1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.rob 18 19import org.chipsalliance.cde.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 24import utility._ 25import utils._ 26import xiangshan._ 27import xiangshan.backend.BackendParams 28import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 29import xiangshan.backend.fu.{FuType, FuConfig} 30import xiangshan.frontend.FtqPtr 31import xiangshan.mem.{LqPtr, LsqEnqIO, SqPtr} 32import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 33import xiangshan.backend.ctrlblock.{DebugLSIO, DebugLsInfo, LsTopdownInfo} 34import xiangshan.backend.rename.SnapshotGenerator 35 36 37class RobPtr(entries: Int) extends CircularQueuePtr[RobPtr]( 38 entries 39) with HasCircularQueuePtrHelper { 40 41 def this()(implicit p: Parameters) = this(p(XSCoreParamsKey).RobSize) 42 43 def needFlush(redirect: Valid[Redirect]): Bool = { 44 val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx 45 redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx)) 46 } 47 48 def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR 49} 50 51object RobPtr { 52 def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = { 53 val ptr = Wire(new RobPtr) 54 ptr.flag := f 55 ptr.value := v 56 ptr 57 } 58} 59 60class RobCSRIO(implicit p: Parameters) extends XSBundle { 61 val intrBitSet = Input(Bool()) 62 val trapTarget = Input(UInt(VAddrBits.W)) 63 val isXRet = Input(Bool()) 64 val wfiEvent = Input(Bool()) 65 66 val fflags = Output(Valid(UInt(5.W))) 67 val vxsat = Output(Valid(Bool())) 68 val dirty_fs = Output(Bool()) 69 val perfinfo = new Bundle { 70 val retiredInstr = Output(UInt(3.W)) 71 } 72 73 val vcsrFlag = Output(Bool()) 74} 75 76class RobLsqIO(implicit p: Parameters) extends XSBundle { 77 val lcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 78 val scommit = Output(UInt(log2Up(CommitWidth + 1).W)) 79 val pendingld = Output(Bool()) 80 val pendingst = Output(Bool()) 81 val commit = Output(Bool()) 82 val pendingPtr = Output(new RobPtr) 83 84 val mmio = Input(Vec(LoadPipelineWidth, Bool())) 85 // Todo: what's this? 86 val uop = Input(Vec(LoadPipelineWidth, new DynInst)) 87} 88 89class RobEnqIO(implicit p: Parameters) extends XSBundle { 90 val canAccept = Output(Bool()) 91 val isEmpty = Output(Bool()) 92 // valid vector, for robIdx gen and walk 93 val needAlloc = Vec(RenameWidth, Input(Bool())) 94 val req = Vec(RenameWidth, Flipped(ValidIO(new DynInst))) 95 val resp = Vec(RenameWidth, Output(new RobPtr)) 96} 97 98class RobCoreTopDownIO(implicit p: Parameters) extends XSBundle { 99 val robHeadVaddr = Valid(UInt(VAddrBits.W)) 100 val robHeadPaddr = Valid(UInt(PAddrBits.W)) 101} 102 103class RobDispatchTopDownIO extends Bundle { 104 val robTrueCommit = Output(UInt(64.W)) 105 val robHeadLsIssue = Output(Bool()) 106} 107 108class RobDebugRollingIO extends Bundle { 109 val robTrueCommit = Output(UInt(64.W)) 110} 111 112class RobDispatchData(implicit p: Parameters) extends RobCommitInfo {} 113 114class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 115 val io = IO(new Bundle { 116 // for commits/flush 117 val state = Input(UInt(2.W)) 118 val deq_v = Vec(CommitWidth, Input(Bool())) 119 val deq_w = Vec(CommitWidth, Input(Bool())) 120 val exception_state = Flipped(ValidIO(new RobExceptionInfo)) 121 // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth) 122 val intrBitSetReg = Input(Bool()) 123 val hasNoSpecExec = Input(Bool()) 124 val interrupt_safe = Input(Bool()) 125 val blockCommit = Input(Bool()) 126 // output: the CommitWidth deqPtr 127 val out = Vec(CommitWidth, Output(new RobPtr)) 128 val next_out = Vec(CommitWidth, Output(new RobPtr)) 129 }) 130 131 val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr)))) 132 133 // for exceptions (flushPipe included) and interrupts: 134 // only consider the first instruction 135 val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe 136 val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0) 137 val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable) 138 139 // for normal commits: only to consider when there're no exceptions 140 // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions. 141 val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last) 142 val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i))) 143 val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B) 144 // when io.intrBitSetReg or there're possible exceptions in these instructions, 145 // only one instruction is allowed to commit 146 val allowOnlyOne = commit_exception || io.intrBitSetReg 147 val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt) 148 149 val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt)) 150 val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec) 151 152 deqPtrVec := deqPtrVec_next 153 154 io.next_out := deqPtrVec_next 155 io.out := deqPtrVec 156 157 when (io.state === 0.U) { 158 XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt) 159 } 160 161} 162 163class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 164 val io = IO(new Bundle { 165 // for input redirect 166 val redirect = Input(Valid(new Redirect)) 167 // for enqueue 168 val allowEnqueue = Input(Bool()) 169 val hasBlockBackward = Input(Bool()) 170 val enq = Vec(RenameWidth, Input(Bool())) 171 val out = Output(Vec(RenameWidth, new RobPtr)) 172 }) 173 174 val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr))) 175 176 // enqueue 177 val canAccept = io.allowEnqueue && !io.hasBlockBackward 178 val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U) 179 180 for ((ptr, i) <- enqPtrVec.zipWithIndex) { 181 when(io.redirect.valid) { 182 ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 183 }.otherwise { 184 ptr := ptr + dispatchNum 185 } 186 } 187 188 io.out := enqPtrVec 189 190} 191 192class RobExceptionInfo(implicit p: Parameters) extends XSBundle { 193 // val valid = Bool() 194 val robIdx = new RobPtr 195 val exceptionVec = ExceptionVec() 196 val flushPipe = Bool() 197 val isVset = Bool() 198 val replayInst = Bool() // redirect to that inst itself 199 val singleStep = Bool() // TODO add frontend hit beneath 200 val crossPageIPFFix = Bool() 201 val trigger = new TriggerCf 202 203// def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend 204// def trigger_after = trigger.getTimingBackend && trigger.getHitBackend 205 def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit 206 def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit 207 // only exceptions are allowed to writeback when enqueue 208 def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit 209} 210 211class ExceptionGen(params: BackendParams)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 212 val io = IO(new Bundle { 213 val redirect = Input(Valid(new Redirect)) 214 val flush = Input(Bool()) 215 val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo))) 216 // csr + load + store 217 val wb = Vec(params.numException, Flipped(ValidIO(new RobExceptionInfo))) 218 val out = ValidIO(new RobExceptionInfo) 219 val state = ValidIO(new RobExceptionInfo) 220 }) 221 222 val wbExuParams = params.allExuParams.filter(_.exceptionOut.nonEmpty) 223 224 def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): RobExceptionInfo = { 225 def getOldest_recursion(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = { 226 assert(valid.length == bits.length) 227 if (valid.length == 1) { 228 (valid, bits) 229 } else if (valid.length == 2) { 230 val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0))))) 