1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.rob 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 24import utility._ 25import utils._ 26import xiangshan._ 27import xiangshan.backend.BackendParams 28import xiangshan.backend.fu.FuType 29import xiangshan.frontend.FtqPtr 30import xiangshan.mem.{LqPtr, SqPtr} 31import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 32 33class DebugMdpInfo(implicit p: Parameters) extends XSBundle{ 34 val ssid = UInt(SSIDWidth.W) 35 val waitAllStore = Bool() 36} 37 38class DebugLsInfo(implicit p: Parameters) extends XSBundle{ 39 val s1 = new Bundle{ 40 val isTlbFirstMiss = Bool() // in s1 41 val isBankConflict = Bool() // in s1 42 val isLoadToLoadForward = Bool() 43 val isReplayFast = Bool() 44 } 45 val s2 = new Bundle{ 46 val isDcacheFirstMiss = Bool() // in s2 (predicted result is in s1 when using WPU, real result is in s2) 47 val isForwardFail = Bool() // in s2 48 val isReplaySlow = Bool() 49 val isLoadReplayTLBMiss = Bool() 50 val isLoadReplayCacheMiss = Bool() 51 } 52 val replayCnt = UInt(XLEN.W) 53 54 def s1SignalEnable(ena: DebugLsInfo) = { 55 when(ena.s1.isTlbFirstMiss) { s1.isTlbFirstMiss := true.B } 56 when(ena.s1.isBankConflict) { s1.isBankConflict := true.B } 57 when(ena.s1.isLoadToLoadForward) { s1.isLoadToLoadForward := true.B } 58 when(ena.s1.isReplayFast) { 59 s1.isReplayFast := true.B 60 replayCnt := replayCnt + 1.U 61 } 62 } 63 64 def s2SignalEnable(ena: DebugLsInfo) = { 65 when(ena.s2.isDcacheFirstMiss) { s2.isDcacheFirstMiss := true.B } 66 when(ena.s2.isForwardFail) { s2.isForwardFail := true.B } 67 when(ena.s2.isLoadReplayTLBMiss) { s2.isLoadReplayTLBMiss := true.B } 68 when(ena.s2.isLoadReplayCacheMiss) { s2.isLoadReplayCacheMiss := true.B } 69 when(ena.s2.isReplaySlow) { 70 s2.isReplaySlow := true.B 71 replayCnt := replayCnt + 1.U 72 } 73 } 74} 75 76object DebugLsInfo{ 77 def init(implicit p: Parameters): DebugLsInfo = { 78 val lsInfo = Wire(new DebugLsInfo) 79 lsInfo.s1.isTlbFirstMiss := false.B 80 lsInfo.s1.isBankConflict := false.B 81 lsInfo.s1.isLoadToLoadForward := false.B 82 lsInfo.s1.isReplayFast := false.B 83 lsInfo.s2.isDcacheFirstMiss := false.B 84 lsInfo.s2.isForwardFail := false.B 85 lsInfo.s2.isReplaySlow := false.B 86 lsInfo.s2.isLoadReplayTLBMiss := false.B 87 lsInfo.s2.isLoadReplayCacheMiss := false.B 88 lsInfo.replayCnt := 0.U 89 lsInfo 90 } 91} 92 93class DebugLsInfoBundle(implicit p: Parameters) extends DebugLsInfo { 94 // unified processing at the end stage of load/store ==> s2 ==> bug that will write error robIdx data 95 val s1_robIdx = UInt(log2Ceil(RobSize).W) 96 val s2_robIdx = UInt(log2Ceil(RobSize).W) 97} 98 99class DebugLSIO(implicit p: Parameters) extends XSBundle { 100 val debugLsInfo = Vec(backendParams.LduCnt + backendParams.StaCnt, Output(new DebugLsInfoBundle)) 101} 102 103class RobPtr(entries: Int) extends CircularQueuePtr[RobPtr]( 104 entries 105) with HasCircularQueuePtrHelper { 106 107 def this()(implicit p: Parameters) = this(p(XSCoreParamsKey).RobSize) 108 109 def needFlush(redirect: Valid[Redirect]): Bool = { 110 val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx 111 redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx)) 112 } 113 114 def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR 115} 116 117object RobPtr { 118 def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = { 119 val ptr = Wire(new RobPtr) 120 ptr.flag := f 121 ptr.value := v 122 ptr 123 } 124} 125 126class RobCSRIO(implicit p: Parameters) extends XSBundle { 127 val intrBitSet = Input(Bool()) 128 val trapTarget = Input(UInt(VAddrBits.W)) 129 val isXRet = Input(Bool()) 130 val wfiEvent = Input(Bool()) 131 132 val fflags = Output(Valid(UInt(5.W))) 133 val dirty_fs = Output(Bool()) 134 val perfinfo = new Bundle { 135 val retiredInstr = Output(UInt(3.W)) 136 } 137 138 val vcsrFlag = Output(Bool()) 139} 140 141class RobLsqIO(implicit p: Parameters) extends XSBundle { 142 val lcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 143 val scommit = Output(UInt(log2Up(CommitWidth + 1).W)) 144 val pendingld = Output(Bool()) 145 val pendingst = Output(Bool()) 146 val commit = Output(Bool()) 147} 148 149class RobEnqIO(implicit p: Parameters) extends XSBundle { 150 val canAccept = Output(Bool()) 151 val isEmpty = Output(Bool()) 152 // valid vector, for robIdx gen and walk 153 val needAlloc = Vec(RenameWidth, Input(Bool())) 154 val req = Vec(RenameWidth, Flipped(ValidIO(new DynInst))) 155 val resp = Vec(RenameWidth, Output(new RobPtr)) 156} 157 158class RobDispatchData(implicit p: Parameters) extends RobCommitInfo 159 160class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 161 val io = IO(new Bundle { 162 // for commits/flush 163 val state = Input(UInt(2.W)) 164 val deq_v = Vec(CommitWidth, Input(Bool())) 165 val deq_w = Vec(CommitWidth, Input(Bool())) 166 val exception_state = Flipped(ValidIO(new RobExceptionInfo)) 167 // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth) 168 val intrBitSetReg = Input(Bool()) 169 val hasNoSpecExec = Input(Bool()) 170 val interrupt_safe = Input(Bool()) 171 val blockCommit = Input(Bool()) 172 // output: the CommitWidth deqPtr 173 val out = Vec(CommitWidth, Output(new RobPtr)) 174 val next_out = Vec(CommitWidth, Output(new RobPtr)) 175 }) 176 177 val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr)))) 178 179 // for exceptions (flushPipe included) and interrupts: 180 // only consider the first instruction 181 val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe 182 val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0) 183 val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable) 184 185 // for normal commits: only to consider when there're no exceptions 186 // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions. 187 val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last) 188 val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i))) 189 val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B) 190 // when io.intrBitSetReg or there're possible exceptions in these instructions, 191 // only one instruction is allowed to commit 192 val allowOnlyOne = commit_exception || io.intrBitSetReg 193 val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt) 194 195 val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt)) 196 val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec) 197 198 deqPtrVec := deqPtrVec_next 199 200 io.next_out := deqPtrVec_next 201 io.out := deqPtrVec 202 203 when (io.state === 0.U) { 204 XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt) 205 } 206 207} 208 209class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 210 val io = IO(new Bundle { 211 // for input redirect 212 val redirect = Input(Valid(new Redirect)) 213 // for enqueue 214 val allowEnqueue = Input(Bool()) 215 val hasBlockBackward = Input(Bool()) 216 val enq = Vec(RenameWidth, Input(Bool())) 217 val out = Output(Vec(RenameWidth, new RobPtr)) 218 }) 219 220 val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr))) 221 222 // enqueue 223 val canAccept = io.allowEnqueue && !io.hasBlockBackward 224 