xref: /XiangShan/src/main/scala/xiangshan/backend/rob/Rob.scala (revision 8a00ff566bcba2487c171ffd13c225a25e8ff441)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.backend.rob
18
19import chipsalliance.rocketchip.config.Parameters
20import chisel3._
21import chisel3.util._
22import difftest._
23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp}
24import utility._
25import utils._
26import xiangshan._
27import xiangshan.backend.BackendParams
28import xiangshan.backend.fu.FuType
29import xiangshan.frontend.FtqPtr
30import xiangshan.mem.{LqPtr, SqPtr}
31import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput}
32
33class DebugMdpInfo(implicit p: Parameters) extends XSBundle{
34  val ssid = UInt(SSIDWidth.W)
35  val waitAllStore = Bool()
36}
37
38class DebugLsInfo(implicit p: Parameters) extends XSBundle{
39  val s1 = new Bundle{
40    val isTlbFirstMiss = Bool() // in s1
41    val isBankConflict = Bool() // in s1
42    val isLoadToLoadForward = Bool()
43    val isReplayFast = Bool()
44  }
45  val s2 = new Bundle{
46    val isDcacheFirstMiss = Bool() // in s2 (predicted result is in s1 when using WPU, real result is in s2)
47    val isForwardFail = Bool() // in s2
48    val isReplaySlow = Bool()
49    val isLoadReplayTLBMiss = Bool()
50    val isLoadReplayCacheMiss = Bool()
51  }
52  val replayCnt = UInt(XLEN.W)
53
54  def s1SignalEnable(ena: DebugLsInfo) = {
55    when(ena.s1.isTlbFirstMiss) { s1.isTlbFirstMiss := true.B }
56    when(ena.s1.isBankConflict) { s1.isBankConflict := true.B }
57    when(ena.s1.isLoadToLoadForward) { s1.isLoadToLoadForward := true.B }
58    when(ena.s1.isReplayFast) {
59      s1.isReplayFast := true.B
60      replayCnt := replayCnt + 1.U
61    }
62  }
63
64  def s2SignalEnable(ena: DebugLsInfo) = {
65    when(ena.s2.isDcacheFirstMiss) { s2.isDcacheFirstMiss := true.B }
66    when(ena.s2.isForwardFail) { s2.isForwardFail := true.B }
67    when(ena.s2.isLoadReplayTLBMiss) { s2.isLoadReplayTLBMiss := true.B }
68    when(ena.s2.isLoadReplayCacheMiss) { s2.isLoadReplayCacheMiss := true.B }
69    when(ena.s2.isReplaySlow) {
70      s2.isReplaySlow := true.B
71      replayCnt := replayCnt + 1.U
72    }
73  }
74}
75
76object DebugLsInfo{
77  def init(implicit p: Parameters): DebugLsInfo = {
78    val lsInfo = Wire(new DebugLsInfo)
79    lsInfo.s1.isTlbFirstMiss := false.B
80    lsInfo.s1.isBankConflict := false.B
81    lsInfo.s1.isLoadToLoadForward := false.B
82    lsInfo.s1.isReplayFast := false.B
83    lsInfo.s2.isDcacheFirstMiss := false.B
84    lsInfo.s2.isForwardFail := false.B
85    lsInfo.s2.isReplaySlow := false.B
86    lsInfo.s2.isLoadReplayTLBMiss := false.B
87    lsInfo.s2.isLoadReplayCacheMiss := false.B
88    lsInfo.replayCnt := 0.U
89    lsInfo
90  }
91}
92
93class DebugLsInfoBundle(implicit p: Parameters) extends DebugLsInfo {
94  // unified processing at the end stage of load/store  ==> s2  ==> bug that will write error robIdx data
95  val s1_robIdx = UInt(log2Ceil(RobSize).W)
96  val s2_robIdx = UInt(log2Ceil(RobSize).W)
97}
98
99class DebugLSIO(implicit p: Parameters) extends XSBundle {
100  val debugLsInfo = Vec(backendParams.LduCnt + backendParams.StaCnt, Output(new DebugLsInfoBundle))
101}
102
103class RobPtr(entries: Int) extends CircularQueuePtr[RobPtr](
104  entries
105) with HasCircularQueuePtrHelper {
106
107  def this()(implicit p: Parameters) = this(p(XSCoreParamsKey).RobSize)
108
109  def needFlush(redirect: Valid[Redirect]): Bool = {
110    val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx
111    redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx))
112  }
113
114  def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR
115}
116
117object RobPtr {
118  def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = {
119    val ptr = Wire(new RobPtr)
120    ptr.flag := f
121    ptr.value := v
122    ptr
123  }
124}
125
126class RobCSRIO(implicit p: Parameters) extends XSBundle {
127  val intrBitSet = Input(Bool())
128  val trapTarget = Input(UInt(VAddrBits.W))
129  val isXRet     = Input(Bool())
130  val wfiEvent   = Input(Bool())
131
132  val fflags     = Output(Valid(UInt(5.W)))
133  val dirty_fs   = Output(Bool())
134  val perfinfo   = new Bundle {
135    val retiredInstr = Output(UInt(3.W))
136  }
137
138  val vcsrFlag   = Output(Bool())
139}
140
141class RobLsqIO(implicit p: Parameters) extends XSBundle {
142  val lcommit = Output(UInt(log2Up(CommitWidth + 1).W))
143  val scommit = Output(UInt(log2Up(CommitWidth + 1).W))
144  val pendingld = Output(Bool())
145  val pendingst = Output(Bool())
146  val commit = Output(Bool())
147}
148
149class RobEnqIO(implicit p: Parameters) extends XSBundle {
150  val canAccept = Output(Bool())
151  val isEmpty = Output(Bool())
152  // valid vector, for robIdx gen and walk
153  val needAlloc = Vec(RenameWidth, Input(Bool()))
154  val req = Vec(RenameWidth, Flipped(ValidIO(new DynInst)))
155  val resp = Vec(RenameWidth, Output(new RobPtr))
156}
157
158class RobDispatchData(implicit p: Parameters) extends RobCommitInfo
159
160class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
161  val io = IO(new Bundle {
162    // for commits/flush
163    val state = Input(UInt(2.W))
164    val deq_v = Vec(CommitWidth, Input(Bool()))
165    val deq_w = Vec(CommitWidth, Input(Bool()))
166    val exception_state = Flipped(ValidIO(new RobExceptionInfo))
167    // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth)
168    val intrBitSetReg = Input(Bool())
169    val hasNoSpecExec = Input(Bool())
170    val interrupt_safe = Input(Bool())
171    val blockCommit = Input(Bool())
172    // output: the CommitWidth deqPtr
173    val out = Vec(CommitWidth, Output(new RobPtr))
174    val next_out = Vec(CommitWidth, Output(new RobPtr))
175  })
176
177  val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr))))
178
179  // for exceptions (flushPipe included) and interrupts:
180  // only consider the first instruction
181  val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe
182  val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0)
183  val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable)
184
185  // for normal commits: only to consider when there're no exceptions
186  // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions.