231 for (i <- res.indices) { 232 res(i).valid := valid(i) 233 res(i).bits := bits(i) 234 } 235 val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1)) 236 (Seq(oldest.valid), Seq(oldest.bits)) 237 } else { 238 val left = getOldest_recursion(valid.take(valid.length / 2), bits.take(valid.length / 2)) 239 val right = getOldest_recursion(valid.drop(valid.length / 2), bits.drop(valid.length / 2)) 240 getOldest_recursion(left._1 ++ right._1, left._2 ++ right._2) 241 } 242 } 243 getOldest_recursion(valid, bits)._2.head 244 } 245 246 247 val currentValid = RegInit(false.B) 248 val current = Reg(new RobExceptionInfo) 249 250 // orR the exceptionVec 251 val lastCycleFlush = RegNext(io.flush) 252 val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush)) 253 254 // s0: compare wb in 4 groups 255 val csrvldu_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(t => t.isCsr || t.fuType == FuType.vldu).nonEmpty).map(_._1) 256 val load_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.ldu).nonEmpty).map(_._1) 257 val store_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(t => t.isSta || t.fuType == FuType.mou).nonEmpty).map(_._1) 258 val varith_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.isVecArith).nonEmpty).map(_._1) 259 // TODO: vsta_wb = ??? 260 261 val writebacks = Seq(csrvldu_wb, load_wb, store_wb, varith_wb) 262 val in_wb_valids = writebacks.map(_.map(w => w.valid && w.bits.has_exception && !lastCycleFlush)) 263 val wb_valid = in_wb_valids.zip(writebacks).map { case (valid, wb) => 264 valid.zip(wb.map(_.bits)).map { case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }.reduce(_ || _) 265 } 266 val wb_bits = in_wb_valids.zip(writebacks).map { case (valid, wb) => getOldest(valid, wb.map(_.bits))} 267 268 val s0_out_valid = wb_valid.map(x => RegNext(x)) 269 val s0_out_bits = wb_bits.map(x => RegNext(x)) 270 271 // s1: compare last four and current flush 272 val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) }) 273 val s1_out_bits = RegNext(getOldest(s0_out_valid, s0_out_bits)) 274 val s1_out_valid = RegNext(s1_valid.asUInt.orR) 275 276 val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 277 val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits))) 278 279 // s2: compare the input exception with the current one 280 // priorities: 281 // (1) system reset 282 // (2) current is valid: flush, remain, merge, update 283 // (3) current is not valid: s1 or enq 284 val current_flush = current.robIdx.needFlush(io.redirect) || io.flush 285 val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush 286 when (currentValid) { 287 when (current_flush) { 288 currentValid := Mux(s1_flush, false.B, s1_out_valid) 289 } 290 when (s1_out_valid && !s1_flush) { 291 when (isAfter(current.robIdx, s1_out_bits.robIdx)) { 292 current := s1_out_bits 293 }.elsewhen (current.robIdx === s1_out_bits.robIdx) { 294 current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec()) 295 current.flushPipe := s1_out_bits.flushPipe || current.flushPipe 296 current.replayInst := s1_out_bits.replayInst || current.replayInst 297 current.singleStep := s1_out_bits.singleStep || current.singleStep 298 current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf) 299 } 300 } 301 }.elsewhen (s1_out_valid && !s1_flush) { 302 currentValid := true.B 303 current := s1_out_bits 304 }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) { 305 currentValid := true.B 306 current := enq_bits 307 } 308 309 io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback 310 io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits) 311 io.state.valid := currentValid 312 io.state.bits := current 313 314} 315 316class RobFlushInfo(implicit p: Parameters) extends XSBundle { 317 val ftqIdx = new FtqPtr 318 val robIdx = new RobPtr 319 val ftqOffset = UInt(log2Up(PredictWidth).W) 320 val replayInst = Bool() 321} 322 323class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter { 324 override def shouldBeInlined: Boolean = false 325 326 lazy val module = new RobImp(this)(p, params) 327} 328 329class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper) 330 with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents { 331 332 private val LduCnt = params.LduCnt 333 private val StaCnt = params.StaCnt 334 335 val io = IO(new Bundle() { 336 val hartId = Input(UInt(8.W)) 337 val redirect = Input(Valid(new Redirect)) 338 val enq = new RobEnqIO 339 val flushOut = ValidIO(new Redirect) 340 val exception = ValidIO(new ExceptionInfo) 341 // exu + brq 342 val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles) 343 val commits = Output(new RobCommitIO) 344 val rabCommits = Output(new RobCommitIO) 345 val diffCommits = Output(new DiffCommitIO) 346 val isVsetFlushPipe = Output(Bool()) 347 val vconfigPdest = Output(UInt(PhyRegIdxWidth.W)) 348 val lsq = new RobLsqIO 349 val robDeqPtr = Output(new RobPtr) 350 val csr = new RobCSRIO 351 val snpt = Input(new SnapshotPort) 352 val robFull = Output(Bool()) 353 val headNotReady = Output(Bool()) 354 val cpu_halt = Output(Bool()) 355 val wfi_enable = Input(Bool()) 356 357 val debug_ls = Flipped(new DebugLSIO) 358 val debugRobHead = Output(new DynInst) 359 val debugEnqLsq = Input(new LsqEnqIO) 360 val debugHeadLsIssue = Input(Bool()) 361 val lsTopdownInfo = Vec(LduCnt, Input(new LsTopdownInfo)) 362 val debugTopDown = new Bundle { 363 val toCore = new RobCoreTopDownIO 364 val toDispatch = new RobDispatchTopDownIO 365 val robHeadLqIdx = Valid(new LqPtr) 366 } 367 val debugRolling = new RobDebugRollingIO 368 }) 369 370 val exuWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(!_.bits.params.hasStdFu).toSeq 371 val stdWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(_.bits.params.hasStdFu).toSeq 372 val fflagsWBs = io.writeback.filter(x => x.bits.fflags.nonEmpty) 373 val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty) 374 val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty) 375 376 val exuWbPorts = io.writeback.filter(!_.bits.params.hasStdFu) 377 val stdWbPorts = io.writeback.filter(_.bits.params.hasStdFu) 378 val fflagsPorts = io.writeback.filter(x => x.bits.fflags.nonEmpty) 379 val vxsatPorts = io.writeback.filter(x => x.bits.vxsat.nonEmpty) 380 val exceptionPorts = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty) 381 val numExuWbPorts = exuWBs.length 382 val numStdWbPorts = stdWBs.length 383 384 385 println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth") 386// println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}") 387// println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}") 388// println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}") 389 390 391 // instvalid field 392 val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 393 // writeback status 394 395 val stdWritebacked = Reg(Vec(RobSize, Bool())) 396 val uopNumVec = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W)))) 397 val realDestSize = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W)))) 398 val fflagsDataModule = RegInit(VecInit(Seq.fill(RobSize)(0.U(5.W)))) 399 val vxsatDataModule = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 400 401 def isWritebacked(ptr: UInt): Bool = { 402 !uopNumVec(ptr).orR && stdWritebacked(ptr) 403 } 404 405 def isUopWritebacked(ptr: UInt): Bool = { 406 !uopNumVec(ptr).orR 407 } 408 409 val mmio = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 410 411 // data for redirect, exception, etc. 412 val flagBkup = Mem(RobSize, Bool()) 413 // some instructions are not allowed to trigger interrupts 414 // They have side effects on the states of the processor before they write back 415 val interrupt_safe = Mem(RobSize, Bool()) 416 417 // data for debug 418 // Warn: debug_* prefix should not exist in generated verilog. 