val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U) 225 226 for ((ptr, i) <- enqPtrVec.zipWithIndex) { 227 when(io.redirect.valid) { 228 ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 229 }.otherwise { 230 ptr := ptr + dispatchNum 231 } 232 } 233 234 io.out := enqPtrVec 235 236} 237 238class RobExceptionInfo(implicit p: Parameters) extends XSBundle { 239 // val valid = Bool() 240 val robIdx = new RobPtr 241 val exceptionVec = ExceptionVec() 242 val flushPipe = Bool() 243 val isVset = Bool() 244 val replayInst = Bool() // redirect to that inst itself 245 val singleStep = Bool() // TODO add frontend hit beneath 246 val crossPageIPFFix = Bool() 247 val trigger = new TriggerCf 248 249// def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend 250// def trigger_after = trigger.getTimingBackend && trigger.getHitBackend 251 def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit 252 def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit 253 // only exceptions are allowed to writeback when enqueue 254 def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit 255} 256 257class ExceptionGen(params: BackendParams)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 258 val io = IO(new Bundle { 259 val redirect = Input(Valid(new Redirect)) 260 val flush = Input(Bool()) 261 val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo))) 262 // csr + load + store 263 val wb = Vec(params.numException, Flipped(ValidIO(new RobExceptionInfo))) 264 val out = ValidIO(new RobExceptionInfo) 265 val state = ValidIO(new RobExceptionInfo) 266 }) 267 268 def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = { 269 assert(valid.length == bits.length) 270 assert(isPow2(valid.length)) 271 if (valid.length == 1) { 272 (valid, bits) 273 } else if (valid.length == 2) { 274 val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0))))) 275 for (i <- res.indices) { 276 res(i).valid := valid(i) 277 res(i).bits := bits(i) 278 } 279 val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1)) 280 (Seq(oldest.valid), Seq(oldest.bits)) 281 } else { 282 val left = getOldest(valid.take(valid.length / 2), bits.take(valid.length / 2)) 283 val right = getOldest(valid.takeRight(valid.length / 2), bits.takeRight(valid.length / 2)) 284 getOldest(left._1 ++ right._1, left._2 ++ right._2) 285 } 286 } 287 288 val currentValid = RegInit(false.B) 289 val current = Reg(new RobExceptionInfo) 290 291 // orR the exceptionVec 292 val lastCycleFlush = RegNext(io.flush) 293 val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush)) 294 val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush) 295 296 // s0: compare wb(1)~wb(LoadPipelineWidth) and wb(1 + LoadPipelineWidth)~wb(LoadPipelineWidth + StorePipelineWidth) 297 val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) } 298 val csr_wb_bits = io.wb(0).bits 299 val load_wb_bits = getOldest(in_wb_valid.slice(1, 1 + LoadPipelineWidth), io.wb.map(_.bits).slice(1, 1 + LoadPipelineWidth))._2(0) 300 val store_wb_bits = getOldest(in_wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth), io.wb.map(_.bits).slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth))._2(0) 301 val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid.slice(1, 1 + LoadPipelineWidth).reduce(_ || _), wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth).reduce(_ || _)))) 302 val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits))) 303 304 // s1: compare last four and current flush 305 val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) }) 306 val compare_01_valid = s0_out_valid(0) || s0_out_valid(1) 307 val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0)) 308 val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2)) 309 val s1_out_bits = RegNext(compare_bits) 310 val s1_out_valid = RegNext(s1_valid.asUInt.orR) 311 312 val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 313 val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits))) 314 315 // s2: compare the input exception with the current one 316 // priorities: 317 // (1) system reset 318 // (2) current is valid: flush, remain, merge, update 319 // (3) current is not valid: s1 or enq 320 val current_flush = current.robIdx.needFlush(io.redirect) || io.flush 321 val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush 322 when (currentValid) { 323 when (current_flush) { 324 currentValid := Mux(s1_flush, false.B, s1_out_valid) 325 } 326 when (s1_out_valid && !s1_flush) { 327 when (isAfter(current.robIdx, s1_out_bits.robIdx)) { 328 current := s1_out_bits 329 }.elsewhen (current.robIdx === s1_out_bits.robIdx) { 330 current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec()) 331 current.flushPipe := s1_out_bits.flushPipe || current.flushPipe 332 current.replayInst := s1_out_bits.replayInst || current.replayInst 333 current.singleStep := s1_out_bits.singleStep || current.singleStep 334 current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf) 335 } 336 } 337 }.elsewhen (s1_out_valid && !s1_flush) { 338 currentValid := true.B 339 current := s1_out_bits 340 }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) { 341 currentValid := true.B 342 current := enq_bits 343 } 344 345 io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback 346 io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits) 347 io.state.valid := currentValid 348 io.state.bits := current 349 350} 351 352class RobFlushInfo(implicit p: Parameters) extends XSBundle { 353 val ftqIdx = new FtqPtr 354 val robIdx = new RobPtr 355 val ftqOffset = UInt(log2Up(PredictWidth).W) 356 val replayInst = Bool() 357} 358 359class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter { 360 361 lazy val module = new RobImp(this)(p, params) 362 // 363 // override def generateWritebackIO( 364 // thisMod: Option[HasWritebackSource] = None, 365 // thisModImp: Option[HasWritebackSourceImp] = None 366 // ): Unit = { 367 // val sources = writebackSinksImp(thisMod, thisModImp) 368 // module.io.writeback.zip(sources).foreach(x => x._1 := x._2) 369 // } 370 //} 371} 372 373class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper) 374 with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents { 375 376 // alias 377 private val LduCnt = backendParams.LduCnt 378 private val StaCnt = backendParams.StaCnt 379 private val StdCnt = backendParams.StdCnt 380 private val MemExuCnt = LduCnt + StaCnt + StdCnt 381 382 val io = IO(new Bundle() { 383 val hartId = Input(UInt(8.W)) 384 val redirect = Input(Valid(new Redirect)) 385 val enq = new RobEnqIO 386 val flushOut = ValidIO(new Redirect) 387 val isVsetFlushPipe = Output(Bool()) 388 val exception = ValidIO(new ExceptionInfo) 389 // exu + brq 390 val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles) 391 val commits = Output(new RobCommitIO) 392 val lsq = new RobLsqIO 393 val robDeqPtr = Output(new RobPtr) 394 val csr = new RobCSRIO 395 val robFull = Output(Bool()) 396 val cpu_halt = Output(Bool()) 397 val wfi_enable = Input(Bool()) 398 val debug_ls = Flipped(new DebugLSIO) 399 }) 400 401 val exuWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(!