187  val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last)
188  val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i)))
189  val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B)
190  // when io.intrBitSetReg or there're possible exceptions in these instructions,
191  // only one instruction is allowed to commit
192  val allowOnlyOne = commit_exception || io.intrBitSetReg
193  val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt)
194
195  val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt))
196  val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec)
197
198  deqPtrVec := deqPtrVec_next
199
200  io.next_out := deqPtrVec_next
201  io.out      := deqPtrVec
202
203  when (io.state === 0.U) {
204    XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt)
205  }
206
207}
208
209class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
210  val io = IO(new Bundle {
211    // for input redirect
212    val redirect = Input(Valid(new Redirect))
213    // for enqueue
214    val allowEnqueue = Input(Bool())
215    val hasBlockBackward = Input(Bool())
216    val enq = Vec(RenameWidth, Input(Bool()))
217    val out = Output(Vec(RenameWidth, new RobPtr))
218  })
219
220  val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr)))
221
222  // enqueue
223  val canAccept = io.allowEnqueue && !io.hasBlockBackward
224  val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U)
225
226  for ((ptr, i) <- enqPtrVec.zipWithIndex) {
227    when(io.redirect.valid) {
228      ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
229    }.otherwise {
230      ptr := ptr + dispatchNum
231    }
232  }
233
234  io.out := enqPtrVec
235
236}
237
238class RobExceptionInfo(implicit p: Parameters) extends XSBundle {
239  // val valid = Bool()
240  val robIdx = new RobPtr
241  val exceptionVec = ExceptionVec()
242  val flushPipe = Bool()
243  val isVset = Bool()
244  val replayInst = Bool() // redirect to that inst itself
245  val singleStep = Bool() // TODO add frontend hit beneath
246  val crossPageIPFFix = Bool()
247  val trigger = new TriggerCf
248
249//  def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend
250//  def trigger_after = trigger.getTimingBackend && trigger.getHitBackend
251  def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit
252  def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit
253  // only exceptions are allowed to writeback when enqueue
254  def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit
255}
256
257class ExceptionGen(params: BackendParams)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
258  val io = IO(new Bundle {
259    val redirect = Input(Valid(new Redirect))
260    val flush = Input(Bool())
261    val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo)))
262    // csr + load + store
263    val wb = Vec(params.numException, Flipped(ValidIO(new RobExceptionInfo)))
264    val out = ValidIO(new RobExceptionInfo)
265    val state = ValidIO(new RobExceptionInfo)
266  })
267
268  def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = {
269    assert(valid.length == bits.length)
270    assert(isPow2(valid.length))
271    if (valid.length == 1) {
272      (valid, bits)
273    } else if (valid.length == 2) {
274      val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0)))))
275      for (i <- res.indices) {
276        res(i).valid := valid(i)
277        res(i).bits := bits(i)
278      }
279      val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1))
280      (Seq(oldest.valid), Seq(oldest.bits))
281    } else {
282      val left = getOldest(valid.take(valid.length / 2), bits.take(valid.length / 2))
283      val right = getOldest(valid.takeRight(valid.length / 2), bits.takeRight(valid.length / 2))
284      getOldest(left._1 ++ right._1, left._2 ++ right._2)
285    }
286  }
287
288  val currentValid = RegInit(false.B)
289  val current = Reg(new RobExceptionInfo)
290
291  // orR the exceptionVec
292  val lastCycleFlush = RegNext(io.flush)
293  val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush))
294  val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush)
295
296  // s0: compare wb(1)~wb(LoadPipelineWidth) and wb(1 + LoadPipelineWidth)~wb(LoadPipelineWidth + StorePipelineWidth)
297  val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }
298  val csr_wb_bits = io.wb(0).bits
299  val load_wb_bits = getOldest(in_wb_valid.slice(1, 1 + LoadPipelineWidth), io.wb.map(_.bits).slice(1, 1 + LoadPipelineWidth))._2(0)
300  val store_wb_bits = getOldest(in_wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth), io.wb.map(_.bits).slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth))._2(0)
301  val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid.slice(1, 1 + LoadPipelineWidth).reduce(_ || _), wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth).reduce(_ || _))))
302  val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits)))
303
304  // s1: compare last four and current flush
305  val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) })
306  val compare_01_valid = s0_out_valid(0) || s0_out_valid(1)
307  val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0))
308  val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2))
309  val s1_out_bits = RegNext(compare_bits)
310  val s1_out_valid = RegNext(s1_valid.asUInt.orR)
311
312  val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush)
313  val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits)))
314
315  // s2: compare the input exception with the current one
316  // priorities:
317  // (1) system reset
318  // (2) current is valid: flush, remain, merge, update
319  // (3) current is not valid: s1 or enq
320  val current_flush = current.robIdx.needFlush(io.redirect) || io.flush
321  val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush
322  when (currentValid) {
323    when (current_flush) {
324      currentValid := Mux(s1_flush, false.B, s1_out_valid)
325    }
326    when (s1_out_valid && !s1_flush) {
327      when (isAfter(current.robIdx, s1_out_bits.robIdx)) {
328        current := s1_out_bits
329      }.elsewhen (current.robIdx === s1_out_bits.robIdx) {
330        current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec())
331        current.flushPipe := s1_out_bits.flushPipe || current.flushPipe
332        current.replayInst := s1_out_bits.replayInst || current.replayInst
333        current.singleStep := s1_out_bits.singleStep || current.singleStep
334        current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf)
335      }
336    }
337  }.elsewhen (s1_out_valid && !s1_flush) {
338    currentValid := true.B
339    current := s1_out_bits
340  }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) {
341    currentValid := true.B
342    current := enq_bits
343  }
344
345  io.out.valid   := s1_out_valid || enq_valid && enq_bits.can_writeback
346  io.out.bits    := Mux(s1_out_valid, s1_out_bits, enq_bits)
347  io.state.valid := currentValid
348  io.state.bits  := current
349
350}
351
352class RobFlushInfo(implicit p: Parameters) extends XSBundle {
353  val ftqIdx = new FtqPtr
354  val robIdx = new RobPtr
355  val ftqOffset = UInt(log2Up(PredictWidth).W)
356  val replayInst = Bool()
357}
358
359class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter {
360
361  lazy val module = new RobImp(this)(p, params)
362  //
363  //  override def generateWritebackIO(
364  //    thisMod: Option[HasWritebackSource] = None,
365  //    thisModImp: Option[HasWritebackSourceImp] = None
366  //  ): Unit = {
367  //    val sources = writebackSinksImp(thisMod, thisModImp)
368  //    module.io.writeback.zip(sources).foreach(x => x._1 := x._2)
369  //  }
370  //}
371}
372
373class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper)
374  with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents {
375
376  // alias
377  private val LduCnt = backendParams.LduCnt
378  private val StaCnt = backendParams.StaCnt
379  private val StdCnt = backendParams.StdCnt
380  private val MemExuCnt = LduCnt + StaCnt + StdCnt
381
382  val io = IO(new Bundle() {
383    val hartId = Input(UInt(8.W))
384    val redirect = Input(Valid(new Redirect))
385    val enq = new RobEnqIO
386    val flushOut = ValidIO(new Redirect)
387    val isVsetFlushPipe = Output(Bool())
388    val exception = ValidIO(new ExceptionInfo)
389    // exu + brq
390    val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles)
391    val commits = Output(new RobCommitIO)
392    val lsq = new RobLsqIO
393    val robDeqPtr = Output(new RobPtr)
394    val csr = new RobCSRIO
395    val robFull = Output(Bool())
396    val cpu_halt = Output(Bool())
397    val wfi_enable = Input(Bool())
398    val debug_ls = Flipped(new DebugLSIO)
399  })
400
401  val exuWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(!_.bits.params.hasStdFu)
402  val stdWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(_.bits.params.hasStdFu)
403  val fflagsWBs = io.writeback.filter(x => x.bits.fflags.nonEmpty)
404  val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty)
405  val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty)
406
407  val exuWbPorts = io.writeback.filter(!_.bits.params.hasStdFu)
408  val stdWbPorts = io.writeback.filter(_.bits.params.hasStdFu)
409  val fflagsPorts = io.writeback.filter(x => x.bits.fflags.nonEmpty)
410  val exceptionPorts = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty)
411  val numExuWbPorts = exuWBs.length
412  val numStdWbPorts = stdWBs.length
413
414
415  println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth")
416//  println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}")
417//  println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}")
418//  println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}")
419
420
421  // instvalid field
422  val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
423  // writeback status
424  val writebacked = Mem(RobSize, Bool())
425  val store_data_writebacked = Mem(RobSize, Bool())
426  // data for redirect, exception, etc.
