xref: /XiangShan/src/main/scala/xiangshan/backend/rob/Rob.scala (revision 870f462d572cd0ef6bf86c91dcda5a5fab6e99d3)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.backend.rob
18
19import chipsalliance.rocketchip.config.Parameters
20import chisel3._
21import chisel3.util._
22import difftest._
23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp}
24import utility._
25import utils._
26import xiangshan._
27import xiangshan.backend.BackendParams
28import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput}
29import xiangshan.backend.fu.FuType
30import xiangshan.frontend.FtqPtr
31import xiangshan.mem.{LqPtr, LsqEnqIO, SqPtr}
32import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput}
33import xiangshan.backend.ctrlblock.{DebugLSIO, DebugLsInfo, LsTopdownInfo}
34import xiangshan.backend.rename.SnapshotGenerator
35
36class RobPtr(entries: Int) extends CircularQueuePtr[RobPtr](
37  entries
38) with HasCircularQueuePtrHelper {
39
40  def this()(implicit p: Parameters) = this(p(XSCoreParamsKey).RobSize)
41
42  def needFlush(redirect: Valid[Redirect]): Bool = {
43    val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx
44    redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx))
45  }
46
47  def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR
48}
49
50object RobPtr {
51  def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = {
52    val ptr = Wire(new RobPtr)
53    ptr.flag := f
54    ptr.value := v
55    ptr
56  }
57}
58
59class RobCSRIO(implicit p: Parameters) extends XSBundle {
60  val intrBitSet = Input(Bool())
61  val trapTarget = Input(UInt(VAddrBits.W))
62  val isXRet     = Input(Bool())
63  val wfiEvent   = Input(Bool())
64
65  val fflags     = Output(Valid(UInt(5.W)))
66  val vxsat      = Output(Valid(Bool()))
67  val dirty_fs   = Output(Bool())
68  val perfinfo   = new Bundle {
69    val retiredInstr = Output(UInt(3.W))
70  }
71
72  val vcsrFlag   = Output(Bool())
73}
74
75class RobLsqIO(implicit p: Parameters) extends XSBundle {
76  val lcommit = Output(UInt(log2Up(CommitWidth + 1).W))
77  val scommit = Output(UInt(log2Up(CommitWidth + 1).W))
78  val pendingld = Output(Bool())
79  val pendingst = Output(Bool())
80  val commit = Output(Bool())
81  val pendingPtr = Output(new RobPtr)
82
83  val mmio = Input(Vec(LoadPipelineWidth, Bool()))
84  val uop = Input(Vec(LoadPipelineWidth, new DynInst))
85}
86
87class RobEnqIO(implicit p: Parameters) extends XSBundle {
88  val canAccept = Output(Bool())
89  val isEmpty = Output(Bool())
90  // valid vector, for robIdx gen and walk
91  val needAlloc = Vec(RenameWidth, Input(Bool()))
92  val req = Vec(RenameWidth, Flipped(ValidIO(new DynInst)))
93  val resp = Vec(RenameWidth, Output(new RobPtr))
94}
95
96class RobDispatchData(implicit p: Parameters) extends RobCommitInfo
97
98class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
99  val io = IO(new Bundle {
100    // for commits/flush
101    val state = Input(UInt(2.W))
102    val deq_v = Vec(CommitWidth, Input(Bool()))
103    val deq_w = Vec(CommitWidth, Input(Bool()))
104    val exception_state = Flipped(ValidIO(new RobExceptionInfo))
105    // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth)
106    val intrBitSetReg = Input(Bool())
107    val hasNoSpecExec = Input(Bool())
108    val interrupt_safe = Input(Bool())
109    val blockCommit = Input(Bool())
110    // output: the CommitWidth deqPtr
111    val out = Vec(CommitWidth, Output(new RobPtr))
112    val next_out = Vec(CommitWidth, Output(new RobPtr))
113  })
114
115  val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr))))
116
117  // for exceptions (flushPipe included) and interrupts:
118  // only consider the first instruction
119  val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe
120  val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0)
121  val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable)
122
123  // for normal commits: only to consider when there're no exceptions
124  // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions.
125  val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last)
126  val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i)))
127  val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B)
128  // when io.intrBitSetReg or there're possible exceptions in these instructions,
129  // only one instruction is allowed to commit
130  val allowOnlyOne = commit_exception || io.intrBitSetReg
131  val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt)
132
133  val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt))
134  val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec)
135
136  deqPtrVec := deqPtrVec_next
137
138  io.next_out := deqPtrVec_next
139  io.out      := deqPtrVec
140
141  when (io.state === 0.U) {
142    XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt)
143  }
144
145}
146
147class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
148  val io = IO(new Bundle {
149    // for input redirect
150    val redirect = Input(Valid(new Redirect))
151    // for enqueue
152    val allowEnqueue = Input(Bool())
153    val hasBlockBackward = Input(Bool())
154    val enq = Vec(RenameWidth, Input(Bool()))
155    val out = Output(Vec(RenameWidth, new RobPtr))
156  })
157
158  val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr)))
159
160  // enqueue
161  val canAccept = io.allowEnqueue && !io.hasBlockBackward
162  val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U)
163
164  for ((ptr, i) <- enqPtrVec.zipWithIndex) {
165    when(io.redirect.valid) {
166      ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
167    }.otherwise {
168      ptr := ptr + dispatchNum
169    }
170  }
171
172  io.out := enqPtrVec
173
174}
175
176class RobExceptionInfo(implicit p: Parameters) extends XSBundle {
177  // val valid = Bool()
178  val robIdx = new RobPtr
179  val exceptionVec = ExceptionVec()
180  val flushPipe = Bool()
181  val isVset = Bool()
182  val replayInst = Bool() // redirect to that inst itself
183  val singleStep = Bool() // TODO add frontend hit beneath
184  val crossPageIPFFix = Bool()
185  val trigger = new TriggerCf
186
187//  def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend
188//  def trigger_after = trigger.getTimingBackend && trigger.getHitBackend
189  def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit
190  def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit
191  // only exceptions are allowed to writeback when enqueue
192  def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit
193}
194
195class ExceptionGen(params: BackendParams)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
196  val io = IO(new Bundle {
197    val redirect = Input(Valid(new Redirect))
198    val flush = Input(Bool())
199    val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo)))
200    // csr + load + store
201    val wb = Vec(params.numException, Flipped(ValidIO(new RobExceptionInfo)))
202    val out = ValidIO(new RobExceptionInfo)
203    val state = ValidIO(new RobExceptionInfo)
204  })
205
206  def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = {
207    assert(valid.length == bits.length)
208    assert(isPow2(valid.length))
209    if (valid.length == 1) {
210      (valid, bits)
211    } else if (valid.length == 2) {
212      val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0)))))
213      for (i <- res.indices) {
214        res(i).valid := valid(i)
215        res(i).bits := bits(i)
216      }
217      val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1))
218      (Seq(oldest.valid), Seq(oldest.bits))
219    } else {
220      val left = getOldest(valid.take(valid.length / 2), bits.take(valid.length / 2))
221      val right = getOldest(valid.takeRight(valid.length / 2), bits.takeRight(valid.length / 2))