419 val debug_microOp = DebugMem(RobSize, new DynInst) 420 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug 421 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug 422 val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init))) 423 val debug_lsTopdownInfo = RegInit(VecInit(Seq.fill(RobSize)(LsTopdownInfo.init))) 424 val debug_lqIdxValid = RegInit(VecInit.fill(RobSize)(false.B)) 425 val debug_lsIssued = RegInit(VecInit.fill(RobSize)(false.B)) 426 427 // pointers 428 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 429 val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr)) 430 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 431 432 dontTouch(enqPtrVec) 433 dontTouch(deqPtrVec) 434 435 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 436 val lastWalkPtr = Reg(new RobPtr) 437 val allowEnqueue = RegInit(true.B) 438 439 val enqPtr = enqPtrVec.head 440 val deqPtr = deqPtrVec(0) 441 val walkPtr = walkPtrVec(0) 442 443 val isEmpty = enqPtr === deqPtr 444 val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level) 445 446 val snptEnq = io.enq.canAccept && io.enq.req.head.valid && io.enq.req.head.bits.snapshot 447 val snapshots = SnapshotGenerator(enqPtrVec, snptEnq, io.snpt.snptDeq, io.redirect.valid, io.snpt.flushVec) 448 val debug_lsIssue = WireDefault(debug_lsIssued) 449 debug_lsIssue(deqPtr.value) := io.debugHeadLsIssue 450 451 /** 452 * states of Rob 453 */ 454 val s_idle :: s_walk :: Nil = Enum(2) 455 val state = RegInit(s_idle) 456 457 /** 458 * Data Modules 459 * 460 * CommitDataModule: data from dispatch 461 * (1) read: commits/walk/exception 462 * (2) write: enqueue 463 * 464 * WritebackData: data from writeback 465 * (1) read: commits/walk/exception 466 * (2) write: write back from exe units 467 */ 468 val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth)) 469 val dispatchDataRead = dispatchData.io.rdata 470 471 val exceptionGen = Module(new ExceptionGen(params)) 472 val exceptionDataRead = exceptionGen.io.state 473 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 474 val vxsatDataRead = Wire(Vec(CommitWidth, Bool())) 475 476 io.robDeqPtr := deqPtr 477 io.debugRobHead := debug_microOp(deqPtr.value) 478 479 val rab = Module(new RenameBuffer(RabSize)) 480 481 rab.io.redirect.valid := io.redirect.valid 482 483 rab.io.req.zip(io.enq.req).map { case (dest, src) => 484 dest.bits := src.bits 485 dest.valid := src.valid && io.enq.canAccept 486 } 487 488 val commitDestSizeSeq = (0 until CommitWidth).map(i => realDestSize(deqPtrVec(i).value)) 489 val walkDestSizeSeq = (0 until CommitWidth).map(i => realDestSize(walkPtrVec(i).value)) 490 491 val commitSizeSum = io.commits.commitValid.zip(commitDestSizeSeq).map { case (commitValid, destSize) => 492 Mux(io.commits.isCommit && commitValid, destSize, 0.U) 493 }.reduce(_ +& _) 494 val walkSizeSum = io.commits.walkValid.zip(walkDestSizeSeq).map { case (walkValid, destSize) => 495 Mux(io.commits.isWalk && walkValid, destSize, 0.U) 496 }.reduce(_ +& _) 497 498 rab.io.fromRob.commitSize := commitSizeSum 499 rab.io.fromRob.walkSize := walkSizeSum 500 rab.io.snpt := io.snpt 501 rab.io.snpt.snptEnq := snptEnq 502 503 io.rabCommits := rab.io.commits 504 io.diffCommits := rab.io.diffCommits 505 506 /** 507 * Enqueue (from dispatch) 508 */ 509 // special cases 510 val hasBlockBackward = RegInit(false.B) 511 val hasWaitForward = RegInit(false.B) 512 val doingSvinval = RegInit(false.B) 513 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 514 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 515 when (isEmpty) { hasBlockBackward:= false.B } 516 // When any instruction commits, hasNoSpecExec should be set to false.B 517 when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasWaitForward:= false.B } 518 519 // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing. 520 // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle. 521 // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts. 522 val hasWFI = RegInit(false.B) 523 io.cpu_halt := hasWFI 524 // WFI Timeout: 2^20 = 1M cycles 525 val wfi_cycles = RegInit(0.U(20.W)) 526 when (hasWFI) { 527 wfi_cycles := wfi_cycles + 1.U 528 }.elsewhen (!hasWFI && RegNext(hasWFI)) { 529 wfi_cycles := 0.U 530 } 531 val wfi_timeout = wfi_cycles.andR 532 when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) { 533 hasWFI := false.B 534 } 535 536 val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.req.take(i).map(req => req.valid && req.bits.firstUop))))) 537 io.enq.canAccept := allowEnqueue && !hasBlockBackward && rab.io.canEnq 538 io.enq.resp := allocatePtrVec 539 val canEnqueue = VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop && io.enq.canAccept)) 540 val timer = GTimer() 541 for (i <- 0 until RenameWidth) { 542 // we don't check whether io.redirect is valid here since redirect has higher priority 543 when (canEnqueue(i)) { 544 val enqUop = io.enq.req(i).bits 545 val enqIndex = allocatePtrVec(i).value 546 // store uop in data module and debug_microOp Vec 547 debug_microOp(enqIndex) := enqUop 548 debug_microOp(enqIndex).debugInfo.dispatchTime := timer 549 debug_microOp(enqIndex).debugInfo.enqRsTime := timer 550 debug_microOp(enqIndex).debugInfo.selectTime := timer 551 debug_microOp(enqIndex).debugInfo.issueTime := timer 552 debug_microOp(enqIndex).debugInfo.writebackTime := timer 553 debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer 554 debug_microOp(enqIndex).debugInfo.tlbRespTime := timer 555 debug_lsInfo(enqIndex) := DebugLsInfo.init 556 debug_lsTopdownInfo(enqIndex) := LsTopdownInfo.init 557 debug_lqIdxValid(enqIndex) := false.B 558 debug_lsIssued(enqIndex) := false.B 559 560 when (enqUop.blockBackward) { 561 hasBlockBackward := true.B 562 } 563 when (enqUop.waitForward) { 564 hasWaitForward := true.B 565 } 566 val enqHasTriggerHit = false.B // io.enq.req(i).bits.cf.trigger.getHitFrontend 567 val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR 568 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 569 when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe)) 570 { 571 doingSvinval := true.B 572 } 573 // the end instruction of Svinval enqs so clear doingSvinval 574 when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe)) 575 { 576 doingSvinval := false.B 577 } 578 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 579 assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe))) 580 when (enqUop.isWFI && !enqHasException && !enqHasTriggerHit) { 581 hasWFI := true.B 582 } 583 584 mmio(enqIndex) := false.B 585 } 586 } 587 val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(req => req.valid && req.bits.firstUop)), 0.U) 588 io.enq.isEmpty := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR) 589 590 when (!io.wfi_enable) { 591 hasWFI := false.B 592 } 593 // sel vsetvl's flush position 594 val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3) 595 val vsetvlState = RegInit(vs_idle) 596 597 val firstVInstrFtqPtr = RegInit(0.U.asTypeOf(new FtqPtr)) 598 val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W))) 599 val firstVInstrRobIdx = RegInit(0.U.asTypeOf(new RobPtr)) 600 601 val enq0 = io.enq.req(0) 602 val enq0IsVset = enq0.bits.isVset && enq0.bits.lastUop && canEnqueue(0) 603 val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe 604 val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVArith(req.bits.fuType) && fire} 605 // for vs_idle 606 val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType))) 607 // for vs_waitVinstr 608 val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1) 609 val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req) 610 when(vsetvlState === vs_idle){ 611 firstVInstrFtqPtr := firstVInstrIdle.bits.ftqPtr 612 firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset 613 firstVInstrRobIdx := firstVInstrIdle.bits.robIdx 614 }.elsewhen(vsetvlState === vs_waitVinstr){ 615 when(Cat(enqIsVInstrOrVset).orR){ 616 firstVInstrFtqPtr := firstVInstrWait.bits.ftqPtr 617 firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset 618 firstVInstrRobIdx := firstVInstrWait.bits.robIdx 619 } 620 } 621 622 val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR 623 when(vsetvlState === vs_idle && !io.redirect.valid){ 624 when(enq0IsVsetFlush){ 625 vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr) 626 } 627 }.elsewhen(vsetvlState === vs_waitVinstr){ 628 when(io.redirect.valid){ 629 vsetvlState := vs_idle 630 }.elsewhen(Cat(enqIsVInstrOrVset).orR){ 631 vsetvlState := vs_waitFlush 632 } 633 }.elsewhen(vsetvlState === vs_waitFlush){ 634 when(io.redirect.valid){ 635 vsetvlState := vs_idle 636 } 637 } 638 639 // lqEnq 640 io.debugEnqLsq.needAlloc.map(_(0)).zip(io.debugEnqLsq.req).foreach { case (alloc, req) => 641 when(io.debugEnqLsq.canAccept && alloc && req.valid) { 642 debug_microOp(req.bits.robIdx.value).lqIdx := req.bits.lqIdx 643 debug_lqIdxValid(req.bits.robIdx.value) := true.B 644 } 645 } 646 647 // lsIssue 648 when(io.debugHeadLsIssue) { 649 debug_lsIssued(deqPtr.value) := true.B 650 } 651 652 /** 653 * Writeback (from execution units) 654 */ 655 for (wb <- exuWBs) { 656 when (wb.valid) { 657 val wbIdx = wb.bits.robIdx.value 658 debug_exuData(wbIdx) := wb.bits.data 659 debug_exuDebug(wbIdx) := wb.bits.debug 660 debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime 661 debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime 662 debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime 663 debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime 664 665 // debug for lqidx and sqidx 666 debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr)) 667 debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr)) 668 669 val debug_Uop = debug_microOp(wbIdx) 670 XSInfo(true.B, 671 p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " + 672 p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " + 673 p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.robIdx}\n" 674 ) 675 } 676 } 677 678 val writebackNum = PopCount(exuWBs.map(_.valid)) 679 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 680 681 for (i <- 0 until LoadPipelineWidth) { 682 when (RegNext(io.lsq.mmio(i))) { 683 mmio(RegNext(io.lsq.uop(i).robIdx).value) := true.B 684 } 685 } 686 687 /** 688 * RedirectOut: Interrupt and Exceptions 689 */ 690 val deqDispatchData = dispatchDataRead(0) 691 val debug_deqUop = debug_microOp(deqPtr.value) 692 693 val intrBitSetReg = RegNext(io.csr.intrBitSet) 694 val intrEnable = intrBitSetReg && !hasWaitForward && interrupt_safe(deqPtr.value) 695 val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 696 val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR || 697 exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit) 698 val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe 699 val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst 700 val exceptionEnable = isWritebacked(deqPtr.value) && deqHasException 701 702 XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n") 703 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n") 704 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n") 705 706 val isFlushPipe = isWritebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst) 707 708 val isVsetFlushPipe = isWritebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset 709// val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush) 710 val needModifyFtqIdxOffset = false.B 711 io.isVsetFlushPipe := isVsetFlushPipe 712 io.vconfigPdest := rab.io.vconfigPdest 713 // io.flushOut will trigger redirect at the next cycle. 714 // Block any redirect or commit at the next cycle. 715 val lastCycleFlush = RegNext(io.flushOut.valid) 716 717 io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush 718 io.flushOut.bits := DontCare 719 io.flushOut.bits.isRVC := deqDispatchData.isRVC 720 io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr) 721 io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx) 722 io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset) 723 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next" 724 io.flushOut.bits.interrupt := true.B 725 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 726 XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable) 727 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 728 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 729 730 val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush 731 io.exception.valid := RegNext(exceptionHappen) 732 io.exception.bits.pc := RegEnable(debug_deqUop.pc, exceptionHappen) 733 io.exception.bits.instr := RegEnable(debug_deqUop.instr, exceptionHappen) 734 io.exception.bits.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 735 io.exception.bits.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 736 io.exception.bits.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 737 io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 738 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 739// io.exception.bits.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen) 740 741 XSDebug(io.flushOut.valid, 742 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " + 743 p"excp $exceptionEnable flushPipe $isFlushPipe " + 744 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 745 746 747 /** 748 * Commits (and walk) 749 * They share the same width. 750 */ 751 val shouldWalkVec = VecInit(walkPtrVec.map(_ <= lastWalkPtr)) 752 val walkFinished = VecInit(walkPtrVec.map(_ >= lastWalkPtr)).asUInt.orR 753 rab.io.fromRob.walkEnd := state === s_walk && walkFinished 754 755 require(RenameWidth <= CommitWidth) 756 757 // wiring to csr 758 val (wflags, dirtyFs) = (0 until CommitWidth).map(i => { 759 val v = io.commits.commitValid(i) 760 val info = io.commits.info(i) 761 (v & info.wflags, v & info.dirtyFs) 762 }).unzip 763 val fflags = Wire(Valid(UInt(5.W))) 764 fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR 765 fflags.bits := wflags.zip(fflagsDataRead).map({ 766 case (w, f) => Mux(w, f, 0.U) 767 }).reduce(_|_) 768 val dirty_fs = io.commits.isCommit && VecInit(dirtyFs).asUInt.orR 769 770 val vxsat = Wire(Valid(Bool())) 771 vxsat.valid := io.commits.isCommit && vxsat.bits 772 vxsat.bits := io.commits.commitValid.zip(vxsatDataRead).map { 773 case (valid, vxsat) => valid & vxsat 774 }.reduce(_ | _) 775 776 // when mispredict branches writeback, stop commit in the next 2 cycles 777 // TODO: don't check all exu write back 778 val misPredWb = Cat(VecInit(redirectWBs.map(wb => 779 wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid 780 ).toSeq)).orR 781 val misPredBlockCounter = Reg(UInt(3.W)) 782 misPredBlockCounter := Mux(misPredWb, 783 "b111".U, 784 misPredBlockCounter >> 1.U 785 ) 786 val misPredBlock = misPredBlockCounter(0) 787 val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI || io.redirect.valid 788 789 io.commits.isWalk := state === s_walk 790 io.commits.isCommit := state === s_idle && !blockCommit 791 val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value))) 792 val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value))) 793 // store will be commited iff both sta & std have been writebacked 794 val commit_w = VecInit(deqPtrVec.map(ptr => isWritebacked(ptr.value))) 795 val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last) 796 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i))) 797 val allowOnlyOneCommit = commit_exception || intrBitSetReg 798 // for instructions that may block others, we don't allow them to commit 799 for (i <- 0 until CommitWidth) { 800 // defaults: state === s_idle and instructions commit 801 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 802 val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst 803 io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked 804 io.commits.info(i) := dispatchDataRead(i) 805 io.commits.robIdx(i) := deqPtrVec(i) 806 807 io.commits.walkValid(i) := shouldWalkVec(i) 808 when (state === s_walk) { 809 when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) { 810 XSError(!walk_v(i), s"The walking entry($i) should be valid\n") 811 } 812 } 813 814 XSInfo(io.commits.isCommit && io.commits.commitValid(i), 815 "retired pc %x wen %d ldest %d pdest %x data %x fflags: %b vxsat: %b\n", 816 debug_microOp(deqPtrVec(i).value).pc, 817 io.commits.info(i).rfWen, 818 io.commits.info(i).ldest, 819 io.commits.info(i).pdest, 820 debug_exuData(deqPtrVec(i).value), 821 fflagsDataRead(i), 822 vxsatDataRead(i) 823 ) 824 XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n", 825 debug_microOp(walkPtrVec(i).value).pc, 826 io.commits.info(i).rfWen, 827 io.commits.info(i).ldest, 828 debug_exuData(walkPtrVec(i).value) 829 ) 830 } 831 if (env.EnableDifftest) { 832 io.commits.info.map(info => dontTouch(info.pc)) 833 } 834 835 // sync fflags/dirty_fs/vxsat to csr 836 io.csr.fflags := RegNext(fflags) 837 io.csr.dirty_fs := RegNext(dirty_fs) 838 io.csr.vxsat := RegNext(vxsat) 839 840 // sync v csr to csr 841 // for difftest 842 if(env.AlwaysBasicDiff || env.EnableDifftest) { 843 val isDiffWriteVconfigVec = io.diffCommits.commitValid.zip(io.diffCommits.info).map { case (valid, info) => valid && info.ldest === VCONFIG_IDX.U && info.vecWen }.reverse 844 io.csr.vcsrFlag := RegNext(io.diffCommits.isCommit && Cat(isDiffWriteVconfigVec).orR) 845 } 846 else{ 847 io.csr.vcsrFlag := false.B 848 } 849 850 // commit load/store to lsq 851 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 852 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE)) 853 io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U)) 854 io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U)) 855 // indicate a pending load or store 856 io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value) && mmio(deqPtr.value)) 857 io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value)) 858 io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0)) 859 io.lsq.pendingPtr := RegNext(deqPtr) 860 861 /** 862 * state changes 863 * (1) redirect: switch to s_walk 864 * (2) walk: when walking comes to the end, switch to s_idle 865 */ 866 val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished && rab.io.status.walkEnd, s_idle, state)) 867 XSPerfAccumulate("s_idle_to_idle", state === s_idle && state_next === s_idle) 868 XSPerfAccumulate("s_idle_to_walk", state === s_idle && state_next === s_walk) 869 XSPerfAccumulate("s_walk_to_idle", state === s_walk && state_next === s_idle) 870 XSPerfAccumulate("s_walk_to_walk", state === s_walk && state_next === s_walk) 871 state := state_next 872 873 /** 874 * pointers and counters 875 */ 876 val deqPtrGenModule = Module(new RobDeqPtrWrapper) 877 deqPtrGenModule.io.state := state 878 deqPtrGenModule.io.deq_v := commit_v 879 deqPtrGenModule.io.deq_w := commit_w 880 deqPtrGenModule.io.exception_state := exceptionDataRead 881 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 882 deqPtrGenModule.io.hasNoSpecExec := hasWaitForward 883 deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value) 884 deqPtrGenModule.io.blockCommit := blockCommit 885 deqPtrVec := deqPtrGenModule.io.out 886 val deqPtrVec_next = deqPtrGenModule.io.next_out 887 888 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 889 enqPtrGenModule.io.redirect := io.redirect 890 enqPtrGenModule.io.allowEnqueue := allowEnqueue && rab.io.canEnq 891 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 892 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop)) 893 enqPtrVec := enqPtrGenModule.io.out 894 895 // next walkPtrVec: 896 // (1) redirect occurs: update according to state 897 // (2) walk: move forwards 898 val walkPtrVec_next = Mux(io.redirect.valid, 899 Mux(io.snpt.useSnpt, snapshots(io.snpt.snptSelect), deqPtrVec_next), 900 Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec) 901 ) 902 walkPtrVec := walkPtrVec_next 903 904 val numValidEntries = distanceBetween(enqPtr, deqPtr) 905 val commitCnt = PopCount(io.commits.commitValid) 906 907 allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U 908 909 val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0)) 910 when (io.redirect.valid) { 911 lastWalkPtr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx - 1.U, io.redirect.bits.robIdx) 912 } 913 914 915 /** 916 * States 917 * We put all the stage bits changes here. 918 919 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 920 * All states: (1) valid; (2) writebacked; (3) flagBkup 921 */ 922 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 923 924 // redirect logic writes 6 valid 925 val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr)) 926 val redirectTail = Reg(new RobPtr) 927 val redirectIdle :: redirectBusy :: Nil = Enum(2) 928 val redirectState = RegInit(redirectIdle) 929 val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail)) 930 when(redirectState === redirectBusy) { 931 redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U) 932 redirectHeadVec zip invMask foreach { 933 case (redirectHead, inv) => when(inv) { 934 valid(redirectHead.value) := false.B 935 } 936 } 937 when(!invMask.last) { 938 redirectState := redirectIdle 939 } 940 } 941 when(io.redirect.valid) { 942 redirectState := redirectBusy 943 when(redirectState === redirectIdle) { 944 redirectTail := enqPtr 945 } 946 redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) => 947 redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 948 } 949 } 950 // enqueue logic writes 6 valid 951 for (i <- 0 until RenameWidth) { 952 when (canEnqueue(i) && !io.redirect.valid) { 953 valid(allocatePtrVec(i).value) := true.B 954 } 955 } 956 // dequeue logic writes 6 valid 957 for (i <- 0 until CommitWidth) { 958 val commitValid = io.commits.isCommit && io.commits.commitValid(i) 959 when (commitValid) { 960 valid(commitReadAddr(i)) := false.B 961 } 962 } 963 964 // debug_inst update 965 for(i <- 0 until (LduCnt + StaCnt)) { 966 debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i)) 967 debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i)) 968 } 969 for (i <- 0 until LduCnt) { 970 debug_lsTopdownInfo(io.lsTopdownInfo(i).s1.robIdx).s1SignalEnable(io.lsTopdownInfo(i)) 971 debug_lsTopdownInfo(io.lsTopdownInfo(i).s2.robIdx).s2SignalEnable(io.lsTopdownInfo(i)) 972 } 973 974 // writeback logic set numWbPorts writebacked to true 975 val blockWbSeq = Wire(Vec(exuWBs.length, Bool())) 976 blockWbSeq.map(_ := false.B) 977 for ((wb, blockWb) <- exuWBs.zip(blockWbSeq)) { 978 when(wb.valid) { 979 val wbHasException = wb.bits.exceptionVec.getOrElse(0.U).asUInt.orR 980 val wbHasTriggerHit = false.B //Todo: wb.bits.trigger.getHitBackend 981 val wbHasFlushPipe = wb.bits.flushPipe.getOrElse(false.B) 982 val wbHasReplayInst = wb.bits.replay.getOrElse(false.B) //Todo: && wb.bits.replayInst 983 blockWb := wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit 984 } 985 } 986 987 // if the first uop of an instruction is valid , write writebackedCounter 988 val uopEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid) 989 val instEnqValidSeq = io.enq.req.map (req => io.enq.canAccept && req.valid && req.bits.firstUop) 990 val enqNeedWriteRFSeq = io.enq.req.map(_.bits.needWriteRf) 991 val enqRobIdxSeq = io.enq.req.map(req => req.bits.robIdx.value) 992 val enqUopNumVec = VecInit(io.enq.req.map(req => req.bits.numUops)) 993 val enqEliminatedMoveVec = VecInit(io.enq.req.map(req => req.bits.eliminatedMove)) 994 995 private val enqWriteStdVec: Vec[Bool] = VecInit(io.enq.req.map { 996 req => FuType.isAMO(req.bits.fuType) || FuType.isStore(req.bits.fuType) 997 }) 998 val fflags_wb = fflagsPorts 999 val vxsat_wb = vxsatPorts 1000 for(i <- 0 until RobSize){ 1001 1002 val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === i.U) 1003 val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch } 1004 val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch } 1005 val instCanEnqFlag = Cat(instCanEnqSeq).orR 1006 1007 realDestSize(i) := Mux(!valid(i) && instCanEnqFlag || valid(i), realDestSize(i) + PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map{ case(writeFlag, valid) => writeFlag && valid }), 0.U) 1008 1009 val enqUopNum = PriorityMux(instCanEnqSeq, enqUopNumVec) 1010 val enqEliminatedMove = PriorityMux(instCanEnqSeq, enqEliminatedMoveVec) 1011 val enqWriteStd = PriorityMux(instCanEnqSeq, enqWriteStdVec) 1012 1013 val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 1014 val canWbNoBlockSeq = canWbSeq.zip(blockWbSeq).map{ case(canWb, blockWb) => canWb && !blockWb } 1015 val canStdWbSeq = VecInit(stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)) 1016 val wbCnt = PopCount(canWbNoBlockSeq) 1017 1018 val exceptionHas = RegInit(false.B) 1019 val exceptionHasWire = Wire(Bool()) 1020 exceptionHasWire := MuxCase(exceptionHas, Seq( 1021 (valid(i) && exceptionGen.io.out.valid && exceptionGen.io.out.bits.robIdx.value === i.U) -> true.B, 1022 !valid(i) -> false.B 1023 )) 1024 exceptionHas := exceptionHasWire 1025 1026 when (exceptionHas || exceptionHasWire) { 1027 // exception flush 1028 uopNumVec(i) := 0.U 1029 stdWritebacked(i) := true.B 1030 }.elsewhen(!valid(i) && instCanEnqFlag) { 1031 // enq set num of uops 1032 uopNumVec(i) := enqUopNum 1033 stdWritebacked(i) := Mux(enqWriteStd, false.B, true.B) 1034 }.elsewhen(valid(i)) { 1035 // update by writing back 1036 uopNumVec(i) := uopNumVec(i) - wbCnt 1037 when (canStdWbSeq.asUInt.orR) { 1038 stdWritebacked(i) := true.B 1039 } 1040 }.otherwise { 1041 uopNumVec(i) := 0.U 1042 } 1043 1044 val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U && writeback.bits.wflags.getOrElse(false.B)) 1045 val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.fold(false.B)(_ | _) 1046 fflagsDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, fflagsDataModule(i) | fflagsRes) 1047 1048 val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 1049 val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.fold(false.B)(_ | _) 1050 vxsatDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, vxsatDataModule(i) | vxsatRes) 1051 } 1052 1053 // flagBkup 1054 // enqueue logic set 6 flagBkup at most 1055 for (i <- 0 until RenameWidth) { 1056 when (canEnqueue(i)) { 1057 flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag 1058 } 1059 } 1060 1061 // interrupt_safe 1062 for (i <- 0 until RenameWidth) { 1063 // We RegNext the updates for better timing. 1064 // Note that instructions won't change the system's states in this cycle. 1065 when (RegNext(canEnqueue(i))) { 1066 // For now, we allow non-load-store instructions to trigger interrupts 1067 // For MMIO instructions, they should not trigger interrupts since they may 1068 // be sent to lower level before it writes back. 1069 // However, we cannot determine whether a load/store instruction is MMIO. 1070 // Thus, we don't allow load/store instructions to trigger an interrupt. 1071 // TODO: support non-MMIO load-store instructions to trigger interrupts 1072 val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType) 1073 interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts) 1074 } 1075 } 1076 1077 /** 1078 * read and write of data modules 1079 */ 1080 val commitReadAddr_next = Mux(state_next === s_idle, 1081 VecInit(deqPtrVec_next.map(_.value)), 1082 VecInit(walkPtrVec_next.map(_.value)) 1083 ) 1084 dispatchData.io.wen := canEnqueue 1085 dispatchData.io.waddr := allocatePtrVec.map(_.value) 1086 dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).zipWithIndex.foreach { case ((wdata, req), portIdx) => 1087 wdata.ldest := req.ldest 1088 wdata.rfWen := req.rfWen 1089 wdata.dirtyFs := req.dirtyFs 1090 wdata.vecWen := req.vecWen 1091 wdata.wflags := req.wfflags 1092 wdata.commitType := req.commitType 1093 wdata.pdest := req.pdest 1094 wdata.ftqIdx := req.ftqPtr 1095 wdata.ftqOffset := req.ftqOffset 1096 wdata.isMove := req.eliminatedMove 1097 wdata.isRVC := req.preDecodeInfo.isRVC 1098 wdata.pc := req.pc 1099 wdata.vtype := req.vpu.vtype 1100 wdata.isVset := req.isVset 1101 wdata.instrSize := req.instrSize 1102 } 1103 dispatchData.io.raddr := commitReadAddr_next 1104 1105 exceptionGen.io.redirect <> io.redirect 1106 exceptionGen.io.flush := io.flushOut.valid 1107 1108 val canEnqueueEG = VecInit(io.enq.req.map(req => req.valid && io.enq.canAccept)) 1109 for (i <- 0 until RenameWidth) { 1110 exceptionGen.io.enq(i).valid := canEnqueueEG(i) 1111 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 1112 exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec) 1113 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe 1114 exceptionGen.io.enq(i).bits.isVset := io.enq.req(i).bits.isVset 1115 exceptionGen.io.enq(i).bits.replayInst := false.B 1116 XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst") 1117 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep 1118 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix 1119 exceptionGen.io.enq(i).bits.trigger.clear() 1120 exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.trigger.frontendHit 1121 } 1122 1123 println(s"ExceptionGen:") 1124 println(s"num of exceptions: ${params.numException}") 1125 require(exceptionWBs.length == exceptionGen.io.wb.length, 1126 f"exceptionWBs.length: ${exceptionWBs.length}, " + 1127 f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}") 1128 for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) { 1129 exc_wb.valid := wb.valid 1130 exc_wb.bits.robIdx := wb.bits.robIdx 1131 exc_wb.bits.exceptionVec := wb.bits.exceptionVec.get 1132 exc_wb.bits.flushPipe := wb.bits.flushPipe.getOrElse(false.B) 1133 exc_wb.bits.isVset := false.B 1134 exc_wb.bits.replayInst := wb.bits.replay.getOrElse(false.B) 1135 exc_wb.bits.singleStep := false.B 1136 exc_wb.bits.crossPageIPFFix := false.B 1137 exc_wb.bits.trigger := 0.U.asTypeOf(exc_wb.bits.trigger) // Todo 