_.bits.params.hasStdFu) 402 val stdWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(_.bits.params.hasStdFu) 403 val fflagsWBs = io.writeback.filter(x => x.bits.fflags.nonEmpty) 404 val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty) 405 val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty) 406 407 val exuWbPorts = io.writeback.filter(!_.bits.params.hasStdFu) 408 val stdWbPorts = io.writeback.filter(_.bits.params.hasStdFu) 409 val fflagsPorts = io.writeback.filter(x => x.bits.fflags.nonEmpty) 410 val exceptionPorts = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty) 411 val numExuWbPorts = exuWBs.length 412 val numStdWbPorts = stdWBs.length 413 414 415 println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth") 416// println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}") 417// println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}") 418// println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}") 419 420 421 // instvalid field 422 val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 423 // writeback status 424 val writebacked = Mem(RobSize, Bool()) 425 val store_data_writebacked = Mem(RobSize, Bool()) 426 // data for redirect, exception, etc. 427 val flagBkup = Mem(RobSize, Bool()) 428 // some instructions are not allowed to trigger interrupts 429 // They have side effects on the states of the processor before they write back 430 val interrupt_safe = Mem(RobSize, Bool()) 431 432 // data for debug 433 // Warn: debug_* prefix should not exist in generated verilog. 434 val debug_microOp = Reg(Vec(RobSize, new DynInst)) 435 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug 436 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug 437 val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init))) 438 439 // pointers 440 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 441 val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr)) 442 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 443 444 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 445 val allowEnqueue = RegInit(true.B) 446 447 val enqPtr = enqPtrVec.head 448 val deqPtr = deqPtrVec(0) 449 val walkPtr = walkPtrVec(0) 450 451 val isEmpty = enqPtr === deqPtr 452 val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level) 453 454 /** 455 * states of Rob 456 */ 457 val s_idle :: s_walk :: Nil = Enum(2) 458 val state = RegInit(s_idle) 459 460 /** 461 * Data Modules 462 * 463 * CommitDataModule: data from dispatch 464 * (1) read: commits/walk/exception 465 * (2) write: enqueue 466 * 467 * WritebackData: data from writeback 468 * (1) read: commits/walk/exception 469 * (2) write: write back from exe units 470 */ 471 val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth)) 472 val dispatchDataRead = dispatchData.io.rdata 473 474 val exceptionGen = Module(new ExceptionGen(params)) 475 val exceptionDataRead = exceptionGen.io.state 476 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 477 478 io.robDeqPtr := deqPtr 479 480 /** 481 * Enqueue (from dispatch) 482 */ 483 // special cases 484 val hasBlockBackward = RegInit(false.B) 485 val hasWaitForward = RegInit(false.B) 486 val doingSvinval = RegInit(false.B) 487 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 488 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 489 when (isEmpty) { hasBlockBackward:= false.B } 490 // When any instruction commits, hasNoSpecExec should be set to false.B 491 when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasWaitForward:= false.B } 492 493 // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing. 494 // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle. 495 // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts. 496 val hasWFI = RegInit(false.B) 497 io.cpu_halt := hasWFI 498 // WFI Timeout: 2^20 = 1M cycles 499 val wfi_cycles = RegInit(0.U(20.W)) 500 when (hasWFI) { 501 wfi_cycles := wfi_cycles + 1.U 502 }.elsewhen (!hasWFI && RegNext(hasWFI)) { 503 wfi_cycles := 0.U 504 } 505 val wfi_timeout = wfi_cycles.andR 506 when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) { 507 hasWFI := false.B 508 } 509 510 val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.needAlloc.take(i))))) 511 io.enq.canAccept := allowEnqueue && !hasBlockBackward 512 io.enq.resp := allocatePtrVec 513 val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept)) 514 val timer = GTimer() 515 for (i <- 0 until RenameWidth) { 516 // we don't check whether io.redirect is valid here since redirect has higher priority 517 when (canEnqueue(i)) { 518 val enqUop = io.enq.req(i).bits 519 val enqIndex = allocatePtrVec(i).value 520 // store uop in data module and debug_microOp Vec 521 debug_microOp(enqIndex) := enqUop 522 debug_microOp(enqIndex).debugInfo.dispatchTime := timer 523 debug_microOp(enqIndex).debugInfo.enqRsTime := timer 524 debug_microOp(enqIndex).debugInfo.selectTime := timer 525 debug_microOp(enqIndex).debugInfo.issueTime := timer 526 debug_microOp(enqIndex).debugInfo.writebackTime := timer 527 debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer 528 debug_microOp(enqIndex).debugInfo.tlbRespTime := timer 529 debug_lsInfo(enqIndex) := DebugLsInfo.init 530 when (enqUop.blockBackward) { 531 hasBlockBackward := true.B 532 } 533 when (enqUop.waitForward) { 534 hasWaitForward := true.B 535 } 536 val enqHasTriggerHit = false.B // io.enq.req(i).bits.cf.trigger.getHitFrontend 537 val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR 538 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 539 when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe)) 540 { 541 doingSvinval := true.B 542 } 543 // the end instruction of Svinval enqs so clear doingSvinval 544 when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe)) 545 { 546 doingSvinval := false.B 547 } 548 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 549 assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe))) 550 when (enqUop.isWFI && !enqHasException && !enqHasTriggerHit) { 551 hasWFI := true.B 552 } 553 } 554 } 555 val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(_.valid)), 0.U) 556 io.enq.isEmpty := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR) 557 558 when (!io.wfi_enable) { 559 hasWFI := false.B 560 } 561 // sel vsetvl's flush position 562 val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3) 563 val vsetvlState = RegInit(vs_idle) 564 565 val firstVInstrFtqPtr = RegInit(0.U.asTypeOf(new FtqPtr)) 566 val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W))) 567 val firstVInstrRobIdx = RegInit(0.U.asTypeOf(new RobPtr)) 568 569 val enq0 = io.enq.req(0) 570 val enq0IsVset = FuType.isInt(enq0.bits.fuType) && ALUOpType.isVset(enq0.bits.fuOpType) && enq0.bits.uopIdx.andR && canEnqueue(0) 571 val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe 572 val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVpu(req.bits.fuType) && fire} 573 // for vs_idle 574 val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType))) 575 // for vs_waitVinstr 576 val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1) 577 val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req) 578 when(vsetvlState === vs_idle){ 