1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.rob 18 19import org.chipsalliance.cde.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 24import utility._ 25import utils._ 26import xiangshan._ 27import xiangshan.backend.BackendParams 28import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 29import xiangshan.backend.fu.{FuConfig, FuType} 30import xiangshan.frontend.FtqPtr 31import xiangshan.mem.{LqPtr, LsqEnqIO, SqPtr} 32import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 33import xiangshan.backend.ctrlblock.{DebugLSIO, DebugLsInfo, LsTopdownInfo} 34import xiangshan.backend.fu.vector.Bundles.VType 35import xiangshan.backend.rename.SnapshotGenerator 36 37 38class RobPtr(entries: Int) extends CircularQueuePtr[RobPtr]( 39 entries 40) with HasCircularQueuePtrHelper { 41 42 def this()(implicit p: Parameters) = this(p(XSCoreParamsKey).RobSize) 43 44 def needFlush(redirect: Valid[Redirect]): Bool = { 45 val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx 46 redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx)) 47 } 48 49 def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR 50} 51 52object RobPtr { 53 def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = { 54 val ptr = Wire(new RobPtr) 55 ptr.flag := f 56 ptr.value := v 57 ptr 58 } 59} 60 61class RobCSRIO(implicit p: Parameters) extends XSBundle { 62 val intrBitSet = Input(Bool()) 63 val trapTarget = Input(UInt(VAddrBits.W)) 64 val isXRet = Input(Bool()) 65 val wfiEvent = Input(Bool()) 66 67 val fflags = Output(Valid(UInt(5.W))) 68 val vxsat = Output(Valid(Bool())) 69 val vstart = Output(Valid(UInt(XLEN.W))) 70 val dirty_fs = Output(Bool()) 71 val perfinfo = new Bundle { 72 val retiredInstr = Output(UInt(3.W)) 73 } 74 75 val vcsrFlag = Output(Bool()) 76} 77 78class RobLsqIO(implicit p: Parameters) extends XSBundle { 79 val lcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 80 val scommit = Output(UInt(log2Up(CommitWidth + 1).W)) 81 val pendingld = Output(Bool()) 82 val pendingst = Output(Bool()) 83 val commit = Output(Bool()) 84 val pendingPtr = Output(new RobPtr) 85 val pendingPtrNext = Output(new RobPtr) 86 87 val mmio = Input(Vec(LoadPipelineWidth, Bool())) 88 // Todo: what's this? 89 val uop = Input(Vec(LoadPipelineWidth, new DynInst)) 90} 91 92class RobEnqIO(implicit p: Parameters) extends XSBundle { 93 val canAccept = Output(Bool()) 94 val isEmpty = Output(Bool()) 95 // valid vector, for robIdx gen and walk 96 val needAlloc = Vec(RenameWidth, Input(Bool())) 97 val req = Vec(RenameWidth, Flipped(ValidIO(new DynInst))) 98 val resp = Vec(RenameWidth, Output(new RobPtr)) 99} 100 101class RobCoreTopDownIO(implicit p: Parameters) extends XSBundle { 102 val robHeadVaddr = Valid(UInt(VAddrBits.W)) 103 val robHeadPaddr = Valid(UInt(PAddrBits.W)) 104} 105 106class RobDispatchTopDownIO extends Bundle { 107 val robTrueCommit = Output(UInt(64.W)) 108 val robHeadLsIssue = Output(Bool()) 109} 110 111class RobDebugRollingIO extends Bundle { 112 val robTrueCommit = Output(UInt(64.W)) 113} 114 115class RobDispatchData(implicit p: Parameters) extends RobCommitInfo {} 116 117class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 118 val io = IO(new Bundle { 119 // for commits/flush 120 val state = Input(UInt(2.W)) 121 val deq_v = Vec(CommitWidth, Input(Bool())) 122 val deq_w = Vec(CommitWidth, Input(Bool())) 123 val exception_state = Flipped(ValidIO(new RobExceptionInfo)) 124 // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth) 125 val intrBitSetReg = Input(Bool()) 126 val hasNoSpecExec = Input(Bool()) 127 val interrupt_safe = Input(Bool()) 128 val blockCommit = Input(Bool()) 129 // output: the CommitWidth deqPtr 130 val out = Vec(CommitWidth, Output(new RobPtr)) 131 val next_out = Vec(CommitWidth, Output(new RobPtr)) 132 }) 133 134 val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr)))) 135 136 // for exceptions (flushPipe included) and interrupts: 137 // only consider the first instruction 138 val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe 139 val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0) 140 val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable) 141 142 // for normal commits: only to consider when there're no exceptions 143 // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions. 144 val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last) 145 val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i))) 146 val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B) 147 // when io.intrBitSetReg or there're possible exceptions in these instructions, 148 // only one instruction is allowed to commit 149 val allowOnlyOne = commit_exception || io.intrBitSetReg 150 val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt) 151 152 val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt)) 153 val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec) 154 155 deqPtrVec := deqPtrVec_next 156 157 io.next_out := deqPtrVec_next 158 io.out := deqPtrVec 159 160 when (io.state === 0.U) { 161 XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt) 162 } 163 164} 165 166class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 167 val io = IO(new Bundle { 168 // for input redirect 169 val redirect = Input(Valid(new Redirect)) 170 // for enqueue 171 val allowEnqueue = Input(Bool()) 172 val hasBlockBackward = Input(Bool()) 173 val enq = Vec(RenameWidth, Input(Bool())) 174 val out = Output(Vec(RenameWidth, new RobPtr)) 175 }) 176 177 val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr))) 178 179 // enqueue 180 val canAccept = io.allowEnqueue && !io.hasBlockBackward 181 val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U) 182 183 for ((ptr, i) <- enqPtrVec.zipWithIndex) { 184 when(io.redirect.valid) { 185 ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 186 }.otherwise { 187 ptr := ptr + dispatchNum 188 } 189 } 190 191 io.out := enqPtrVec 192 193} 194 195class RobExceptionInfo(implicit p: Parameters) extends XSBundle { 196 // val valid = Bool() 197 val robIdx = new RobPtr 198 val exceptionVec = ExceptionVec() 199 val flushPipe = Bool() 200 val isVset = Bool() 201 val replayInst = Bool() // redirect to that inst itself 202 val singleStep = Bool() // TODO add frontend hit beneath 203 val crossPageIPFFix = Bool() 204 val trigger = new TriggerCf 205 val vstartEn = Bool() 206 val vstart = UInt(XLEN.W) 207 208 def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.canFire 209 def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.canFire 210 // only exceptions are allowed to writeback when enqueue 211 def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.canFire 212} 213 214class ExceptionGen(params: BackendParams)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 215 val io = IO(new Bundle { 216 val redirect = Input(Valid(new Redirect)) 217 val flush = Input(Bool()) 218 val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo))) 219 // csr + load + store + varith + vload + vstore 220 val wb = Vec(params.numException, Flipped(ValidIO(new RobExceptionInfo))) 221 val out = ValidIO(new RobExceptionInfo) 222 val state = ValidIO(new RobExceptionInfo) 223 }) 224 225 val wbExuParams = params.allExuParams.filter(_.exceptionOut.nonEmpty) 226 227 def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): RobExceptionInfo = { 228 def getOldest_recursion(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = { 229 assert(valid.length == bits.length) 230 if (valid.length == 1) { 231 (valid, bits) 232 } else if (valid.length == 2) { 233 val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0))))) 234 for (i <- res.indices) { 235 res(i).valid := valid(i) 236 res(i).bits := bits(i) 237 } 238 val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1)) 239 (Seq(oldest.valid), Seq(oldest.bits)) 240 } else { 241 val left = getOldest_recursion(valid.take(valid.length / 2), bits.take(valid.length / 2)) 242 val right = getOldest_recursion(valid.drop(valid.length / 2), bits.drop(valid.length / 2)) 243 getOldest_recursion(left._1 ++ right._1, left._2 ++ right._2) 244 } 245 } 246 getOldest_recursion(valid, bits)._2.head 247 } 248 249 250 val currentValid = RegInit(false.B) 251 val current = Reg(new RobExceptionInfo) 252 253 // orR the exceptionVec 254 val lastCycleFlush = RegNext(io.flush) 255 val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush)) 256 257 // s0: compare wb in 6 groups 258 val csr_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(t => t.isCsr).nonEmpty).map(_._1) 259 val load_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.ldu).nonEmpty).map(_._1) 260 val store_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(t => t.isSta || t.fuType == FuType.mou).nonEmpty).map(_._1) 261 val varith_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.isVecArith).nonEmpty).map(_._1) 262 val vload_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.vldu).nonEmpty).map(_._1) 263 val vstore_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.vstu).nonEmpty).map(_._1) 264 265 val writebacks = Seq(csr_wb, load_wb, store_wb, varith_wb, vload_wb, vstore_wb) 266 val in_wb_valids = writebacks.map(_.map(w => w.valid && w.bits.has_exception && !lastCycleFlush)) 267 val wb_valid = in_wb_valids.zip(writebacks).map { case (valid, wb) => 268 valid.zip(wb.map(_.bits)).map { case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }.reduce(_ || _) 269 } 270 val wb_bits = in_wb_valids.zip(writebacks).map { case (valid, wb) => getOldest(valid, wb.map(_.bits))} 271 272 val s0_out_valid = wb_valid.map(x => RegNext(x)) 273 val s0_out_bits = wb_bits.zip(wb_valid).map{ case(b, v) => RegEnable(b, v)} 274 275 // s1: compare last six and current flush 276 val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) }) 277 val s1_out_bits = RegEnable(getOldest(s0_out_valid, s0_out_bits), s1_valid.asUInt.orR) 278 val s1_out_valid = RegNext(s1_valid.asUInt.orR) 279 280 val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 281 val enq_bits = RegEnable(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits)), in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 282 283 // s2: compare the input exception with the current one 284 // priorities: 285 // (1) system reset 286 // (2) current is valid: flush, remain, merge, update 287 // (3) current is not valid: s1 or enq 288 val current_flush = current.robIdx.needFlush(io.redirect) || io.flush 289 val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush 290 when (currentValid) { 291 when (current_flush) { 292 currentValid := Mux(s1_flush, false.B, s1_out_valid) 293 } 294 when (s1_out_valid && !s1_flush) { 295 when (isAfter(current.robIdx, s1_out_bits.robIdx)) { 296 current := s1_out_bits 297 }.elsewhen (current.robIdx === s1_out_bits.robIdx) { 298 current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec()) 299 current.flushPipe := s1_out_bits.flushPipe || current.flushPipe 300 current.replayInst := s1_out_bits.replayInst || current.replayInst 301 current.singleStep := s1_out_bits.singleStep || current.singleStep 302 current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf) 303 } 304 } 305 }.elsewhen (s1_out_valid && !s1_flush) { 306 currentValid := true.B 307 current := s1_out_bits 308 }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) { 309 currentValid := true.B 310 current := enq_bits 311 } 312 313 io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback 314 io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits) 315 io.state.valid := currentValid 316 io.state.bits := current 317 318} 319 320class RobFlushInfo(implicit p: Parameters) extends XSBundle { 321 val ftqIdx = new FtqPtr 322 val robIdx = new RobPtr 323 val ftqOffset = UInt(log2Up(PredictWidth).W) 324 val replayInst = Bool() 325} 326 327class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter { 328 override def shouldBeInlined: Boolean = false 329 330 lazy val module = new RobImp(this)(p, params) 331} 332 333class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper) 334 with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents { 335 336 private val LduCnt = params.LduCnt 337 private val StaCnt = params.StaCnt 338 private val HyuCnt = params.HyuCnt 339 340 val io = IO(new Bundle() { 341 val hartId = Input(UInt(8.W)) 342 val redirect = Input(Valid(new Redirect)) 343 val enq = new RobEnqIO 344 val flushOut = ValidIO(new Redirect) 345 val exception = ValidIO(new ExceptionInfo) 346 // exu + brq 347 val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles) 348 val commits = Output(new RobCommitIO) 349 val rabCommits = Output(new RobCommitIO) 350 val diffCommits = Output(new DiffCommitIO) 351 val isVsetFlushPipe = Output(Bool()) 352 val vconfigPdest = Output(UInt(PhyRegIdxWidth.W)) 353 val lsq = new RobLsqIO 354 val robDeqPtr = Output(new RobPtr) 355 val csr = new RobCSRIO 356 val snpt = Input(new SnapshotPort) 357 val robFull = Output(Bool()) 358 val headNotReady = Output(Bool()) 359 val cpu_halt = Output(Bool()) 360 val wfi_enable = Input(Bool()) 361 val toDecode = new Bundle { 362 val vtype = ValidIO(VType()) 363 } 364 365 val debug_ls = Flipped(new DebugLSIO) 366 val debugRobHead = Output(new DynInst) 367 val debugEnqLsq = Input(new LsqEnqIO) 368 val debugHeadLsIssue = Input(Bool()) 369 val lsTopdownInfo = Vec(LduCnt + HyuCnt, Input(new LsTopdownInfo)) 370 val debugTopDown = new Bundle { 371 val toCore = new RobCoreTopDownIO 372 val toDispatch = new RobDispatchTopDownIO 373 val robHeadLqIdx = Valid(new LqPtr) 374 } 375 val debugRolling = new RobDebugRollingIO 376 }) 377 378 val exuWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(!_.bits.params.hasStdFu).toSeq 379 val stdWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(_.bits.params.hasStdFu).toSeq 380 val fflagsWBs = io.writeback.filter(x => x.bits.fflags.nonEmpty) 381 val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty) 382 val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty) 383 384 val exuWbPorts = io.writeback.filter(!_.bits.params.hasStdFu) 385 val stdWbPorts = io.writeback.filter(_.bits.params.hasStdFu) 386 val fflagsPorts = io.writeback.filter(x => x.bits.fflags.nonEmpty) 387 val vxsatPorts = io.writeback.filter(x => x.bits.vxsat.nonEmpty) 388 val exceptionPorts = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty) 389 val numExuWbPorts = exuWBs.length 390 val numStdWbPorts = stdWBs.length 391 392 393 println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth") 394// println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}") 395// println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}") 396// println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}") 397 398 399 // instvalid field 400 val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 401 // writeback status 402 403 val stdWritebacked = Reg(Vec(RobSize, Bool())) 404 val commitTrigger = Mem(RobSize, Bool()) 405 val uopNumVec = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W)))) 406 val realDestSize = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W)))) 407 val fflagsDataModule = RegInit(VecInit(Seq.fill(RobSize)(0.U(5.W)))) 408 val vxsatDataModule = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 409 val vls = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 410 411 def isWritebacked(ptr: UInt): Bool = { 412 !uopNumVec(ptr).orR && stdWritebacked(ptr) 413 } 414 415 def isUopWritebacked(ptr: UInt): Bool = { 416 !uopNumVec(ptr).orR 417 } 418 419 val mmio = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 420 421 // data for redirect, exception, etc. 422 val flagBkup = Mem(RobSize, Bool()) 423 // some instructions are not allowed to trigger interrupts 424 // They have side effects on the states of the processor before they write back 425 val interrupt_safe = RegInit(VecInit(Seq.fill(RobSize)(true.B))) 426 427 // data for debug 428 // Warn: debug_* prefix should not exist in generated verilog. 