427  val flagBkup = Mem(RobSize, Bool())
428  // some instructions are not allowed to trigger interrupts
429  // They have side effects on the states of the processor before they write back
430  val interrupt_safe = Mem(RobSize, Bool())
431
432  // data for debug
433  // Warn: debug_* prefix should not exist in generated verilog.
434  val debug_microOp = Reg(Vec(RobSize, new DynInst))
435  val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug
436  val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug
437  val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init)))
438
439  // pointers
440  // For enqueue ptr, we don't duplicate it since only enqueue needs it.
441  val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr))
442  val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr))
443
444  val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr))
445  val allowEnqueue = RegInit(true.B)
446
447  val enqPtr = enqPtrVec.head
448  val deqPtr = deqPtrVec(0)
449  val walkPtr = walkPtrVec(0)
450
451  val isEmpty = enqPtr === deqPtr
452  val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level)
453
454  /**
455    * states of Rob
456    */
457  val s_idle :: s_walk :: Nil = Enum(2)
458  val state = RegInit(s_idle)
459
460  /**
461    * Data Modules
462    *
463    * CommitDataModule: data from dispatch
464    * (1) read: commits/walk/exception
465    * (2) write: enqueue
466    *
467    * WritebackData: data from writeback
468    * (1) read: commits/walk/exception
469    * (2) write: write back from exe units
470    */
471  val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth))
472  val dispatchDataRead = dispatchData.io.rdata
473
474  val exceptionGen = Module(new ExceptionGen(params))
475  val exceptionDataRead = exceptionGen.io.state
476  val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W)))
477
478  io.robDeqPtr := deqPtr
479
480  /**
481    * Enqueue (from dispatch)
482    */
483  // special cases
484  val hasBlockBackward = RegInit(false.B)
485  val hasWaitForward = RegInit(false.B)
486  val doingSvinval = RegInit(false.B)
487  // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B
488  // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty.
489  when (isEmpty) { hasBlockBackward:= false.B }
490  // When any instruction commits, hasNoSpecExec should be set to false.B
491  when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasWaitForward:= false.B }
492
493  // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing.
494  // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle.
495  // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts.
496  val hasWFI = RegInit(false.B)
497  io.cpu_halt := hasWFI
498  // WFI Timeout: 2^20 = 1M cycles
499  val wfi_cycles = RegInit(0.U(20.W))
500  when (hasWFI) {
501    wfi_cycles := wfi_cycles + 1.U
502  }.elsewhen (!hasWFI && RegNext(hasWFI)) {
503    wfi_cycles := 0.U
504  }
505  val wfi_timeout = wfi_cycles.andR
506  when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) {
507    hasWFI := false.B
508  }
509
510  val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.needAlloc.take(i)))))
511  io.enq.canAccept := allowEnqueue && !hasBlockBackward
512  io.enq.resp      := allocatePtrVec
513  val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept))
514  val timer = GTimer()
515  for (i <- 0 until RenameWidth) {
516    // we don't check whether io.redirect is valid here since redirect has higher priority
517    when (canEnqueue(i)) {
518      val enqUop = io.enq.req(i).bits
519      val enqIndex = allocatePtrVec(i).value
520      // store uop in data module and debug_microOp Vec
521      debug_microOp(enqIndex) := enqUop
522      debug_microOp(enqIndex).debugInfo.dispatchTime := timer
523      debug_microOp(enqIndex).debugInfo.enqRsTime := timer
524      debug_microOp(enqIndex).debugInfo.selectTime := timer
525      debug_microOp(enqIndex).debugInfo.issueTime := timer
526      debug_microOp(enqIndex).debugInfo.writebackTime := timer
527      debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer
528      debug_microOp(enqIndex).debugInfo.tlbRespTime := timer
529      debug_lsInfo(enqIndex) := DebugLsInfo.init
530      when (enqUop.blockBackward) {
531        hasBlockBackward := true.B
532      }
533      when (enqUop.waitForward) {
534        hasWaitForward := true.B
535      }
536      val enqHasTriggerHit = false.B // io.enq.req(i).bits.cf.trigger.getHitFrontend
537      val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR
538      // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process
539      when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe))
540      {
541        doingSvinval := true.B
542      }
543      // the end instruction of Svinval enqs so clear doingSvinval
544      when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe))
545      {
546        doingSvinval := false.B
547      }
548      // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear
549      assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe)))
550      when (enqUop.isWFI && !enqHasException && !enqHasTriggerHit) {
551        hasWFI := true.B
552      }
553    }
554  }
555  val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(_.valid)), 0.U)
556  io.enq.isEmpty   := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR)
557
558  when (!io.wfi_enable) {
559    hasWFI := false.B
560  }
561  // sel vsetvl's flush position
562  val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3)
563  val vsetvlState = RegInit(vs_idle)
564
565  val firstVInstrFtqPtr    = RegInit(0.U.asTypeOf(new FtqPtr))
566  val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W)))
567  val firstVInstrRobIdx    = RegInit(0.U.asTypeOf(new RobPtr))
568
569  val enq0            = io.enq.req(0)
570  val enq0IsVset      = FuType.isInt(enq0.bits.fuType) && ALUOpType.isVset(enq0.bits.fuOpType) && enq0.bits.uopIdx.andR && canEnqueue(0)
571  val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe
572  val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVpu(req.bits.fuType) && fire}
573  // for vs_idle
574  val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType)))
575  // for vs_waitVinstr
576  val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1)
577  val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req)
578  when(vsetvlState === vs_idle){
579    firstVInstrFtqPtr    := firstVInstrIdle.bits.ftqPtr
580    firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset
581    firstVInstrRobIdx    := firstVInstrIdle.bits.robIdx
582  }.elsewhen(vsetvlState === vs_waitVinstr){
583    firstVInstrFtqPtr    := firstVInstrWait.bits.ftqPtr
584    firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset
585    firstVInstrRobIdx    := firstVInstrWait.bits.robIdx
586  }
587
588  val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR
589  when(vsetvlState === vs_idle){
590    when(enq0IsVsetFlush){
591      vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr)
592    }
593  }.elsewhen(vsetvlState === vs_waitVinstr){
594    when(io.redirect.valid){
595      vsetvlState := vs_idle
596    }.elsewhen(Cat(enqIsVInstrOrVset).orR){
597      vsetvlState := vs_waitFlush
598    }
599  }.elsewhen(vsetvlState === vs_waitFlush){
600    when(io.redirect.valid){
601      vsetvlState := vs_idle
602    }
603  }
604
605  /**
606    * Writeback (from execution units)
607    */
608  for (wb <- exuWBs) {
609    when (wb.valid) {
610      val wbIdx = wb.bits.robIdx.value
611      debug_exuData(wbIdx) := wb.bits.data
612      debug_exuDebug(wbIdx) := wb.bits.debug
613      debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime
614      debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime
615      debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime
