raddr := commitReadAddr_next
1104
1105  exceptionGen.io.redirect <> io.redirect
1106  exceptionGen.io.flush := io.flushOut.valid
1107
1108  val canEnqueueEG = VecInit(io.enq.req.map(req => req.valid && io.enq.canAccept))
1109  for (i <- 0 until RenameWidth) {
1110    exceptionGen.io.enq(i).valid := canEnqueueEG(i)
1111    exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx
1112    exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec)
1113    exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe
1114    exceptionGen.io.enq(i).bits.isVset := io.enq.req(i).bits.isVset
1115    exceptionGen.io.enq(i).bits.replayInst := false.B
1116    XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst")
1117    exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep
1118    exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix
1119    exceptionGen.io.enq(i).bits.trigger.clear()
1120    exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.trigger.frontendHit
1121  }
1122
1123  println(s"ExceptionGen:")
1124  println(s"num of exceptions: ${params.numException}")
1125  require(exceptionWBs.length == exceptionGen.io.wb.length,
1126    f"exceptionWBs.length: ${exceptionWBs.length}, " +
1127      f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}")
1128  for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) {
1129    exc_wb.valid                := wb.valid
1130    exc_wb.bits.robIdx          := wb.bits.robIdx
1131    exc_wb.bits.exceptionVec    := wb.bits.exceptionVec.get
1132    exc_wb.bits.flushPipe       := wb.bits.flushPipe.getOrElse(false.B)
1133    exc_wb.bits.isVset          := false.B
1134    exc_wb.bits.replayInst      := wb.bits.replay.getOrElse(false.B)
1135    exc_wb.bits.singleStep      := false.B
1136    exc_wb.bits.crossPageIPFFix := false.B
1137    exc_wb.bits.trigger         := 0.U.asTypeOf(exc_wb.bits.trigger) // Todo
1138//    println(s"  [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " +
1139//      s"flushPipe ${configs.exists(_.flushPipe)}, " +
1140//      s"replayInst ${configs.exists(_.replayInst)}")
1141  }
1142
1143  fflagsDataRead := (0 until CommitWidth).map(i => fflagsDataModule(deqPtrVec(i).value))
1144  vxsatDataRead := (0 until CommitWidth).map(i => vxsatDataModule(deqPtrVec(i).value))
1145
1146  val instrCntReg = RegInit(0.U(64.W))
1147  val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) })
1148  val trueCommitCnt = RegNext(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => Mux(v, i.instrSize, 0.U) }.reduce(_ +& _)) +& fuseCommitCnt
1149  val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U)
1150  val instrCnt = instrCntReg + retireCounter
1151  instrCntReg := instrCnt
1152  io.csr.perfinfo.retiredInstr := retireCounter
1153  io.robFull := !allowEnqueue
1154  io.headNotReady := commit_v.head && !commit_w.head
1155
1156  /**
1157    * debug info
1158    */
1159  XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n")
1160  XSDebug("")
1161  XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n")
1162  for(i <- 0 until RobSize) {
1163    XSDebug(false, !valid(i), "-")
1164    XSDebug(false, valid(i) && isWritebacked(i.U), "w")
1165    XSDebug(false, valid(i) && !isWritebacked(i.U), "v")
1166  }
1167  XSDebug(false, true.B, "\n")
1168
1169  for(i <- 0 until RobSize) {
1170    if (i % 4 == 0) XSDebug("")
1171    XSDebug(false, true.B, "%x ", debug_microOp(i).pc)
1172    XSDebug(false, !valid(i), "- ")
1173    XSDebug(false, valid(i) && isWritebacked(i.U), "w ")
1174    XSDebug(false, valid(i) && !isWritebacked(i.U), "v ")
1175    if (i % 4 == 3) XSDebug(false, true.B, "\n")
1176  }
1177
1178  def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U)
1179  def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U)
1180
1181  val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_))
1182  XSPerfAccumulate("clock_cycle", 1.U)
1183  QueuePerf(RobSize, numValidEntries, numValidEntries === RobSize.U)
1184  XSPerfAccumulate("commitUop", ifCommit(commitCnt))
1185  XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt))
1186  XSPerfRolling("ipc", ifCommitReg(trueCommitCnt), 1000, clock, reset)
1187  XSPerfRolling("cpi", perfCnt = 1.U/*Cycle*/, eventTrigger = ifCommitReg(trueCommitCnt), granularity = 1000, clock, reset)
1188  val commitIsMove = commitDebugUop.map(_.isMove)
1189  XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })))
1190  val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove)
1191  XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e })))
1192  XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt))