429 val debug_microOp = DebugMem(RobSize, new DynInst) 430 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug 431 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug 432 val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init))) 433 val debug_lsTopdownInfo = RegInit(VecInit(Seq.fill(RobSize)(LsTopdownInfo.init))) 434 val debug_lqIdxValid = RegInit(VecInit.fill(RobSize)(false.B)) 435 val debug_lsIssued = RegInit(VecInit.fill(RobSize)(false.B)) 436 437 // pointers 438 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 439 val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr)) 440 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 441 442 if(backendParams.debugEn) { 443 dontTouch(enqPtrVec) 444 dontTouch(deqPtrVec) 445 } 446 447 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 448 val lastWalkPtr = Reg(new RobPtr) 449 val allowEnqueue = RegInit(true.B) 450 451 val enqPtr = enqPtrVec.head 452 val deqPtr = deqPtrVec(0) 453 val walkPtr = walkPtrVec(0) 454 455 val isEmpty = enqPtr === deqPtr 456 val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level) 457 458 val snptEnq = io.enq.canAccept && io.enq.req.map(x => x.valid && x.bits.snapshot).reduce(_ || _) 459 val snapshotPtrVec = Wire(Vec(RenameWidth, new RobPtr)) 460 snapshotPtrVec(0) := io.enq.req(0).bits.robIdx 461 for (i <- 1 until RenameWidth) { 462 snapshotPtrVec(i) := snapshotPtrVec(0) + i.U 463 } 464 val snapshots = SnapshotGenerator(snapshotPtrVec, snptEnq, io.snpt.snptDeq, io.redirect.valid, io.snpt.flushVec) 465 val debug_lsIssue = WireDefault(debug_lsIssued) 466 debug_lsIssue(deqPtr.value) := io.debugHeadLsIssue 467 468 /** 469 * states of Rob 470 */ 471 val s_idle :: s_walk :: Nil = Enum(2) 472 val state = RegInit(s_idle) 473 474 /** 475 * Data Modules 476 * 477 * CommitDataModule: data from dispatch 478 * (1) read: commits/walk/exception 479 * (2) write: enqueue 480 * 481 * WritebackData: data from writeback 482 * (1) read: commits/walk/exception 483 * (2) write: write back from exe units 484 */ 485 val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth)) 486 val dispatchDataRead = dispatchData.io.rdata 487 488 val exceptionGen = Module(new ExceptionGen(params)) 489 val exceptionDataRead = exceptionGen.io.state 490 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 491 val vxsatDataRead = Wire(Vec(CommitWidth, Bool())) 492 493 io.robDeqPtr := deqPtr 494 io.debugRobHead := debug_microOp(deqPtr.value) 495 496 val rab = Module(new RenameBuffer(RabSize)) 497 val vtypeBuffer = Module(new VTypeBuffer(VTypeBufferSize)) 498 499 /** 500 * connection of [[rab]] 501 */ 502 rab.io.redirect.valid := io.redirect.valid 503 504 rab.io.req.zip(io.enq.req).map { case (dest, src) => 505 dest.bits := src.bits 506 dest.valid := src.valid && io.enq.canAccept 507 } 508 509 val commitDestSizeSeq = (0 until CommitWidth).map(i => realDestSize(deqPtrVec(i).value)) 510 val walkDestSizeSeq = (0 until CommitWidth).map(i => realDestSize(walkPtrVec(i).value)) 511 512 val commitSizeSum = io.commits.commitValid.zip(commitDestSizeSeq).map { case (commitValid, destSize) => 513 Mux(io.commits.isCommit && commitValid, destSize, 0.U) 514 }.reduce(_ +& _) 515 val walkSizeSum = io.commits.walkValid.zip(walkDestSizeSeq).map { case (walkValid, destSize) => 516 Mux(io.commits.isWalk && walkValid, destSize, 0.U) 517 }.reduce(_ +& _) 518 519 rab.io.fromRob.commitSize := commitSizeSum 520 rab.io.fromRob.walkSize := walkSizeSum 521 rab.io.snpt := io.snpt 522 rab.io.snpt.snptEnq := snptEnq 523 524 io.rabCommits := rab.io.commits 525 io.diffCommits := rab.io.diffCommits 526 527 /** 528 * connection of [[vtypeBuffer]] 529 */ 530 531 vtypeBuffer.io.redirect.valid := io.redirect.valid 532 533 vtypeBuffer.io.req.zip(io.enq.req).map { case (sink, source) => 534 sink.valid := source.valid && io.enq.canAccept 535 sink.bits := source.bits 536 } 537 538 private val commitIsVTypeVec = VecInit(io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => io.commits.isCommit && valid && info.isVset }) 539 private val walkIsVTypeVec = VecInit(io.commits.walkValid.zip(io.commits.info).map { case (valid, info) => io.commits.isWalk && valid && info.isVset }) 540 vtypeBuffer.io.fromRob.commitSize := PopCount(commitIsVTypeVec) 541 vtypeBuffer.io.fromRob.walkSize := PopCount(walkIsVTypeVec) 542 vtypeBuffer.io.snpt := io.snpt 543 vtypeBuffer.io.snpt.snptEnq := snptEnq 544 io.toDecode.vtype := vtypeBuffer.io.toDecode.vtype 545 546 /** 547 * Enqueue (from dispatch) 548 */ 549 // special cases 550 val hasBlockBackward = RegInit(false.B) 551 val hasWaitForward = RegInit(false.B) 552 val doingSvinval = RegInit(false.B) 553 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 554 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 555 when (isEmpty) { hasBlockBackward:= false.B } 556 // When any instruction commits, hasNoSpecExec should be set to false.B 557 when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasWaitForward:= false.B } 558 559 // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing. 560 // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle. 561 // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts. 562 val hasWFI = RegInit(false.B) 563 io.cpu_halt := hasWFI 564 // WFI Timeout: 2^20 = 1M cycles 565 val wfi_cycles = RegInit(0.U(20.W)) 566 when (hasWFI) { 567 wfi_cycles := wfi_cycles + 1.U 568 }.elsewhen (!hasWFI && RegNext(hasWFI)) { 569 wfi_cycles := 0.U 570 } 571 val wfi_timeout = wfi_cycles.andR 572 when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) { 573 hasWFI := false.B 574 } 575 576 val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.req.take(i).map(req => req.valid && req.bits.firstUop))))) 577 io.enq.canAccept := allowEnqueue && !hasBlockBackward && rab.io.canEnq && vtypeBuffer.io.canEnq 578 io.enq.resp := allocatePtrVec 579 val canEnqueue = VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop && io.enq.canAccept)) 580 val timer = GTimer() 581 for (i <- 0 until RenameWidth) { 582 // we don't check whether io.redirect is valid here since redirect has higher priority 583 when (canEnqueue(i)) { 584 val enqUop = io.enq.req(i).bits 585 val enqIndex = allocatePtrVec(i).value 586 // store uop in data module and debug_microOp Vec 587 debug_microOp(enqIndex) := enqUop 588 debug_microOp(enqIndex).debugInfo.dispatchTime := timer 589 debug_microOp(enqIndex).debugInfo.enqRsTime := timer 590 debug_microOp(enqIndex).debugInfo.selectTime := timer 591 debug_microOp(enqIndex).debugInfo.issueTime := timer 592 debug_microOp(enqIndex).debugInfo.writebackTime := timer 593 debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer 594 debug_microOp(enqIndex).debugInfo.tlbRespTime := timer 595 debug_lsInfo(enqIndex) := DebugLsInfo.init 596 debug_lsTopdownInfo(enqIndex) := LsTopdownInfo.init 597 debug_lqIdxValid(enqIndex) := false.B 598 debug_lsIssued(enqIndex) := false.B 599 600 when (enqUop.blockBackward) { 601 hasBlockBackward := true.B 602 } 603 when (enqUop.waitForward) { 604 hasWaitForward := true.B 605 } 606 val enqHasTriggerCanFire = io.enq.req(i).bits.trigger.getFrontendCanFire 607 val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR 608 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 609 when(!enqHasTriggerCanFire && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe)) 610 { 611 doingSvinval := true.B 612 } 613 // the end instruction of Svinval enqs so clear doingSvinval 614 when(!enqHasTriggerCanFire && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe)) 615 { 616 doingSvinval := false.B 617 } 618 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 619 assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe))) 620 when (enqUop.isWFI && !enqHasException && !enqHasTriggerCanFire) { 621 hasWFI := true.B 622 } 623 624 mmio(enqIndex) := false.B 625 626 vls(enqIndex) := enqUop.vlsInstr 627 } 628 } 629 val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(req => req.valid && req.bits.firstUop)), 0.U) 630 io.enq.isEmpty := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR) 631 632 when (!io.wfi_enable) { 633 hasWFI := false.B 634 } 635 // sel vsetvl's flush position 636 val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3) 637 val vsetvlState = RegInit(vs_idle) 638 639 val