xref: /XiangShan/src/main/scala/xiangshan/backend/rob/Rob.scala (revision 8d081717cfe3863e6c0d38305abd6327c65a653a)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.backend.rob
18
19import org.chipsalliance.cde.config.Parameters
20import chisel3._
21import chisel3.util._
22import difftest._
23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp}
24import utility._
25import utils._
26import xiangshan._
27import xiangshan.backend.BackendParams
28import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput}
29import xiangshan.backend.fu.{FuConfig, FuType}
30import xiangshan.frontend.FtqPtr
31import xiangshan.mem.{LqPtr, LsqEnqIO, SqPtr}
32import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput}
33import xiangshan.backend.ctrlblock.{DebugLSIO, DebugLsInfo, LsTopdownInfo}
34import xiangshan.backend.fu.vector.Bundles.VType
35import xiangshan.backend.rename.SnapshotGenerator
36
37
38class RobPtr(entries: Int) extends CircularQueuePtr[RobPtr](
39  entries
40) with HasCircularQueuePtrHelper {
41
42  def this()(implicit p: Parameters) = this(p(XSCoreParamsKey).RobSize)
43
44  def needFlush(redirect: Valid[Redirect]): Bool = {
45    val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx
46    redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx))
47  }
48
49  def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR
50}
51
52object RobPtr {
53  def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = {
54    val ptr = Wire(new RobPtr)
55    ptr.flag := f
56    ptr.value := v
57    ptr
58  }
59}
60
61class RobCSRIO(implicit p: Parameters) extends XSBundle {
62  val intrBitSet = Input(Bool())
63  val trapTarget = Input(UInt(VAddrBits.W))
64  val isXRet     = Input(Bool())
65  val wfiEvent   = Input(Bool())
66
67  val fflags     = Output(Valid(UInt(5.W)))
68  val vxsat      = Output(Valid(Bool()))
69  val vstart     = Output(Valid(UInt(XLEN.W)))
70  val dirty_fs   = Output(Bool())
71  val perfinfo   = new Bundle {
72    val retiredInstr = Output(UInt(3.W))
73  }
74
75  val vcsrFlag   = Output(Bool())
76}
77
78class RobLsqIO(implicit p: Parameters) extends XSBundle {
79  val lcommit = Output(UInt(log2Up(CommitWidth + 1).W))
80  val scommit = Output(UInt(log2Up(CommitWidth + 1).W))
81  val pendingld = Output(Bool())
82  val pendingst = Output(Bool())
83  val commit = Output(Bool())
84  val pendingPtr = Output(new RobPtr)
85  val pendingPtrNext = Output(new RobPtr)
86
87  val mmio = Input(Vec(LoadPipelineWidth, Bool()))
88  // Todo: what's this?
89  val uop = Input(Vec(LoadPipelineWidth, new DynInst))
90}
91
92class RobEnqIO(implicit p: Parameters) extends XSBundle {
93  val canAccept = Output(Bool())
94  val isEmpty = Output(Bool())
95  // valid vector, for robIdx gen and walk
96  val needAlloc = Vec(RenameWidth, Input(Bool()))
97  val req = Vec(RenameWidth, Flipped(ValidIO(new DynInst)))
98  val resp = Vec(RenameWidth, Output(new RobPtr))
99}
100
101class RobCoreTopDownIO(implicit p: Parameters) extends XSBundle {
102  val robHeadVaddr = Valid(UInt(VAddrBits.W))
103  val robHeadPaddr = Valid(UInt(PAddrBits.W))
104}
105
106class RobDispatchTopDownIO extends Bundle {
107  val robTrueCommit = Output(UInt(64.W))
108  val robHeadLsIssue = Output(Bool())
109}
110
111class RobDebugRollingIO extends Bundle {
112  val robTrueCommit = Output(UInt(64.W))
113}
114
115class RobDispatchData(implicit p: Parameters) extends RobCommitInfo {}
116
117class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
118  val io = IO(new Bundle {
119    // for commits/flush
120    val state = Input(UInt(2.W))
121    val deq_v = Vec(CommitWidth, Input(Bool()))
122    val deq_w = Vec(CommitWidth, Input(Bool()))
123    val exception_state = Flipped(ValidIO(new RobExceptionInfo))
124    // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth)
125    val intrBitSetReg = Input(Bool())
126    val hasNoSpecExec = Input(Bool())
127    val interrupt_safe = Input(Bool())
128    val blockCommit = Input(Bool())
129    // output: the CommitWidth deqPtr
130    val out = Vec(CommitWidth, Output(new RobPtr))
131    val next_out = Vec(CommitWidth, Output(new RobPtr))
132  })
133
134  val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr))))
135
136  // for exceptions (flushPipe included) and interrupts:
137  // only consider the first instruction
138  val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe
139  val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0)
140  val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable)
141
142  // for normal commits: only to consider when there're no exceptions
143  // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions.
144  val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last)
145  val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i)))
146  val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B)
147  // when io.intrBitSetReg or there're possible exceptions in these instructions,
148  // only one instruction is allowed to commit
149  val allowOnlyOne = commit_exception || io.intrBitSetReg
150  val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt)
151
152  val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt))
153  val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec)
154
155  deqPtrVec := deqPtrVec_next
156
157  io.next_out := deqPtrVec_next
158  io.out      := deqPtrVec
159
160  when (io.state === 0.U) {
161    XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt)
162  }
163
164}
165
166class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
167  val io = IO(new Bundle {
168    // for input redirect
169    val redirect = Input(Valid(new Redirect))
170    // for enqueue
171    val allowEnqueue = Input(Bool())
172    val hasBlockBackward = Input(Bool())
173    val enq = Vec(RenameWidth, Input(Bool()))
174    val out = Output(Vec(RenameWidth, new RobPtr))
175  })
176
177  val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr)))
178
179  // enqueue
180  val canAccept = io.allowEnqueue && !io.hasBlockBackward
181  val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U)
182
183  for ((ptr, i) <- enqPtrVec.zipWithIndex) {
184    when(io.redirect.valid) {
185      ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
186    }.otherwise {
187      ptr := ptr + dispatchNum
188    }
189  }
190
191  io.out := enqPtrVec
192
193}
194
195class RobExceptionInfo(implicit p: Parameters) extends XSBundle {
196  // val valid = Bool()
197  val robIdx = new RobPtr
198  val exceptionVec = ExceptionVec()
199  val flushPipe = Bool()
200  val isVset = Bool()
201  val replayInst = Bool() // redirect to that inst itself
202  val singleStep = Bool() // TODO add frontend hit beneath
203  val crossPageIPFFix = Bool()
204  val trigger = new TriggerCf
205  val vstartEn = Bool()
206  val vstart = UInt(XLEN.W)
207
208  def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.canFire
209  def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.canFire
210  // only exceptions are allowed to writeback when enqueue
211  def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.canFire
212}
213
214class ExceptionGen(params: BackendParams)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
215  val io = IO(new Bundle {
216    val redirect = Input(Valid(new Redirect))
217    val flush = Input(Bool())
218    val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo)))
219    // csr + load + store + varith + vload + vstore
220    val wb = Vec(params.numException, Flipped(ValidIO(new RobExceptionInfo)))
221    val out = ValidIO(new RobExceptionInfo)
222    val state = ValidIO(new RobExceptionInfo)
223  })
224
225  val wbExuParams = params.allExuParams.filter(_.exceptionOut.nonEmpty)
226
227  def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): RobExceptionInfo = {
228    def getOldest_recursion(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = {
229      assert(valid.length == bits.length)
230      if (valid.length == 1) {
231        (valid, bits)
232      } else if (valid.length == 2) {
233        val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0)))))
234        for (i <- res.indices) {
235          res(i).valid := valid(i)
236          res(i).bits := bits(i)
237        }
238        val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1))
239        (Seq(oldest.valid), Seq(oldest.bits))
240      } else {
241        val left = getOldest_recursion(valid.take(valid.length / 2), bits.take(valid.length / 2))
242        val right = getOldest_recursion(valid.drop(valid.length / 2), bits.drop(valid.length / 2))
243        getOldest_recursion(left._1 ++ right._1, left._2 ++ right._2)
244      }
245    }
246    getOldest_recursion(valid, bits)._2.head
247  }