1193  val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD)
1194  val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t }
1195  XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid)))
1196  val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH)
1197  val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t }
1198  XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid)))
1199  val commitLoadWaitBit = commitDebugUop.map(_.loadWaitBit)
1200  XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })))
1201  val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE)
1202  XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })))
1203  XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && isWritebacked(i.U))))
1204  // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire)))
1205  // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready)))
1206  XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U))
1207  XSPerfAccumulate("walkCycleTotal", state === s_walk)
1208  XSPerfAccumulate("waitRabWalkEnd", state === s_walk && walkFinished && !rab.io.status.walkEnd)
1209  private val walkCycle = RegInit(0.U(8.W))
1210  private val waitRabWalkCycle = RegInit(0.U(8.W))
1211  walkCycle := Mux(io.redirect.valid, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U))
1212  waitRabWalkCycle := Mux(state === s_walk && walkFinished, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U))
1213
1214  XSPerfHistogram("walkRobCycleHist", walkCycle, state === s_walk && walkFinished, 0, 32)
1215  XSPerfHistogram("walkRabExtraCycleHist", waitRabWalkCycle, state === s_walk && walkFinished && rab.io.status.walkEnd, 0, 32)
1216  XSPerfHistogram("walkTotalCycleHist", walkCycle, state === s_walk && state_next === s_idle, 0, 32)
1217
1218  private val deqNotWritebacked = valid(deqPtr.value) && !isWritebacked(deqPtr.value)
1219  private val deqStdNotWritebacked = valid(deqPtr.value) && !stdWritebacked(deqPtr.value)
1220  private val deqUopNotWritebacked = valid(deqPtr.value) && !isUopWritebacked(deqPtr.value)
1221  private val deqHeadInfo = debug_microOp(deqPtr.value)
1222  val deqUopCommitType = io.commits.info(0).commitType
1223
1224  XSPerfAccumulate("waitAluCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.alu.U)
1225  XSPerfAccumulate("waitMulCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.mul.U)
1226  XSPerfAccumulate("waitDivCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.div.U)
1227  XSPerfAccumulate("waitBrhCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.brh.U)
1228  XSPerfAccumulate("waitJmpCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.jmp.U)
1229  XSPerfAccumulate("waitCsrCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.csr.U)
1230  XSPerfAccumulate("waitFenCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.fence.U)
1231  XSPerfAccumulate("waitBkuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.bku.U)
1232  XSPerfAccumulate("waitLduCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.ldu.U)
1233  XSPerfAccumulate("waitStuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.stu.U)
1234  XSPerfAccumulate("waitStaCycle", deqUopNotWritebacked && deqHeadInfo.fuType === FuType.stu.U)
1235  XSPerfAccumulate("waitStdCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.stu.U)
1236  XSPerfAccumulate("waitAtmCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.mou.U)
1237
1238  XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL)
1239  XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH)
1240  XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD)
1241  XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE)
1242  XSPerfAccumulate("robHeadPC", io.commits.info(0).pc)
1243  XSPerfAccumulate("commitCompressCntAll", PopCount(io.commits.commitValid.zip(io.commits.info).map{case(valid, info) => io.commits.isCommit && valid && info.instrSize > 1.U}))
1244  (2 to RenameWidth).foreach(i =>
1245    XSPerfAccumulate(s"commitCompressCnt${i}", PopCount(io.commits.commitValid.zip(io.commits.info).map{case(valid, info) => io.commits.isCommit && valid && info.instrSize === i.U}))
1246  )
1247  XSPerfAccumulate("compressSize", io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => Mux(io.commits.isCommit && valid && info.instrSize > 1.U, info.instrSize, 0.U) }.reduce(_ +& _))
1248  val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime)
1249  val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime)
1250  val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime)
1251  val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime)
1252  val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime)