firstVInstrFtqPtr = RegInit(0.U.asTypeOf(new FtqPtr)) 640 val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W))) 641 val firstVInstrRobIdx = RegInit(0.U.asTypeOf(new RobPtr)) 642 643 val enq0 = io.enq.req(0) 644 val enq0IsVset = enq0.bits.isVset && enq0.bits.lastUop && canEnqueue(0) 645 val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe 646 val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVArith(req.bits.fuType) && fire} 647 // for vs_idle 648 val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType))) 649 // for vs_waitVinstr 650 val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1) 651 val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req) 652 when(vsetvlState === vs_idle){ 653 firstVInstrFtqPtr := firstVInstrIdle.bits.ftqPtr 654 firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset 655 firstVInstrRobIdx := firstVInstrIdle.bits.robIdx 656 }.elsewhen(vsetvlState === vs_waitVinstr){ 657 when(Cat(enqIsVInstrOrVset).orR){ 658 firstVInstrFtqPtr := firstVInstrWait.bits.ftqPtr 659 firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset 660 firstVInstrRobIdx := firstVInstrWait.bits.robIdx 661 } 662 } 663 664 val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR 665 when(vsetvlState === vs_idle && !io.redirect.valid){ 666 when(enq0IsVsetFlush){ 667 vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr) 668 } 669 }.elsewhen(vsetvlState === vs_waitVinstr){ 670 when(io.redirect.valid){ 671 vsetvlState := vs_idle 672 }.elsewhen(Cat(enqIsVInstrOrVset).orR){ 673 vsetvlState := vs_waitFlush 674 } 675 }.elsewhen(vsetvlState === vs_waitFlush){ 676 when(io.redirect.valid){ 677 vsetvlState := vs_idle 678 } 679 } 680 681 // lqEnq 682 io.debugEnqLsq.needAlloc.map(_(0)).zip(io.debugEnqLsq.req).foreach { case (alloc, req) => 683 when(io.debugEnqLsq.canAccept && alloc && req.valid) { 684 debug_microOp(req.bits.robIdx.value).lqIdx := req.bits.lqIdx 685 debug_lqIdxValid(req.bits.robIdx.value) := true.B 686 } 687 } 688 689 // lsIssue 690 when(io.debugHeadLsIssue) { 691 debug_lsIssued(deqPtr.value) := true.B 692 } 693 694 /** 695 * Writeback (from execution units) 696 */ 697 for (wb <- exuWBs) { 698 when (wb.valid) { 699 val wbIdx = wb.bits.robIdx.value 700 debug_exuData(wbIdx) := wb.bits.data 701 debug_exuDebug(wbIdx) := wb.bits.debug 702 debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime 703 debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime 704 debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime 705 debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime 706 707 // debug for lqidx and sqidx 708 debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr)) 709 debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr)) 710 711 val debug_Uop = debug_microOp(wbIdx) 712 XSInfo(true.B, 713 p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " + 714 p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " + 715 p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.robIdx}\n" 716 ) 717 } 718 } 719 720 val writebackNum = PopCount(exuWBs.map(_.valid)) 721 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 722 723 for (i <- 0 until LoadPipelineWidth) { 724 when (RegNext(io.lsq.mmio(i))) { 725 mmio(RegEnable(io.lsq.uop(i).robIdx, io.lsq.mmio(i)).value) := true.B 726 } 727 } 728 729 /** 730 * RedirectOut: Interrupt and Exceptions 731 */ 732 val deqDispatchData = dispatchDataRead(0) 733 val debug_deqUop = debug_microOp(deqPtr.value) 734 735 val intrBitSetReg = RegNext(io.csr.intrBitSet) 736 val intrEnable = intrBitSetReg && !hasWaitForward && interrupt_safe(deqPtr.value) 737 val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 738 val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR || 739 exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.canFire) 740 val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe 741 val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst 742 val exceptionEnable = isWritebacked(deqPtr.value) && deqHasException 743 744 XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n") 745 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getFrontendCanFire, "Debug Mode: Deq has frontend trigger exception\n") 746 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getBackendCanFire, "Debug Mode: Deq has backend trigger exception\n") 747 748 val isFlushPipe = isWritebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst) 749 750 val isVsetFlushPipe = isWritebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset 751// val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush) 752 val needModifyFtqIdxOffset = false.B 753 io.isVsetFlushPipe := isVsetFlushPipe 754 io.vconfigPdest := rab.io.vconfigPdest 755 // io.flushOut will trigger redirect at the next cycle. 756 // Block any redirect or commit at the next cycle. 757 val lastCycleFlush = RegNext(io.flushOut.valid) 758 759 io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush 760 io.flushOut.bits := DontCare 761 io.flushOut.bits.isRVC := deqDispatchData.isRVC 762 io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr) 763 io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx) 764 io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset) 765 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next" 766 io.flushOut.bits.interrupt := true.B 767 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 768 XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable) 769 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 770 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 771 772 val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush 773 io.exception.valid := RegNext(exceptionHappen) 774 io.exception.bits.pc := RegEnable(debug_deqUop.pc, exceptionHappen) 775 io.exception.bits.instr := RegEnable(debug_deqUop.instr, exceptionHappen) 776 io.exception.bits.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 777 io.exception.bits.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 778 io.exception.bits.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 779 io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 780 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 781 io.exception.bits.vls := RegEnable(vls(deqPtr.value), exceptionHappen) 782 io.exception.bits.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen) 783 io.csr.vstart.valid := RegEnable(exceptionDataRead.bits.vstartEn, false.B, exceptionHappen) 784 io.csr.vstart.bits := RegEnable(exceptionDataRead.bits.vstart, exceptionHappen) 785 786 XSDebug(io.flushOut.valid, 787 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " + 788 p"excp $exceptionEnable flushPipe $isFlushPipe " + 789 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 790 791 792 /** 793 * Commits (and walk) 794 * They share the same width. 795 */ 796 val shouldWalkVec = VecInit(walkPtrVec.map(_ <= lastWalkPtr)) 797 val walkFinished = VecInit(walkPtrVec.map(_ >= lastWalkPtr)).asUInt.orR 798 rab.io.fromRob.walkEnd := state === s_walk && walkFinished 799 vtypeBuffer.io.fromRob.walkEnd := state === s_walk && walkFinished 800 801 require(RenameWidth <= CommitWidth) 802 803 // wiring to csr 804 val (wflags, dirtyFs) = (0 until CommitWidth).map(i => { 805 val v = io.commits.commitValid(i) 806 val info = io.commits.info(i) 807 (v & info.wflags, v & info.dirtyFs) 808 }).unzip 809 val fflags = Wire(Valid(UInt(5.W))) 810 fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR 811 fflags.bits := wflags.zip(fflagsDataRead).map({ 812 case (w, f) => Mux(w, f, 0.U) 813 }).reduce(_|_) 814 val dirty_fs = io.commits.isCommit && VecInit(dirtyFs).asUInt.orR 815 816 val vxsat = Wire(Valid(Bool())) 817 vxsat.valid := io.commits.isCommit && vxsat.bits 818 vxsat.bits := io.commits.commitValid.zip(vxsatDataRead).map { 819 case (valid, vxsat) => valid & vxsat 820 }.reduce(_ | _) 821 822 // when mispredict branches writeback, stop commit in the next 2 cycles 823 // TODO: don't check all exu write back 824 val misPredWb = Cat(VecInit(redirectWBs.map(wb => 825 wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid 826 ).toSeq)).orR 827 val misPredBlockCounter = Reg(UInt(3.W)) 828 misPredBlockCounter := Mux(misPredWb, 829 "b111".U, 830 misPredBlockCounter >> 1.U 831 ) 832 val misPredBlock = misPredBlockCounter(0) 833 val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI || io.redirect.valid 834 835 io.commits.isWalk := state === s_walk 836 io.commits.isCommit := state === s_idle && !blockCommit 837 val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value))) 838 val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value))) 839 // store will be commited iff both sta & std have been writebacked 840 val commit_w = VecInit(deqPtrVec.map(ptr => isWritebacked(ptr.value) && commitTrigger(ptr.value))) 841 val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last) 842 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i))) 843 val allowOnlyOneCommit = commit_exception || intrBitSetReg 844 // for instructions that may block others, we don't allow them to commit 845 for (i <- 0 until CommitWidth) { 846 // defaults: state === s_idle and instructions commit 847 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 848 val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst 849 io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked 850 io.commits.info(i) := dispatchDataRead(i) 851 io.commits.robIdx(i) := deqPtrVec(i) 852 853 io.commits.walkValid(i) := shouldWalkVec(i) 854 when (state === s_walk) { 855 when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) { 856 XSError(!walk_v(i), s"The walking entry($i) should be valid\n") 857 } 858 } 859 860 XSInfo(io.commits.isCommit && io.commits.commitValid(i), 861 "retired pc %x wen %d ldest %d pdest %x data %x fflags: %b vxsat: %b\n", 862 debug_microOp(deqPtrVec(i).value).pc, 863 io.commits.info(i).rfWen, 864 io.commits.info(i).ldest, 865 io.commits.info(i).pdest, 866 debug_exuData(deqPtrVec(i).value), 867 fflagsDataRead(i), 868 vxsatDataRead(i) 869 ) 870 XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n", 871 debug_microOp(walkPtrVec(i).value).pc, 872 io.commits.info(i).rfWen, 873 io.commits.info(i).ldest, 874 debug_exuData(walkPtrVec(i).value) 875 ) 876 } 877 if (env.EnableDifftest) { 878 io.commits.info.map(info => dontTouch(info.pc)) 879 } 880 881 // sync fflags/dirty_fs/vxsat to csr 882 io.csr.fflags := RegNext(fflags) 883 io.csr.dirty_fs := RegNext(dirty_fs) 884 io.csr.vxsat := RegNext(vxsat) 885 886 // sync v csr to csr 887 // for difftest 888 if(env.AlwaysBasicDiff || env.EnableDifftest) { 889 val isDiffWriteVconfigVec = io.diffCommits.commitValid.zip(io.diffCommits.info).map { case (valid, info) => valid && info.ldest === VCONFIG_IDX.U && info.vecWen }.reverse 890 io.csr.vcsrFlag := RegNext(io.diffCommits.isCommit && Cat(isDiffWriteVconfigVec).orR) 891 } 892 else{ 893 io.csr.vcsrFlag := false.B 894 } 895 896 // commit load/store to lsq 897 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 898 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE)) 899 val deqPtrVec_next = Wire(Vec(CommitWidth, Output(new RobPtr))) 900 io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U)) 901 io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U)) 902 // indicate a pending load or store 903 io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value) && mmio(deqPtr.value)) 904 io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value)) 905 io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0)) 906 io.lsq.pendingPtr := RegNext(deqPtr) 907 io.lsq.pendingPtrNext := RegNext(deqPtrVec_next.head) 908 909 /** 910 * state changes 911 * (1) redirect: switch to s_walk 912 * (2) walk: when walking comes to the end, switch to s_idle 913 */ 914 val state_next = Mux( 915 io.redirect.valid, s_walk, 916 Mux( 917 state === s_walk && walkFinished && rab.io.status.walkEnd && vtypeBuffer.io.status.walkEnd, s_idle, 918 state 919 ) 920 ) 921 XSPerfAccumulate("s_idle_to_idle", state === s_idle && state_next === s_idle) 922 XSPerfAccumulate("s_idle_to_walk", state === s_idle && state_next === s_walk) 923 XSPerfAccumulate("s_walk_to_idle", state === s_walk && state_next === s_idle) 924 XSPerfAccumulate("s_walk_to_walk", state === s_walk && state_next === s_walk) 925 state := state_next 926 927 /** 928 * pointers and counters 929 */ 930 val deqPtrGenModule = Module(new RobDeqPtrWrapper) 931 deqPtrGenModule.io.state := state 932 deqPtrGenModule.io.deq_v := commit_v 933 deqPtrGenModule.io.deq_w := commit_w 934 deqPtrGenModule.io.exception_state := exceptionDataRead 935 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 936 deqPtrGenModule.io.hasNoSpecExec := hasWaitForward 937 deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value) 938 deqPtrGenModule.io.blockCommit := blockCommit 939 deqPtrVec := deqPtrGenModule.io.out 940 deqPtrVec_next := deqPtrGenModule.io.next_out 941 942 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 943 enqPtrGenModule.io.redirect := io.redirect 944 enqPtrGenModule.io.allowEnqueue := allowEnqueue && rab.io.canEnq 945 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 946 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop)) 947 enqPtrVec := enqPtrGenModule.io.out 948 949 // next walkPtrVec: 950 // (1) redirect occurs: update according to state 951 // (2) walk: move forwards 952 val walkPtrVec_next = Mux(io.redirect.valid, 953 Mux(io.snpt.useSnpt, snapshots(io.snpt.snptSelect), deqPtrVec_next), 954 Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec) 955 ) 956 walkPtrVec := walkPtrVec_next 957 958 val numValidEntries = distanceBetween(enqPtr, deqPtr) 959 val commitCnt = PopCount(io.commits.commitValid) 960 961 allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U 962 963 val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0)) 964 when (io.redirect.valid) { 965 lastWalkPtr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx - 1.U, io.redirect.bits.robIdx) 966 } 967 968 969 /** 970 * States 971 * We put all the stage bits changes here. 972 973 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 974 * All states: (1) valid; (2) writebacked; (3) flagBkup 975 */ 976 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 977 978 // redirect logic writes 6 valid 979 val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr)) 980 val redirectTail = Reg(new RobPtr) 981 val redirectIdle :: redirectBusy :: Nil = Enum(2) 982 val redirectState = RegInit(redirectIdle) 983 val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail)) 984 when(redirectState === redirectBusy) { 985 redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U) 986 redirectHeadVec zip invMask foreach { 987 case (redirectHead, inv) => when(inv) { 988 valid(redirectHead.value) := false.B 989 } 990 } 991 when(!invMask.last) { 992 redirectState := redirectIdle 993 } 994 } 995 when(io.redirect.valid) { 996 redirectState := redirectBusy 997 when(redirectState === redirectIdle) { 998 redirectTail := enqPtr 999 } 1000 redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) => 1001 redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 1002 } 1003 } 1004 // enqueue logic writes 6 valid 1005 for (i <- 0 until RenameWidth) { 1006 when (canEnqueue(i) && !io.redirect.valid) { 1007 valid(allocatePtrVec(i).value) := true.B 1008 } 1009 } 1010 // dequeue logic writes 6 valid 1011 for (i <- 0 until CommitWidth) { 1012 val commitValid = io.commits.isCommit && io.commits.commitValid(i) 1013 when (commitValid) { 1014 valid(commitReadAddr(i)) := false.B 1015 } 1016 } 1017 1018 // debug_inst update 1019 for(i <- 0 until (LduCnt + StaCnt)) { 1020 debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i)) 1021 debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i)) 1022 } 1023 for (i <- 0 until LduCnt) { 1024 debug_lsTopdownInfo(io.lsTopdownInfo(i).s1.robIdx).s1SignalEnable(io.lsTopdownInfo(i)) 1025 debug_lsTopdownInfo(io.lsTopdownInfo(i).s2.robIdx).s2SignalEnable(io.lsTopdownInfo(i)) 1026 } 1027 1028 // status field: writebacked 1029 // enqueue logic set 6 writebacked to false 1030 for (i <- 0 until RenameWidth) { 