1138// println(s" [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " + 1139// s"flushPipe ${configs.exists(_.flushPipe)}, " + 1140// s"replayInst ${configs.exists(_.replayInst)}") 1141 } 1142 1143 fflagsDataRead := (0 until CommitWidth).map(i => fflagsDataModule(deqPtrVec(i).value)) 1144 vxsatDataRead := (0 until CommitWidth).map(i => vxsatDataModule(deqPtrVec(i).value)) 1145 1146 val instrCntReg = RegInit(0.U(64.W)) 1147 val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) }) 1148 val trueCommitCnt = RegNext(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => Mux(v, i.instrSize, 0.U) }.reduce(_ +& _)) +& fuseCommitCnt 1149 val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U) 1150 val instrCnt = instrCntReg + retireCounter 1151 instrCntReg := instrCnt 1152 io.csr.perfinfo.retiredInstr := retireCounter 1153 io.robFull := !allowEnqueue 1154 io.headNotReady := commit_v.head && !commit_w.head 1155 1156 /** 1157 * debug info 1158 */ 1159 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 1160 XSDebug("") 1161 XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n") 1162 for(i <- 0 until RobSize) { 1163 XSDebug(false, !valid(i), "-") 1164 XSDebug(false, valid(i) && isWritebacked(i.U), "w") 1165 XSDebug(false, valid(i) && !isWritebacked(i.U), "v") 1166 } 1167 XSDebug(false, true.B, "\n") 1168 1169 for(i <- 0 until RobSize) { 1170 if (i % 4 == 0) XSDebug("") 1171 XSDebug(false, true.B, "%x ", debug_microOp(i).pc) 1172 XSDebug(false, !valid(i), "- ") 1173 XSDebug(false, valid(i) && isWritebacked(i.U), "w ") 1174 XSDebug(false, valid(i) && !isWritebacked(i.U), "v ") 1175 if (i % 4 == 3) XSDebug(false, true.B, "\n") 1176 } 1177 1178 def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U) 1179 def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U) 1180 1181 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 1182 XSPerfAccumulate("clock_cycle", 1.U) 1183 QueuePerf(RobSize, numValidEntries, numValidEntries === RobSize.U) 1184 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 1185 XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt)) 1186 XSPerfRolling("ipc", ifCommitReg(trueCommitCnt), 1000, clock, reset) 1187 XSPerfRolling("cpi", perfCnt = 1.U/*Cycle*/, eventTrigger = ifCommitReg(trueCommitCnt), granularity = 1000, clock, reset) 1188 val commitIsMove = commitDebugUop.map(_.isMove) 1189 XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }))) 1190 val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) 1191 XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e }))) 1192 XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt)) 1193 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 1194 val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t } 1195 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 1196 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 1197 val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t } 1198 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 1199 val commitLoadWaitBit = commitDebugUop.map(_.loadWaitBit) 1200 XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))) 1201 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 1202 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }))) 1203 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && isWritebacked(i.U)))) 1204 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire))) 1205 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 1206 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)) 1207 XSPerfAccumulate("walkCycleTotal", state === s_walk) 1208 XSPerfAccumulate("waitRabWalkEnd", state === s_walk && walkFinished && !rab.io.status.walkEnd) 1209 private val walkCycle = RegInit(0.U(8.W)) 1210 private val waitRabWalkCycle = RegInit(0.U(8.W)) 1211 walkCycle := Mux(io.redirect.valid, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U)) 1212 waitRabWalkCycle := Mux(state === s_walk && walkFinished, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U)) 1213 1214 XSPerfHistogram("walkRobCycleHist", walkCycle, state === s_walk && walkFinished, 0, 32) 1215 XSPerfHistogram("walkRabExtraCycleHist", waitRabWalkCycle, state === s_walk && walkFinished && rab.io.status.walkEnd, 0, 32) 1216 XSPerfHistogram("walkTotalCycleHist", walkCycle, state === s_walk && state_next === s_idle, 0, 32) 1217 1218 private val deqNotWritebacked = valid(deqPtr.value) && !isWritebacked(deqPtr.value) 1219 private val deqStdNotWritebacked = valid(deqPtr.value) && !stdWritebacked(deqPtr.value) 1220 private val deqUopNotWritebacked = valid(deqPtr.value) && !isUopWritebacked(deqPtr.value) 1221 private val deqHeadInfo = debug_microOp(deqPtr.value) 1222 val deqUopCommitType = io.commits.info(0).commitType 1223 1224 XSPerfAccumulate("waitAluCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.alu.U) 1225 XSPerfAccumulate("waitMulCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.mul.U) 1226 XSPerfAccumulate("waitDivCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.div.U) 1227 XSPerfAccumulate("waitBrhCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.brh.U) 1228 XSPerfAccumulate("waitJmpCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.jmp.U) 1229 XSPerfAccumulate("waitCsrCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.csr.U) 1230 XSPerfAccumulate("waitFenCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.fence.U) 1231 XSPerfAccumulate("waitBkuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.bku.U) 1232 XSPerfAccumulate("waitLduCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.ldu.U) 1233 XSPerfAccumulate("waitStuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1234 XSPerfAccumulate("waitStaCycle", deqUopNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1235 XSPerfAccumulate("waitStdCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1236 XSPerfAccumulate("waitAtmCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.mou.U) 1237 1238 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 1239 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 1240 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 1241 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 1242 XSPerfAccumulate("robHeadPC", io.commits.info(0).pc) 1243 XSPerfAccumulate("commitCompressCntAll", PopCount(io.commits.commitValid.zip(io.commits.info).map{case(valid, info) => io.commits.isCommit && valid && info.instrSize > 1.U})) 1244 (2 to RenameWidth).foreach(i => 1245 XSPerfAccumulate(s"commitCompressCnt${i}", PopCount(io.commits.commitValid.zip(io.commits.info).map{case(valid, info) => io.commits.isCommit && valid && info.instrSize === i.U})) 1246 ) 1247 XSPerfAccumulate("compressSize", io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => Mux(io.commits.isCommit && valid && info.instrSize > 1.U, info.instrSize, 0.U) }.reduce(_ +& _)) 1248 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 1249 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 1250 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 1251 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 1252 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 1253 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 1254 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 1255 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 1256 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 1257 } 1258 for (fuType <- FuType.functionNameMap.keys) { 1259 val fuName = FuType.functionNameMap(fuType) 1260 