248
249
250  val currentValid = RegInit(false.B)
251  val current = Reg(new RobExceptionInfo)
252
253  // orR the exceptionVec
254  val lastCycleFlush = RegNext(io.flush)
255  val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush))
256
257  // s0: compare wb in 6 groups
258  val csr_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(t => t.isCsr).nonEmpty).map(_._1)
259  val load_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.ldu).nonEmpty).map(_._1)
260  val store_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(t => t.isSta || t.fuType == FuType.mou).nonEmpty).map(_._1)
261  val varith_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.isVecArith).nonEmpty).map(_._1)
262  val vload_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.vldu).nonEmpty).map(_._1)
263  val vstore_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.vstu).nonEmpty).map(_._1)
264
265  val writebacks = Seq(csr_wb, load_wb, store_wb, varith_wb, vload_wb, vstore_wb)
266  val in_wb_valids = writebacks.map(_.map(w => w.valid && w.bits.has_exception && !lastCycleFlush))
267  val wb_valid = in_wb_valids.zip(writebacks).map { case (valid, wb) =>
268    valid.zip(wb.map(_.bits)).map { case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }.reduce(_ || _)
269  }
270  val wb_bits = in_wb_valids.zip(writebacks).map { case (valid, wb) => getOldest(valid, wb.map(_.bits))}
271
272  val s0_out_valid = wb_valid.map(x => RegNext(x))
273  val s0_out_bits = wb_bits.zip(wb_valid).map{ case(b, v) => RegEnable(b, v)}
274
275  // s1: compare last six and current flush
276  val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) })
277  val s1_out_bits = RegEnable(getOldest(s0_out_valid, s0_out_bits), s1_valid.asUInt.orR)
278  val s1_out_valid = RegNext(s1_valid.asUInt.orR)
279
280  val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush)
281  val enq_bits = RegEnable(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits)), in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush)
282
283  // s2: compare the input exception with the current one
284  // priorities:
285  // (1) system reset
286  // (2) current is valid: flush, remain, merge, update
287  // (3) current is not valid: s1 or enq
288  val current_flush = current.robIdx.needFlush(io.redirect) || io.flush
289  val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush
290  when (currentValid) {
291    when (current_flush) {
292      currentValid := Mux(s1_flush, false.B, s1_out_valid)
293    }
294    when (s1_out_valid && !s1_flush) {
295      when (isAfter(current.robIdx, s1_out_bits.robIdx)) {
296        current := s1_out_bits
297      }.elsewhen (current.robIdx === s1_out_bits.robIdx) {
298        current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec())
299        current.flushPipe := s1_out_bits.flushPipe || current.flushPipe
300        current.replayInst := s1_out_bits.replayInst || current.replayInst
301        current.singleStep := s1_out_bits.singleStep || current.singleStep
302        current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf)
303      }
304    }
305  }.elsewhen (s1_out_valid && !s1_flush) {
306    currentValid := true.B
307    current := s1_out_bits
308  }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) {
309    currentValid := true.B
310    current := enq_bits
311  }
312
313  io.out.valid   := s1_out_valid || enq_valid && enq_bits.can_writeback
314  io.out.bits    := Mux(s1_out_valid, s1_out_bits, enq_bits)
315  io.state.valid := currentValid
316  io.state.bits  := current
317
318}
319
320class RobFlushInfo(implicit p: Parameters) extends XSBundle {
321  val ftqIdx = new FtqPtr
322  val robIdx = new RobPtr
323  val ftqOffset = UInt(log2Up(PredictWidth).W)
324  val replayInst = Bool()
325}
326
327class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter {
328  override def shouldBeInlined: Boolean = false
329
330  lazy val module = new RobImp(this)(p, params)
331}
332
333class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper)
334  with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents {
335
336  private val LduCnt = params.LduCnt
337  private val StaCnt = params.StaCnt
338  private val HyuCnt = params.HyuCnt
339
340  val io = IO(new Bundle() {
341    val hartId = Input(UInt(8.W))
342    val redirect = Input(Valid(new Redirect))
343    val enq = new RobEnqIO
344    val flushOut = ValidIO(new Redirect)
345    val exception = ValidIO(new ExceptionInfo)
346    // exu + brq
347    val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles)
348    val commits = Output(new RobCommitIO)
349    val rabCommits = Output(new RobCommitIO)
350    val diffCommits = Output(new DiffCommitIO)
351    val isVsetFlushPipe = Output(Bool())
352    val vconfigPdest = Output(UInt(PhyRegIdxWidth.W))
353    val lsq = new RobLsqIO
354    val robDeqPtr = Output(new RobPtr)
355    val csr = new RobCSRIO
356    val snpt = Input(new SnapshotPort)
357    val robFull = Output(Bool())
358    val headNotReady = Output(Bool())
359    val cpu_halt = Output(Bool())
360    val wfi_enable = Input(Bool())
361    val toDecode = new Bundle {
362      val vtype = ValidIO(VType())
363    }
364
365    val debug_ls = Flipped(new DebugLSIO)
366    val debugRobHead = Output(new DynInst)
367    val debugEnqLsq = Input(new LsqEnqIO)
368    val debugHeadLsIssue = Input(Bool())
369    val lsTopdownInfo = Vec(LduCnt + HyuCnt, Input(new LsTopdownInfo))
370    val debugTopDown = new Bundle {
371      val toCore = new RobCoreTopDownIO
372      val toDispatch = new RobDispatchTopDownIO
373      val robHeadLqIdx = Valid(new LqPtr)
374    }
375    val debugRolling = new RobDebugRollingIO
376  })
377
378  val exuWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(!_.bits.params.hasStdFu).toSeq
379  val stdWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(_.bits.params.hasStdFu).toSeq
380  val fflagsWBs = io.writeback.filter(x => x.bits.fflags.nonEmpty)
381  val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty)
382  val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty)
383
384  val exuWbPorts = io.writeback.filter(!_.bits.params.hasStdFu)
385  val stdWbPorts = io.writeback.filter(_.bits.params.hasStdFu)
386  val fflagsPorts = io.writeback.filter(x => x.bits.fflags.nonEmpty)
387  val vxsatPorts = io.writeback.filter(x => x.bits.vxsat.nonEmpty)
388  val exceptionPorts = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty)
389  val numExuWbPorts = exuWBs.length
390  val numStdWbPorts = stdWBs.length
391
392
393  println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth")
394//  println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}")
395//  println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}")
396//  println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}")
397
398
399  // instvalid field
400  val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
401  // writeback status
402
403  val stdWritebacked = Reg(Vec(RobSize, Bool()))
404  val commitTrigger = Mem(RobSize, Bool())
405  val uopNumVec          = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W))))
406  val realDestSize       = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W))))
407  val fflagsDataModule   = RegInit(VecInit(Seq.fill(RobSize)(0.U(5.W))))
408  val vxsatDataModule    = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
409  val vls                = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
410
411  def isWritebacked(ptr: UInt): Bool = {
412    !uopNumVec(ptr).orR && stdWritebacked(ptr)
413  }
414
415  def isUopWritebacked(ptr: UInt): Bool = {
416    !uopNumVec(ptr).orR
417  }
418
419  val mmio = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
420
421  // data for redirect, exception, etc.
422  val flagBkup = Mem(RobSize, Bool())
423  // some instructions are not allowed to trigger interrupts
424  // They have side effects on the states of the processor before they write back
425  val interrupt_safe = RegInit(VecInit(Seq.fill(RobSize)(true.B)))
426
427  // data for debug
428  // Warn: debug_* prefix should not exist in generated verilog.
429  val debug_microOp = DebugMem(RobSize, new DynInst)
430  val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug
431  val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug
432  val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init)))
433  val debug_lsTopdownInfo = RegInit(VecInit(Seq.fill(RobSize)(LsTopdownInfo.init)))
434  val debug_lqIdxValid = RegInit(VecInit.fill(RobSize)(false.B))
435  val debug_lsIssued = RegInit(VecInit.fill(RobSize)(false.B))
436
437  // pointers
438  // For enqueue ptr, we don't duplicate it since only enqueue needs it.