222      getOldest(left._1 ++ right._1, left._2 ++ right._2)
223    }
224  }
225
226  val currentValid = RegInit(false.B)
227  val current = Reg(new RobExceptionInfo)
228
229  // orR the exceptionVec
230  val lastCycleFlush = RegNext(io.flush)
231  val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush))
232  val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush)
233
234  // s0: compare wb(1)~wb(LoadPipelineWidth) and wb(1 + LoadPipelineWidth)~wb(LoadPipelineWidth + StorePipelineWidth)
235  val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }
236  val csr_wb_bits = io.wb(0).bits
237  val load_wb_bits = getOldest(in_wb_valid.slice(1, 1 + LoadPipelineWidth), io.wb.map(_.bits).slice(1, 1 + LoadPipelineWidth))._2(0)
238  val store_wb_bits = getOldest(in_wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth), io.wb.map(_.bits).slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth))._2(0)
239  val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid.slice(1, 1 + LoadPipelineWidth).reduce(_ || _), wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth).reduce(_ || _))))
240  val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits)))
241
242  // s1: compare last four and current flush
243  val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) })
244  val compare_01_valid = s0_out_valid(0) || s0_out_valid(1)
245  val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0))
246  val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2))
247  val s1_out_bits = RegNext(compare_bits)
248  val s1_out_valid = RegNext(s1_valid.asUInt.orR)
249
250  val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush)
251  val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits)))
252
253  // s2: compare the input exception with the current one
254  // priorities:
255  // (1) system reset
256  // (2) current is valid: flush, remain, merge, update
257  // (3) current is not valid: s1 or enq
258  val current_flush = current.robIdx.needFlush(io.redirect) || io.flush
259  val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush
260  when (currentValid) {
261    when (current_flush) {
262      currentValid := Mux(s1_flush, false.B, s1_out_valid)
263    }
264    when (s1_out_valid && !s1_flush) {
265      when (isAfter(current.robIdx, s1_out_bits.robIdx)) {
266        current := s1_out_bits
267      }.elsewhen (current.robIdx === s1_out_bits.robIdx) {
268        current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec())
269        current.flushPipe := s1_out_bits.flushPipe || current.flushPipe
270        current.replayInst := s1_out_bits.replayInst || current.replayInst
271        current.singleStep := s1_out_bits.singleStep || current.singleStep
272        current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf)
273      }
274    }
275  }.elsewhen (s1_out_valid && !s1_flush) {
276    currentValid := true.B
277    current := s1_out_bits
278  }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) {
279    currentValid := true.B
280    current := enq_bits
281  }
282
283  io.out.valid   := s1_out_valid || enq_valid && enq_bits.can_writeback
284  io.out.bits    := Mux(s1_out_valid, s1_out_bits, enq_bits)
285  io.state.valid := currentValid
286  io.state.bits  := current
287
288}
289
290class RobFlushInfo(implicit p: Parameters) extends XSBundle {
291  val ftqIdx = new FtqPtr
292  val robIdx = new RobPtr
293  val ftqOffset = UInt(log2Up(PredictWidth).W)
294  val replayInst = Bool()
295}
296
297class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter {
298
299  lazy val module = new RobImp(this)(p, params)
300}
301
302class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper)
303  with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents {
304
305  private val LduCnt = params.LduCnt
306  private val StaCnt = params.StaCnt
307
308  val io = IO(new Bundle() {
309    val hartId = Input(UInt(8.W))
310    val redirect = Input(Valid(new Redirect))
311    val enq = new RobEnqIO
312    val flushOut = ValidIO(new Redirect)
313    val exception = ValidIO(new ExceptionInfo)
314    // exu + brq
315    val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles)
316    val commits = Output(new RobCommitIO)
317    val rabCommits = Output(new RobCommitIO)
318    val diffCommits = Output(new DiffCommitIO)
319    val isVsetFlushPipe = Output(Bool())
320    val vconfigPdest = Output(UInt(PhyRegIdxWidth.W))
321    val lsq = new RobLsqIO
322    val robDeqPtr = Output(new RobPtr)
323    val csr = new RobCSRIO
324    val snpt = Input(new SnapshotPort)
325    val robFull = Output(Bool())
326    val headNotReady = Output(Bool())
327    val cpu_halt = Output(Bool())
328    val wfi_enable = Input(Bool())
329    val debug_ls = Flipped(new DebugLSIO)
330    val debugRobHead = Output(new DynInst)
331    val debugEnqLsq = Input(new LsqEnqIO)
332    val debugHeadLsIssue = Input(Bool())
333    val lsTopdownInfo = Vec(LduCnt, Input(new LsTopdownInfo))
334  })
335
336  val exuWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(!_.bits.params.hasStdFu)
337  val stdWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(_.bits.params.hasStdFu)
338  val fflagsWBs = io.writeback.filter(x => x.bits.fflags.nonEmpty)
339  val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty)
340  val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty)
341
342  val exuWbPorts = io.writeback.filter(!_.bits.params.hasStdFu)
343  val stdWbPorts = io.writeback.filter(_.bits.params.hasStdFu)
344  val fflagsPorts = io.writeback.filter(x => x.bits.fflags.nonEmpty)
345  val vxsatPorts = io.writeback.filter(x => x.bits.vxsat.nonEmpty)
346  val exceptionPorts = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty)
347  val numExuWbPorts = exuWBs.length
348  val numStdWbPorts = stdWBs.length
349
350
351  println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth")
352//  println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}")
353//  println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}")
354//  println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}")
355
356
357  // instvalid field
358  val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
359  // writeback status
360
361  val stdWritebacked = Reg(Vec(RobSize, Bool()))
362  val uopNumVec          = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W))))
363  val realDestSize       = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W))))
364  val fflagsDataModule   = RegInit(VecInit(Seq.fill(RobSize)(0.U(5.W))))
365  val vxsatDataModule    = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
366
367  def isWritebacked(ptr: UInt): Bool = {
368    !uopNumVec(ptr).orR && stdWritebacked(ptr)
369  }
370
371  val mmio = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
372
373  // data for redirect, exception, etc.
374  val flagBkup = Mem(RobSize, Bool())
375  // some instructions are not allowed to trigger interrupts
376  // They have side effects on the states of the processor before they write back
377  val interrupt_safe = Mem(RobSize, Bool())
378
379  // data for debug
380  // Warn: debug_* prefix should not exist in generated verilog.
381  val debug_microOp = Mem(RobSize, new DynInst)
382  val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug
383  val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug
384  val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init)))
385  val debug_lsTopdownInfo = RegInit(VecInit(Seq.fill(RobSize)(LsTopdownInfo.init)))
386  val debug_lqIdxValid = RegInit(VecInit.fill(RobSize)(false.B))
387  val debug_lsIssued = RegInit(VecInit.fill(RobSize)(false.B))
388
389  // pointers
390  // For enqueue ptr, we don't duplicate it since only enqueue needs it.