val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U ) 1261 XSPerfRolling(s"ipc_futype_${fuName}", ifCommit(PopCount(commitIsFuType)), 1000, clock, reset) 1262 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 1263 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 1264 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 1265 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 1266 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 1267 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 1268 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 1269 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 1270 } 1271 XSPerfAccumulate(s"redirect_use_snapshot", io.redirect.valid && io.snpt.useSnpt) 1272 1273 // top-down info 1274 io.debugTopDown.toCore.robHeadVaddr.valid := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_valid 1275 io.debugTopDown.toCore.robHeadVaddr.bits := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_bits 1276 io.debugTopDown.toCore.robHeadPaddr.valid := debug_lsTopdownInfo(deqPtr.value).s2.paddr_valid 1277 io.debugTopDown.toCore.robHeadPaddr.bits := debug_lsTopdownInfo(deqPtr.value).s2.paddr_bits 1278 io.debugTopDown.toDispatch.robTrueCommit := ifCommitReg(trueCommitCnt) 1279 io.debugTopDown.toDispatch.robHeadLsIssue := debug_lsIssue(deqPtr.value) 1280 io.debugTopDown.robHeadLqIdx.valid := debug_lqIdxValid(deqPtr.value) 1281 io.debugTopDown.robHeadLqIdx.bits := debug_microOp(deqPtr.value).lqIdx 1282 1283 // rolling 1284 io.debugRolling.robTrueCommit := ifCommitReg(trueCommitCnt) 1285 1286 /** 1287 * DataBase info: 1288 * log trigger is at writeback valid 1289 * */ 1290 1291 /** 1292 * @todo add InstInfoEntry back 1293 * @author Maxpicca-Li 1294 */ 1295 1296 //difftest signals 1297 val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value 1298 1299 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1300 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1301 1302 for(i <- 0 until CommitWidth) { 1303 val idx = deqPtrVec(i).value 1304 wdata(i) := debug_exuData(idx) 1305 wpc(i) := SignExt(commitDebugUop(i).pc, XLEN) 1306 } 1307 1308 if (env.EnableDifftest || env.AlwaysBasicDiff) { 1309 // These are the structures used by difftest only and should be optimized after synthesis. 1310 val dt_eliminatedMove = Mem(RobSize, Bool()) 1311 val dt_isRVC = Mem(RobSize, Bool()) 1312 val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) 1313 for (i <- 0 until RenameWidth) { 1314 when (canEnqueue(i)) { 1315 dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 1316 dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC 1317 } 1318 } 1319 for (wb <- exuWBs) { 1320 when (wb.valid) { 1321 val wbIdx = wb.bits.robIdx.value 1322 dt_exuDebug(wbIdx) := wb.bits.debug 1323 } 1324 } 1325 // Always instantiate basic difftest modules. 1326 for (i <- 0 until CommitWidth) { 1327 val uop = commitDebugUop(i) 1328 val commitInfo = io.commits.info(i) 1329 val ptr = deqPtrVec(i).value 1330 val exuOut = dt_exuDebug(ptr) 1331 val eliminatedMove = dt_eliminatedMove(ptr) 1332 val isRVC = dt_isRVC(ptr) 1333 1334 val difftest = DifftestModule(new DiffInstrCommit(MaxPhyPregs), delay = 3, dontCare = true) 1335 difftest.coreid := io.hartId 1336 difftest.index := i.U 1337 difftest.valid := io.commits.commitValid(i) && io.commits.isCommit 1338 difftest.skip := Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt) 1339 difftest.isRVC := isRVC 1340 difftest.rfwen := io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U 1341 difftest.fpwen := io.commits.commitValid(i) && uop.fpWen 1342 difftest.wpdest := commitInfo.pdest 1343 difftest.wdest := commitInfo.ldest 1344 difftest.nFused := CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize - 1.U 1345 when(difftest.valid) { 1346 assert(CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize >= 1.U) 1347 } 1348 if (env.EnableDifftest) { 1349 val uop = commitDebugUop(i) 1350 difftest.pc := SignExt(uop.pc, XLEN) 1351 difftest.instr := uop.instr 1352 difftest.robIdx := ZeroExt(ptr, 10) 1353 difftest.lqIdx := ZeroExt(uop.lqIdx.value, 7) 1354 difftest.sqIdx := ZeroExt(uop.sqIdx.value, 7) 1355 difftest.isLoad := io.commits.info(i).commitType === CommitType.LOAD 1356 difftest.isStore := io.commits.info(i).commitType === CommitType.STORE 1357 } 1358 } 1359 } 1360 1361 if (env.EnableDifftest) { 1362 for (i <- 0 until CommitWidth) { 1363 val difftest = DifftestModule(new DiffLoadEvent, delay = 3) 1364 difftest.coreid := io.hartId 1365 difftest.index := i.U 1366 1367 val ptr = deqPtrVec(i).value 1368 val uop = commitDebugUop(i) 1369 val exuOut = debug_exuDebug(ptr) 1370 difftest.valid := io.commits.commitValid(i) && io.commits.isCommit 1371 difftest.paddr := exuOut.paddr 1372 difftest.opType := uop.fuOpType 1373 difftest.fuType := uop.fuType 1374 } 1375 } 1376 1377 if (env.EnableDifftest || env.AlwaysBasicDiff) { 1378 val dt_isXSTrap = Mem(RobSize, Bool()) 1379 for (i <- 0 until RenameWidth) { 1380 when (canEnqueue(i)) { 1381 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap 1382 } 1383 } 1384 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => 1385 io.commits.isCommit && v && dt_isXSTrap(d.value) 1386 } 1387 val hitTrap = trapVec.reduce(_||_) 1388 val difftest = DifftestModule(new DiffTrapEvent, dontCare = true) 1389 difftest.coreid := io.hartId 1390 difftest.hasTrap := hitTrap 1391 difftest.cycleCnt := timer 1392 difftest.instrCnt := instrCnt 1393 difftest.hasWFI := hasWFI 1394 1395 if (env.EnableDifftest) { 1396 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 1397 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN) 1398 difftest.code := trapCode 1399 difftest.pc := trapPC 1400 } 1401 } 1402 1403 val validEntriesBanks = (0 until (RobSize + 31) / 32).map(i => RegNext(PopCount(valid.drop(i * 32).take(32)))) 1404 val validEntries = RegNext(VecInit(validEntriesBanks).reduceTree(_ +& _)) 1405 val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }) 1406 val commitLoadVec = VecInit(commitLoadValid) 1407 val commitBranchVec = VecInit(commitBranchValid) 1408 val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }) 1409 val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }) 1410 val perfEvents = Seq( 1411 ("rob_interrupt_num ", io.flushOut.valid && intrEnable ), 1412 ("rob_exception_num ", io.flushOut.valid && exceptionEnable ), 1413 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe ), 1414 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst ), 1415 ("rob_commitUop ", ifCommit(commitCnt) ), 1416 ("rob_commitInstr ", ifCommitReg(trueCommitCnt) ), 1417 ("rob_commitInstrMove ", ifCommitReg(PopCount(RegNext(commitMoveVec))) ), 1418 ("rob_commitInstrFused ", ifCommitReg(fuseCommitCnt) ), 1419 ("rob_commitInstrLoad ", ifCommitReg(PopCount(RegNext(commitLoadVec))) ), 1420 ("rob_commitInstrBranch ", ifCommitReg(PopCount(RegNext(commitBranchVec))) ), 1421 ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec))) ), 1422 ("rob_commitInstrStore ", ifCommitReg(PopCount(RegNext(commitStoreVec))) ), 1423 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U) ), 1424 ("rob_walkCycle ", (state === s_walk) ), 1425 ("rob_1_4_valid ", validEntries <= (RobSize / 4).U ), 1426 ("rob_2_4_valid ", validEntries > (RobSize / 4).U && validEntries <= (RobSize / 2).U ), 1427 ("rob_3_4_valid ", validEntries > (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U), 1428 ("rob_4_4_valid ", validEntries > (RobSize * 3 / 4).U ), 1429 ) 1430 generatePerfEvent() 1431} 1432