616      debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime
617      debug_microOp(wbIdx).debugInfo.tlbFirstReqTime := wb.bits.debugInfo.tlbFirstReqTime
618      debug_microOp(wbIdx).debugInfo.tlbRespTime := wb.bits.debugInfo.tlbRespTime
619
620      // debug for lqidx and sqidx
621      debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr))
622      debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr))
623
624      val debug_Uop = debug_microOp(wbIdx)
625      XSInfo(true.B,
626        p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " +
627        p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " +
628        p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.robIdx}\n"
629      )
630    }
631  }
632
633  val writebackNum = PopCount(exuWBs.map(_.valid))
634  XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum)
635
636
637  /**
638    * RedirectOut: Interrupt and Exceptions
639    */
640  val deqDispatchData = dispatchDataRead(0)
641  val debug_deqUop = debug_microOp(deqPtr.value)
642
643  val intrBitSetReg = RegNext(io.csr.intrBitSet)
644  val intrEnable = intrBitSetReg && !hasWaitForward && interrupt_safe(deqPtr.value)
645  val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr
646  val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR ||
647    exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit)
648  val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe
649  val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst
650  val exceptionEnable = writebacked(deqPtr.value) && deqHasException
651
652  XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n")
653  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n")
654  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n")
655
656  val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst)
657
658  val isVsetFlushPipe = writebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset
659  val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush)
660  io.isVsetFlushPipe := RegNext(isVsetFlushPipe)
661  // io.flushOut will trigger redirect at the next cycle.
662  // Block any redirect or commit at the next cycle.
663  val lastCycleFlush = RegNext(io.flushOut.valid)
664
665  io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush
666  io.flushOut.bits := DontCare
667  io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr)
668  io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx)
669  io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset)
670  io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next"
671  io.flushOut.bits.interrupt := true.B
672  XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable)
673  XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable)
674  XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe)
675  XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst)
676
677  val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush
678  io.exception.valid                := RegNext(exceptionHappen)
679  io.exception.bits.pc              := RegEnable(debug_deqUop.pc, exceptionHappen)
680  io.exception.bits.instr           := RegEnable(debug_deqUop.instr, exceptionHappen)
681  io.exception.bits.commitType      := RegEnable(deqDispatchData.commitType, exceptionHappen)
682  io.exception.bits.exceptionVec    := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen)
683  io.exception.bits.singleStep      := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen)
684  io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen)
685  io.exception.bits.isInterrupt     := RegEnable(intrEnable, exceptionHappen)
686//  io.exception.bits.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen)
687
688  XSDebug(io.flushOut.valid,
689    p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " +
690    p"excp $exceptionEnable flushPipe $isFlushPipe " +
691    p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n")
692
693
694  /**
695    * Commits (and walk)
696    * They share the same width.
697    */
698  val walkCounter = Reg(UInt(log2Up(RobSize + 1).W))
699  val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter))
700  val walkFinished = walkCounter <= CommitWidth.U
701
702  require(RenameWidth <= CommitWidth)
703
704  // wiring to csr
705  val (wflags, fpWen) = (0 until CommitWidth).map(i => {
706    val v = io.commits.commitValid(i)
707    val info = io.commits.info(i)
708    (v & info.wflags, v & info.fpWen)
709  }).unzip
710  val fflags = Wire(Valid(UInt(5.W)))
711  fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR
712  fflags.bits := wflags.zip(fflagsDataRead).map({
713    case (w, f) => Mux(w, f, 0.U)
714  }).reduce(_|_)
715  val dirty_fs = io.commits.isCommit && VecInit(fpWen).asUInt.orR
716
717  // when mispredict branches writeback, stop commit in the next 2 cycles
718  // TODO: don't check all exu write back
719  val misPredWb = Cat(VecInit(redirectWBs.map(wb =>
720    wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid
721  ))).orR
722  val misPredBlockCounter = Reg(UInt(3.W))
723  misPredBlockCounter := Mux(misPredWb,
724    "b111".U,
725    misPredBlockCounter >> 1.U
726  )
727  val misPredBlock = misPredBlockCounter(0)
728  val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI
729
730  io.commits.isWalk := state === s_walk
731  io.commits.isCommit := state === s_idle && !blockCommit
732  val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value)))
733  val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value)))
734  // store will be commited iff both sta & std have been writebacked
735  val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value)))
736  val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last)
737  val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i)))
738  val allowOnlyOneCommit = commit_exception || intrBitSetReg
739  // for instructions that may block others, we don't allow them to commit
740  for (i <- 0 until CommitWidth) {
741    // defaults: state === s_idle and instructions commit
742    // when intrBitSetReg, allow only one instruction to commit at each clock cycle
743    val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst
744    io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked
745    io.commits.info(i)  := dispatchDataRead(i)
746
747    when (state === s_walk) {
748      io.commits.walkValid(i) := shouldWalkVec(i)
749      when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) {
750        XSError(!walk_v(i), s"why not $i???\n")
751      }
752    }
753
754    XSInfo(io.commits.isCommit && io.commits.commitValid(i),
755      "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b\n",
756      debug_microOp(deqPtrVec(i).value).pc,
757      io.commits.info(i).rfWen,
758      io.commits.info(i).ldest,
759      io.commits.info(i).pdest,
760      io.commits.info(i).old_pdest,
761      debug_exuData(deqPtrVec(i).value),
762      fflagsDataRead(i)
763    )
764    XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n",
765      debug_microOp(walkPtrVec(i).value).pc,
766      io.commits.info(i).rfWen,
767      io.commits.info(i).ldest,
768      debug_exuData(walkPtrVec(i).value)
769    )
770  }
771  if (env.EnableDifftest) {
772    io.commits.info.map(info => dontTouch(info.pc))
773  }
774
775  // sync fflags/dirty_fs to csr
776  io.csr.fflags := RegNext(fflags)
777  io.csr.dirty_fs := RegNext(dirty_fs)
778
779  // sync v csr to csr
780//  io.csr.vcsrFlag := RegNext(isVsetFlushPipe)
781
782  // commit load/store to lsq
783  val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD))
784  val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE))
785  io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U))