439  val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr))
440  val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr))
441
442  if(backendParams.debugEn) {
443    dontTouch(enqPtrVec)
444    dontTouch(deqPtrVec)
445  }
446
447  val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr))
448  val lastWalkPtr = Reg(new RobPtr)
449  val allowEnqueue = RegInit(true.B)
450
451  val enqPtr = enqPtrVec.head
452  val deqPtr = deqPtrVec(0)
453  val walkPtr = walkPtrVec(0)
454
455  val isEmpty = enqPtr === deqPtr
456  val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level)
457
458  val snptEnq = io.enq.canAccept && io.enq.req.map(x => x.valid && x.bits.snapshot).reduce(_ || _)
459  val snapshotPtrVec = Wire(Vec(RenameWidth, new RobPtr))
460  snapshotPtrVec(0) := io.enq.req(0).bits.robIdx
461  for (i <- 1 until RenameWidth) {
462    snapshotPtrVec(i) := snapshotPtrVec(0) + i.U
463  }
464  val snapshots = SnapshotGenerator(snapshotPtrVec, snptEnq, io.snpt.snptDeq, io.redirect.valid, io.snpt.flushVec)
465  val debug_lsIssue = WireDefault(debug_lsIssued)
466  debug_lsIssue(deqPtr.value) := io.debugHeadLsIssue
467
468  /**
469    * states of Rob
470    */
471  val s_idle :: s_walk :: Nil = Enum(2)
472  val state = RegInit(s_idle)
473
474  /**
475    * Data Modules
476    *
477    * CommitDataModule: data from dispatch
478    * (1) read: commits/walk/exception
479    * (2) write: enqueue
480    *
481    * WritebackData: data from writeback
482    * (1) read: commits/walk/exception
483    * (2) write: write back from exe units
484    */
485  val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth))
486  val dispatchDataRead = dispatchData.io.rdata
487
488  val exceptionGen = Module(new ExceptionGen(params))
489  val exceptionDataRead = exceptionGen.io.state
490  val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W)))
491  val vxsatDataRead = Wire(Vec(CommitWidth, Bool()))
492
493  io.robDeqPtr := deqPtr
494  io.debugRobHead := debug_microOp(deqPtr.value)
495
496  val rab = Module(new RenameBuffer(RabSize))
497  val vtypeBuffer = Module(new VTypeBuffer(VTypeBufferSize))
498
499  /**
500   * connection of [[rab]]
501   */
502  rab.io.redirect.valid := io.redirect.valid
503
504  rab.io.req.zip(io.enq.req).map { case (dest, src) =>
505    dest.bits := src.bits
506    dest.valid := src.valid && io.enq.canAccept
507  }
508
509  val commitDestSizeSeq = (0 until CommitWidth).map(i => realDestSize(deqPtrVec(i).value))
510  val walkDestSizeSeq = (0 until CommitWidth).map(i => realDestSize(walkPtrVec(i).value))
511
512  val commitSizeSum = io.commits.commitValid.zip(commitDestSizeSeq).map { case (commitValid, destSize) =>
513    Mux(io.commits.isCommit && commitValid, destSize, 0.U)
514  }.reduce(_ +& _)
515  val walkSizeSum = io.commits.walkValid.zip(walkDestSizeSeq).map { case (walkValid, destSize) =>
516    Mux(io.commits.isWalk && walkValid, destSize, 0.U)
517  }.reduce(_ +& _)
518
519  rab.io.fromRob.commitSize := commitSizeSum
520  rab.io.fromRob.walkSize := walkSizeSum
521  rab.io.snpt := io.snpt
522  rab.io.snpt.snptEnq := snptEnq
523
524  io.rabCommits := rab.io.commits
525  io.diffCommits := rab.io.diffCommits
526
527  /**
528   * connection of [[vtypeBuffer]]
529   */
530
531  vtypeBuffer.io.redirect.valid := io.redirect.valid
532
533  vtypeBuffer.io.req.zip(io.enq.req).map { case (sink, source) =>
534    sink.valid := source.valid && io.enq.canAccept
535    sink.bits := source.bits
536  }
537
538  private val commitIsVTypeVec = VecInit(io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => io.commits.isCommit && valid && info.isVset })
539  private val walkIsVTypeVec = VecInit(io.commits.walkValid.zip(io.commits.info).map { case (valid, info) => io.commits.isWalk && valid && info.isVset })
540  vtypeBuffer.io.fromRob.commitSize := PopCount(commitIsVTypeVec)
541  vtypeBuffer.io.fromRob.walkSize := PopCount(walkIsVTypeVec)
542  vtypeBuffer.io.snpt := io.snpt
543  vtypeBuffer.io.snpt.snptEnq := snptEnq
544  io.toDecode.vtype := vtypeBuffer.io.toDecode.vtype
545
546  /**
547    * Enqueue (from dispatch)
548    */
549  // special cases
550  val hasBlockBackward = RegInit(false.B)
551  val hasWaitForward = RegInit(false.B)
552  val doingSvinval = RegInit(false.B)
553  // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B
554  // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty.
555  when (isEmpty) { hasBlockBackward:= false.B }
556  // When any instruction commits, hasNoSpecExec should be set to false.B
557  when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasWaitForward:= false.B }
558
559  // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing.
560  // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle.
561  // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts.
562  val hasWFI = RegInit(false.B)
563  io.cpu_halt := hasWFI
564  // WFI Timeout: 2^20 = 1M cycles
565  val wfi_cycles = RegInit(0.U(20.W))
566  when (hasWFI) {
567    wfi_cycles := wfi_cycles + 1.U
568  }.elsewhen (!hasWFI && RegNext(hasWFI)) {
569    wfi_cycles := 0.U
570  }
571  val wfi_timeout = wfi_cycles.andR
572  when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) {
573    hasWFI := false.B
574  }
575
576  val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.req.take(i).map(req => req.valid && req.bits.firstUop)))))
577  io.enq.canAccept := allowEnqueue && !hasBlockBackward && rab.io.canEnq && vtypeBuffer.io.canEnq
578  io.enq.resp      := allocatePtrVec
579  val canEnqueue = VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop && io.enq.canAccept))
580  val timer = GTimer()
581  for (i <- 0 until RenameWidth) {
582    // we don't check whether io.redirect is valid here since redirect has higher priority
583    when (canEnqueue(i)) {
584      val enqUop = io.enq.req(i).bits
585      val enqIndex = allocatePtrVec(i).value
586      // store uop in data module and debug_microOp Vec
587      debug_microOp(enqIndex) := enqUop
588      debug_microOp(enqIndex).debugInfo.dispatchTime := timer
589      debug_microOp(enqIndex).debugInfo.enqRsTime := timer
590      debug_microOp(enqIndex).debugInfo.selectTime := timer
591      debug_microOp(enqIndex).debugInfo.issueTime := timer
592      debug_microOp(enqIndex).debugInfo.writebackTime := timer
593      debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer
594      debug_microOp(enqIndex).debugInfo.tlbRespTime := timer
595      debug_lsInfo(enqIndex) := DebugLsInfo.init
596      debug_lsTopdownInfo(enqIndex) := LsTopdownInfo.init
597      debug_lqIdxValid(enqIndex) := false.B
598      debug_lsIssued(enqIndex) := false.B
599
600      when (enqUop.blockBackward) {
601        hasBlockBackward := true.B
602      }
603      when (enqUop.waitForward) {
604        hasWaitForward := true.B
605      }
606      val enqHasTriggerCanFire = io.enq.req(i).bits.trigger.getFrontendCanFire
607      val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR
608      // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process
609      when(!enqHasTriggerCanFire && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe))
610      {
611        doingSvinval := true.B
612      }
613      // the end instruction of Svinval enqs so clear doingSvinval
614      when(!enqHasTriggerCanFire && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe))
615      {
616        doingSvinval := false.B
617      }
618      // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear
619      assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe)))
620      when (enqUop.isWFI && !enqHasException && !enqHasTriggerCanFire) {
621        hasWFI := true.B
622      }
623
624      mmio(enqIndex) := false.B
625
626      vls(enqIndex) := enqUop.vlsInstr