579 firstVInstrFtqPtr := firstVInstrIdle.bits.ftqPtr 580 firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset 581 firstVInstrRobIdx := firstVInstrIdle.bits.robIdx 582 }.elsewhen(vsetvlState === vs_waitVinstr){ 583 firstVInstrFtqPtr := firstVInstrWait.bits.ftqPtr 584 firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset 585 firstVInstrRobIdx := firstVInstrWait.bits.robIdx 586 } 587 588 val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR 589 when(vsetvlState === vs_idle){ 590 when(enq0IsVsetFlush){ 591 vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr) 592 } 593 }.elsewhen(vsetvlState === vs_waitVinstr){ 594 when(io.redirect.valid){ 595 vsetvlState := vs_idle 596 }.elsewhen(Cat(enqIsVInstrOrVset).orR){ 597 vsetvlState := vs_waitFlush 598 } 599 }.elsewhen(vsetvlState === vs_waitFlush){ 600 when(io.redirect.valid){ 601 vsetvlState := vs_idle 602 } 603 } 604 605 /** 606 * Writeback (from execution units) 607 */ 608 for (wb <- exuWBs) { 609 when (wb.valid) { 610 val wbIdx = wb.bits.robIdx.value 611 debug_exuData(wbIdx) := wb.bits.data 612 debug_exuDebug(wbIdx) := wb.bits.debug 613 debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime 614 debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime 615 debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime 616 debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime 617 debug_microOp(wbIdx).debugInfo.tlbFirstReqTime := wb.bits.debugInfo.tlbFirstReqTime 618 debug_microOp(wbIdx).debugInfo.tlbRespTime := wb.bits.debugInfo.tlbRespTime 619 620 // debug for lqidx and sqidx 621 debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr)) 622 debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr)) 623 624 val debug_Uop = debug_microOp(wbIdx) 625 XSInfo(true.B, 626 p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " + 627 p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " + 628 p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.robIdx}\n" 629 ) 630 } 631 } 632 633 val writebackNum = PopCount(exuWBs.map(_.valid)) 634 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 635 636 637 /** 638 * RedirectOut: Interrupt and Exceptions 639 */ 640 val deqDispatchData = dispatchDataRead(0) 641 val debug_deqUop = debug_microOp(deqPtr.value) 642 643 val intrBitSetReg = RegNext(io.csr.intrBitSet) 644 val intrEnable = intrBitSetReg && !hasWaitForward && interrupt_safe(deqPtr.value) 645 val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 646 val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR || 647 exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit) 648 val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe 649 val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst 650 val exceptionEnable = writebacked(deqPtr.value) && deqHasException 651 652 XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n") 653 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n") 654 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n") 655 656 val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst) 657 658 val isVsetFlushPipe = writebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset 659 val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush) 660 io.isVsetFlushPipe := RegNext(isVsetFlushPipe) 661 // io.flushOut will trigger redirect at the next cycle. 662 // Block any redirect or commit at the next cycle. 663 val lastCycleFlush = RegNext(io.flushOut.valid) 664 665 io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush 666 io.flushOut.bits := DontCare 667 io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr) 668 io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx) 669 io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset) 670 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next" 671 io.flushOut.bits.interrupt := true.B 672 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 673 XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable) 674 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 675 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 676 677 val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush 678 io.exception.valid := RegNext(exceptionHappen) 679 io.exception.bits.pc := RegEnable(debug_deqUop.pc, exceptionHappen) 680 io.exception.bits.instr := RegEnable(debug_deqUop.instr, exceptionHappen) 681 io.exception.bits.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 682 io.exception.bits.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 683 io.exception.bits.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 684 io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 685 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 686// io.exception.bits.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen) 687 688 XSDebug(io.flushOut.valid, 689 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " + 690 p"excp $exceptionEnable flushPipe $isFlushPipe " + 691 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 692 693 694 /** 695 * Commits (and walk) 696 * They share the same width. 697 */ 698 val walkCounter = Reg(UInt(log2Up(RobSize + 1).W)) 699 val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter)) 700 val walkFinished = walkCounter <= CommitWidth.U 701 702 require(RenameWidth <= CommitWidth) 703 704 // wiring to csr 705 val (wflags, fpWen) = (0 until CommitWidth).map(i => { 706 val v = io.commits.commitValid(i) 707 val info = io.commits.info(i) 708 (v & info.wflags, v & info.fpWen) 709 }).unzip 710 val fflags = Wire(Valid(UInt(5.W))) 711 fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR 712 fflags.bits := wflags.zip(fflagsDataRead).map({ 713 case (w, f) => Mux(w, f, 0.U) 714 }).reduce(_|_) 715 val dirty_fs = io.commits.isCommit && VecInit(fpWen).asUInt.orR 716 717 // when mispredict branches writeback, stop commit in the next 2 cycles 718 // TODO: don't check all exu write back 719 val misPredWb = Cat(VecInit(redirectWBs.map(wb => 720 wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid 721 ))).orR 722 val misPredBlockCounter = Reg(UInt(3.W)) 723 misPredBlockCounter := Mux(misPredWb, 724 "b111".U, 725 misPredBlockCounter >> 1.U 726 ) 727 val misPredBlock = misPredBlockCounter(0) 728 val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI 729 730 io.commits.isWalk := state === s_walk 731 io.commits.isCommit := state === s_idle && !blockCommit 732 val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value))) 733 val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value))) 734 // store will be commited iff both sta & std have been writebacked 735 val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value))) 736 val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last) 737 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i))) 738 val allowOnlyOneCommit = commit_exception || intrBitSetReg 739 // for instructions that may block others, we don't allow them to commit 740 for (i <- 0 until CommitWidth) { 741 // defaults: state === s_idle and instructions commit 742 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 743 val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst 744 io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked 745 io.commits.info(i) := dispatchDataRead(i) 746 747 when (state === s_walk) { 748 io.commits.walkValid(i) := shouldWalkVec(i) 749 when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) { 750 XSError(!walk_v(i), s"why not $i???