1031 when(canEnqueue(i)) { 1032 val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec).asUInt.orR 1033 val enqHasTriggerCanFire = io.enq.req(i).bits.trigger.getFrontendCanFire 1034 val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove 1035 val isStu = FuType.isStore(io.enq.req(i).bits.fuType) 1036 commitTrigger(allocatePtrVec(i).value) := enqIsWritebacked && !enqHasException && !enqHasTriggerCanFire && !isStu 1037 } 1038 } 1039 when(exceptionGen.io.out.valid) { 1040 val wbIdx = exceptionGen.io.out.bits.robIdx.value 1041 commitTrigger(wbIdx) := true.B 1042 } 1043 1044 // writeback logic set numWbPorts writebacked to true 1045 val blockWbSeq = Wire(Vec(exuWBs.length, Bool())) 1046 blockWbSeq.map(_ := false.B) 1047 for ((wb, blockWb) <- exuWBs.zip(blockWbSeq)) { 1048 when(wb.valid) { 1049 val wbIdx = wb.bits.robIdx.value 1050 val wbHasException = wb.bits.exceptionVec.getOrElse(0.U).asUInt.orR 1051 val wbHasTriggerCanFire = wb.bits.trigger.getOrElse(0.U).asTypeOf(io.enq.req(0).bits.trigger).getBackendCanFire //Todo: wb.bits.trigger.getHitBackend 1052 val wbHasFlushPipe = wb.bits.flushPipe.getOrElse(false.B) 1053 val wbHasReplayInst = wb.bits.replay.getOrElse(false.B) //Todo: && wb.bits.replayInst 1054 blockWb := wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerCanFire 1055 commitTrigger(wbIdx) := !blockWb 1056 } 1057 } 1058 1059 // if the first uop of an instruction is valid , write writebackedCounter 1060 val uopEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid) 1061 val instEnqValidSeq = io.enq.req.map (req => io.enq.canAccept && req.valid && req.bits.firstUop) 1062 val enqNeedWriteRFSeq = io.enq.req.map(_.bits.needWriteRf) 1063 val enqRobIdxSeq = io.enq.req.map(req => req.bits.robIdx.value) 1064 val enqUopNumVec = VecInit(io.enq.req.map(req => req.bits.numUops)) 1065 val enqWBNumVec = VecInit(io.enq.req.map(req => req.bits.numWB)) 1066 val enqEliminatedMoveVec = VecInit(io.enq.req.map(req => req.bits.eliminatedMove)) 1067 1068 private val enqWriteStdVec: Vec[Bool] = VecInit(io.enq.req.map { 1069 req => FuType.isAMO(req.bits.fuType) || FuType.isStore(req.bits.fuType) 1070 }) 1071 val fflags_wb = fflagsPorts 1072 val vxsat_wb = vxsatPorts 1073 for(i <- 0 until RobSize){ 1074 1075 val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === i.U) 1076 val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch } 1077 val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch } 1078 val instCanEnqFlag = Cat(instCanEnqSeq).orR 1079 1080 realDestSize(i) := Mux(!valid(i) && instCanEnqFlag || valid(i), realDestSize(i) + PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map{ case(writeFlag, valid) => writeFlag && valid }), 0.U) 1081 1082 val enqUopNum = PriorityMux(instCanEnqSeq, enqUopNumVec) 1083 val enqWBNum = PriorityMux(instCanEnqSeq, enqWBNumVec) 1084 val enqEliminatedMove = PriorityMux(instCanEnqSeq, enqEliminatedMoveVec) 1085 val enqWriteStd = PriorityMux(instCanEnqSeq, enqWriteStdVec) 1086 1087 val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 1088 val canWbNoBlockSeq = canWbSeq.zip(blockWbSeq).map{ case(canWb, blockWb) => canWb && !blockWb } 1089 val canStdWbSeq = VecInit(stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)) 1090 val wbCnt = PopCount(canWbNoBlockSeq) 1091 1092 val exceptionHas = RegInit(false.B) 1093 val exceptionHasWire = Wire(Bool()) 1094 exceptionHasWire := MuxCase(exceptionHas, Seq( 1095 (valid(i) && exceptionGen.io.out.valid && exceptionGen.io.out.bits.robIdx.value === i.U) -> true.B, 1096 !valid(i) -> false.B 1097 )) 1098 exceptionHas := exceptionHasWire 1099 1100 when (exceptionHas || exceptionHasWire) { 1101 // exception flush 1102 uopNumVec(i) := 0.U 1103 stdWritebacked(i) := true.B 1104 }.elsewhen(!valid(i) && instCanEnqFlag) { 1105 // enq set num of uops 1106 uopNumVec(i) := enqWBNum 1107 stdWritebacked(i) := Mux(enqWriteStd, false.B, true.B) 1108 }.elsewhen(valid(i)) { 1109 // update by writing back 1110 uopNumVec(i) := uopNumVec(i) - wbCnt 1111 assert(!(uopNumVec(i) - wbCnt > uopNumVec(i)), "Overflow!") 1112 when (canStdWbSeq.asUInt.orR) { 1113 stdWritebacked(i) := true.B 1114 } 1115 }.otherwise { 1116 uopNumVec(i) := 0.U 1117 } 1118 1119 val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U && writeback.bits.wflags.getOrElse(false.B)) 1120 val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.fold(false.B)(_ | _) 1121 fflagsDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, fflagsDataModule(i) | fflagsRes) 1122 1123 val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 1124 val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.fold(false.B)(_ | _) 1125 vxsatDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, vxsatDataModule(i) | vxsatRes) 1126 } 1127 1128 // flagBkup 1129 // enqueue logic set 6 flagBkup at most 1130 for (i <- 0 until RenameWidth) { 1131 when (canEnqueue(i)) { 1132 flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag 1133 } 1134 } 1135 1136 // interrupt_safe 1137 for (i <- 0 until RenameWidth) { 1138 // We RegNext the updates for better timing. 1139 // Note that instructions won't change the system's states in this cycle. 1140 when (RegNext(canEnqueue(i))) { 1141 // For now, we allow non-load-store instructions to trigger interrupts 1142 // For MMIO instructions, they should not trigger interrupts since they may 1143 // be sent to lower level before it writes back. 1144 // However, we cannot determine whether a load/store instruction is MMIO. 1145 // Thus, we don't allow load/store instructions to trigger an interrupt. 1146 // TODO: support non-MMIO load-store instructions to trigger interrupts 1147 val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType) 1148 interrupt_safe(RegEnable(allocatePtrVec(i).value, canEnqueue(i))) := RegEnable(allow_interrupts, canEnqueue(i)) 1149 } 1150 } 1151 1152 /** 1153 * read and write of data modules 1154 */ 1155 val commitReadAddr_next = Mux(state_next === s_idle, 1156 VecInit(deqPtrVec_next.map(_.value)), 1157 VecInit(walkPtrVec_next.map(_.value)) 1158 ) 1159 dispatchData.io.wen := canEnqueue 1160 dispatchData.io.waddr := allocatePtrVec.map(_.value) 1161 dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).zipWithIndex.foreach { case ((wdata, req), portIdx) => 1162 wdata.ldest := req.ldest 1163 wdata.rfWen := req.rfWen 1164 wdata.dirtyFs := req.dirtyFs 1165 wdata.vecWen := req.vecWen 1166 wdata.wflags := req.wfflags 1167 wdata.commitType := req.commitType 1168 wdata.pdest := req.pdest 1169 wdata.ftqIdx := req.ftqPtr 1170 wdata.ftqOffset := req.ftqOffset 1171 wdata.isMove := req.eliminatedMove 1172 wdata.isRVC := req.preDecodeInfo.isRVC 1173 wdata.pc := req.pc 1174 wdata.vtype := req.vpu.vtype 1175 wdata.isVset := req.isVset 1176 wdata.instrSize := req.instrSize 1177 } 1178 dispatchData.io.raddr := commitReadAddr_next 1179 1180 exceptionGen.io.redirect <> io.redirect 1181 exceptionGen.io.flush := io.flushOut.valid 1182 1183 val canEnqueueEG = VecInit(io.enq.req.map(req => req.valid && io.enq.canAccept)) 1184 for (i <- 0 until RenameWidth) { 1185 exceptionGen.io.enq(i).valid := canEnqueueEG(i) 1186 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 1187 exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec) 1188 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe 1189 exceptionGen.io.enq(i).bits.isVset := io.enq.req(i).bits.isVset 1190 exceptionGen.io.enq(i).bits.replayInst := false.B 1191 XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst") 1192 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep 1193 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix 1194 exceptionGen.io.enq(i).bits.trigger.clear() 1195 exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.trigger.frontendHit 1196 exceptionGen.io.enq(i).bits.trigger.frontendCanFire := io.enq.req(i).bits.trigger.frontendCanFire 1197 exceptionGen.io.enq(i).bits.vstartEn := false.B //DontCare 1198 exceptionGen.io.enq(i).bits.vstart := 0.U //DontCare 1199 } 1200 1201 println(s"ExceptionGen:") 1202 println(s"num of exceptions: ${params.numException}") 