627    }
628  }
629  val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(req => req.valid && req.bits.firstUop)), 0.U)
630  io.enq.isEmpty   := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR)
631
632  when (!io.wfi_enable) {
633    hasWFI := false.B
634  }
635  // sel vsetvl's flush position
636  val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3)
637  val vsetvlState = RegInit(vs_idle)
638
639  val firstVInstrFtqPtr    = RegInit(0.U.asTypeOf(new FtqPtr))
640  val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W)))
641  val firstVInstrRobIdx    = RegInit(0.U.asTypeOf(new RobPtr))
642
643  val enq0            = io.enq.req(0)
644  val enq0IsVset      = enq0.bits.isVset && enq0.bits.lastUop && canEnqueue(0)
645  val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe
646  val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVArith(req.bits.fuType) && fire}
647  // for vs_idle
648  val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType)))
649  // for vs_waitVinstr
650  val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1)
651  val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req)
652  when(vsetvlState === vs_idle){
653    firstVInstrFtqPtr    := firstVInstrIdle.bits.ftqPtr
654    firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset
655    firstVInstrRobIdx    := firstVInstrIdle.bits.robIdx
656  }.elsewhen(vsetvlState === vs_waitVinstr){
657    when(Cat(enqIsVInstrOrVset).orR){
658      firstVInstrFtqPtr := firstVInstrWait.bits.ftqPtr
659      firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset
660      firstVInstrRobIdx := firstVInstrWait.bits.robIdx
661    }
662  }
663
664  val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR
665  when(vsetvlState === vs_idle && !io.redirect.valid){
666    when(enq0IsVsetFlush){
667      vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr)
668    }
669  }.elsewhen(vsetvlState === vs_waitVinstr){
670    when(io.redirect.valid){
671      vsetvlState := vs_idle
672    }.elsewhen(Cat(enqIsVInstrOrVset).orR){
673      vsetvlState := vs_waitFlush
674    }
675  }.elsewhen(vsetvlState === vs_waitFlush){
676    when(io.redirect.valid){
677      vsetvlState := vs_idle
678    }
679  }
680
681  // lqEnq
682  io.debugEnqLsq.needAlloc.map(_(0)).zip(io.debugEnqLsq.req).foreach { case (alloc, req) =>
683    when(io.debugEnqLsq.canAccept && alloc && req.valid) {
684      debug_microOp(req.bits.robIdx.value).lqIdx := req.bits.lqIdx
685      debug_lqIdxValid(req.bits.robIdx.value) := true.B
686    }
687  }
688
689  // lsIssue
690  when(io.debugHeadLsIssue) {
691    debug_lsIssued(deqPtr.value) := true.B
692  }
693
694  /**
695    * Writeback (from execution units)
696    */
697  for (wb <- exuWBs) {
698    when (wb.valid) {
699      val wbIdx = wb.bits.robIdx.value
700      debug_exuData(wbIdx) := wb.bits.data
701      debug_exuDebug(wbIdx) := wb.bits.debug
702      debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime
703      debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime
704      debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime
705      debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime
706
707      // debug for lqidx and sqidx
708      debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr))
709      debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr))
710
711      val debug_Uop = debug_microOp(wbIdx)
712      XSInfo(true.B,
713        p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " +
714        p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " +
715        p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.robIdx}\n"
716      )
717    }
718  }
719
720  val writebackNum = PopCount(exuWBs.map(_.valid))
721  XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum)
722
723  for (i <- 0 until LoadPipelineWidth) {
724    when (RegNext(io.lsq.mmio(i))) {
725      mmio(RegEnable(io.lsq.uop(i).robIdx, io.lsq.mmio(i)).value) := true.B
726    }
727  }
728
729  /**
730    * RedirectOut: Interrupt and Exceptions
731    */
732  val deqDispatchData = dispatchDataRead(0)
733  val debug_deqUop = debug_microOp(deqPtr.value)
734
735  val intrBitSetReg = RegNext(io.csr.intrBitSet)
736  val intrEnable = intrBitSetReg && !hasWaitForward && interrupt_safe(deqPtr.value)
737  val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr
738  val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR ||
739    exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.canFire)
740  val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe
741  val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst
742  val exceptionEnable = isWritebacked(deqPtr.value) && deqHasException
743
744  XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n")
745  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getFrontendCanFire, "Debug Mode: Deq has frontend trigger exception\n")
746  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getBackendCanFire, "Debug Mode: Deq has backend trigger exception\n")
747
748  val isFlushPipe = isWritebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst)
749
750  val isVsetFlushPipe = isWritebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset
751//  val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush)
752  val needModifyFtqIdxOffset = false.B
753  io.isVsetFlushPipe := isVsetFlushPipe
754  io.vconfigPdest := rab.io.vconfigPdest
755  // io.flushOut will trigger redirect at the next cycle.
756  // Block any redirect or commit at the next cycle.
757  val lastCycleFlush = RegNext(io.flushOut.valid)
758
759  io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush
760  io.flushOut.bits := DontCare
761  io.flushOut.bits.isRVC := deqDispatchData.isRVC
762  io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr)
763  io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx)
764  io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset)
765  io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next"
766  io.flushOut.bits.interrupt := true.B
767  XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable)
768  XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable)
769  XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe)
770  XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst)
771
772  val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush
773  io.exception.valid                := RegNext(exceptionHappen)
774  io.exception.bits.pc              := RegEnable(debug_deqUop.pc, exceptionHappen)
775  io.exception.bits.instr           := RegEnable(debug_deqUop.instr, exceptionHappen)
776  io.exception.bits.commitType      := RegEnable(deqDispatchData.commitType, exceptionHappen)
777  io.exception.bits.exceptionVec    := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen)
778  io.exception.bits.singleStep      := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen)
779  io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen)
780  io.exception.bits.isInterrupt     := RegEnable(intrEnable, exceptionHappen)
781  io.exception.bits.vls             := RegEnable(vls(deqPtr.value), exceptionHappen)
782  io.exception.bits.trigger         := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen)
783  io.csr.vstart.valid               := RegEnable(exceptionDataRead.bits.vstartEn, false.B, exceptionHappen)
784  io.csr.vstart.bits                := RegEnable(exceptionDataRead.bits.vstart, exceptionHappen)
785
786  XSDebug(io.flushOut.valid,
787    p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " +
788    p"excp $exceptionEnable flushPipe $isFlushPipe " +
789    p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n")
790
791
792  /**
793    * Commits (and walk)
794    * They share the same width.