786  io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U))
787  // indicate a pending load or store
788  io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value))
789  io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value))
790  io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0))
791
792  /**
793    * state changes
794    * (1) redirect: switch to s_walk
795    * (2) walk: when walking comes to the end, switch to s_idle
796    */
797  val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished, s_idle, state))
798  XSPerfAccumulate("s_idle_to_idle",            state === s_idle && state_next === s_idle)
799  XSPerfAccumulate("s_idle_to_walk",            state === s_idle && state_next === s_walk)
800  XSPerfAccumulate("s_walk_to_idle",            state === s_walk && state_next === s_idle)
801  XSPerfAccumulate("s_walk_to_walk",            state === s_walk && state_next === s_walk)
802  state := state_next
803
804  /**
805    * pointers and counters
806    */
807  val deqPtrGenModule = Module(new RobDeqPtrWrapper)
808  deqPtrGenModule.io.state := state
809  deqPtrGenModule.io.deq_v := commit_v
810  deqPtrGenModule.io.deq_w := commit_w
811  deqPtrGenModule.io.exception_state := exceptionDataRead
812  deqPtrGenModule.io.intrBitSetReg := intrBitSetReg
813  deqPtrGenModule.io.hasNoSpecExec := hasWaitForward
814  deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value)
815  deqPtrGenModule.io.blockCommit := blockCommit
816  deqPtrVec := deqPtrGenModule.io.out
817  val deqPtrVec_next = deqPtrGenModule.io.next_out
818
819  val enqPtrGenModule = Module(new RobEnqPtrWrapper)
820  enqPtrGenModule.io.redirect := io.redirect
821  enqPtrGenModule.io.allowEnqueue := allowEnqueue
822  enqPtrGenModule.io.hasBlockBackward := hasBlockBackward
823  enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid))
824  enqPtrVec := enqPtrGenModule.io.out
825
826  val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U)
827  // next walkPtrVec:
828  // (1) redirect occurs: update according to state
829  // (2) walk: move forwards
830  val walkPtrVec_next = Mux(io.redirect.valid,
831    deqPtrVec_next,
832    Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec)
833  )
834  walkPtrVec := walkPtrVec_next
835
836  val numValidEntries = distanceBetween(enqPtr, deqPtr)
837  val isLastUopVec = io.commits.info.map(_.uopIdx.andR)
838  val commitCnt = PopCount(io.commits.commitValid.zip(isLastUopVec).map{case(isCommitValid, isLastUop) => isCommitValid && isLastUop})
839
840  allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U
841
842  val currentWalkPtr = Mux(state === s_walk, walkPtr, deqPtrVec_next(0))
843  val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0))
844  when (io.redirect.valid) {
845    // full condition:
846    // +& is used here because:
847    // When rob is full and the tail instruction causes a misprediction,
848    // the redirect robIdx is the deqPtr - 1. In this case, redirectWalkDistance
849    // is RobSize - 1.
850    // Since misprediction does not flush the instruction itself, flushItSelf is false.B.
851    // Previously we use `+` to count the walk distance and it causes overflows
852    // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize.
853    // The width of walkCounter also needs to be changed.
854    // empty condition:
855    // When the last instruction in ROB commits and causes a flush, a redirect
856    // will be raised later. In such circumstances, the redirect robIdx is before
857    // the deqPtrVec_next(0) and will cause underflow.
858    walkCounter := Mux(isBefore(io.redirect.bits.robIdx, deqPtrVec_next(0)), 0.U,
859                       redirectWalkDistance +& !io.redirect.bits.flushItself())
860  }.elsewhen (state === s_walk) {
861    walkCounter := walkCounter - thisCycleWalkCount
862    XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n")
863  }
864
865
866  /**
867    * States
868    * We put all the stage bits changes here.
869
870    * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit);
871    * All states: (1) valid; (2) writebacked; (3) flagBkup
872    */
873  val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value)))
874
875  // redirect logic writes 6 valid
876  val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr))
877  val redirectTail = Reg(new RobPtr)
878  val redirectIdle :: redirectBusy :: Nil = Enum(2)
879  val redirectState = RegInit(redirectIdle)
880  val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail))
881  when(redirectState === redirectBusy) {
882    redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U)
883    redirectHeadVec zip invMask foreach {
884      case (redirectHead, inv) => when(inv) {
885        valid(redirectHead.value) := false.B
886      }
887    }
888    when(!invMask.last) {
889      redirectState := redirectIdle
890    }
891  }
892  when(io.redirect.valid) {
893    redirectState := redirectBusy
894    when(redirectState === redirectIdle) {
895      redirectTail := enqPtr
896    }
897    redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) =>
898      redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
899    }
900  }
901  // enqueue logic writes 6 valid
902  for (i <- 0 until RenameWidth) {
903    when (canEnqueue(i) && !io.redirect.valid) {
904      valid(allocatePtrVec(i).value) := true.B
905    }
906  }
907  // dequeue logic writes 6 valid
908  for (i <- 0 until CommitWidth) {
909    val commitValid = io.commits.isCommit && io.commits.commitValid(i)
910    when (commitValid) {
911      valid(commitReadAddr(i)) := false.B
912    }
913  }
914
915  // debug_inst update
916  for(i <- 0 until (LduCnt + StaCnt)) {
917    debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i))
918    debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i))
919  }
920
921  // status field: writebacked
922  // enqueue logic set 6 writebacked to false
923  for (i <- 0 until RenameWidth) {
924    when (canEnqueue(i)) {
925      val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec).asUInt.orR
926      val enqHasTriggerHit = io.enq.req(i).bits.trigger.getHitFrontend
927      val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove
928      writebacked(allocatePtrVec(i).value) := enqIsWritebacked && !enqHasException && !enqHasTriggerHit
929      val isStu = io.enq.req(i).bits.fuType === FuType.stu.U
930      store_data_writebacked(allocatePtrVec(i).value) := !isStu
931    }
932  }
933  when (exceptionGen.io.out.valid) {
934    val wbIdx = exceptionGen.io.out.bits.robIdx.value
935    writebacked(wbIdx) := true.B
936    store_data_writebacked(wbIdx) := true.B
937  }
938  // writeback logic set numWbPorts writebacked to true
939  for (wb <- exuWBs) {
940    when (wb.valid) {
941      val wbIdx = wb.bits.robIdx.value
942      val wbHasException = wb.bits.exceptionVec.getOrElse(0.U).asUInt.orR
943      val wbHasTriggerHit = false.B //Todo: wb.bits.trigger.getHitBackend
944      val wbHasFlushPipe = wb.bits.flushPipe.getOrElse(false.B)
945      val wbHasReplayInst = wb.bits.replay.getOrElse(false.B) //Todo: && wb.bits.replayInst
946      val block_wb = wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit
947      writebacked(wbIdx) := !block_wb
948    }
949  }
950  // store data writeback logic mark store as data_writebacked
951  for (wb <- stdWBs) {
952    when(RegNext(wb.valid)) {
953      store_data_writebacked(RegNext(wb.bits.robIdx.value)) := true.B
954    }
955  }
956
957  // flagBkup
958  // enqueue logic set 6 flagBkup at most
959  for (i <- 0 until RenameWidth) {
960    when (canEnqueue(i)) {
961      flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag
962    }
963  }
964
965  // interrupt_safe
966  for (i <- 0 until RenameWidth) {
967    // We RegNext the updates for better timing.