1253  val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime)
1254  val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime)
1255  def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = {
1256    cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _)
1257  }
1258  for (fuType <- FuType.functionNameMap.keys) {
1259    val fuName = FuType.functionNameMap(fuType)
1260    val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U )
1261    XSPerfRolling(s"ipc_futype_${fuName}", ifCommit(PopCount(commitIsFuType)), 1000, clock, reset)
1262    XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType)))
1263    XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency)))
1264    XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency)))
1265    XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency)))
1266    XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency)))
1267    XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency)))
1268    XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency)))
1269    XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency)))
1270  }
1271  XSPerfAccumulate(s"redirect_use_snapshot", io.redirect.valid && io.snpt.useSnpt)
1272
1273  // top-down info
1274  io.debugTopDown.toCore.robHeadVaddr.valid := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_valid
1275  io.debugTopDown.toCore.robHeadVaddr.bits  := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_bits
1276  io.debugTopDown.toCore.robHeadPaddr.valid := debug_lsTopdownInfo(deqPtr.value).s2.paddr_valid
1277  io.debugTopDown.toCore.robHeadPaddr.bits  := debug_lsTopdownInfo(deqPtr.value).s2.paddr_bits
1278  io.debugTopDown.toDispatch.robTrueCommit := ifCommitReg(trueCommitCnt)
1279  io.debugTopDown.toDispatch.robHeadLsIssue := debug_lsIssue(deqPtr.value)
1280  io.debugTopDown.robHeadLqIdx.valid := debug_lqIdxValid(deqPtr.value)
1281  io.debugTopDown.robHeadLqIdx.bits  := debug_microOp(deqPtr.value).lqIdx
1282
1283  // rolling
1284  io.debugRolling.robTrueCommit := ifCommitReg(trueCommitCnt)
1285
1286  /**
1287    * DataBase info:
1288    * log trigger is at writeback valid
1289    * */
1290
1291  /**
1292    * @todo add InstInfoEntry back
1293    * @author Maxpicca-Li
1294    */
1295
1296  //difftest signals
1297  val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value
1298
1299  val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1300  val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1301
1302  for(i <- 0 until CommitWidth) {
1303    val idx = deqPtrVec(i).value
1304    wdata(i) := debug_exuData(idx)
1305    wpc(i) := SignExt(commitDebugUop(i).pc, XLEN)
1306  }
1307
1308  if (env.EnableDifftest || env.AlwaysBasicDiff) {
1309    // These are the structures used by difftest only and should be optimized after synthesis.
1310    val dt_eliminatedMove = Mem(RobSize, Bool())
1311    val dt_isRVC = Mem(RobSize, Bool())
1312    val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle))
1313    for (i <- 0 until RenameWidth) {
1314      when (canEnqueue(i)) {
1315        dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove
1316        dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC
1317      }
1318    }
1319    for (wb <- exuWBs) {
1320      when (wb.valid) {
1321        val wbIdx = wb.bits.robIdx.value
1322        dt_exuDebug(wbIdx) := wb.bits.debug
1323      }
1324    }
1325    // Always instantiate basic difftest modules.
1326    for (i <- 0 until CommitWidth) {
1327      val uop = commitDebugUop(i)
1328      val commitInfo = io.commits.info(i)
1329      val ptr = deqPtrVec(i).value
1330      val exuOut = dt_exuDebug(ptr)
1331      val eliminatedMove = dt_eliminatedMove(ptr)
1332      val isRVC = dt_isRVC(ptr)
1333
1334      val difftest = DifftestModule(new DiffInstrCommit(MaxPhyPregs), delay = 3, dontCare = true)
1335      difftest.coreid  := io.hartId
1336      difftest.index   := i.U
1337      difftest.valid   := io.commits.commitValid(i) && io.commits.isCommit
1338      difftest.skip    := Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)
1339      difftest.isRVC   := isRVC
1340      difftest.rfwen   := io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U
1341      difftest.fpwen   := io.commits.commitValid(i) && uop.fpWen
1342      difftest.wpdest  := commitInfo.pdest
1343      difftest.wdest   := commitInfo.ldest
1344      difftest.nFused  := CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize - 1.U
1345      when(difftest.valid) {
1346        assert(CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize >= 1.U)
1347      }