391  val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr))
392  val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr))
393
394  val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr))
395  val lastWalkPtr = Reg(new RobPtr)
396  val allowEnqueue = RegInit(true.B)
397
398  val enqPtr = enqPtrVec.head
399  val deqPtr = deqPtrVec(0)
400  val walkPtr = walkPtrVec(0)
401
402  val isEmpty = enqPtr === deqPtr
403  val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level)
404
405  val snptEnq = io.enq.canAccept && io.enq.req.head.valid && io.enq.req.head.bits.snapshot
406  val snapshots = SnapshotGenerator(enqPtrVec, snptEnq, io.snpt.snptDeq, io.redirect.valid)
407
408  val debug_lsIssue = WireDefault(debug_lsIssued)
409  debug_lsIssue(deqPtr.value) := io.debugHeadLsIssue
410
411  /**
412    * states of Rob
413    */
414  val s_idle :: s_walk :: Nil = Enum(2)
415  val state = RegInit(s_idle)
416
417  /**
418    * Data Modules
419    *
420    * CommitDataModule: data from dispatch
421    * (1) read: commits/walk/exception
422    * (2) write: enqueue
423    *
424    * WritebackData: data from writeback
425    * (1) read: commits/walk/exception
426    * (2) write: write back from exe units
427    */
428  val dispatchData = Module(new SyncDataModuleTemplate(new RobCommitInfo, RobSize, CommitWidth, RenameWidth))
429  val dispatchDataRead = dispatchData.io.rdata
430
431  val exceptionGen = Module(new ExceptionGen(params))
432  val exceptionDataRead = exceptionGen.io.state
433  val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W)))
434  val vxsatDataRead = Wire(Vec(CommitWidth, Bool()))
435
436  io.robDeqPtr := deqPtr
437  io.debugRobHead := debug_microOp(deqPtr.value)
438
439  val rab = Module(new RenameBuffer(RabSize))
440  rab.io.redirectValid := io.redirect.valid
441  rab.io.req.zip(io.enq.req).map { case (dest, src) =>
442    dest.bits := src.bits
443    dest.valid := src.valid && io.enq.canAccept
444  }
445
446  val realDestSizeCandidates = (0 until CommitWidth).map(i => realDestSize(Mux(state === s_idle, deqPtrVec(i).value, walkPtrVec(i).value)))
447  val wbSizeSeq = io.commits.commitValid.zip(io.commits.walkValid).zip(realDestSizeCandidates).map { case ((commitValid, walkValid), realDestSize) =>
448    Mux(io.commits.isCommit, Mux(commitValid, realDestSize, 0.U), Mux(walkValid, realDestSize, 0.U))
449  }
450  val wbSizeSum = wbSizeSeq.reduce(_ + _)
451  rab.io.commitSize := wbSizeSum
452  rab.io.walkSize := wbSizeSum
453
454  io.rabCommits := rab.io.commits
455  io.diffCommits := rab.io.diffCommits
456
457  /**
458    * Enqueue (from dispatch)
459    */
460  // special cases
461  val hasBlockBackward = RegInit(false.B)
462  val hasWaitForward = RegInit(false.B)
463  val doingSvinval = RegInit(false.B)
464  // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B
465  // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty.
466  when (isEmpty) { hasBlockBackward:= false.B }
467  // When any instruction commits, hasNoSpecExec should be set to false.B
468  when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasWaitForward:= false.B }
469
470  // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing.
471  // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle.
472  // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts.
473  val hasWFI = RegInit(false.B)
474  io.cpu_halt := hasWFI
475  // WFI Timeout: 2^20 = 1M cycles
476  val wfi_cycles = RegInit(0.U(20.W))
477  when (hasWFI) {
478    wfi_cycles := wfi_cycles + 1.U
479  }.elsewhen (!hasWFI && RegNext(hasWFI)) {
480    wfi_cycles := 0.U
481  }
482  val wfi_timeout = wfi_cycles.andR
483  when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) {
484    hasWFI := false.B
485  }
486
487  val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.req.take(i).map(req => req.valid && req.bits.firstUop)))))
488  io.enq.canAccept := allowEnqueue && !hasBlockBackward && rab.io.canEnq
489  io.enq.resp      := allocatePtrVec
490  val canEnqueue = VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop && io.enq.canAccept))
491  val timer = GTimer()
492  for (i <- 0 until RenameWidth) {
493    // we don't check whether io.redirect is valid here since redirect has higher priority
494    when (canEnqueue(i)) {
495      val enqUop = io.enq.req(i).bits
496      val enqIndex = allocatePtrVec(i).value
497      // store uop in data module and debug_microOp Vec
498      debug_microOp(enqIndex) := enqUop
499      debug_microOp(enqIndex).debugInfo.dispatchTime := timer
500      debug_microOp(enqIndex).debugInfo.enqRsTime := timer
501      debug_microOp(enqIndex).debugInfo.selectTime := timer
502      debug_microOp(enqIndex).debugInfo.issueTime := timer
503      debug_microOp(enqIndex).debugInfo.writebackTime := timer
504      debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer
505      debug_microOp(enqIndex).debugInfo.tlbRespTime := timer
506      debug_lsInfo(enqIndex) := DebugLsInfo.init
507      debug_lsTopdownInfo(enqIndex) := LsTopdownInfo.init
508      debug_lqIdxValid(enqIndex) := false.B
509      debug_lsIssued(enqIndex) := false.B
510
511      when (enqUop.blockBackward) {
512        hasBlockBackward := true.B
513      }
514      when (enqUop.waitForward) {
515        hasWaitForward := true.B
516      }
517      val enqHasTriggerHit = false.B // io.enq.req(i).bits.cf.trigger.getHitFrontend
518      val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR
519      // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process
520      when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe))
521      {
522        doingSvinval := true.B
523      }
524      // the end instruction of Svinval enqs so clear doingSvinval
525      when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe))
526      {
527        doingSvinval := false.B
528      }
529      // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear
530      assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe)))
531      when (enqUop.isWFI && !enqHasException && !enqHasTriggerHit) {
532        hasWFI := true.B
533      }
534
535      mmio(enqIndex) := false.B
536    }
537  }
538  val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(req => req.valid && req.bits.firstUop)), 0.U)
539  io.enq.isEmpty   := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR)
540
541  when (!io.wfi_enable) {
542    hasWFI := false.B
543  }
544  // sel vsetvl's flush position
545  val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3)
546  val vsetvlState = RegInit(vs_idle)
547
548  val firstVInstrFtqPtr    = RegInit(0.U.asTypeOf(new FtqPtr))
549  val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W)))
550  val firstVInstrRobIdx    = RegInit(0.U.asTypeOf(new RobPtr))
551
552  val enq0            = io.enq.req(0)
553  val enq0IsVset      = enq0.bits.isVset && enq0.bits.lastUop && canEnqueue(0)
554  val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe
555  val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVpu(req.bits.fuType) && fire}
556  // for vs_idle
557  val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType)))
558  // for vs_waitVinstr
559  val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1)
560  val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req)
561  when(vsetvlState === vs_idle){
562    firstVInstrFtqPtr    := firstVInstrIdle.bits.ftqPtr
563    firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset
564    firstVInstrRobIdx    := firstVInstrIdle.bits.robIdx
565  }.elsewhen(vsetvlState === vs_waitVinstr){
566    when(Cat(enqIsVInstrOrVset).orR){
567      firstVInstrFtqPtr := firstVInstrWait.bits.ftqPtr
568      firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset
569      firstVInstrRobIdx := firstVInstrWait.bits.robIdx
570    }
571  }
572
573  val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR
574  when(vsetvlState === vs_idle && !io.redirect.valid){
575    when(enq0IsVsetFlush){
576      vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr)
577    }
578  }.elsewhen(vsetvlState === vs_waitVinstr){
579    when(io.redirect.valid){
580      vsetvlState := vs_idle
581    }.elsewhen(Cat(enqIsVInstrOrVset).orR){
582      vsetvlState := vs_waitFlush
583    }
584  }.elsewhen(vsetvlState === vs_waitFlush){