795    */
796  val shouldWalkVec = VecInit(walkPtrVec.map(_ <= lastWalkPtr))
797  val walkFinished = VecInit(walkPtrVec.map(_ >= lastWalkPtr)).asUInt.orR
798  rab.io.fromRob.walkEnd := state === s_walk && walkFinished
799  vtypeBuffer.io.fromRob.walkEnd := state === s_walk && walkFinished
800
801  require(RenameWidth <= CommitWidth)
802
803  // wiring to csr
804  val (wflags, dirtyFs) = (0 until CommitWidth).map(i => {
805    val v = io.commits.commitValid(i)
806    val info = io.commits.info(i)
807    (v & info.wflags, v & info.dirtyFs)
808  }).unzip
809  val fflags = Wire(Valid(UInt(5.W)))
810  fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR
811  fflags.bits := wflags.zip(fflagsDataRead).map({
812    case (w, f) => Mux(w, f, 0.U)
813  }).reduce(_|_)
814  val dirty_fs = io.commits.isCommit && VecInit(dirtyFs).asUInt.orR
815
816  val vxsat = Wire(Valid(Bool()))
817  vxsat.valid := io.commits.isCommit && vxsat.bits
818  vxsat.bits := io.commits.commitValid.zip(vxsatDataRead).map {
819    case (valid, vxsat) => valid & vxsat
820  }.reduce(_ | _)
821
822  // when mispredict branches writeback, stop commit in the next 2 cycles
823  // TODO: don't check all exu write back
824  val misPredWb = Cat(VecInit(redirectWBs.map(wb =>
825    wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid
826  ).toSeq)).orR
827  val misPredBlockCounter = Reg(UInt(3.W))
828  misPredBlockCounter := Mux(misPredWb,
829    "b111".U,
830    misPredBlockCounter >> 1.U
831  )
832  val misPredBlock = misPredBlockCounter(0)
833  val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI || io.redirect.valid
834
835  io.commits.isWalk := state === s_walk
836  io.commits.isCommit := state === s_idle && !blockCommit
837  val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value)))
838  val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value)))
839  // store will be commited iff both sta & std have been writebacked
840  val commit_w = VecInit(deqPtrVec.map(ptr => isWritebacked(ptr.value) && commitTrigger(ptr.value)))
841  val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last)
842  val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i)))
843  val allowOnlyOneCommit = commit_exception || intrBitSetReg
844  // for instructions that may block others, we don't allow them to commit
845  for (i <- 0 until CommitWidth) {
846    // defaults: state === s_idle and instructions commit
847    // when intrBitSetReg, allow only one instruction to commit at each clock cycle
848    val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst
849    io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked
850    io.commits.info(i) := dispatchDataRead(i)
851    io.commits.robIdx(i) := deqPtrVec(i)
852
853    io.commits.walkValid(i) := shouldWalkVec(i)
854    when (state === s_walk) {
855      when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) {
856        XSError(!walk_v(i), s"The walking entry($i) should be valid\n")
857      }
858    }
859
860    XSInfo(io.commits.isCommit && io.commits.commitValid(i),
861      "retired pc %x wen %d ldest %d pdest %x data %x fflags: %b vxsat: %b\n",
862      debug_microOp(deqPtrVec(i).value).pc,
863      io.commits.info(i).rfWen,
864      io.commits.info(i).ldest,
865      io.commits.info(i).pdest,
866      debug_exuData(deqPtrVec(i).value),
867      fflagsDataRead(i),
868      vxsatDataRead(i)
869    )
870    XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n",
871      debug_microOp(walkPtrVec(i).value).pc,
872      io.commits.info(i).rfWen,
873      io.commits.info(i).ldest,
874      debug_exuData(walkPtrVec(i).value)
875    )
876  }
877  if (env.EnableDifftest) {
878    io.commits.info.map(info => dontTouch(info.pc))
879  }
880
881  // sync fflags/dirty_fs/vxsat to csr
882  io.csr.fflags := RegNext(fflags)
883  io.csr.dirty_fs := RegNext(dirty_fs)
884  io.csr.vxsat := RegNext(vxsat)
885
886  // sync v csr to csr
887  // for difftest
888  if(env.AlwaysBasicDiff || env.EnableDifftest) {
889    val isDiffWriteVconfigVec = io.diffCommits.commitValid.zip(io.diffCommits.info).map { case (valid, info) => valid && info.ldest === VCONFIG_IDX.U && info.vecWen }.reverse
890    io.csr.vcsrFlag := RegNext(io.diffCommits.isCommit && Cat(isDiffWriteVconfigVec).orR)
891  }
892  else{
893    io.csr.vcsrFlag := false.B
894  }
895
896  // commit load/store to lsq
897  val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD))
898  val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE))
899  val deqPtrVec_next = Wire(Vec(CommitWidth, Output(new RobPtr)))
900  io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U))
901  io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U))
902  // indicate a pending load or store
903  io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value) && mmio(deqPtr.value))
904  io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value))
905  io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0))
906  io.lsq.pendingPtr := RegNext(deqPtr)
907  io.lsq.pendingPtrNext := RegNext(deqPtrVec_next.head)
908
909  /**
910    * state changes
911    * (1) redirect: switch to s_walk
912    * (2) walk: when walking comes to the end, switch to s_idle
913    */
914  val state_next = Mux(
915    io.redirect.valid, s_walk,
916    Mux(
917      state === s_walk && walkFinished && rab.io.status.walkEnd && vtypeBuffer.io.status.walkEnd, s_idle,
918      state
919    )
920  )
921  XSPerfAccumulate("s_idle_to_idle",            state === s_idle && state_next === s_idle)
922  XSPerfAccumulate("s_idle_to_walk",            state === s_idle && state_next === s_walk)
923  XSPerfAccumulate("s_walk_to_idle",            state === s_walk && state_next === s_idle)
924  XSPerfAccumulate("s_walk_to_walk",            state === s_walk && state_next === s_walk)
925  state := state_next
926
927  /**
928    * pointers and counters
929    */
930  val deqPtrGenModule = Module(new RobDeqPtrWrapper)
931  deqPtrGenModule.io.state := state
932  deqPtrGenModule.io.deq_v := commit_v
933  deqPtrGenModule.io.deq_w := commit_w
934  deqPtrGenModule.io.exception_state := exceptionDataRead
935  deqPtrGenModule.io.intrBitSetReg := intrBitSetReg
936  deqPtrGenModule.io.hasNoSpecExec := hasWaitForward
937  deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value)
938  deqPtrGenModule.io.blockCommit := blockCommit
939  deqPtrVec := deqPtrGenModule.io.out
940  deqPtrVec_next := deqPtrGenModule.io.next_out
941
942  val enqPtrGenModule = Module(new RobEnqPtrWrapper)
943  enqPtrGenModule.io.redirect := io.redirect
944  enqPtrGenModule.io.allowEnqueue := allowEnqueue && rab.io.canEnq
945  enqPtrGenModule.io.hasBlockBackward := hasBlockBackward
946  enqPtrGenModule.io.enq := VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop))
947  enqPtrVec := enqPtrGenModule.io.out
948
949  // next walkPtrVec:
950  // (1) redirect occurs: update according to state
951  // (2) walk: move forwards
952  val walkPtrVec_next = Mux(io.redirect.valid,
953    Mux(io.snpt.useSnpt, snapshots(io.snpt.snptSelect), deqPtrVec_next),
954    Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec)
955  )
956  walkPtrVec := walkPtrVec_next
957
958  val numValidEntries = distanceBetween(enqPtr, deqPtr)
959  val commitCnt = PopCount(io.commits.commitValid)
960
961  allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U
962
963  val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0))
964  when (io.redirect.valid) {
965    lastWalkPtr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx - 1.U, io.redirect.bits.robIdx)
966  }
967
968
969  /**
970    * States
971    * We put all the stage bits changes here.
972
973    * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit);
974    * All states: (1) valid; (2) writebacked; (3) flagBkup
975    */
976  val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value)))
977
978  // redirect logic writes 6 valid
979  val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr))
980  val redirectTail = Reg(new RobPtr)
981  val redirectIdle :: redirectBusy :: Nil = Enum(2)
982  val redirectState = RegInit(redirectIdle)
983  val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail))
984  when(redirectState === redirectBusy) {
985    redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U)
986    redirectHeadVec zip invMask foreach {
987      case (redirectHead, inv) => when(inv) {
988        valid(redirectHead.value) := false.B
989      }
990    }
991    when(!invMask.last) {
992      redirectState := redirectIdle
993    }
994  }
995  when(io.redirect.valid) {
996    redirectState := redirectBusy
997    when(redirectState === redirectIdle) {
998      redirectTail := enqPtr
999    }
1000    redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) =>
1001      redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
1002    }
1003  }
1004  // enqueue logic writes 6 valid
1005  for (i <- 0 until RenameWidth) {
1006    when (canEnqueue(i) && !io.redirect.valid) {
1007      valid(allocatePtrVec(i).value) := true.B
1008    }
1009  }
1010  // dequeue logic writes 6 valid
1011  for (i <- 0 until CommitWidth) {
1012    val commitValid = io.commits.isCommit && io.commits.commitValid(i)
1013    when (commitValid) {
1014      valid(commitReadAddr(i)) := false.B
1015    }
1016  }
1017
1018  // debug_inst update
1019  for(i <- 0 until (LduCnt + StaCnt)) {
1020    debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i))
1021    debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i))
1022  }
1023  for (i <- 0 until LduCnt) {
1024    debug_lsTopdownInfo(io.lsTopdownInfo(i).s1.robIdx).s1SignalEnable(io.lsTopdownInfo(i))
1025    debug_lsTopdownInfo(io.lsTopdownInfo(i).s2.robIdx).s2SignalEnable(io.lsTopdownInfo(i))
1026  }
1027
1028  // status field: writebacked
1029  // enqueue logic set 6 writebacked to false
1030  for (i <- 0 until RenameWidth) {
1031    when(canEnqueue(i)) {