\n") 751 } 752 } 753 754 XSInfo(io.commits.isCommit && io.commits.commitValid(i), 755 "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b\n", 756 debug_microOp(deqPtrVec(i).value).pc, 757 io.commits.info(i).rfWen, 758 io.commits.info(i).ldest, 759 io.commits.info(i).pdest, 760 io.commits.info(i).old_pdest, 761 debug_exuData(deqPtrVec(i).value), 762 fflagsDataRead(i) 763 ) 764 XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n", 765 debug_microOp(walkPtrVec(i).value).pc, 766 io.commits.info(i).rfWen, 767 io.commits.info(i).ldest, 768 debug_exuData(walkPtrVec(i).value) 769 ) 770 } 771 if (env.EnableDifftest) { 772 io.commits.info.map(info => dontTouch(info.pc)) 773 } 774 775 // sync fflags/dirty_fs to csr 776 io.csr.fflags := RegNext(fflags) 777 io.csr.dirty_fs := RegNext(dirty_fs) 778 779 // sync v csr to csr 780// io.csr.vcsrFlag := RegNext(isVsetFlushPipe) 781 782 // commit load/store to lsq 783 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 784 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE)) 785 io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U)) 786 io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U)) 787 // indicate a pending load or store 788 io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value)) 789 io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value)) 790 io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0)) 791 792 /** 793 * state changes 794 * (1) redirect: switch to s_walk 795 * (2) walk: when walking comes to the end, switch to s_idle 796 */ 797 val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished, s_idle, state)) 798 XSPerfAccumulate("s_idle_to_idle", state === s_idle && state_next === s_idle) 799 XSPerfAccumulate("s_idle_to_walk", state === s_idle && state_next === s_walk) 800 XSPerfAccumulate("s_walk_to_idle", state === s_walk && state_next === s_idle) 801 XSPerfAccumulate("s_walk_to_walk", state === s_walk && state_next === s_walk) 802 state := state_next 803 804 /** 805 * pointers and counters 806 */ 807 val deqPtrGenModule = Module(new RobDeqPtrWrapper) 808 deqPtrGenModule.io.state := state 809 deqPtrGenModule.io.deq_v := commit_v 810 deqPtrGenModule.io.deq_w := commit_w 811 deqPtrGenModule.io.exception_state := exceptionDataRead 812 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 813 deqPtrGenModule.io.hasNoSpecExec := hasWaitForward 814 deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value) 815 deqPtrGenModule.io.blockCommit := blockCommit 816 deqPtrVec := deqPtrGenModule.io.out 817 val deqPtrVec_next = deqPtrGenModule.io.next_out 818 819 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 820 enqPtrGenModule.io.redirect := io.redirect 821 enqPtrGenModule.io.allowEnqueue := allowEnqueue 822 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 823 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid)) 824 enqPtrVec := enqPtrGenModule.io.out 825 826 val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U) 827 // next walkPtrVec: 828 // (1) redirect occurs: update according to state 829 // (2) walk: move forwards 830 val walkPtrVec_next = Mux(io.redirect.valid, 831 deqPtrVec_next, 832 Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec) 833 ) 834 walkPtrVec := walkPtrVec_next 835 836 val numValidEntries = distanceBetween(enqPtr, deqPtr) 837 val isLastUopVec = io.commits.info.map(_.uopIdx.andR) 838 val commitCnt = PopCount(io.commits.commitValid.zip(isLastUopVec).map{case(isCommitValid, isLastUop) => isCommitValid && isLastUop}) 839 840 allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U 841 842 val currentWalkPtr = Mux(state === s_walk, walkPtr, deqPtrVec_next(0)) 843 val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0)) 844 when (io.redirect.valid) { 845 // full condition: 846 // +& is used here because: 847 // When rob is full and the tail instruction causes a misprediction, 848 // the redirect robIdx is the deqPtr - 1. In this case, redirectWalkDistance 849 // is RobSize - 1. 850 // Since misprediction does not flush the instruction itself, flushItSelf is false.B. 851 // Previously we use `+` to count the walk distance and it causes overflows 852 // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize. 853 // The width of walkCounter also needs to be changed. 854 // empty condition: 855 // When the last instruction in ROB commits and causes a flush, a redirect 856 // will be raised later. In such circumstances, the redirect robIdx is before 857 // the deqPtrVec_next(0) and will cause underflow. 858 walkCounter := Mux(isBefore(io.redirect.bits.robIdx, deqPtrVec_next(0)), 0.U, 859 redirectWalkDistance +& !io.redirect.bits.flushItself()) 860 }.elsewhen (state === s_walk) { 861 walkCounter := walkCounter - thisCycleWalkCount 862 XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n") 863 } 864 865 866 /** 867 * States 868 * We put all the stage bits changes here. 869 870 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 871 * All states: (1) valid; (2) writebacked; (3) flagBkup 872 */ 873 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 874 875 // redirect logic writes 6 valid 876 val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr)) 877 val redirectTail = Reg(new RobPtr) 878 val redirectIdle :: redirectBusy :: Nil = Enum(2) 879 val redirectState = RegInit(redirectIdle) 880 val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail)) 881 when(redirectState === redirectBusy) { 882 redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U) 883 redirectHeadVec zip invMask foreach { 884 case (redirectHead, inv) => when(inv) { 885 valid(redirectHead.value) := false.B 886 } 887 } 888 when(!invMask.last) { 889 redirectState := redirectIdle 890 } 891 } 892 when(io.redirect.valid) { 893 redirectState := redirectBusy 894 when(redirectState === redirectIdle) { 895 redirectTail := enqPtr 896 } 897 redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) => 898 redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 899 } 900 } 901 // enqueue logic writes 6 valid 902 for (i <- 0 until RenameWidth) { 903 when (canEnqueue(i) && !io.redirect.valid) { 904 valid(allocatePtrVec(i).value) := true.B 905 } 906 } 907 // dequeue logic writes 6 valid 908 for (i <- 0 until CommitWidth) { 909 val commitValid = io.commits.isCommit && io.commits.commitValid(i) 910 when (commitValid) { 911 valid(commitReadAddr(i)) := false.B 912 } 913 } 914 915 // debug_inst update 916 for(i <- 0 until (LduCnt + StaCnt)) { 917 debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i)) 918 debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i)) 919 } 920 921 // status field: writebacked 922 // enqueue logic set 6 writebacked to false 923 for (i <- 0 until RenameWidth) { 924 when (canEnqueue(i)) { 925 val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec).asUInt.orR 926 val