585    when(io.redirect.valid){
586      vsetvlState := vs_idle
587    }
588  }
589
590  // lqEnq
591  io.debugEnqLsq.needAlloc.map(_(0)).zip(io.debugEnqLsq.req).foreach { case (alloc, req) =>
592    when(io.debugEnqLsq.canAccept && alloc && req.valid) {
593      debug_microOp(req.bits.robIdx.value).lqIdx := req.bits.lqIdx
594      debug_lqIdxValid(req.bits.robIdx.value) := true.B
595    }
596  }
597
598  // lsIssue
599  when(io.debugHeadLsIssue) {
600    debug_lsIssued(deqPtr.value) := true.B
601  }
602
603  /**
604    * Writeback (from execution units)
605    */
606  for (wb <- exuWBs) {
607    when (wb.valid) {
608      val wbIdx = wb.bits.robIdx.value
609      debug_exuData(wbIdx) := wb.bits.data
610      debug_exuDebug(wbIdx) := wb.bits.debug
611      debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime
612      debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime
613      debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime
614      debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime
615
616      // debug for lqidx and sqidx
617      debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr))
618      debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr))
619
620      val debug_Uop = debug_microOp(wbIdx)
621      XSInfo(true.B,
622        p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " +
623        p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " +
624        p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.robIdx}\n"
625      )
626    }
627  }
628
629  val writebackNum = PopCount(exuWBs.map(_.valid))
630  XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum)
631
632  for (i <- 0 until LoadPipelineWidth) {
633    when (RegNext(io.lsq.mmio(i))) {
634      mmio(RegNext(io.lsq.uop(i).robIdx).value) := true.B
635    }
636  }
637
638  /**
639    * RedirectOut: Interrupt and Exceptions
640    */
641  val deqDispatchData = dispatchDataRead(0)
642  val debug_deqUop = debug_microOp(deqPtr.value)
643
644  val intrBitSetReg = RegNext(io.csr.intrBitSet)
645  val intrEnable = intrBitSetReg && !hasWaitForward && interrupt_safe(deqPtr.value)
646  val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr
647  val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR ||
648    exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit)
649  val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe
650  val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst
651  val exceptionEnable = isWritebacked(deqPtr.value) && deqHasException
652
653  XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n")
654  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n")
655  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n")
656
657  val isFlushPipe = isWritebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst)
658
659  val isVsetFlushPipe = isWritebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset
660//  val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush)
661  val needModifyFtqIdxOffset = false.B
662  io.isVsetFlushPipe := isVsetFlushPipe
663  io.vconfigPdest := rab.io.vconfigPdest
664  // io.flushOut will trigger redirect at the next cycle.
665  // Block any redirect or commit at the next cycle.
666  val lastCycleFlush = RegNext(io.flushOut.valid)
667
668  io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush
669  io.flushOut.bits := DontCare
670  io.flushOut.bits.isRVC := deqDispatchData.isRVC
671  io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr)
672  io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx)
673  io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset)
674  io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next"
675  io.flushOut.bits.interrupt := true.B
676  XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable)
677  XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable)
678  XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe)
679  XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst)
680
681  val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush
682  io.exception.valid                := RegNext(exceptionHappen)
683  io.exception.bits.pc              := RegEnable(debug_deqUop.pc, exceptionHappen)
684  io.exception.bits.instr           := RegEnable(debug_deqUop.instr, exceptionHappen)
685  io.exception.bits.commitType      := RegEnable(deqDispatchData.commitType, exceptionHappen)
686  io.exception.bits.exceptionVec    := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen)
687  io.exception.bits.singleStep      := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen)
688  io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen)
689  io.exception.bits.isInterrupt     := RegEnable(intrEnable, exceptionHappen)
690//  io.exception.bits.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen)
691
692  XSDebug(io.flushOut.valid,
693    p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " +
694    p"excp $exceptionEnable flushPipe $isFlushPipe " +
695    p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n")
696
697
698  /**
699    * Commits (and walk)
700    * They share the same width.
701    */
702  val shouldWalkVec = VecInit(walkPtrVec.map(_ <= lastWalkPtr))
703  val walkFinished = VecInit(walkPtrVec.map(_ >= lastWalkPtr)).asUInt.orR
704  rab.io.robWalkEnd := state === s_walk && walkFinished
705
706  require(RenameWidth <= CommitWidth)
707
708  // wiring to csr
709  val (wflags, fpWen) = (0 until CommitWidth).map(i => {
710    val v = io.commits.commitValid(i)
711    val info = io.commits.info(i)
712    (v & info.wflags, v & info.fpWen)
713  }).unzip
714  val fflags = Wire(Valid(UInt(5.W)))
715  fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR
716  fflags.bits := wflags.zip(fflagsDataRead).map({
717    case (w, f) => Mux(w, f, 0.U)
718  }).reduce(_|_)
719  val dirty_fs = io.commits.isCommit && VecInit(fpWen).asUInt.orR
720
721  val vxsat = Wire(Valid(Bool()))
722  vxsat.valid := io.commits.isCommit && vxsat.bits
723  vxsat.bits := io.commits.commitValid.zip(vxsatDataRead).map {
724    case (valid, vxsat) => valid & vxsat
725  }.reduce(_ | _)
726
727  // when mispredict branches writeback, stop commit in the next 2 cycles
728  // TODO: don't check all exu write back
729  val misPredWb = Cat(VecInit(redirectWBs.map(wb =>
730    wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid
731  ))).orR
732  val misPredBlockCounter = Reg(UInt(3.W))
733  misPredBlockCounter := Mux(misPredWb,
734    "b111".U,
735    misPredBlockCounter >> 1.U
736  )
737  val misPredBlock = misPredBlockCounter(0)
738  val blockCommit = misPredBlock && !io.flushOut.valid || isReplaying || lastCycleFlush || hasWFI || io.redirect.valid
739
740  io.commits.isWalk := state === s_walk
741  io.commits.isCommit := state === s_idle && !blockCommit
742  val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value)))
743  val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value)))
744  // store will be commited iff both sta & std have been writebacked
745  val commit_w = VecInit(deqPtrVec.map(ptr => isWritebacked(ptr.value)))
746  val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last)
747  val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i)))
748  val allowOnlyOneCommit = commit_exception || intrBitSetReg
749  // for instructions that may block others, we don't allow them to commit
750  for (i <- 0 until CommitWidth) {
751    // defaults: state === s_idle and instructions commit
752    // when intrBitSetReg, allow only one instruction to commit at each clock cycle
753    val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst
754    io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked
755    io.commits.info(i) := dispatchDataRead(i)
756    io.commits.robIdx(i) := deqPtrVec(i)
757
758    when (state === s_walk) {
759      io.commits.walkValid(i) := shouldWalkVec(i)
760      when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) {
761        XSError(!walk_v(i), s"why not $i???\n")
762      }
763    }
764
765    XSInfo(io.commits.isCommit && io.commits.commitValid(i),
766      "retired pc %x wen %d ldest %d pdest %x data %x fflags: %b vxsat: %b\n",
767      debug_microOp(deqPtrVec(i).value).pc,
768      io.commits.info(i).rfWen,