968    // Note that instructions won't change the system's states in this cycle.
969    when (RegNext(canEnqueue(i))) {
970      // For now, we allow non-load-store instructions to trigger interrupts
971      // For MMIO instructions, they should not trigger interrupts since they may
972      // be sent to lower level before it writes back.
973      // However, we cannot determine whether a load/store instruction is MMIO.
974      // Thus, we don't allow load/store instructions to trigger an interrupt.
975      // TODO: support non-MMIO load-store instructions to trigger interrupts
976      val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType)
977      interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts)
978    }
979  }
980
981  /**
982    * read and write of data modules
983    */
984  val commitReadAddr_next = Mux(state_next === s_idle,
985    VecInit(deqPtrVec_next.map(_.value)),
986    VecInit(walkPtrVec_next.map(_.value))
987  )
988  // NOTE: dispatch info will record the uop of inst
989  dispatchData.io.wen := canEnqueue
990  dispatchData.io.waddr := allocatePtrVec.map(_.value)
991  dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) =>
992    wdata.ldest := req.ldest
993    wdata.rfWen := req.rfWen
994    wdata.fpWen := req.fpWen
995    wdata.vecWen := req.vecWen
996    wdata.wflags := req.fpu.wflags
997    wdata.commitType := req.commitType
998    wdata.pdest := req.pdest
999    wdata.old_pdest := req.oldPdest
1000    wdata.ftqIdx := req.ftqPtr
1001    wdata.ftqOffset := req.ftqOffset
1002    wdata.isMove := req.eliminatedMove
1003    wdata.pc := req.pc
1004    wdata.uopIdx := req.uopIdx
1005//    wdata.vconfig := req.vconfig
1006  }
1007  dispatchData.io.raddr := commitReadAddr_next
1008
1009  exceptionGen.io.redirect <> io.redirect
1010  exceptionGen.io.flush := io.flushOut.valid
1011  for (i <- 0 until RenameWidth) {
1012    exceptionGen.io.enq(i).valid := canEnqueue(i)
1013    exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx
1014    exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec)
1015    exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe
1016    exceptionGen.io.enq(i).bits.isVset := FuType.isInt(io.enq.req(i).bits.fuType) && ALUOpType.isVset(io.enq.req(i).bits.fuOpType)
1017    exceptionGen.io.enq(i).bits.replayInst := false.B
1018    XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst")
1019    exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep
1020    exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix
1021    exceptionGen.io.enq(i).bits.trigger.clear()
1022    exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.trigger.frontendHit
1023  }
1024
1025  println(s"ExceptionGen:")
1026  println(s"num of exceptions: ${params.numException}")
1027  require(exceptionWBs.length == exceptionGen.io.wb.length,
1028    f"exceptionWBs.length: ${exceptionWBs.length}, " +
1029      f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}")
1030  for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) {
1031    exc_wb.valid                := wb.valid
1032    exc_wb.bits.robIdx          := wb.bits.robIdx
1033    exc_wb.bits.exceptionVec    := wb.bits.exceptionVec.get
1034    exc_wb.bits.flushPipe       := wb.bits.flushPipe.getOrElse(false.B)
1035    exc_wb.bits.isVset          := false.B
1036    exc_wb.bits.replayInst      := wb.bits.replay.getOrElse(false.B)
1037    exc_wb.bits.singleStep      := false.B
1038    exc_wb.bits.crossPageIPFFix := false.B
1039    exc_wb.bits.trigger         := 0.U.asTypeOf(exc_wb.bits.trigger) // Todo
1040//    println(s"  [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " +
1041//      s"flushPipe ${configs.exists(_.flushPipe)}, " +
1042//      s"replayInst ${configs.exists(_.replayInst)}")
1043  }
1044
1045  val fflagsDataModule = Module(new SyncDataModuleTemplate(
1046    UInt(5.W), RobSize, CommitWidth, fflagsWBs.size)
1047  )
1048  require(fflagsWBs.length == fflagsDataModule.io.wen.length)
1049  for(i <- fflagsWBs.indices){
1050    fflagsDataModule.io.wen  (i) := fflagsWBs(i).valid
1051    fflagsDataModule.io.waddr(i) := fflagsWBs(i).bits.robIdx.value
1052    fflagsDataModule.io.wdata(i) := fflagsWBs(i).bits.fflags.get
1053  }
1054  fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value))
1055  fflagsDataRead := fflagsDataModule.io.rdata
1056
1057  val instrCntReg = RegInit(0.U(64.W))
1058  val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) })
1059  val trueCommitCnt = RegNext(commitCnt) +& fuseCommitCnt
1060  val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U)
1061  val instrCnt = instrCntReg + retireCounter
1062  instrCntReg := instrCnt
1063  io.csr.perfinfo.retiredInstr := retireCounter
1064  io.robFull := !allowEnqueue
1065
1066  /**
1067    * debug info
1068    */
1069  XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n")
1070  XSDebug("")
1071  XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n")
1072  for(i <- 0 until RobSize){
1073    XSDebug(false, !valid(i), "-")
1074    XSDebug(false, valid(i) && writebacked(i), "w")
1075    XSDebug(false, valid(i) && !writebacked(i), "v")
1076  }
1077  XSDebug(false, true.B, "\n")
1078
1079  for(i <- 0 until RobSize) {
1080    if(i % 4 == 0) XSDebug("")
1081    XSDebug(false, true.B, "%x ", debug_microOp(i).pc)
1082    XSDebug(false, !valid(i), "- ")
1083    XSDebug(false, valid(i) && writebacked(i), "w ")
1084    XSDebug(false, valid(i) && !writebacked(i), "v ")
1085    if(i % 4 == 3) XSDebug(false, true.B, "\n")
1086  }
1087
1088  def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U)
1089  def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U)
1090
1091  val commitDebugExu = deqPtrVec.map(_.value).map(debug_exuDebug(_))
1092  val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_))
1093  val commitDebugLsInfo = deqPtrVec.map(_.value).map(debug_lsInfo(_))
1094  XSPerfAccumulate("clock_cycle", 1.U)
1095  QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue)
1096  XSPerfAccumulate("commitUop", ifCommit(commitCnt))
1097  XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt))
1098  val commitIsMove = commitDebugUop.map(_.isMove)
1099  XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })))
1100  val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove)
1101  XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e })))
1102  XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt))
1103  val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD)
1104  val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t }
1105  XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid)))
1106  val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH)
1107  val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t }
1108  XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid)))
1109  val commitLoadWaitBit = commitDebugUop.map(_.loadWaitBit)
1110  XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })))
1111  val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE)
1112  XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })))
1113  XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i))))
1114  // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire)))
1115  // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready)))
1116  XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U))
1117  XSPerfAccumulate("walkCycle", state === s_walk)
1118  val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value)
1119  val deqUopCommitType = io.commits.info(0).commitType
1120  XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL)
1121  XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH)
1122  XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD)
1123  XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE)
1124  XSPerfAccumulate("robHeadPC", io.commits.info(0).pc)