enqHasTriggerHit = io.enq.req(i).bits.trigger.getHitFrontend 927 val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove 928 writebacked(allocatePtrVec(i).value) := enqIsWritebacked && !enqHasException && !enqHasTriggerHit 929 val isStu = io.enq.req(i).bits.fuType === FuType.stu.U 930 store_data_writebacked(allocatePtrVec(i).value) := !isStu 931 } 932 } 933 when (exceptionGen.io.out.valid) { 934 val wbIdx = exceptionGen.io.out.bits.robIdx.value 935 writebacked(wbIdx) := true.B 936 store_data_writebacked(wbIdx) := true.B 937 } 938 // writeback logic set numWbPorts writebacked to true 939 for (wb <- exuWBs) { 940 when (wb.valid) { 941 val wbIdx = wb.bits.robIdx.value 942 val wbHasException = wb.bits.exceptionVec.getOrElse(0.U).asUInt.orR 943 val wbHasTriggerHit = false.B //Todo: wb.bits.trigger.getHitBackend 944 val wbHasFlushPipe = wb.bits.flushPipe.getOrElse(false.B) 945 val wbHasReplayInst = wb.bits.replay.getOrElse(false.B) //Todo: && wb.bits.replayInst 946 val block_wb = wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit 947 writebacked(wbIdx) := !block_wb 948 } 949 } 950 // store data writeback logic mark store as data_writebacked 951 for (wb <- stdWBs) { 952 when(RegNext(wb.valid)) { 953 store_data_writebacked(RegNext(wb.bits.robIdx.value)) := true.B 954 } 955 } 956 957 // flagBkup 958 // enqueue logic set 6 flagBkup at most 959 for (i <- 0 until RenameWidth) { 960 when (canEnqueue(i)) { 961 flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag 962 } 963 } 964 965 // interrupt_safe 966 for (i <- 0 until RenameWidth) { 967 // We RegNext the updates for better timing. 968 // Note that instructions won't change the system's states in this cycle. 969 when (RegNext(canEnqueue(i))) { 970 // For now, we allow non-load-store instructions to trigger interrupts 971 // For MMIO instructions, they should not trigger interrupts since they may 972 // be sent to lower level before it writes back. 973 // However, we cannot determine whether a load/store instruction is MMIO. 974 // Thus, we don't allow load/store instructions to trigger an interrupt. 975 // TODO: support non-MMIO load-store instructions to trigger interrupts 976 val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType) 977 interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts) 978 } 979 } 980 981 /** 982 * read and write of data modules 983 */ 984 val commitReadAddr_next = Mux(state_next === s_idle, 985 VecInit(deqPtrVec_next.map(_.value)), 986 VecInit(walkPtrVec_next.map(_.value)) 987 ) 988 // NOTE: dispatch info will record the uop of inst 989 dispatchData.io.wen := canEnqueue 990 dispatchData.io.waddr := allocatePtrVec.map(_.value) 991 dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) => 992 wdata.ldest := req.ldest 993 wdata.rfWen := req.rfWen 994 wdata.fpWen := req.fpWen 995 wdata.vecWen := req.vecWen 996 wdata.wflags := req.fpu.wflags 997 wdata.commitType := req.commitType 998 wdata.pdest := req.pdest 999 wdata.old_pdest := req.oldPdest 1000 wdata.ftqIdx := req.ftqPtr 1001 wdata.ftqOffset := req.ftqOffset 1002 wdata.isMove := req.eliminatedMove 1003 wdata.pc := req.pc 1004 wdata.uopIdx := req.uopIdx 1005// wdata.vconfig := req.vconfig 1006 } 1007 dispatchData.io.raddr := commitReadAddr_next 1008 1009 exceptionGen.io.redirect <> io.redirect 1010 exceptionGen.io.flush := io.flushOut.valid 1011 for (i <- 0 until RenameWidth) { 1012 exceptionGen.io.enq(i).valid := canEnqueue(i) 1013 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 1014 exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec) 1015 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe 1016 exceptionGen.io.enq(i).bits.isVset := FuType.isInt(io.enq.req(i).bits.fuType) && ALUOpType.isVset(io.enq.req(i).bits.fuOpType) 1017 exceptionGen.io.enq(i).bits.replayInst := false.B 1018 XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst") 1019 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep 1020 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix 1021 exceptionGen.io.enq(i).bits.trigger.clear() 1022 exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.trigger.frontendHit 1023 } 1024 1025 println(s"ExceptionGen:") 1026 println(s"num of exceptions: ${params.numException}") 1027 require(exceptionWBs.length == exceptionGen.io.wb.length, 1028 f"exceptionWBs.length: ${exceptionWBs.length}, " + 1029 f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}") 1030 for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) { 1031 exc_wb.valid := wb.valid 1032 exc_wb.bits.robIdx := wb.bits.robIdx 1033 exc_wb.bits.exceptionVec := wb.bits.exceptionVec.get 1034 exc_wb.bits.flushPipe := wb.bits.flushPipe.getOrElse(false.B) 1035 exc_wb.bits.isVset := false.B 1036 exc_wb.bits.replayInst := wb.bits.replay.getOrElse(false.B) 1037 exc_wb.bits.singleStep := false.B 1038 exc_wb.bits.crossPageIPFFix := false.B 1039 exc_wb.bits.trigger := 0.U.asTypeOf(exc_wb.bits.trigger) // Todo 1040// println(s" [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " + 1041// s"flushPipe ${configs.exists(_.flushPipe)}, " + 1042// s"replayInst ${configs.exists(_.replayInst)}") 1043 } 1044 1045 val fflagsDataModule = Module(new SyncDataModuleTemplate( 1046 UInt(5.W), RobSize, CommitWidth, fflagsWBs.size) 1047 ) 1048 require(fflagsWBs.length == fflagsDataModule.io.wen.length) 1049 for(i <- fflagsWBs.indices){ 1050 fflagsDataModule.io.wen (i) := fflagsWBs(i).valid 1051 fflagsDataModule.io.waddr(i) := fflagsWBs(i).bits.robIdx.value 1052 fflagsDataModule.io.wdata(i) := fflagsWBs(i).bits.fflags.get 1053 } 1054 fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value)) 1055 fflagsDataRead := fflagsDataModule.io.rdata 1056 1057 val instrCntReg = RegInit(0.U(64.W)) 1058 val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) }) 1059 val trueCommitCnt = RegNext(commitCnt) +& fuseCommitCnt 1060 val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U) 1061 val instrCnt = instrCntReg + retireCounter 1062 instrCntReg := instrCnt 1063 io.csr.perfinfo.retiredInstr := retireCounter 1064 io.robFull := !allowEnqueue 1065 1066 /** 1067 * debug info 1068 */ 1069 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 1070 XSDebug("") 1071 XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n") 1072 for(i <- 0 until RobSize){ 1073 XSDebug(false, !valid(i), "-") 1074 XSDebug(false, valid(i) && writebacked(i), "w") 1075 XSDebug(false, valid(i) && !writebacked(i), "v") 1076 } 1077 XSDebug(false, true.B, "\n") 1078 1079 for(i <- 0 until RobSize) { 1080 if(i % 4 == 0) XSDebug("") 1081 XSDebug(false, true.B, "%x ", debug_microOp(i).pc) 1082 XSDebug(false, !valid(i), "- ") 1083 XSDebug(false, valid(i) && writebacked(i), "w ") 1084 XSDebug(false, valid(i) && !writebacked(i), "v ") 1085 if(i % 4 == 3) XSDebug(false, true.B, "\n") 1086 } 1087 1088 def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U) 1089 def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U) 1090 1091 val commitDebugExu = deqPtrVec.map(_.value).map(debug_exuDebug(_)) 1092 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 1093 val commitDebugLsInfo = deqPtrVec.map(_.value).map(debug_lsInfo(_)) 