769      io.commits.info(i).ldest,
770      io.commits.info(i).pdest,
771      debug_exuData(deqPtrVec(i).value),
772      fflagsDataRead(i),
773      vxsatDataRead(i)
774    )
775    XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n",
776      debug_microOp(walkPtrVec(i).value).pc,
777      io.commits.info(i).rfWen,
778      io.commits.info(i).ldest,
779      debug_exuData(walkPtrVec(i).value)
780    )
781  }
782  if (env.EnableDifftest) {
783    io.commits.info.map(info => dontTouch(info.pc))
784  }
785
786  // sync fflags/dirty_fs/vxsat to csr
787  io.csr.fflags := RegNext(fflags)
788  io.csr.dirty_fs := RegNext(dirty_fs)
789  io.csr.vxsat := RegNext(vxsat)
790
791  // sync v csr to csr
792  // for difftest
793  if(env.AlwaysBasicDiff || env.EnableDifftest) {
794    val isDiffWriteVconfigVec = io.diffCommits.commitValid.zip(io.diffCommits.info).map { case (valid, info) => valid && info.ldest === VCONFIG_IDX.U && info.vecWen }.reverse
795    io.csr.vcsrFlag := RegNext(io.diffCommits.isCommit && Cat(isDiffWriteVconfigVec).orR)
796  }
797  else{
798    io.csr.vcsrFlag := false.B
799  }
800
801  // commit load/store to lsq
802  val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD))
803  val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE))
804  io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U))
805  io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U))
806  // indicate a pending load or store
807  io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value) && mmio(deqPtr.value))
808  io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value))
809  io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0))
810  io.lsq.pendingPtr := RegNext(deqPtr)
811
812  /**
813    * state changes
814    * (1) redirect: switch to s_walk
815    * (2) walk: when walking comes to the end, switch to s_idle
816    */
817  val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished && rab.io.rabWalkEnd, s_idle, state))
818  XSPerfAccumulate("s_idle_to_idle",            state === s_idle && state_next === s_idle)
819  XSPerfAccumulate("s_idle_to_walk",            state === s_idle && state_next === s_walk)
820  XSPerfAccumulate("s_walk_to_idle",            state === s_walk && state_next === s_idle)
821  XSPerfAccumulate("s_walk_to_walk",            state === s_walk && state_next === s_walk)
822  state := state_next
823
824  /**
825    * pointers and counters
826    */
827  val deqPtrGenModule = Module(new RobDeqPtrWrapper)
828  deqPtrGenModule.io.state := state
829  deqPtrGenModule.io.deq_v := commit_v
830  deqPtrGenModule.io.deq_w := commit_w
831  deqPtrGenModule.io.exception_state := exceptionDataRead
832  deqPtrGenModule.io.intrBitSetReg := intrBitSetReg
833  deqPtrGenModule.io.hasNoSpecExec := hasWaitForward
834  deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value)
835  deqPtrGenModule.io.blockCommit := blockCommit
836  deqPtrVec := deqPtrGenModule.io.out
837  val deqPtrVec_next = deqPtrGenModule.io.next_out
838
839  val enqPtrGenModule = Module(new RobEnqPtrWrapper)
840  enqPtrGenModule.io.redirect := io.redirect
841  enqPtrGenModule.io.allowEnqueue := allowEnqueue
842  enqPtrGenModule.io.hasBlockBackward := hasBlockBackward
843  enqPtrGenModule.io.enq := VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop))
844  enqPtrVec := enqPtrGenModule.io.out
845
846  // next walkPtrVec:
847  // (1) redirect occurs: update according to state
848  // (2) walk: move forwards
849  val walkPtrVec_next = Mux(io.redirect.valid,
850    Mux(io.snpt.useSnpt, snapshots(io.snpt.snptSelect), deqPtrVec_next),
851    Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec)
852  )
853  walkPtrVec := walkPtrVec_next
854
855  val numValidEntries = distanceBetween(enqPtr, deqPtr)
856  val commitCnt = PopCount(io.commits.commitValid)
857
858  allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U
859
860  val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0))
861  when (io.redirect.valid) {
862    lastWalkPtr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx - 1.U, io.redirect.bits.robIdx)
863  }
864
865
866  /**
867    * States
868    * We put all the stage bits changes here.
869
870    * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit);
871    * All states: (1) valid; (2) writebacked; (3) flagBkup
872    */
873  val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value)))
874
875  // redirect logic writes 6 valid
876  val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr))
877  val redirectTail = Reg(new RobPtr)
878  val redirectIdle :: redirectBusy :: Nil = Enum(2)
879  val redirectState = RegInit(redirectIdle)
880  val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail))
881  when(redirectState === redirectBusy) {
882    redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U)
883    redirectHeadVec zip invMask foreach {
884      case (redirectHead, inv) => when(inv) {
885        valid(redirectHead.value) := false.B
886      }
887    }
888    when(!invMask.last) {
889      redirectState := redirectIdle
890    }
891  }
892  when(io.redirect.valid) {
893    redirectState := redirectBusy
894    when(redirectState === redirectIdle) {
895      redirectTail := enqPtr
896    }
897    redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) =>
898      redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
899    }
900  }
901  // enqueue logic writes 6 valid
902  for (i <- 0 until RenameWidth) {
903    when (canEnqueue(i) && !io.redirect.valid) {
904      valid(allocatePtrVec(i).value) := true.B
905    }
906  }
907  // dequeue logic writes 6 valid
908  for (i <- 0 until CommitWidth) {
909    val commitValid = io.commits.isCommit && io.commits.commitValid(i)
910    when (commitValid) {
911      valid(commitReadAddr(i)) := false.B
912    }
913  }
914
915  // debug_inst update
916  for(i <- 0 until (LduCnt + StaCnt)) {
917    debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i))
918    debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i))
919  }
920  for (i <- 0 until LduCnt) {
921    debug_lsTopdownInfo(io.lsTopdownInfo(i).s1.robIdx).s1SignalEnable(io.lsTopdownInfo(i))
922    debug_lsTopdownInfo(io.lsTopdownInfo(i).s2.robIdx).s2SignalEnable(io.lsTopdownInfo(i))
923  }
924
925  // writeback logic set numWbPorts writebacked to true
926  val blockWbSeq = Wire(Vec(exuWBs.length, Bool()))
927  blockWbSeq.map(_ := false.B)
928  for ((wb, blockWb) <- exuWBs.zip(blockWbSeq)) {
929    when(wb.valid) {
930      val wbHasException = wb.bits.exceptionVec.getOrElse(0.U).asUInt.orR
931      val wbHasTriggerHit = false.B //Todo: wb.bits.trigger.getHitBackend
932      val wbHasFlushPipe = wb.bits.flushPipe.getOrElse(false.B)
933      val wbHasReplayInst = wb.bits.replay.getOrElse(false.B) //Todo: && wb.bits.replayInst
934      blockWb := wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit
935    }
936  }
937
938  // if the first uop of an instruction is valid , write writebackedCounter
939  val uopEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid)
940  val instEnqValidSeq = io.enq.req.map (req => io.enq.canAccept && req.valid && req.bits.firstUop)
941  val enqNeedWriteRFSeq = io.enq.req.map(_.bits.needWriteRf)
942  val enqRobIdxSeq = io.enq.req.map(req => req.bits.robIdx.value)
943  val enqUopNumVec = VecInit(io.enq.req.map(req => req.bits.numUops))
944  val enqEliminatedMoveVec = VecInit(io.enq.req.map(req => req.bits.eliminatedMove))
945
946  private val enqWriteStdVec: Vec[Bool] = VecInit(io.enq.req.map {
947    req => FuType.isAMO(req.bits.fuType) || FuType.isStore(req.bits.fuType)
948  })
949  val enqWbSizeSeq = io.enq.req.map { req =>
950    val enqHasException = ExceptionNO.selectFrontend(req.bits.exceptionVec).asUInt.orR
951    val enqHasTriggerHit = req.bits.trigger.getHitFrontend
952    Mux(req.bits.eliminatedMove, Mux(enqHasException || enqHasTriggerHit, 1.U, 0.U),
953      Mux(FuType.isAMO(req.bits.fuType) || FuType.isStore(req.bits.fuType), 2.U, 1.U))
954  }
955  val enqWbSizeSumSeq = enqRobIdxSeq.zipWithIndex.map { case (robIdx, idx) =>
956    val addend = enqRobIdxSeq.zip(enqWbSizeSeq).take(idx + 1).map { case (uopRobIdx, uopWbSize) => Mux(robIdx === uopRobIdx, uopWbSize, 0.U) }
957    addend.reduce(_ +& _)