1125  val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime)
1126  val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime)
1127  val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime)
1128  val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime)
1129  val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime)
1130  val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime)
1131  val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime)
1132  val accessLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime)
1133  val tlbLatency = commitDebugUop.map(uop => uop.debugInfo.tlbRespTime - uop.debugInfo.tlbFirstReqTime)
1134  def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = {
1135    cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _)
1136  }
1137  for (fuType <- FuType.functionNameMap.keys) {
1138    val fuName = FuType.functionNameMap(fuType)
1139    val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U )
1140    XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType)))
1141    XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency)))
1142    XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency)))
1143    XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency)))
1144    XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency)))
1145    XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency)))
1146    XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency)))
1147    XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency)))
1148    if (fuType == FuType.fmac) {
1149      val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.fpu.ren3 )
1150      XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma)))
1151      XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency)))
1152      XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency)))
1153    }
1154  }
1155
1156  if (env.EnableTopDown) {
1157    ExcitingUtils.addSource(commit_v(0) && !commit_w(0) && state =/= s_walk && io.commits.info(0).commitType === CommitType.LOAD,
1158                            "rob_first_load", ExcitingUtils.Perf)
1159    ExcitingUtils.addSource(commit_v(0) && !commit_w(0) && state =/= s_walk && io.commits.info(0).commitType === CommitType.STORE,
1160                            "rob_first_store", ExcitingUtils.Perf)
1161  }
1162
1163  /**
1164    * DataBase info:
1165    * log trigger is at writeback valid
1166    * */
1167  if(!env.FPGAPlatform){
1168    val isWriteInstInfoTable = WireInit(Constantin.createRecord("isWriteInstInfoTable" + p(XSCoreParamsKey).HartId.toString))
1169    val instTableName = "InstTable" + p(XSCoreParamsKey).HartId.toString
1170    val instSiteName = "Rob" + p(XSCoreParamsKey).HartId.toString
1171    val debug_instTable = ChiselDB.createTable(instTableName, new InstInfoEntry)
1172    // FIXME lyq: only get inst (alu, bj, ls) in exuWriteback
1173    for (wb <- exuWBs) {
1174      when(wb.valid) {
1175        val debug_instData = Wire(new InstInfoEntry)
1176        val idx = wb.bits.robIdx.value
1177        debug_instData.globalID       := 0.U.asTypeOf(debug_instData.globalID) // wb.bits.debug_globalID
1178        debug_instData.robIdx         := idx
1179        debug_instData.instType       := 0.U.asTypeOf(debug_instData.instType) // wb.bits.fuType
1180        debug_instData.ivaddr         := 0.U.asTypeOf(debug_instData.ivaddr)   // wb.bits.pc
1181        debug_instData.dvaddr         := wb.bits.debug.vaddr
1182        debug_instData.dpaddr         := wb.bits.debug.paddr
1183        debug_instData.tlbLatency     := wb.bits.debugInfo.tlbRespTime - wb.bits.debugInfo.tlbFirstReqTime
1184        debug_instData.accessLatency  := wb.bits.debugInfo.writebackTime - wb.bits.debugInfo.issueTime
1185        debug_instData.executeLatency := wb.bits.debugInfo.writebackTime - wb.bits.debugInfo.issueTime
1186        debug_instData.issueLatency   := wb.bits.debugInfo.issueTime - wb.bits.debugInfo.selectTime
1187        debug_instData.exceptType     := Cat(wb.bits.exceptionVec.getOrElse(0.U.asTypeOf(debug_instData.exceptType)).asUInt)
1188        debug_instData.lsInfo         := debug_lsInfo(idx)
1189        debug_instData.mdpInfo.ssid   := 0.U.asTypeOf(debug_instData.mdpInfo.ssid)               // wb.bits.ssid
1190        debug_instData.mdpInfo.waitAllStore := 0.U.asTypeOf(debug_instData.mdpInfo.waitAllStore) // wb.bits.loadWaitStrict && wb.bits.loadWaitBit
1191        debug_instData.issueTime      := wb.bits.debugInfo.issueTime
1192        debug_instData.writebackTime  := wb.bits.debugInfo.writebackTime
1193        debug_instTable.log(
1194          data = debug_instData,
1195          en = wb.valid,
1196          site = instSiteName,
1197          clock = clock,
1198          reset = reset
1199        )
1200      }
1201    }
1202  }
1203
1204
1205  //difftest signals
1206  val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value
1207
1208  val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1209  val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1210
1211  for(i <- 0 until CommitWidth) {
1212    val idx = deqPtrVec(i).value
1213    wdata(i) := debug_exuData(idx)
1214    wpc(i) := SignExt(commitDebugUop(i).pc, XLEN)
1215  }
1216
1217  if (env.EnableDifftest) {
1218    for (i <- 0 until CommitWidth) {
1219      val difftest = Module(new DifftestInstrCommit)
1220      // assgin default value
1221      difftest.io := DontCare
1222
1223      difftest.io.clock    := clock
1224      difftest.io.coreid   := io.hartId
1225      difftest.io.index    := i.U
1226
1227      val ptr = deqPtrVec(i).value
1228      val uop = commitDebugUop(i)
1229      val exuOut = debug_exuDebug(ptr)
1230      val exuData = debug_exuData(ptr)
1231      difftest.io.valid    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1232      difftest.io.pc       := RegNext(RegNext(RegNext(SignExt(uop.pc, XLEN))))
1233      difftest.io.instr    := RegNext(RegNext(RegNext(uop.instr)))
1234      difftest.io.robIdx   := RegNext(RegNext(RegNext(ZeroExt(ptr, 10))))
1235      difftest.io.lqIdx    := RegNext(RegNext(RegNext(ZeroExt(uop.lqIdx.value, 7))))
1236      difftest.io.sqIdx    := RegNext(RegNext(RegNext(ZeroExt(uop.sqIdx.value, 7))))
1237      difftest.io.isLoad   := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.LOAD)))
1238      difftest.io.isStore  := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.STORE)))
1239      difftest.io.special  := RegNext(RegNext(RegNext(CommitType.isFused(io.commits.info(i).commitType))))
1240      // when committing an eliminated move instruction,
1241      // we must make sure that skip is properly set to false (output from EXU is random value)
1242      difftest.io.skip     := RegNext(RegNext(RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))))
1243      difftest.io.isRVC    := RegNext(RegNext(RegNext(uop.preDecodeInfo.isRVC)))
1244      difftest.io.rfwen    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U)))
1245      difftest.io.fpwen    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).fpWen)))
1246      difftest.io.wpdest   := RegNext(RegNext(RegNext(io.commits.info(i).pdest)))
1247      difftest.io.wdest    := RegNext(RegNext(RegNext(io.commits.info(i).ldest)))
1248      // // runahead commit hint
1249      // val runahead_commit = Module(new DifftestRunaheadCommitEvent)
1250      // runahead_commit.io.clock := clock
1251      // runahead_commit.io.coreid := io.hartId
1252      // runahead_commit.io.index := i.U
1253      // runahead_commit.io.valid := difftest.io.valid &&
1254      //   (commitBranchValid(i) || commitIsStore(i))
1255      // // TODO: is branch or store
1256      // runahead_commit.io.pc    := difftest.io.pc
1257    }
1258  }
1259  else if (env.AlwaysBasicDiff) {
1260    // These are the structures used by difftest only and should be optimized after synthesis.