1348      if (env.EnableDifftest) {
1349        val uop = commitDebugUop(i)
1350        difftest.pc       := SignExt(uop.pc, XLEN)
1351        difftest.instr    := uop.instr
1352        difftest.robIdx   := ZeroExt(ptr, 10)
1353        difftest.lqIdx    := ZeroExt(uop.lqIdx.value, 7)
1354        difftest.sqIdx    := ZeroExt(uop.sqIdx.value, 7)
1355        difftest.isLoad   := io.commits.info(i).commitType === CommitType.LOAD
1356        difftest.isStore  := io.commits.info(i).commitType === CommitType.STORE
1357      }
1358    }
1359  }
1360
1361  if (env.EnableDifftest) {
1362    for (i <- 0 until CommitWidth) {
1363      val difftest = DifftestModule(new DiffLoadEvent, delay = 3)
1364      difftest.coreid := io.hartId
1365      difftest.index  := i.U
1366
1367      val ptr = deqPtrVec(i).value
1368      val uop = commitDebugUop(i)
1369      val exuOut = debug_exuDebug(ptr)
1370      difftest.valid  := io.commits.commitValid(i) && io.commits.isCommit
1371      difftest.paddr  := exuOut.paddr
1372      difftest.opType := uop.fuOpType
1373      difftest.fuType := uop.fuType
1374    }
1375  }
1376
1377  if (env.EnableDifftest || env.AlwaysBasicDiff) {
1378    val dt_isXSTrap = Mem(RobSize, Bool())
1379    for (i <- 0 until RenameWidth) {
1380      when (canEnqueue(i)) {
1381        dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap
1382      }
1383    }
1384    val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) =>
1385      io.commits.isCommit && v && dt_isXSTrap(d.value)
1386    }
1387    val hitTrap = trapVec.reduce(_||_)
1388    val difftest = DifftestModule(new DiffTrapEvent, dontCare = true)
1389    difftest.coreid   := io.hartId
1390    difftest.hasTrap  := hitTrap
1391    difftest.cycleCnt := timer
1392    difftest.instrCnt := instrCnt
1393    difftest.hasWFI   := hasWFI
1394
1395    if (env.EnableDifftest) {
1396      val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1))
1397      val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN)
1398      difftest.code     := trapCode
1399      difftest.pc       := trapPC
1400    }
1401  }
1402
1403  val validEntriesBanks = (0 until (RobSize + 31) / 32).map(i => RegNext(PopCount(valid.drop(i * 32).take(32))))
1404  val validEntries = RegNext(VecInit(validEntriesBanks).reduceTree(_ +& _))
1405  val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })
1406  val commitLoadVec = VecInit(commitLoadValid)
1407  val commitBranchVec = VecInit(commitBranchValid)
1408  val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })
1409  val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })
1410  val perfEvents = Seq(
1411    ("rob_interrupt_num      ", io.flushOut.valid && intrEnable                                       ),
1412    ("rob_exception_num      ", io.flushOut.valid && exceptionEnable                                  ),
1413    ("rob_flush_pipe_num     ", io.flushOut.valid && isFlushPipe                                      ),
1414    ("rob_replay_inst_num    ", io.flushOut.valid && isFlushPipe && deqHasReplayInst                  ),
1415    ("rob_commitUop          ", ifCommit(commitCnt)                                                   ),
1416    ("rob_commitInstr        ", ifCommitReg(trueCommitCnt)                                            ),
1417    ("rob_commitInstrMove    ", ifCommitReg(PopCount(RegNext(commitMoveVec)))                         ),
1418    ("rob_commitInstrFused   ", ifCommitReg(fuseCommitCnt)                                            ),
1419    ("rob_commitInstrLoad    ", ifCommitReg(PopCount(RegNext(commitLoadVec)))                         ),
1420    ("rob_commitInstrBranch  ", ifCommitReg(PopCount(RegNext(commitBranchVec)))                       ),
1421    ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec)))                     ),
1422    ("rob_commitInstrStore   ", ifCommitReg(PopCount(RegNext(commitStoreVec)))                        ),
1423    ("rob_walkInstr          ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)           ),
1424    ("rob_walkCycle          ", (state === s_walk)                                                    ),
1425    ("rob_1_4_valid          ", validEntries <= (RobSize / 4).U                                       ),
1426    ("rob_2_4_valid          ", validEntries >  (RobSize / 4).U && validEntries <= (RobSize / 2).U    ),
1427    ("rob_3_4_valid          ", validEntries >  (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U),
1428    ("rob_4_4_valid          ", validEntries >  (RobSize * 3 / 4).U                                   ),
1429  )
1430  generatePerfEvent()
1431}
1432