958  }
959  val fflags_wb = fflagsPorts
960  val vxsat_wb = vxsatPorts
961  for(i <- 0 until RobSize){
962
963    val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === i.U)
964    val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch }
965    val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch }
966    val instCanEnqFlag = Cat(instCanEnqSeq).orR
967
968    realDestSize(i) := Mux(!valid(i) && instCanEnqFlag || valid(i), realDestSize(i) + PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map{ case(writeFlag, valid) => writeFlag && valid }), 0.U)
969
970    val enqUopNum = PriorityMux(instCanEnqSeq, enqUopNumVec)
971    val enqEliminatedMove = PriorityMux(instCanEnqSeq, enqEliminatedMoveVec)
972    val enqWriteStd = PriorityMux(instCanEnqSeq, enqWriteStdVec)
973
974    val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)
975    val canWbNoBlockSeq = canWbSeq.zip(blockWbSeq).map{ case(canWb, blockWb) => canWb && !blockWb }
976    val canStdWbSeq = VecInit(stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U))
977    val wbCnt = PopCount(canWbNoBlockSeq)
978    when (exceptionGen.io.out.valid && exceptionGen.io.out.bits.robIdx.value === i.U) {
979      // exception flush
980      uopNumVec(i) := 0.U
981      stdWritebacked(i) := true.B
982    }.elsewhen(!valid(i) && instCanEnqFlag) {
983      // enq set num of uops
984      uopNumVec(i) := Mux(enqEliminatedMove, 0.U, enqUopNum)
985      stdWritebacked(i) := Mux(enqWriteStd, false.B, true.B)
986    }.elsewhen(valid(i)) {
987      // update by writing back
988      uopNumVec(i) := uopNumVec(i) - wbCnt
989      when (canStdWbSeq.asUInt.orR) {
990        stdWritebacked(i) := true.B
991      }
992    }.otherwise {
993      uopNumVec(i) := 0.U
994    }
995
996    val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)
997    val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.fold(false.B)(_ | _)
998    fflagsDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, fflagsDataModule(i) | fflagsRes)
999
1000    val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)
1001    val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.fold(false.B)(_ | _)
1002    vxsatDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, vxsatDataModule(i) | vxsatRes)
1003  }
1004
1005  // flagBkup
1006  // enqueue logic set 6 flagBkup at most
1007  for (i <- 0 until RenameWidth) {
1008    when (canEnqueue(i)) {
1009      flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag
1010    }
1011  }
1012
1013  // interrupt_safe
1014  for (i <- 0 until RenameWidth) {
1015    // We RegNext the updates for better timing.
1016    // Note that instructions won't change the system's states in this cycle.
1017    when (RegNext(canEnqueue(i))) {
1018      // For now, we allow non-load-store instructions to trigger interrupts
1019      // For MMIO instructions, they should not trigger interrupts since they may
1020      // be sent to lower level before it writes back.
1021      // However, we cannot determine whether a load/store instruction is MMIO.
1022      // Thus, we don't allow load/store instructions to trigger an interrupt.
1023      // TODO: support non-MMIO load-store instructions to trigger interrupts
1024      val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType)
1025      interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts)
1026    }
1027  }
1028
1029  /**
1030    * read and write of data modules
1031    */
1032  val commitReadAddr_next = Mux(state_next === s_idle,
1033    VecInit(deqPtrVec_next.map(_.value)),
1034    VecInit(walkPtrVec_next.map(_.value))
1035  )
1036  dispatchData.io.wen := canEnqueue
1037  dispatchData.io.waddr := allocatePtrVec.map(_.value)
1038  dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) =>
1039    wdata.ldest := req.ldest
1040    wdata.rfWen := req.rfWen
1041    wdata.fpWen := req.fpWen
1042    wdata.vecWen := req.vecWen
1043    wdata.wflags := req.fpu.wflags
1044    wdata.commitType := req.commitType
1045    wdata.pdest := req.pdest
1046    wdata.ftqIdx := req.ftqPtr
1047    wdata.ftqOffset := req.ftqOffset
1048    wdata.isMove := req.eliminatedMove
1049    wdata.isRVC := req.preDecodeInfo.isRVC
1050    wdata.pc := req.pc
1051    wdata.vtype := req.vpu.vtype
1052    wdata.isVset := req.isVset
1053  }
1054  dispatchData.io.raddr := commitReadAddr_next
1055
1056  exceptionGen.io.redirect <> io.redirect
1057  exceptionGen.io.flush := io.flushOut.valid
1058
1059  val canEnqueueEG = VecInit(io.enq.req.map(req => req.valid && io.enq.canAccept))
1060  for (i <- 0 until RenameWidth) {
1061    exceptionGen.io.enq(i).valid := canEnqueueEG(i)
1062    exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx
1063    exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec)
1064    exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe
1065    exceptionGen.io.enq(i).bits.isVset := io.enq.req(i).bits.isVset
1066    exceptionGen.io.enq(i).bits.replayInst := false.B
1067    XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst")
1068    exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep
1069    exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix
1070    exceptionGen.io.enq(i).bits.trigger.clear()
1071    exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.trigger.frontendHit
1072  }
1073
1074  println(s"ExceptionGen:")
1075  println(s"num of exceptions: ${params.numException}")
1076  require(exceptionWBs.length == exceptionGen.io.wb.length,
1077    f"exceptionWBs.length: ${exceptionWBs.length}, " +
1078      f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}")
1079  for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) {
1080    exc_wb.valid                := wb.valid
1081    exc_wb.bits.robIdx          := wb.bits.robIdx
1082    exc_wb.bits.exceptionVec    := wb.bits.exceptionVec.get
1083    exc_wb.bits.flushPipe       := wb.bits.flushPipe.getOrElse(false.B)
1084    exc_wb.bits.isVset          := false.B
1085    exc_wb.bits.replayInst      := wb.bits.replay.getOrElse(false.B)
1086    exc_wb.bits.singleStep      := false.B
1087    exc_wb.bits.crossPageIPFFix := false.B
1088    exc_wb.bits.trigger         := 0.U.asTypeOf(exc_wb.bits.trigger) // Todo
1089//    println(s"  [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " +
1090//      s"flushPipe ${configs.exists(_.flushPipe)}, " +
1091//      s"replayInst ${configs.exists(_.replayInst)}")
1092  }
1093
1094  fflagsDataRead := (0 until CommitWidth).map(i => fflagsDataModule(deqPtrVec(i).value))
1095  vxsatDataRead := (0 until CommitWidth).map(i => vxsatDataModule(deqPtrVec(i).value))
1096
1097  val instrCntReg = RegInit(0.U(64.W))
1098  val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) })
1099  val trueCommitCnt = RegNext(commitCnt) +& fuseCommitCnt
1100  val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U)
1101  val instrCnt = instrCntReg + retireCounter
1102  instrCntReg := instrCnt
1103  io.csr.perfinfo.retiredInstr := retireCounter
1104  io.robFull := !allowEnqueue
1105  io.headNotReady := commit_v.head && !commit_w.head
1106
1107  /**
1108    * debug info
1109    */
1110  XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n")
1111  XSDebug("")
1112  XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n")
1113  for(i <- 0 until RobSize){
1114    XSDebug(false, !valid(i), "-")
1115    XSDebug(false, valid(i) && isWritebacked(i.U), "w")
1116    XSDebug(false, valid(i) && !isWritebacked(i.U), "v")
1117  }
1118  XSDebug(false, true.B, "\n")
1119
1120  for(i <- 0 until RobSize) {
1121    if(i % 4 == 0) XSDebug("")
1122    XSDebug(false, true.B, "%x ", debug_microOp(i).pc)
1123    XSDebug(false, !valid(i), "- ")
1124    XSDebug(false, valid(i) && isWritebacked(i.U), "w ")
1125    XSDebug(false, valid(i) && !isWritebacked(i.U), "v ")
1126    if(i % 4 == 3) XSDebug(false, true.B, "\n")
1127  }
1128
1129  def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U)
1130  def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U)
1131
1132  val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_))
1133  XSPerfAccumulate("clock_cycle", 1.U)
1134  QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue)
1135  XSPerfAccumulate("commitUop", ifCommit(commitCnt))