1094 XSPerfAccumulate("clock_cycle", 1.U) 1095 QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue) 1096 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 1097 XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt)) 1098 val commitIsMove = commitDebugUop.map(_.isMove) 1099 XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }))) 1100 val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) 1101 XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e }))) 1102 XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt)) 1103 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 1104 val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t } 1105 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 1106 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 1107 val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t } 1108 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 1109 val commitLoadWaitBit = commitDebugUop.map(_.loadWaitBit) 1110 XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))) 1111 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 1112 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }))) 1113 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i)))) 1114 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire))) 1115 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 1116 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)) 1117 XSPerfAccumulate("walkCycle", state === s_walk) 1118 val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value) 1119 val deqUopCommitType = io.commits.info(0).commitType 1120 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 1121 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 1122 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 1123 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 1124 XSPerfAccumulate("robHeadPC", io.commits.info(0).pc) 1125 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 1126 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 1127 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 1128 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 1129 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 1130 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 1131 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 1132 val accessLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 1133 val tlbLatency = commitDebugUop.map(uop => uop.debugInfo.tlbRespTime - uop.debugInfo.tlbFirstReqTime) 1134 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 1135 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 1136 } 1137 for (fuType <- FuType.functionNameMap.keys) { 1138 val fuName = FuType.functionNameMap(fuType) 1139 val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U ) 1140 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 1141 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 1142 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 1143 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 1144 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 1145 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 1146 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 1147 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 1148 if (fuType == FuType.fmac) { 1149 val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.fpu.ren3 ) 1150 XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma))) 1151 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency))) 1152 XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency))) 1153 } 1154 } 1155 1156 if (env.EnableTopDown) { 1157 ExcitingUtils.addSource(commit_v(0) && !commit_w(0) && state =/= s_walk && io.commits.info(0).commitType === CommitType.LOAD, 1158 "rob_first_load", ExcitingUtils.Perf) 1159 ExcitingUtils.addSource(commit_v(0) && !commit_w(0) && state =/= s_walk && io.commits.info(0).commitType === CommitType.STORE, 1160 "rob_first_store", ExcitingUtils.Perf) 1161 } 1162 1163 /** 1164 * DataBase info: 1165 * log trigger is at writeback valid 1166 * */ 1167 if(!env.FPGAPlatform){ 1168 val isWriteInstInfoTable = WireInit(Constantin.createRecord("isWriteInstInfoTable" + p(XSCoreParamsKey).HartId.toString)) 1169 val instTableName = "InstTable" + p(XSCoreParamsKey).HartId.toString 1170 val instSiteName = "Rob" + p(XSCoreParamsKey).HartId.toString 1171 val debug_instTable = ChiselDB.createTable(instTableName, new InstInfoEntry) 1172 // FIXME lyq: only get inst (alu, bj, ls) in exuWriteback 1173 for (wb <- exuWBs) { 1174 when(wb.valid) { 1175 val debug_instData = Wire(new InstInfoEntry) 1176 val idx = wb.bits.robIdx.value 1177 debug_instData.globalID := 0.U.asTypeOf(debug_instData.globalID) // wb.bits.debug_globalID 1178 debug_instData.robIdx := idx 1179 debug_instData.instType := 0.U.asTypeOf(debug_instData.instType) // wb.bits.fuType 1180 debug_instData.ivaddr := 0.U.asTypeOf(debug_instData.ivaddr) // wb.bits.pc 1181 debug_instData.dvaddr := wb.bits.debug.vaddr 1182 debug_instData.dpaddr := wb.bits.debug.paddr 1183 debug_instData.tlbLatency := wb.bits.debugInfo.tlbRespTime - wb.bits.debugInfo.tlbFirstReqTime 1184 debug_instData.accessLatency := wb.bits.debugInfo.writebackTime - wb.bits.debugInfo.issueTime 1185 debug_instData.executeLatency := wb.bits.debugInfo.writebackTime - wb.bits.debugInfo.issueTime 1186 debug_instData.issueLatency := wb.bits.debugInfo.issueTime - wb.bits.debugInfo.selectTime 1187 debug_instData.exceptType := Cat(wb.bits.exceptionVec.getOrElse(0.U.asTypeOf(debug_instData.exceptType)).asUInt) 1188 debug_instData.lsInfo := debug_lsInfo(idx) 1189 debug_instData.mdpInfo.ssid := 0.U.asTypeOf(debug_instData.mdpInfo.ssid) // wb.bits.ssid 1190 debug_instData.mdpInfo.waitAllStore := 0.U.asTypeOf(debug_instData.mdpInfo.waitAllStore) // wb.bits.loadWaitStrict && wb.bits.loadWaitBit 1191 debug_instData.issueTime := wb.bits.debugInfo.issueTime 1192 debug_instData.writebackTime := wb.bits.debugInfo.writebackTime 1193 debug_instTable.log( 1194 data = debug_instData, 1195 en = wb.valid, 1196 site = instSiteName, 1197 clock = clock, 1198 reset = reset 1199 ) 1200 } 1201 } 1202 } 1203 1204 1205 //difftest signals 1206 val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value 1207 1208 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1209 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1210 1211 for(i <- 0 until CommitWidth) { 1212 val idx = deqPtrVec(i).value 1213 wdata(i) := debug_exuData(idx) 1214 wpc(i) := SignExt(commitDebugUop(i).pc, XLEN) 1215 } 1216 1217 if (env.EnableDifftest) { 1218 for (i <- 0 until CommitWidth) { 1219 val difftest = Module(new DifftestInstrCommit) 1220 // assgin default value 1221 difftest.io := DontCare 1222 1223 difftest.io.clock := clock 1224 difftest.io.coreid := io.hartId 1225 difftest.io.index := i.U 1226 1227 val ptr = deqPtrVec(i).value 1228 val uop = commitDebugUop(i) 1229 val exuOut = debug_exuDebug(ptr) 1230 val exuData = debug_exuData(ptr) 1231 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1232 difftest.io.pc := RegNext(RegNext(RegNext(SignExt(uop.pc, XLEN)))) 1233 difftest.io.instr := RegNext(RegNext(RegNext(uop.instr))) 