1261    val dt_eliminatedMove = Mem(RobSize, Bool())
1262    val dt_isRVC = Mem(RobSize, Bool())
1263    val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle))
1264    for (i <- 0 until RenameWidth) {
1265      when (canEnqueue(i)) {
1266        dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove
1267        dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC
1268      }
1269    }
1270    for (wb <- exuWBs) {
1271      when (wb.valid) {
1272        val wbIdx = wb.bits.robIdx.value
1273        dt_exuDebug(wbIdx) := wb.bits.debug
1274      }
1275    }
1276    // Always instantiate basic difftest modules.
1277    for (i <- 0 until CommitWidth) {
1278      val commitInfo = io.commits.info(i)
1279      val ptr = deqPtrVec(i).value
1280      val exuOut = dt_exuDebug(ptr)
1281      val eliminatedMove = dt_eliminatedMove(ptr)
1282      val isRVC = dt_isRVC(ptr)
1283
1284      val difftest = Module(new DifftestBasicInstrCommit)
1285      difftest.io.clock   := clock
1286      difftest.io.coreid  := io.hartId
1287      difftest.io.index   := i.U
1288      difftest.io.valid   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1289      difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(commitInfo.commitType))))
1290      difftest.io.skip    := RegNext(RegNext(RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))))
1291      difftest.io.isRVC   := RegNext(RegNext(RegNext(isRVC)))
1292      difftest.io.rfwen   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U)))
1293      difftest.io.fpwen   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.fpWen)))
1294      difftest.io.wpdest  := RegNext(RegNext(RegNext(commitInfo.pdest)))
1295      difftest.io.wdest   := RegNext(RegNext(RegNext(commitInfo.ldest)))
1296    }
1297  }
1298
1299  if (env.EnableDifftest) {
1300    for (i <- 0 until CommitWidth) {
1301      val difftest = Module(new DifftestLoadEvent)
1302      difftest.io.clock  := clock
1303      difftest.io.coreid := io.hartId
1304      difftest.io.index  := i.U
1305
1306      val ptr = deqPtrVec(i).value
1307      val uop = commitDebugUop(i)
1308      val exuOut = debug_exuDebug(ptr)
1309      difftest.io.valid  := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1310      difftest.io.paddr  := RegNext(RegNext(RegNext(exuOut.paddr)))
1311      difftest.io.opType := RegNext(RegNext(RegNext(uop.fuOpType)))
1312      difftest.io.fuType := RegNext(RegNext(RegNext(uop.fuType)))
1313    }
1314  }
1315
1316  // Always instantiate basic difftest modules.
1317  if (env.EnableDifftest) {
1318    val dt_isXSTrap = Mem(RobSize, Bool())
1319    for (i <- 0 until RenameWidth) {
1320      when (canEnqueue(i)) {
1321        dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap
1322      }
1323    }
1324    val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) }
1325    val hitTrap = trapVec.reduce(_||_)
1326    val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1))
1327    val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN)
1328    val difftest = Module(new DifftestTrapEvent)
1329    difftest.io.clock    := clock
1330    difftest.io.coreid   := io.hartId
1331    difftest.io.valid    := hitTrap
1332    difftest.io.code     := trapCode
1333    difftest.io.pc       := trapPC
1334    difftest.io.cycleCnt := timer
1335    difftest.io.instrCnt := instrCnt
1336    difftest.io.hasWFI   := hasWFI
1337  }
1338  else if (env.AlwaysBasicDiff) {
1339    val dt_isXSTrap = Mem(RobSize, Bool())
1340    for (i <- 0 until RenameWidth) {
1341      when (canEnqueue(i)) {
1342        dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap
1343      }
1344    }
1345    val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) }
1346    val hitTrap = trapVec.reduce(_||_)
1347    val difftest = Module(new DifftestBasicTrapEvent)
1348    difftest.io.clock    := clock
1349    difftest.io.coreid   := io.hartId
1350    difftest.io.valid    := hitTrap
1351    difftest.io.cycleCnt := timer
1352    difftest.io.instrCnt := instrCnt
1353  }
1354
1355  val validEntriesBanks = (0 until (RobSize + 63) / 64).map(i => RegNext(PopCount(valid.drop(i * 64).take(64))))
1356  val validEntries = RegNext(ParallelOperation(validEntriesBanks, (a: UInt, b: UInt) => a +& b))
1357  val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })
1358  val commitLoadVec = VecInit(commitLoadValid)
1359  val commitBranchVec = VecInit(commitBranchValid)
1360  val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })
1361  val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })
1362  val perfEvents = Seq(
1363    ("rob_interrupt_num      ", io.flushOut.valid && intrEnable                                       ),
1364    ("rob_exception_num      ", io.flushOut.valid && exceptionEnable                                  ),
1365    ("rob_flush_pipe_num     ", io.flushOut.valid && isFlushPipe                                      ),
1366    ("rob_replay_inst_num    ", io.flushOut.valid && isFlushPipe && deqHasReplayInst                  ),
1367    ("rob_commitUop          ", ifCommit(commitCnt)                                                   ),
1368    ("rob_commitInstr        ", ifCommitReg(trueCommitCnt)                                            ),
1369    ("rob_commitInstrMove    ", ifCommitReg(PopCount(RegNext(commitMoveVec)))                         ),
1370    ("rob_commitInstrFused   ", ifCommitReg(fuseCommitCnt)                                            ),
1371    ("rob_commitInstrLoad    ", ifCommitReg(PopCount(RegNext(commitLoadVec)))                         ),
1372    ("rob_commitInstrBranch  ", ifCommitReg(PopCount(RegNext(commitBranchVec)))                       ),
1373    ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec)))                     ),
1374    ("rob_commitInstrStore   ", ifCommitReg(PopCount(RegNext(commitStoreVec)))                        ),
1375    ("rob_walkInstr          ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)           ),
1376    ("rob_walkCycle          ", (state === s_walk)                                                    ),
1377    ("rob_1_4_valid          ", validEntries <= (RobSize / 4).U                                       ),
1378    ("rob_2_4_valid          ", validEntries >  (RobSize / 4).U && validEntries <= (RobSize / 2).U    ),
1379    ("rob_3_4_valid          ", validEntries >  (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U),
1380    ("rob_4_4_valid          ", validEntries >  (RobSize * 3 / 4).U                                   ),
1381  )
1382  generatePerfEvent()
1383}
1384