1136  XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt))
1137  val commitIsMove = commitDebugUop.map(_.isMove)
1138  XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })))
1139  val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove)
1140  XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e })))
1141  XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt))
1142  val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD)
1143  val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t }
1144  XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid)))
1145  val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH)
1146  val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t }
1147  XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid)))
1148  val commitLoadWaitBit = commitDebugUop.map(_.loadWaitBit)
1149  XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })))
1150  val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE)
1151  XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })))
1152  XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && isWritebacked(i.U))))
1153  // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire)))
1154  // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready)))
1155  XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U))
1156  XSPerfAccumulate("walkCycle", state === s_walk)
1157  val deqNotWritebacked = valid(deqPtr.value) && !isWritebacked(deqPtr.value)
1158  val deqUopCommitType = io.commits.info(0).commitType
1159  XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL)
1160  XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH)
1161  XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD)
1162  XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE)
1163  XSPerfAccumulate("robHeadPC", io.commits.info(0).pc)
1164  val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime)
1165  val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime)
1166  val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime)
1167  val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime)
1168  val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime)
1169  val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime)
1170  val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime)
1171  def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = {
1172    cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _)
1173  }
1174  for (fuType <- FuType.functionNameMap.keys) {
1175    val fuName = FuType.functionNameMap(fuType)
1176    val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U )
1177    XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType)))
1178    XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency)))
1179    XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency)))
1180    XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency)))
1181    XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency)))
1182    XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency)))
1183    XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency)))
1184    XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency)))
1185    if (fuType == FuType.fmac) {
1186      val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.fpu.ren3 )
1187      XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma)))
1188      XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency)))
1189      XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency)))
1190    }
1191  }
1192
1193  val sourceVaddr = Wire(Valid(UInt(VAddrBits.W)))
1194  sourceVaddr.valid := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_valid
1195  sourceVaddr.bits  := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_bits
1196  val sourcePaddr = Wire(Valid(UInt(PAddrBits.W)))
1197  sourcePaddr.valid := debug_lsTopdownInfo(deqPtr.value).s2.paddr_valid
1198  sourcePaddr.bits  := debug_lsTopdownInfo(deqPtr.value).s2.paddr_bits
1199  val sourceLqIdx = Wire(Valid(new LqPtr))
1200  sourceLqIdx.valid := debug_lqIdxValid(deqPtr.value)
1201  sourceLqIdx.bits  := debug_microOp(deqPtr.value).lqIdx
1202  val sourceHeadLsIssue = WireDefault(debug_lsIssue(deqPtr.value))
1203  ExcitingUtils.addSource(sourceVaddr, s"rob_head_vaddr_${coreParams.HartId}", ExcitingUtils.Perf, true)
1204  ExcitingUtils.addSource(sourcePaddr, s"rob_head_paddr_${coreParams.HartId}", ExcitingUtils.Perf, true)
1205  ExcitingUtils.addSource(sourceLqIdx, s"rob_head_lqIdx_${coreParams.HartId}", ExcitingUtils.Perf, true)
1206  ExcitingUtils.addSource(sourceHeadLsIssue, s"rob_head_ls_issue_${coreParams.HartId}", ExcitingUtils.Perf, true)
1207  // dummy sink
1208  ExcitingUtils.addSink(WireDefault(sourceLqIdx), s"rob_head_lqIdx_${coreParams.HartId}", ExcitingUtils.Perf)
1209  ExcitingUtils.addSink(WireDefault(sourcePaddr), name=s"rob_head_paddr_${coreParams.HartId}", ExcitingUtils.Perf)
1210  ExcitingUtils.addSink(WireDefault(sourceVaddr), name=s"rob_head_vaddr_${coreParams.HartId}", ExcitingUtils.Perf)
1211
1212  /**
1213    * DataBase info:
1214    * log trigger is at writeback valid
1215    * */
1216
1217  /**
1218    * @todo add InstInfoEntry back
1219    * @author Maxpicca-Li
1220    */
1221
1222  //difftest signals
1223  val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value
1224
1225  val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1226  val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1227
1228  for(i <- 0 until CommitWidth) {
1229    val idx = deqPtrVec(i).value
1230    wdata(i) := debug_exuData(idx)
1231    wpc(i) := SignExt(commitDebugUop(i).pc, XLEN)
1232  }
1233
1234  if (env.EnableDifftest) {
1235    for (i <- 0 until CommitWidth) {
1236      val difftest = Module(new DifftestInstrCommit)
1237      // assgin default value
1238      difftest.io := DontCare
1239
1240      difftest.io.clock    := clock
1241      difftest.io.coreid   := io.hartId
1242      difftest.io.index    := i.U
1243
1244      val ptr = deqPtrVec(i).value
1245      val uop = commitDebugUop(i)
1246      val exuOut = debug_exuDebug(ptr)
1247      val exuData = debug_exuData(ptr)
1248      difftest.io.valid    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1249      difftest.io.pc       := RegNext(RegNext(RegNext(SignExt(uop.pc, XLEN))))
1250      difftest.io.instr    := RegNext(RegNext(RegNext(uop.instr)))
1251      difftest.io.robIdx   := RegNext(RegNext(RegNext(ZeroExt(ptr, 10))))
1252      difftest.io.lqIdx    := RegNext(RegNext(RegNext(ZeroExt(uop.lqIdx.value, 7))))
1253      difftest.io.sqIdx    := RegNext(RegNext(RegNext(ZeroExt(uop.sqIdx.value, 7))))
1254      difftest.io.isLoad   := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.LOAD)))
1255      difftest.io.isStore  := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.STORE)))
1256      difftest.io.special  := RegNext(RegNext(RegNext(CommitType.isFused(io.commits.info(i).commitType))))
1257      // when committing an eliminated move instruction,
1258      // we must make sure that skip is properly set to false (output from EXU is random value)
1259      difftest.io.skip     := RegNext(RegNext(RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))))
1260      difftest.io.isRVC    := RegNext(RegNext(RegNext(uop.preDecodeInfo.isRVC)))
1261      difftest.io.rfwen    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U)))
1262      difftest.io.fpwen    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).fpWen)))
1263      difftest.io.wpdest   := RegNext(RegNext(RegNext(io.commits.info(i).pdest)))
1264      difftest.io.wdest    := RegNext(RegNext(RegNext(io.commits.info(i).ldest)))
1265      // // runahead commit hint
1266      // val runahead_commit = Module(new DifftestRunaheadCommitEvent)
1267      // runahead_commit.io.clock := clock
1268      // runahead_commit.io.coreid := io.hartId
1269      // runahead_commit.io.index := i.U
1270      // runahead_commit.io.valid := difftest.io.valid &&
1271      //   (commitBranchValid(i) || commitIsStore(i))
1272      // // TODO: is branch or store
1273      // runahead_commit.io.pc    := difftest.io.pc
1274    }
1275  }
1276  else if (env.AlwaysBasicDiff) {
1277    // These are the structures used by difftest only and should be optimized after synthesis.