1234 difftest.io.robIdx := RegNext(RegNext(RegNext(ZeroExt(ptr, 10)))) 1235 difftest.io.lqIdx := RegNext(RegNext(RegNext(ZeroExt(uop.lqIdx.value, 7)))) 1236 difftest.io.sqIdx := RegNext(RegNext(RegNext(ZeroExt(uop.sqIdx.value, 7)))) 1237 difftest.io.isLoad := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.LOAD))) 1238 difftest.io.isStore := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.STORE))) 1239 difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(io.commits.info(i).commitType)))) 1240 // when committing an eliminated move instruction, 1241 // we must make sure that skip is properly set to false (output from EXU is random value) 1242 difftest.io.skip := RegNext(RegNext(RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)))) 1243 difftest.io.isRVC := RegNext(RegNext(RegNext(uop.preDecodeInfo.isRVC))) 1244 difftest.io.rfwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U))) 1245 difftest.io.fpwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).fpWen))) 1246 difftest.io.wpdest := RegNext(RegNext(RegNext(io.commits.info(i).pdest))) 1247 difftest.io.wdest := RegNext(RegNext(RegNext(io.commits.info(i).ldest))) 1248 // // runahead commit hint 1249 // val runahead_commit = Module(new DifftestRunaheadCommitEvent) 1250 // runahead_commit.io.clock := clock 1251 // runahead_commit.io.coreid := io.hartId 1252 // runahead_commit.io.index := i.U 1253 // runahead_commit.io.valid := difftest.io.valid && 1254 // (commitBranchValid(i) || commitIsStore(i)) 1255 // // TODO: is branch or store 1256 // runahead_commit.io.pc := difftest.io.pc 1257 } 1258 } 1259 else if (env.AlwaysBasicDiff) { 1260 // These are the structures used by difftest only and should be optimized after synthesis. 1261 val dt_eliminatedMove = Mem(RobSize, Bool()) 1262 val dt_isRVC = Mem(RobSize, Bool()) 1263 val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) 1264 for (i <- 0 until RenameWidth) { 1265 when (canEnqueue(i)) { 1266 dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 1267 dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC 1268 } 1269 } 1270 for (wb <- exuWBs) { 1271 when (wb.valid) { 1272 val wbIdx = wb.bits.robIdx.value 1273 dt_exuDebug(wbIdx) := wb.bits.debug 1274 } 1275 } 1276 // Always instantiate basic difftest modules. 1277 for (i <- 0 until CommitWidth) { 1278 val commitInfo = io.commits.info(i) 1279 val ptr = deqPtrVec(i).value 1280 val exuOut = dt_exuDebug(ptr) 1281 val eliminatedMove = dt_eliminatedMove(ptr) 1282 val isRVC = dt_isRVC(ptr) 1283 1284 val difftest = Module(new DifftestBasicInstrCommit) 1285 difftest.io.clock := clock 1286 difftest.io.coreid := io.hartId 1287 difftest.io.index := i.U 1288 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1289 difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(commitInfo.commitType)))) 1290 difftest.io.skip := RegNext(RegNext(RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)))) 1291 difftest.io.isRVC := RegNext(RegNext(RegNext(isRVC))) 1292 difftest.io.rfwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U))) 1293 difftest.io.fpwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.fpWen))) 1294 difftest.io.wpdest := RegNext(RegNext(RegNext(commitInfo.pdest))) 1295 difftest.io.wdest := RegNext(RegNext(RegNext(commitInfo.ldest))) 1296 } 1297 } 1298 1299 if (env.EnableDifftest) { 1300 for (i <- 0 until CommitWidth) { 1301 val difftest = Module(new DifftestLoadEvent) 1302 difftest.io.clock := clock 1303 difftest.io.coreid := io.hartId 1304 difftest.io.index := i.U 1305 1306 val ptr = deqPtrVec(i).value 1307 val uop = commitDebugUop(i) 1308 val exuOut = debug_exuDebug(ptr) 1309 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1310 difftest.io.paddr := RegNext(RegNext(RegNext(exuOut.paddr))) 1311 difftest.io.opType := RegNext(RegNext(RegNext(uop.fuOpType))) 1312 difftest.io.fuType := RegNext(RegNext(RegNext(uop.fuType))) 1313 } 1314 } 1315 1316 // Always instantiate basic difftest modules. 1317 if (env.EnableDifftest) { 1318 val dt_isXSTrap = Mem(RobSize, Bool()) 1319 for (i <- 0 until RenameWidth) { 1320 when (canEnqueue(i)) { 1321 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap 1322 } 1323 } 1324 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) } 1325 val hitTrap = trapVec.reduce(_||_) 1326 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 1327 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN) 1328 val difftest = Module(new DifftestTrapEvent) 1329 difftest.io.clock := clock 1330 difftest.io.coreid := io.hartId 1331 difftest.io.valid := hitTrap 1332 difftest.io.code := trapCode 1333 difftest.io.pc := trapPC 1334 difftest.io.cycleCnt := timer 1335 difftest.io.instrCnt := instrCnt 1336 difftest.io.hasWFI := hasWFI 1337 } 1338 else if (env.AlwaysBasicDiff) { 1339 val dt_isXSTrap = Mem(RobSize, Bool()) 1340 for (i <- 0 until RenameWidth) { 1341 when (canEnqueue(i)) { 1342 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap 1343 } 1344 } 1345 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) } 1346 val hitTrap = trapVec.reduce(_||_) 1347 val difftest = Module(new DifftestBasicTrapEvent) 1348 difftest.io.clock := clock 1349 difftest.io.coreid := io.hartId 1350 difftest.io.valid := hitTrap 1351 difftest.io.cycleCnt := timer 1352 difftest.io.instrCnt := instrCnt 1353 } 1354 1355 val validEntriesBanks = (0 until (RobSize + 63) / 64).map(i => RegNext(PopCount(valid.drop(i * 64).take(64)))) 1356 val validEntries = RegNext(ParallelOperation(validEntriesBanks, (a: UInt, b: UInt) => a +& b)) 1357 val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }) 1358 val commitLoadVec = VecInit(commitLoadValid) 1359 val commitBranchVec = VecInit(commitBranchValid) 1360 val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }) 1361 val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }) 1362 val perfEvents = Seq( 1363 ("rob_interrupt_num ", io.flushOut.valid && intrEnable ), 1364 ("rob_exception_num ", io.flushOut.valid && exceptionEnable ), 1365 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe ), 1366 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst ), 1367 ("rob_commitUop ", ifCommit(commitCnt) ), 1368 ("rob_commitInstr ", ifCommitReg(trueCommitCnt) ), 1369 ("rob_commitInstrMove ", ifCommitReg(PopCount(RegNext(commitMoveVec))) ), 1370 ("rob_commitInstrFused ", ifCommitReg(fuseCommitCnt) ), 1371 ("rob_commitInstrLoad ", ifCommitReg(PopCount(RegNext(commitLoadVec))) ), 1372 ("rob_commitInstrBranch ", ifCommitReg(PopCount(RegNext(commitBranchVec))) ), 1373 ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec))) ), 1374 ("rob_commitInstrStore ", ifCommitReg(PopCount(RegNext(commitStoreVec))) ), 1375 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U) ), 1376 ("rob_walkCycle ", (state === s_walk) ), 1377 ("rob_1_4_valid ", validEntries <= (RobSize / 4).U ), 1378 ("rob_2_4_valid ", validEntries > (RobSize / 4).U && validEntries <= (RobSize / 2).U ), 1379 ("rob_3_4_valid ", validEntries > (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U), 1380 ("rob_4_4_valid ", validEntries > (RobSize * 3 / 4).U ), 1381 ) 1382 generatePerfEvent() 1383} 1384