1203 require(exceptionWBs.length == exceptionGen.io.wb.length, 1204 f"exceptionWBs.length: ${exceptionWBs.length}, " + 1205 f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}") 1206 for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) { 1207 exc_wb.valid := wb.valid 1208 exc_wb.bits.robIdx := wb.bits.robIdx 1209 exc_wb.bits.exceptionVec := wb.bits.exceptionVec.get 1210 exc_wb.bits.flushPipe := wb.bits.flushPipe.getOrElse(false.B) 1211 exc_wb.bits.isVset := false.B 1212 exc_wb.bits.replayInst := wb.bits.replay.getOrElse(false.B) 1213 exc_wb.bits.singleStep := false.B 1214 exc_wb.bits.crossPageIPFFix := false.B 1215 // TODO: make trigger configurable 1216 val trigger = wb.bits.trigger.getOrElse(0.U).asTypeOf(exc_wb.bits.trigger) 1217 exc_wb.bits.trigger.clear() // Don't care frontend timing, chain, hit and canFire 1218 exc_wb.bits.trigger.backendHit := trigger.backendHit 1219 exc_wb.bits.trigger.backendCanFire := trigger.backendCanFire 1220 exc_wb.bits.vstartEn := false.B //wb.bits.vstartEn.getOrElse(false.B) // todo need add vstart in ExuOutput 1221 exc_wb.bits.vstart := 0.U //wb.bits.vstart.getOrElse(0.U) 1222// println(s" [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " + 1223// s"flushPipe ${configs.exists(_.flushPipe)}, " + 1224// s"replayInst ${configs.exists(_.replayInst)}") 1225 } 1226 1227 fflagsDataRead := (0 until CommitWidth).map(i => fflagsDataModule(deqPtrVec(i).value)) 1228 vxsatDataRead := (0 until CommitWidth).map(i => vxsatDataModule(deqPtrVec(i).value)) 1229 1230 val instrCntReg = RegInit(0.U(64.W)) 1231 val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) }) 1232 val trueCommitCnt = RegNext(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => Mux(v, i.instrSize, 0.U) }.reduce(_ +& _)) +& fuseCommitCnt 1233 val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U) 1234 val instrCnt = instrCntReg + retireCounter 1235 instrCntReg := instrCnt 1236 io.csr.perfinfo.retiredInstr := retireCounter 1237 io.robFull := !allowEnqueue 1238 io.headNotReady := commit_v.head && !commit_w.head 1239 1240 /** 1241 * debug info 1242 */ 1243 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 1244 XSDebug("") 1245 XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n") 1246 for(i <- 0 until RobSize) { 1247 XSDebug(false, !valid(i), "-") 1248 XSDebug(false, valid(i) && isWritebacked(i.U), "w") 1249 XSDebug(false, valid(i) && !isWritebacked(i.U), "v") 1250 } 1251 XSDebug(false, true.B, "\n") 1252 1253 for(i <- 0 until RobSize) { 1254 if (i % 4 == 0) XSDebug("") 1255 XSDebug(false, true.B, "%x ", debug_microOp(i).pc) 1256 XSDebug(false, !valid(i), "- ") 1257 XSDebug(false, valid(i) && isWritebacked(i.U), "w ") 1258 XSDebug(false, valid(i) && !isWritebacked(i.U), "v ") 1259 if (i % 4 == 3) XSDebug(false, true.B, "\n") 1260 } 1261 1262 def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U) 1263 def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U) 1264 1265 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 1266 XSPerfAccumulate("clock_cycle", 1.U) 1267 QueuePerf(RobSize, numValidEntries, numValidEntries === RobSize.U) 1268 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 1269 XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt)) 1270 XSPerfRolling("ipc", ifCommitReg(trueCommitCnt), 1000, clock, reset) 1271 XSPerfRolling("cpi", perfCnt = 1.U/*Cycle*/, eventTrigger = ifCommitReg(trueCommitCnt), granularity = 1000, clock, reset) 1272 val commitIsMove = commitDebugUop.map(_.isMove) 1273 XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }))) 1274 val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) 1275 XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e }))) 1276 XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt)) 1277 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 1278 val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t } 1279 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 1280 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 1281 val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t } 1282 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 1283 val commitLoadWaitBit = commitDebugUop.map(_.loadWaitBit) 1284 XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))) 1285 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 1286 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }))) 1287 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && isWritebacked(i.U)))) 1288 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire))) 1289 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 1290 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)) 1291 XSPerfAccumulate("walkCycleTotal", state === s_walk) 1292 XSPerfAccumulate("waitRabWalkEnd", state === s_walk && walkFinished && !rab.io.status.walkEnd) 1293 private val walkCycle = RegInit(0.U(8.W)) 1294 private val waitRabWalkCycle = RegInit(0.U(8.W)) 1295 walkCycle := Mux(io.redirect.valid, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U)) 1296 waitRabWalkCycle := Mux(state === s_walk && walkFinished, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U)) 1297 1298 XSPerfHistogram("walkRobCycleHist", walkCycle, state === s_walk && walkFinished, 0, 32) 1299 XSPerfHistogram("walkRabExtraCycleHist", waitRabWalkCycle, state === s_walk && walkFinished && rab.io.status.walkEnd, 0, 32) 1300 XSPerfHistogram("walkTotalCycleHist", walkCycle, state === s_walk && state_next === s_idle, 0, 32) 1301 1302 private val deqNotWritebacked = valid(deqPtr.value) && !isWritebacked(deqPtr.value) 1303 private val deqStdNotWritebacked = valid(deqPtr.value) && !stdWritebacked(deqPtr.value) 1304 private val deqUopNotWritebacked = valid(deqPtr.value) && !isUopWritebacked(deqPtr.value) 1305 private val deqHeadInfo = debug_microOp(deqPtr.value) 1306 val deqUopCommitType = io.commits.info(0).commitType 1307 1308 XSPerfAccumulate("waitAluCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.alu.U) 1309 XSPerfAccumulate("waitMulCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.mul.U) 1310 XSPerfAccumulate("waitDivCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.div.U) 1311 XSPerfAccumulate("waitBrhCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.brh.U) 1312 XSPerfAccumulate("waitJmpCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.jmp.U) 1313 XSPerfAccumulate("waitCsrCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.csr.U) 1314 XSPerfAccumulate("waitFenCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.fence.U) 1315 XSPerfAccumulate("waitBkuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.bku.U) 1316 XSPerfAccumulate("waitLduCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.ldu.U) 1317 XSPerfAccumulate("waitStuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1318 XSPerfAccumulate("waitStaCycle", deqUopNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1319 XSPerfAccumulate("waitStdCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1320 XSPerfAccumulate("waitAtmCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.mou.U) 1321 1322 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 1323 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 1324 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 1325 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 1326 XSPerfAccumulate("robHeadPC", io.commits.info(0).pc) 1327 XSPerfAccumulate("commitCompressCntAll", PopCount(io.commits.commitValid.zip(io.commits.info).map{case(valid, info) => io.commits.isCommit && valid && info.instrSize > 1.U})) 1328 (2 to RenameWidth).foreach(i => 1329 XSPerfAccumulate(s"commitCompressCnt${i}", PopCount(io.commits.commitValid.zip(io.commits.info).map{case(valid, info) => io.commits.isCommit && valid && info.instrSize === i.U})) 1330 ) 1331 XSPerfAccumulate("compressSize", io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => Mux(io.commits.isCommit && valid && info.instrSize > 1.U, info.instrSize, 0.U) }.reduce(_ +& _)) 1332 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 1333 