1278    val dt_eliminatedMove = Mem(RobSize, Bool())
1279    val dt_isRVC = Mem(RobSize, Bool())
1280    val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle))
1281    for (i <- 0 until RenameWidth) {
1282      when (canEnqueue(i)) {
1283        dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove
1284        dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC
1285      }
1286    }
1287    for (wb <- exuWBs) {
1288      when (wb.valid) {
1289        val wbIdx = wb.bits.robIdx.value
1290        dt_exuDebug(wbIdx) := wb.bits.debug
1291      }
1292    }
1293    // Always instantiate basic difftest modules.
1294    for (i <- 0 until CommitWidth) {
1295      val commitInfo = io.commits.info(i)
1296      val ptr = deqPtrVec(i).value
1297      val exuOut = dt_exuDebug(ptr)
1298      val eliminatedMove = dt_eliminatedMove(ptr)
1299      val isRVC = dt_isRVC(ptr)
1300
1301      val difftest = Module(new DifftestBasicInstrCommit)
1302      difftest.io.clock   := clock
1303      difftest.io.coreid  := io.hartId
1304      difftest.io.index   := i.U
1305      difftest.io.valid   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1306      difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(commitInfo.commitType))))
1307      difftest.io.skip    := RegNext(RegNext(RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))))
1308      difftest.io.isRVC   := RegNext(RegNext(RegNext(isRVC)))
1309      difftest.io.rfwen   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U)))
1310      difftest.io.fpwen   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.fpWen)))
1311      difftest.io.wpdest  := RegNext(RegNext(RegNext(commitInfo.pdest)))
1312      difftest.io.wdest   := RegNext(RegNext(RegNext(commitInfo.ldest)))
1313    }
1314  }
1315
1316  if (env.EnableDifftest) {
1317    for (i <- 0 until CommitWidth) {
1318      val difftest = Module(new DifftestLoadEvent)
1319      difftest.io.clock  := clock
1320      difftest.io.coreid := io.hartId
1321      difftest.io.index  := i.U
1322
1323      val ptr = deqPtrVec(i).value
1324      val uop = commitDebugUop(i)
1325      val exuOut = debug_exuDebug(ptr)
1326      difftest.io.valid  := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1327      difftest.io.paddr  := RegNext(RegNext(RegNext(exuOut.paddr)))
1328      difftest.io.opType := RegNext(RegNext(RegNext(uop.fuOpType)))
1329      difftest.io.fuType := RegNext(RegNext(RegNext(uop.fuType)))
1330    }
1331  }
1332
1333  // Always instantiate basic difftest modules.
1334  if (env.EnableDifftest) {
1335    val dt_isXSTrap = Mem(RobSize, Bool())
1336    for (i <- 0 until RenameWidth) {
1337      when (canEnqueue(i)) {
1338        dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap
1339      }
1340    }
1341    val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) }
1342    val hitTrap = trapVec.reduce(_||_)
1343    val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1))
1344    val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN)
1345    val difftest = Module(new DifftestTrapEvent)
1346    difftest.io.clock    := clock
1347    difftest.io.coreid   := io.hartId
1348    difftest.io.valid    := hitTrap
1349    difftest.io.code     := trapCode
1350    difftest.io.pc       := trapPC
1351    difftest.io.cycleCnt := timer
1352    difftest.io.instrCnt := instrCnt
1353    difftest.io.hasWFI   := hasWFI
1354  }
1355  else if (env.AlwaysBasicDiff) {
1356    val dt_isXSTrap = Mem(RobSize, Bool())
1357    for (i <- 0 until RenameWidth) {
1358      when (canEnqueue(i)) {
1359        dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap
1360      }
1361    }
1362    val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) }
1363    val hitTrap = trapVec.reduce(_||_)
1364    val difftest = Module(new DifftestBasicTrapEvent)
1365    difftest.io.clock    := clock
1366    difftest.io.coreid   := io.hartId
1367    difftest.io.valid    := hitTrap
1368    difftest.io.cycleCnt := timer
1369    difftest.io.instrCnt := instrCnt
1370  }
1371
1372  val validEntriesBanks = (0 until (RobSize + 31) / 32).map(i => RegNext(PopCount(valid.drop(i * 32).take(32))))
1373  val validEntries = RegNext(VecInit(validEntriesBanks).reduceTree(_ +& _))
1374  val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })
1375  val commitLoadVec = VecInit(commitLoadValid)
1376  val commitBranchVec = VecInit(commitBranchValid)
1377  val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })
1378  val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })
1379  val perfEvents = Seq(
1380    ("rob_interrupt_num      ", io.flushOut.valid && intrEnable                                       ),
1381    ("rob_exception_num      ", io.flushOut.valid && exceptionEnable                                  ),
1382    ("rob_flush_pipe_num     ", io.flushOut.valid && isFlushPipe                                      ),
1383    ("rob_replay_inst_num    ", io.flushOut.valid && isFlushPipe && deqHasReplayInst                  ),
1384    ("rob_commitUop          ", ifCommit(commitCnt)                                                   ),
1385    ("rob_commitInstr        ", ifCommitReg(trueCommitCnt)                                            ),
1386    ("rob_commitInstrMove    ", ifCommitReg(PopCount(RegNext(commitMoveVec)))                         ),
1387    ("rob_commitInstrFused   ", ifCommitReg(fuseCommitCnt)                                            ),
1388    ("rob_commitInstrLoad    ", ifCommitReg(PopCount(RegNext(commitLoadVec)))                         ),
1389    ("rob_commitInstrBranch  ", ifCommitReg(PopCount(RegNext(commitBranchVec)))                       ),
1390    ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec)))                     ),
1391    ("rob_commitInstrStore   ", ifCommitReg(PopCount(RegNext(commitStoreVec)))                        ),
1392    ("rob_walkInstr          ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)           ),
1393    ("rob_walkCycle          ", (state === s_walk)                                                    ),
1394    ("rob_1_4_valid          ", validEntries <= (RobSize / 4).U                                       ),
1395    ("rob_2_4_valid          ", validEntries >  (RobSize / 4).U && validEntries <= (RobSize / 2).U    ),
1396    ("rob_3_4_valid          ", validEntries >  (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U),
1397    ("rob_4_4_valid          ", validEntries >  (RobSize * 3 / 4).U                                   ),
1398  )
1399  generatePerfEvent()
1400}
1401