1032      val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec).asUInt.orR
1033      val enqHasTriggerCanFire = io.enq.req(i).bits.trigger.getFrontendCanFire
1034      val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove
1035      val isStu = FuType.isStore(io.enq.req(i).bits.fuType)
1036      commitTrigger(allocatePtrVec(i).value) := enqIsWritebacked && !enqHasException && !enqHasTriggerCanFire && !isStu
1037    }
1038  }
1039  when(exceptionGen.io.out.valid) {
1040    val wbIdx = exceptionGen.io.out.bits.robIdx.value
1041    commitTrigger(wbIdx) := true.B
1042  }
1043
1044  // writeback logic set numWbPorts writebacked to true
1045  val blockWbSeq = Wire(Vec(exuWBs.length, Bool()))
1046  blockWbSeq.map(_ := false.B)
1047  for ((wb, blockWb) <- exuWBs.zip(blockWbSeq)) {
1048    when(wb.valid) {
1049      val wbIdx = wb.bits.robIdx.value
1050      val wbHasException = wb.bits.exceptionVec.getOrElse(0.U).asUInt.orR
1051      val wbHasTriggerCanFire = wb.bits.trigger.getOrElse(0.U).asTypeOf(io.enq.req(0).bits.trigger).getBackendCanFire //Todo: wb.bits.trigger.getHitBackend
1052      val wbHasFlushPipe = wb.bits.flushPipe.getOrElse(false.B)
1053      val wbHasReplayInst = wb.bits.replay.getOrElse(false.B) //Todo: && wb.bits.replayInst
1054      blockWb := wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerCanFire
1055      commitTrigger(wbIdx) := !blockWb
1056    }
1057  }
1058
1059  // if the first uop of an instruction is valid , write writebackedCounter
1060  val uopEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid)
1061  val instEnqValidSeq = io.enq.req.map (req => io.enq.canAccept && req.valid && req.bits.firstUop)
1062  val enqNeedWriteRFSeq = io.enq.req.map(_.bits.needWriteRf)
1063  val enqRobIdxSeq = io.enq.req.map(req => req.bits.robIdx.value)
1064  val enqUopNumVec = VecInit(io.enq.req.map(req => req.bits.numUops))
1065  val enqWBNumVec = VecInit(io.enq.req.map(req => req.bits.numWB))
1066  val enqEliminatedMoveVec = VecInit(io.enq.req.map(req => req.bits.eliminatedMove))
1067
1068  private val enqWriteStdVec: Vec[Bool] = VecInit(io.enq.req.map {
1069    req => FuType.isAMO(req.bits.fuType) || FuType.isStore(req.bits.fuType)
1070  })
1071  val fflags_wb = fflagsPorts
1072  val vxsat_wb = vxsatPorts
1073  for(i <- 0 until RobSize){
1074
1075    val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === i.U)
1076    val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch }
1077    val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch }
1078    val instCanEnqFlag = Cat(instCanEnqSeq).orR
1079
1080    realDestSize(i) := Mux(!valid(i) && instCanEnqFlag || valid(i), realDestSize(i) + PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map{ case(writeFlag, valid) => writeFlag && valid }), 0.U)
1081
1082    val enqUopNum = PriorityMux(instCanEnqSeq, enqUopNumVec)
1083    val enqWBNum = PriorityMux(instCanEnqSeq, enqWBNumVec)
1084    val enqEliminatedMove = PriorityMux(instCanEnqSeq, enqEliminatedMoveVec)
1085    val enqWriteStd = PriorityMux(instCanEnqSeq, enqWriteStdVec)
1086
1087    val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)
1088    val canWbNoBlockSeq = canWbSeq.zip(blockWbSeq).map{ case(canWb, blockWb) => canWb && !blockWb }
1089    val canStdWbSeq = VecInit(stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U))
1090    val wbCnt = PopCount(canWbNoBlockSeq)
1091
1092    val exceptionHas = RegInit(false.B)
1093    val exceptionHasWire = Wire(Bool())
1094    exceptionHasWire := MuxCase(exceptionHas, Seq(
1095      (valid(i) && exceptionGen.io.out.valid && exceptionGen.io.out.bits.robIdx.value === i.U) -> true.B,
1096      !valid(i) -> false.B
1097    ))
1098    exceptionHas := exceptionHasWire
1099
1100    when (exceptionHas || exceptionHasWire) {
1101      // exception flush
1102      uopNumVec(i) := 0.U
1103      stdWritebacked(i) := true.B
1104    }.elsewhen(!valid(i) && instCanEnqFlag) {
1105      // enq set num of uops
1106      uopNumVec(i) := enqWBNum
1107      stdWritebacked(i) := Mux(enqWriteStd, false.B, true.B)
1108    }.elsewhen(valid(i)) {
1109      // update by writing back
1110      uopNumVec(i) := uopNumVec(i) - wbCnt
1111      assert(!(uopNumVec(i) - wbCnt > uopNumVec(i)), "Overflow!")
1112      when (canStdWbSeq.asUInt.orR) {
1113        stdWritebacked(i) := true.B
1114      }
1115    }.otherwise {
1116      uopNumVec(i) := 0.U
1117    }
1118
1119    val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U && writeback.bits.wflags.getOrElse(false.B))
1120    val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.fold(false.B)(_ | _)
1121    fflagsDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, fflagsDataModule(i) | fflagsRes)
1122
1123    val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)
1124    val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.fold(false.B)(_ | _)
1125    vxsatDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, vxsatDataModule(i) | vxsatRes)
1126  }
1127
1128  // flagBkup
1129  // enqueue logic set 6 flagBkup at most
1130  for (i <- 0 until RenameWidth) {
1131    when (canEnqueue(i)) {
1132      flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag
1133    }
1134  }
1135
1136  // interrupt_safe
1137  for (i <- 0 until RenameWidth) {
1138    // We RegNext the updates for better timing.
1139    // Note that instructions won't change the system's states in this cycle.
1140    when (RegNext(canEnqueue(i))) {
1141      // For now, we allow non-load-store instructions to trigger interrupts
1142      // For MMIO instructions, they should not trigger interrupts since they may
1143      // be sent to lower level before it writes back.
1144      // However, we cannot determine whether a load/store instruction is MMIO.
1145      // Thus, we don't allow load/store instructions to trigger an interrupt.
1146      // TODO: support non-MMIO load-store instructions to trigger interrupts
1147      val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType)
1148      interrupt_safe(RegEnable(allocatePtrVec(i).value, canEnqueue(i))) := RegEnable(allow_interrupts, canEnqueue(i))
1149    }
1150  }
1151
1152  /**
1153    * read and write of data modules
1154    */
1155  val commitReadAddr_next = Mux(state_next === s_idle,
1156    VecInit(deqPtrVec_next.map(_.value)),
1157    VecInit(walkPtrVec_next.map(_.value))
1158  )
1159  dispatchData.io.wen := canEnqueue
1160  dispatchData.io.waddr := allocatePtrVec.map(_.value)
1161  dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).zipWithIndex.foreach { case ((wdata, req), portIdx) =>
1162    wdata.ldest := req.ldest
1163    wdata.rfWen := req.rfWen
1164    wdata.dirtyFs := req.dirtyFs
1165    wdata.vecWen := req.vecWen
1166    wdata.wflags := req.wfflags
1167    wdata.commitType := req.commitType
1168    wdata.pdest := req.pdest
1169    wdata.ftqIdx := req.ftqPtr
1170    wdata.ftqOffset := req.ftqOffset
1171    wdata.isMove := req.eliminatedMove
1172    wdata.isRVC := req.preDecodeInfo.isRVC
1173    wdata.pc := req.pc
1174    wdata.vtype := req.vpu.vtype
1175    wdata.isVset := req.isVset
1176    wdata.instrSize := req.instrSize
1177  }
1178  dispatchData.io.raddr := commitReadAddr_next
1179
1180  exceptionGen.io.redirect <> io.redirect
1181  exceptionGen.io.flush := io.flushOut.valid
1182
1183  val canEnqueueEG = VecInit(io.enq.req.map(req => req.valid && io.enq.canAccept))
1184  for (i <- 0 until RenameWidth) {
1185    exceptionGen.io.enq(i).valid := canEnqueueEG(i)
1186    exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx
1187    exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec)
1188    exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe
1189    exceptionGen.io.enq(i).bits.isVset := io.enq.req(i).bits.isVset
1190    exceptionGen.io.enq(i).bits.replayInst := false.B
1191    XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst")
1192    exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep
1193    exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix
1194    exceptionGen.io.enq(i).bits.trigger.clear()
1195    exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.trigger.frontendHit
1196    exceptionGen.io.enq(i).bits.trigger.frontendCanFire := io.enq.req(i).bits.trigger.frontendCanFire
1197    exceptionGen.io.enq(i).bits.vstartEn := false.B //DontCare
1198    exceptionGen.io.enq(i).bits.vstart := 0.U //DontCare
1199  }
1200
1201  println(s"ExceptionGen:")
1202  println(s"num of exceptions: ${params.numException}")
1203  require(exceptionWBs.length == exceptionGen.io.wb.length,
1204    f"exceptionWBs.length: ${exceptionWBs.length}, " +
1205      f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}")
1206  for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) {
1207    exc_wb.valid                := wb.valid
1208    exc_wb.bits.robIdx          := wb.bits.robIdx
1209    exc_wb.bits.exceptionVec    := wb.bits.exceptionVec.get
1210    exc_wb.bits.flushPipe       := wb.bits.flushPipe.getOrElse(false.B)
1211    exc_wb.bits.isVset          := false.B
1212    exc_wb.bits.replayInst      := wb.bits.replay.getOrElse(false.B)
1213    exc_wb.bits.singleStep      := false.B
1214    exc_wb.bits.crossPageIPFFix := false.B
1215    // TODO: make trigger configurable
1216    val trigger = wb.bits.trigger.getOrElse(0.U).asTypeOf(exc_wb.bits.trigger)
1217    exc_wb.bits.trigger.clear() // Don't care frontend timing, chain, hit and canFire
1218    exc_wb.bits.trigger.backendHit := trigger.backendHit
1219    exc_wb.bits.trigger.backendCanFire := trigger.backendCanFire
1220    exc_wb.bits.vstartEn := false.B //wb.bits.vstartEn.getOrElse(false.B) // todo need add vstart in ExuOutput
1221    exc_wb.bits.vstart := 0.U //wb.bits.vstart.getOrElse(0.U)
1222//    println(s"  [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " +
1223//      s"flushPipe ${configs.exists(_.flushPipe)}, " +
1224//      s"replayInst ${configs.exists(_.replayInst)}")
1225  }
1226