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 1334 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 1335 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 1336 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 1337 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 1338 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 1339 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 1340 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 1341 } 1342 for (fuType <- FuType.functionNameMap.keys) { 1343 val fuName = FuType.functionNameMap(fuType) 1344 val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U ) 1345 XSPerfRolling(s"ipc_futype_${fuName}", ifCommit(PopCount(commitIsFuType)), 1000, clock, reset) 1346 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 1347 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 1348 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 1349 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 1350 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 1351 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 1352 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 1353 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 1354 } 1355 XSPerfAccumulate(s"redirect_use_snapshot", io.redirect.valid && io.snpt.useSnpt) 1356 1357 // top-down info 1358 io.debugTopDown.toCore.robHeadVaddr.valid := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_valid 1359 io.debugTopDown.toCore.robHeadVaddr.bits := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_bits 1360 io.debugTopDown.toCore.robHeadPaddr.valid := debug_lsTopdownInfo(deqPtr.value).s2.paddr_valid 1361 io.debugTopDown.toCore.robHeadPaddr.bits := debug_lsTopdownInfo(deqPtr.value).s2.paddr_bits 1362 io.debugTopDown.toDispatch.robTrueCommit := ifCommitReg(trueCommitCnt) 1363 io.debugTopDown.toDispatch.robHeadLsIssue := debug_lsIssue(deqPtr.value) 1364 io.debugTopDown.robHeadLqIdx.valid := debug_lqIdxValid(deqPtr.value) 1365 io.debugTopDown.robHeadLqIdx.bits := debug_microOp(deqPtr.value).lqIdx 1366 1367 // rolling 1368 io.debugRolling.robTrueCommit := ifCommitReg(trueCommitCnt) 1369 1370 /** 1371 * DataBase info: 1372 * log trigger is at writeback valid 1373 * */ 1374 1375 /** 1376 * @todo add InstInfoEntry back 1377 * @author Maxpicca-Li 1378 */ 1379 1380 //difftest signals 1381 val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value 1382 1383 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1384 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1385 1386 for(i <- 0 until CommitWidth) { 1387 val idx = deqPtrVec(i).value 1388 wdata(i) := debug_exuData(idx) 1389 wpc(i) := SignExt(commitDebugUop(i).pc, XLEN) 1390 } 1391 1392 if (env.EnableDifftest || env.AlwaysBasicDiff) { 1393 // These are the structures used by difftest only and should be optimized after synthesis. 1394 val dt_eliminatedMove = Mem(RobSize, Bool()) 1395 val dt_isRVC = Mem(RobSize, Bool()) 1396 val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) 1397 for (i <- 0 until RenameWidth) { 1398 when (canEnqueue(i)) { 1399 dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 1400 dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC 1401 } 1402 } 1403 for (wb <- exuWBs) { 1404 when (wb.valid) { 1405 val wbIdx = wb.bits.robIdx.value 1406 dt_exuDebug(wbIdx) := wb.bits.debug 1407 } 1408 } 1409 // Always instantiate basic difftest modules. 1410 for (i <- 0 until CommitWidth) { 1411 val uop = commitDebugUop(i) 1412 val commitInfo = io.commits.info(i) 1413 val ptr = deqPtrVec(i).value 1414 val exuOut = dt_exuDebug(ptr) 1415 val eliminatedMove = dt_eliminatedMove(ptr) 1416 val isRVC = dt_isRVC(ptr) 1417 1418 val difftest = DifftestModule(new DiffInstrCommit(MaxPhyPregs), delay = 3, dontCare = true) 1419 difftest.coreid := io.hartId 1420 difftest.index := i.U 1421 difftest.valid := io.commits.commitValid(i) && io.commits.isCommit 1422 difftest.skip := Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt) 1423 difftest.isRVC := isRVC 1424 difftest.rfwen := io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U 1425 difftest.fpwen := io.commits.commitValid(i) && uop.fpWen 1426 difftest.wpdest := commitInfo.pdest 1427 difftest.wdest := commitInfo.ldest 1428 difftest.nFused := CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize - 1.U 1429 when(difftest.valid) { 1430 assert(CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize >= 1.U) 1431 } 1432 if (env.EnableDifftest) { 1433 val uop = commitDebugUop(i) 1434 difftest.pc := SignExt(uop.pc, XLEN) 1435 difftest.instr := uop.instr 1436 difftest.robIdx := ZeroExt(ptr, 10) 1437 difftest.lqIdx := ZeroExt(uop.lqIdx.value, 7) 1438 difftest.sqIdx := ZeroExt(uop.sqIdx.value, 7) 1439 difftest.isLoad := io.commits.info(i).commitType === CommitType.LOAD 1440 difftest.isStore := io.commits.info(i).commitType === CommitType.STORE 1441 } 1442 } 1443 } 1444 1445 if (env.EnableDifftest) { 1446 for (i <- 0 until CommitWidth) { 1447 val difftest = DifftestModule(new DiffLoadEvent, delay = 3) 1448 difftest.coreid := io.hartId 1449 difftest.index := i.U 1450 1451 val ptr = deqPtrVec(i).value 1452 val uop = commitDebugUop(i) 1453 val exuOut = debug_exuDebug(ptr) 1454 difftest.valid := io.commits.commitValid(i) && io.commits.isCommit 1455 difftest.paddr := exuOut.paddr 1456 difftest.opType := uop.fuOpType 1457 difftest.fuType := uop.fuType 1458 } 1459 } 1460 1461 if (env.EnableDifftest || env.AlwaysBasicDiff) { 1462 val dt_isXSTrap = Mem(RobSize, Bool()) 1463 for (i <- 0 until RenameWidth) { 1464 when (canEnqueue(i)) { 1465 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap 1466 } 1467 } 1468 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => 1469 io.commits.isCommit && v && dt_isXSTrap(d.value) 1470 } 1471 val hitTrap = trapVec.reduce(_||_) 1472 val difftest = DifftestModule(new DiffTrapEvent, dontCare = true) 1473 difftest.coreid := io.hartId 1474 difftest.hasTrap := hitTrap 1475 difftest.cycleCnt := timer 1476 difftest.instrCnt := instrCnt 1477 difftest.hasWFI := hasWFI 1478 1479 if (env.EnableDifftest) { 1480 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 1481 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN) 1482 difftest.code := trapCode 1483 difftest.pc := trapPC 1484 } 1485 } 1486 1487 val validEntriesBanks = (0 until (RobSize + 31) / 32).map(i => RegNext(PopCount(valid.drop(i * 32).take(32)))) 1488 val validEntries = RegNext(VecInit(validEntriesBanks).reduceTree(_ +& _)) 1489 val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }) 1490 val commitLoadVec = VecInit(commitLoadValid) 1491 val commitBranchVec = VecInit(commitBranchValid) 1492 val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }) 1493 val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }) 1494 val perfEvents = Seq( 1495 ("rob_interrupt_num ", io.flushOut.valid && intrEnable ), 1496 ("rob_exception_num ", io.flushOut.valid && exceptionEnable ), 1497 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe ), 1498 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst ), 1499 ("rob_commitUop ", ifCommit(commitCnt) ), 1500 ("rob_commitInstr ", ifCommitReg(trueCommitCnt) ), 1501 ("rob_commitInstrMove ", ifCommitReg(PopCount(RegNext(commitMoveVec))) ), 1502 ("rob_commitInstrFused ", ifCommitReg(fuseCommitCnt) ), 1503 ("rob_commitInstrLoad ", ifCommitReg(PopCount(RegNext(commitLoadVec))) ), 1504 ("rob_commitInstrBranch ", ifCommitReg(PopCount(RegNext(commitBranchVec))) ), 1505 ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec))) ), 1506 ("rob_commitInstrStore ", ifCommitReg(PopCount(RegNext(commitStoreVec))) ), 1507 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U) ), 1508 ("rob_walkCycle ", (state === s_walk) ), 1509 ("rob_1_4_valid ", validEntries <= (RobSize / 4).U ), 1510 ("rob_2_4_valid ", validEntries > (RobSize / 4).U && validEntries <= (RobSize / 2).U ), 1511 ("rob_3_4_valid ", validEntries > (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U), 1512 ("rob_4_4_valid ", validEntries > (RobSize * 3 / 4).U ), 1513 ) 1514 generatePerfEvent() 1515} 1516