1227  fflagsDataRead := (0 until CommitWidth).map(i => fflagsDataModule(deqPtrVec(i).value))
1228  vxsatDataRead := (0 until CommitWidth).map(i => vxsatDataModule(deqPtrVec(i).value))
1229
1230  val instrCntReg = RegInit(0.U(64.W))
1231  val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) })
1232  val trueCommitCnt = RegNext(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => Mux(v, i.instrSize, 0.U) }.reduce(_ +& _)) +& fuseCommitCnt
1233  val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U)
1234  val instrCnt = instrCntReg + retireCounter
1235  instrCntReg := instrCnt
1236  io.csr.perfinfo.retiredInstr := retireCounter
1237  io.robFull := !allowEnqueue
1238  io.headNotReady := commit_v.head && !commit_w.head
1239
1240  /**
1241    * debug info
1242    */
1243  XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n")
1244  XSDebug("")
1245  XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n")
1246  for(i <- 0 until RobSize) {
1247    XSDebug(false, !valid(i), "-")
1248    XSDebug(false, valid(i) && isWritebacked(i.U), "w")
1249    XSDebug(false, valid(i) && !isWritebacked(i.U), "v")
1250  }
1251  XSDebug(false, true.B, "\n")
1252
1253  for(i <- 0 until RobSize) {
1254    if (i % 4 == 0) XSDebug("")
1255    XSDebug(false, true.B, "%x ", debug_microOp(i).pc)
1256    XSDebug(false, !valid(i), "- ")
1257    XSDebug(false, valid(i) && isWritebacked(i.U), "w ")
1258    XSDebug(false, valid(i) && !isWritebacked(i.U), "v ")
1259    if (i % 4 == 3) XSDebug(false, true.B, "\n")
1260  }
1261
1262  def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U)
1263  def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U)
1264
1265  val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_))
1266  XSPerfAccumulate("clock_cycle", 1.U)
1267  QueuePerf(RobSize, numValidEntries, numValidEntries === RobSize.U)
1268  XSPerfAccumulate("commitUop", ifCommit(commitCnt))
1269  XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt))
1270  XSPerfRolling("ipc", ifCommitReg(trueCommitCnt), 1000, clock, reset)
1271  XSPerfRolling("cpi", perfCnt = 1.U/*Cycle*/, eventTrigger = ifCommitReg(trueCommitCnt), granularity = 1000, clock, reset)
1272  val commitIsMove = commitDebugUop.map(_.isMove)
1273  XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })))
1274  val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove)
1275  XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e })))
1276  XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt))
1277  val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD)
1278  val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t }
1279  XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid)))
1280  val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH)
1281  val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t }
1282  XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid)))
1283  val commitLoadWaitBit = commitDebugUop.map(_.loadWaitBit)
1284  XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })))
1285  val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE)
1286  XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })))
1287  XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && isWritebacked(i.U))))
1288  // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire)))
1289  // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready)))
1290  XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U))
1291  XSPerfAccumulate("walkCycleTotal", state === s_walk)
1292  XSPerfAccumulate("waitRabWalkEnd", state === s_walk && walkFinished && !rab.io.status.walkEnd)
1293  private val walkCycle = RegInit(0.U(8.W))
1294  private val waitRabWalkCycle = RegInit(0.U(8.W))
1295  walkCycle := Mux(io.redirect.valid, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U))
1296  waitRabWalkCycle := Mux(state === s_walk && walkFinished, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U))
1297
1298  XSPerfHistogram("walkRobCycleHist", walkCycle, state === s_walk && walkFinished, 0, 32)
1299  XSPerfHistogram("walkRabExtraCycleHist", waitRabWalkCycle, state === s_walk && walkFinished && rab.io.status.walkEnd, 0, 32)
1300  XSPerfHistogram("walkTotalCycleHist", walkCycle, state === s_walk && state_next === s_idle, 0, 32)
1301
1302  private val deqNotWritebacked = valid(deqPtr.value) && !isWritebacked(deqPtr.value)
1303  private val deqStdNotWritebacked = valid(deqPtr.value) && !stdWritebacked(deqPtr.value)
1304  private val deqUopNotWritebacked = valid(deqPtr.value) && !isUopWritebacked(deqPtr.value)
1305  private val deqHeadInfo = debug_microOp(deqPtr.value)
1306  val deqUopCommitType = io.commits.info(0).commitType
1307
1308  XSPerfAccumulate("waitAluCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.alu.U)
1309  XSPerfAccumulate("waitMulCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.mul.U)
1310  XSPerfAccumulate("waitDivCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.div.U)
1311  XSPerfAccumulate("waitBrhCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.brh.U)
1312  XSPerfAccumulate("waitJmpCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.jmp.U)
1313  XSPerfAccumulate("waitCsrCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.csr.U)
1314  XSPerfAccumulate("waitFenCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.fence.U)
1315  XSPerfAccumulate("waitBkuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.bku.U)
1316  XSPerfAccumulate("waitLduCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.ldu.U)
1317  XSPerfAccumulate("waitStuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.stu.U)
1318  XSPerfAccumulate("waitStaCycle", deqUopNotWritebacked && deqHeadInfo.fuType === FuType.stu.U)
1319  XSPerfAccumulate("waitStdCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.stu.U)
1320  XSPerfAccumulate("waitAtmCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.mou.U)
1321
1322  XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL)
1323  XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH)
1324  XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD)
1325  XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE)
1326  XSPerfAccumulate("robHeadPC", io.commits.info(0).pc)
1327  XSPerfAccumulate("commitCompressCntAll", PopCount(io.commits.commitValid.zip(io.commits.info).map{case(valid, info) => io.commits.isCommit && valid && info.instrSize > 1.U}))
1328  (2 to RenameWidth).foreach(i =>
1329    XSPerfAccumulate(s"commitCompressCnt${i}", PopCount(io.commits.commitValid.zip(io.commits.info).map{case(valid, info) => io.commits.isCommit && valid && info.instrSize === i.U}))
1330  )
1331  XSPerfAccumulate("compressSize", io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => Mux(io.commits.isCommit && valid && info.instrSize > 1.U, info.instrSize, 0.U) }.reduce(_ +& _))
1332  val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime)
1333  val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime)
1334  val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime)
1335  val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime)
1336  val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime)
1337  val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime)
1338  val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime)
1339  def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = {
1340    cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _)
1341  }
1342  for (fuType <- FuType.functionNameMap.keys) {
1343    val fuName = FuType.functionNameMap(fuType)
1344    val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U )
1345    XSPerfRolling(s"ipc_futype_${fuName}", ifCommit(PopCount(commitIsFuType)), 1000, clock, reset)
1346    XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType)))
1347    XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency)))
1348    XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency)))
1349    XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency)))
1350    XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency)))
1351    XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency)))
1352    XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency)))
1353    XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency)))
1354  }
1355  XSPerfAccumulate(s"redirect_use_snapshot", io.redirect.valid && io.snpt.useSnpt)
1356
1357  // top-down info
1358  io.debugTopDown.toCore.robHeadVaddr.valid := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_valid
1359  io.debugTopDown.toCore.robHeadVaddr.bits  := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_bits
1360  io.debugTopDown.toCore.robHeadPaddr.valid := debug_lsTopdownInfo(deqPtr.value).s2.paddr_valid
1361  io.debugTopDown.toCore.robHeadPaddr.bits  := debug_lsTopdownInfo(deqPtr.value).s2.paddr_bits
1362  io.debugTopDown.toDispatch.robTrueCommit := ifCommitReg(trueCommitCnt)
1363  io.debugTopDown.toDispatch.robHeadLsIssue := debug_lsIssue(deqPtr.value)
1364  io.debugTopDown.robHeadLqIdx.valid := debug_lqIdxValid(deqPtr.value)
1365  io.debugTopDown.robHeadLqIdx.bits  := debug_microOp(deqPtr.value).lqIdx
1366
1367  // rolling
1368  io.debugRolling.robTrueCommit := ifCommitReg(trueCommitCnt)
1369
1370  /**
1371    * DataBase info:
1372    * log trigger is at writeback valid
1373    * */
1374
1375  /**
1376    * @todo add InstInfoEntry back
1377    * @author Maxpicca-Li
1378    */
1379
1380  //difftest signals
1381  val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value
1382
1383  val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1384  val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1385
1386  for(i <- 0 until CommitWidth) {
1387    val idx = deqPtrVec(i).value
1388    wdata(i) := debug_exuData(idx)
1389    wpc(i) := SignExt(commitDebugUop(i).pc, XLEN)
1390  }
1391
1392  if (env.EnableDifftest || env.AlwaysBasicDiff) {
1393    // These are the structures used by difftest only and should be optimized after synthesis.
1394    val dt_eliminatedMove = Mem(RobSize, Bool())
1395    val dt_isRVC = Mem(RobSize, Bool())
1396    val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle))
1397    for (i <- 0 until RenameWidth) {
1398      when (canEnqueue(i)) {
1399        dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove
1400        dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC
1401      }
1402    }
1403    for (wb <- exuWBs) {
1404      when (wb.valid) {
1405        val wbIdx = wb.bits.robIdx.value
1406        dt_exuDebug(wbIdx) := wb.bits.debug
1407      }
1408    }
1409    // Always instantiate basic difftest modules.
1410    for (i <- 0 until CommitWidth) {
1411      val uop = commitDebugUop(i)
1412      val commitInfo = io.commits.info(i)
1413      val ptr = deqPtrVec(i).value
1414      val exuOut = dt_exuDebug(ptr)
1415      val eliminatedMove = dt_eliminatedMove(ptr)
1416      val isRVC = dt_isRVC(ptr)
1417
1418      val difftest = DifftestModule(new DiffInstrCommit(MaxPhyPregs), delay = 3, dontCare = true)
1419      difftest.coreid  := io.hartId
1420      difftest.index   := i.U
1421      difftest.valid   := io.commits.commitValid(i) && io.commits.isCommit
1422      difftest.skip    := Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)
1423      difftest.isRVC   := isRVC
1424      difftest.rfwen   := io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U
1425      difftest.fpwen   := io.commits.commitValid(i) && uop.fpWen
1426      difftest.wpdest  := commitInfo.pdest
1427      difftest.wdest   := commitInfo.ldest
1428      difftest.nFused  := CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize - 1.U
1429      when(difftest.valid) {
1430        assert(CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize >= 1.U)
1431      }
1432      if (env.EnableDifftest) {
1433        val uop = commitDebugUop(i)
1434        difftest.pc       := SignExt(uop.pc, XLEN)
1435        difftest.instr    := uop.instr
1436        difftest.robIdx   := ZeroExt(ptr, 10)
1437        difftest.lqIdx    := ZeroExt(uop.lqIdx.value, 7)
1438        difftest.sqIdx    := ZeroExt(uop.sqIdx.value, 7)
1439        difftest.isLoad   := io.commits.info(i).commitType === CommitType.LOAD
1440        difftest.isStore  := io.commits.info(i).commitType === CommitType.STORE
1441      }
1442    }
1443  }
1444
1445  if (env.EnableDifftest) {
1446    for (i <- 0 until CommitWidth) {
1447      val difftest = DifftestModule(new DiffLoadEvent, delay = 3)
1448      difftest.coreid := io.hartId
1449      difftest.index  := i.U
1450
1451      val ptr = deqPtrVec(i).value
1452      val uop = commitDebugUop(i)
1453      val exuOut = debug_exuDebug(ptr)
1454      difftest.valid  := io.commits.commitValid(i) && io.commits.isCommit
1455      difftest.paddr  := exuOut.paddr
1456      difftest.opType := uop.fuOpType
1457      difftest.fuType := uop.fuType
1458    }
1459  }
1460
1461  if (env.EnableDifftest || env.AlwaysBasicDiff) {
1462    val dt_isXSTrap = Mem(RobSize, Bool())
1463    for (i <- 0 until RenameWidth) {
1464      when (canEnqueue(i)) {
1465        dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap
1466      }
1467    }
1468    val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) =>
1469      io.commits.isCommit && v && dt_isXSTrap(d.value)
1470    }
1471    val hitTrap = trapVec.reduce(_||_)
1472    val difftest = DifftestModule(new DiffTrapEvent, dontCare = true)
1473    difftest.coreid   := io.hartId
1474    difftest.hasTrap  := hitTrap
1475    difftest.cycleCnt := timer
1476    difftest.instrCnt := instrCnt
1477    difftest.hasWFI   := hasWFI
1478
1479    if (env.EnableDifftest) {
1480      val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1))
1481      val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN)
1482      difftest.code     := trapCode
1483      difftest.pc       := trapPC
1484    }
1485  }
1486
1487  val validEntriesBanks = (0 until (RobSize + 31) / 32).map(i => RegNext(PopCount(valid.drop(i * 32).take(32))))
1488  val validEntries = RegNext(VecInit(validEntriesBanks).reduceTree(_ +& _))
1489  val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })
1490  val commitLoadVec = VecInit(commitLoadValid)
1491  val commitBranchVec = VecInit(commitBranchValid)
1492  val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })
1493  val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })
1494  val perfEvents = Seq(
1495    ("rob_interrupt_num      ", io.flushOut.valid && intrEnable                                       ),
1496    ("rob_exception_num      ", io.flushOut.valid && exceptionEnable                                  ),
1497    ("rob_flush_pipe_num     ", io.flushOut.valid && isFlushPipe                                      ),
1498    ("rob_replay_inst_num    ", io.flushOut.valid && isFlushPipe && deqHasReplayInst                  ),
1499    ("rob_commitUop          ", ifCommit(commitCnt)                                                   ),
1500    ("rob_commitInstr        ", ifCommitReg(trueCommitCnt)                                            ),
1501    ("rob_commitInstrMove    ", ifCommitReg(PopCount(RegNext(commitMoveVec)))                         ),
1502    ("rob_commitInstrFused   ", ifCommitReg(fuseCommitCnt)                                            ),
1503    ("rob_commitInstrLoad    ", ifCommitReg(PopCount(RegNext(commitLoadVec)))                         ),
1504    ("rob_commitInstrBranch  ", ifCommitReg(PopCount(RegNext(commitBranchVec)))                       ),
1505    ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec)))                     ),
1506    ("rob_commitInstrStore   ", ifCommitReg(PopCount(RegNext(commitStoreVec)))                        ),
1507    ("rob_walkInstr          ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)           ),
1508    ("rob_walkCycle          ", (state === s_walk)                                                    ),
1509    ("rob_1_4_valid          ", validEntries <= (RobSize / 4).U                                       ),
1510    ("rob_2_4_valid          ", validEntries >  (RobSize / 4).U && validEntries <= (RobSize / 2).U    ),
1511    ("rob_3_4_valid          ", validEntries >  (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U),
1512    ("rob_4_4_valid          ", validEntries >  (RobSize * 3 / 4).U                                   ),
1513  )
1514  generatePerfEvent()
1515}
1516