1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.rob 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3.ExcitingUtils._ 21import chisel3._ 22import chisel3.util._ 23import xiangshan._ 24import utils._ 25import xiangshan.frontend.FtqPtr 26import difftest._ 27 28class RobPtr(implicit p: Parameters) extends CircularQueuePtr[RobPtr]( 29 p => p(XSCoreParamsKey).RobSize 30) with HasCircularQueuePtrHelper { 31 32 def needFlush(redirect: Valid[Redirect]): Bool = { 33 val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx 34 redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx)) 35 } 36 37 override def cloneType = (new RobPtr).asInstanceOf[this.type] 38} 39 40object RobPtr { 41 def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = { 42 val ptr = Wire(new RobPtr) 43 ptr.flag := f 44 ptr.value := v 45 ptr 46 } 47} 48 49class RobCSRIO(implicit p: Parameters) extends XSBundle { 50 val intrBitSet = Input(Bool()) 51 val trapTarget = Input(UInt(VAddrBits.W)) 52 val isXRet = Input(Bool()) 53 54 val fflags = Output(Valid(UInt(5.W))) 55 val dirty_fs = Output(Bool()) 56 val perfinfo = new Bundle { 57 val retiredInstr = Output(UInt(3.W)) 58 } 59} 60 61class RobLsqIO(implicit p: Parameters) extends XSBundle { 62 val lcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 63 val scommit = Output(UInt(log2Up(CommitWidth + 1).W)) 64 val pendingld = Output(Bool()) 65 val pendingst = Output(Bool()) 66 val commit = Output(Bool()) 67 val storeDataRobWb = Input(Vec(StorePipelineWidth, Valid(new RobPtr))) 68} 69 70class RobEnqIO(implicit p: Parameters) extends XSBundle { 71 val canAccept = Output(Bool()) 72 val isEmpty = Output(Bool()) 73 // valid vector, for robIdx gen and walk 74 val needAlloc = Vec(RenameWidth, Input(Bool())) 75 val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp))) 76 val resp = Vec(RenameWidth, Output(new RobPtr)) 77} 78 79class RobDispatchData(implicit p: Parameters) extends RobCommitInfo 80 81class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 82 val io = IO(new Bundle { 83 // for commits/flush 84 val state = Input(UInt(2.W)) 85 val deq_v = Vec(CommitWidth, Input(Bool())) 86 val deq_w = Vec(CommitWidth, Input(Bool())) 87 val exception_state = Flipped(ValidIO(new RobExceptionInfo)) 88 // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth) 89 val intrBitSetReg = Input(Bool()) 90 val hasNoSpecExec = Input(Bool()) 91 val commitType = Input(CommitType()) 92 val misPredBlock = Input(Bool()) 93 val isReplaying = Input(Bool()) 94 // output: the CommitWidth deqPtr 95 val out = Vec(CommitWidth, Output(new RobPtr)) 96 val next_out = Vec(CommitWidth, Output(new RobPtr)) 97 }) 98 99 val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr)))) 100 101 // for exceptions (flushPipe included) and interrupts: 102 // only consider the first instruction 103 val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && !CommitType.isLoadStore(io.commitType) 104 val exceptionEnable = io.deq_w(0) && io.exception_state.valid && !io.exception_state.bits.flushPipe && io.exception_state.bits.robIdx === deqPtrVec(0) 105 val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable) 106 107 // for normal commits: only to consider when there're no exceptions 108 // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions. 109 val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last) 110 val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i) && !io.misPredBlock && !io.isReplaying)) 111 val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B) 112 // when io.intrBitSetReg or there're possible exceptions in these instructions, 113 // only one instruction is allowed to commit 114 val allowOnlyOne = commit_exception || io.intrBitSetReg 115 val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt) 116 117 val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt)) 118 val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid, commitDeqPtrVec, deqPtrVec) 119 120 deqPtrVec := deqPtrVec_next 121 122 io.next_out := deqPtrVec_next 123 io.out := deqPtrVec 124 125 when (io.state === 0.U) { 126 XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt) 127 } 128 129} 130 131class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 132 val io = IO(new Bundle { 133 // for input redirect 134 val redirect = Input(Valid(new Redirect)) 135 // for enqueue 136 val allowEnqueue = Input(Bool()) 137 val hasBlockBackward = Input(Bool()) 138 val enq = Vec(RenameWidth, Input(Bool())) 139 val out = Output(new RobPtr) 140 }) 141 142 val enqPtr = RegInit(0.U.asTypeOf(new RobPtr)) 143 144 // enqueue 145 val canAccept = io.allowEnqueue && !io.hasBlockBackward 146 val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U) 147 148 when (io.redirect.valid) { 149 enqPtr := io.redirect.bits.robIdx + Mux(io.redirect.bits.flushItself(), 0.U, 1.U) 150 }.otherwise { 151 enqPtr := enqPtr + dispatchNum 152 } 153 154 io.out := enqPtr 155 156} 157 158class RobExceptionInfo(implicit p: Parameters) extends XSBundle { 159 // val valid = Bool() 160 val robIdx = new RobPtr 161 val exceptionVec = ExceptionVec() 162 val flushPipe = Bool() 163 val replayInst = Bool() // redirect to that inst itself 164 val singleStep = Bool() // TODO add frontend hit beneath 165 val crossPageIPFFix = Bool() 166 val trigger = new TriggerCf 167 168// def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend 169// def trigger_after = trigger.getTimingBackend && trigger.getHitBackend 170 def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.getHitBackend || trigger.frontendException 171 // only exceptions are allowed to writeback when enqueue 172 def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.getHitBackend || trigger.frontendException 173} 174 175class ExceptionGen(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 176 val io = IO(new Bundle { 177 val redirect = Input(Valid(new Redirect)) 178 val flush = Input(Bool()) 179 val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo))) 180 val wb = Vec(5, Flipped(ValidIO(new RobExceptionInfo))) 181 val out = ValidIO(new RobExceptionInfo) 182 val state = ValidIO(new RobExceptionInfo) 183 }) 184 185 val current = Reg(Valid(new RobExceptionInfo)) 186 187 // orR the exceptionVec 188 val lastCycleFlush = RegNext(io.flush) 189 val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush)) 190 val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush) 191 192 // s0: compare wb(1),wb(2) and wb(3),wb(4) 193 val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) } 194 val csr_wb_bits = io.wb(0).bits 195 val load_wb_bits = Mux(!in_wb_valid(2) || in_wb_valid(1) && isAfter(io.wb(2).bits.robIdx, io.wb(1).bits.robIdx), io.wb(1).bits, io.wb(2).bits) 196 val store_wb_bits = Mux(!in_wb_valid(4) || in_wb_valid(3) && isAfter(io.wb(4).bits.robIdx, io.wb(3).bits.robIdx), io.wb(3).bits, io.wb(4).bits) 197 val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid(1) || wb_valid(2), wb_valid(3) || wb_valid(4)))) 198 val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits))) 199 200 // s1: compare last four and current flush 201 val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) }) 202 val compare_01_valid = s0_out_valid(0) || s0_out_valid(1) 203 val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0)) 204 val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2)) 205 val s1_out_bits = RegNext(compare_bits) 206 val s1_out_valid = RegNext(s1_valid.asUInt.orR) 207 208 val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 209 val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits))) 210 211 // s2: compare the input exception with the current one 212 // priorities: 213 // (1) system reset 214 // (2) current is valid: flush, remain, merge, update 215 // (3) current is not valid: s1 or enq 216 val current_flush = current.bits.robIdx.needFlush(io.redirect) || io.flush 217 val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush 218 when (reset.asBool) { 219 current.valid := false.B 220 }.elsewhen (current.valid) { 221 when (current_flush) { 222 current.valid := Mux(s1_flush, false.B, s1_out_valid) 223 } 224 when (s1_out_valid && !s1_flush) { 225 when (isAfter(current.bits.robIdx, s1_out_bits.robIdx)) { 226 current.bits := s1_out_bits 227 }.elsewhen (current.bits.robIdx === s1_out_bits.robIdx) { 228 current.bits.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.bits.exceptionVec.asUInt).asTypeOf(ExceptionVec()) 229 current.bits.flushPipe := s1_out_bits.flushPipe || current.bits.flushPipe 230 current.bits.replayInst := s1_out_bits.replayInst || current.bits.replayInst 231 current.bits.singleStep := s1_out_bits.singleStep || current.bits.singleStep 232 current.bits.trigger := (s1_out_bits.trigger.asUInt | current.bits.trigger.asUInt).asTypeOf(new TriggerCf) 233 } 234 } 235 }.elsewhen (s1_out_valid && !s1_flush) { 236 current.valid := true.B 237 current.bits := s1_out_bits 238 }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) { 239 current.valid := true.B 240 current.bits := enq_bits 241 } 242 243 io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback 244 io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits) 245 io.state := current 246 247} 248 249class RobFlushInfo(implicit p: Parameters) extends XSBundle { 250 val ftqIdx = new FtqPtr 251 val robIdx = new RobPtr 252 val ftqOffset = UInt(log2Up(PredictWidth).W) 253 val replayInst = Bool() 254} 255 256class Rob(numWbPorts: Int)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 257 val io = IO(new Bundle() { 258 val hartId = Input(UInt(8.W)) 259 val redirect = Input(Valid(new Redirect)) 260 val enq = new RobEnqIO 261 val flushOut = ValidIO(new Redirect) 262 val exception = ValidIO(new ExceptionInfo) 263 // exu + brq 264 val exeWbResults = Vec(numWbPorts, Flipped(ValidIO(new ExuOutput))) 265 val commits = new RobCommitIO 266 val lsq = new RobLsqIO 267 val bcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 268 val robDeqPtr = Output(new RobPtr) 269 val csr = new RobCSRIO 270 val robFull = Output(Bool()) 271 }) 272 273 println("Rob: size:" + RobSize + " wbports:" + numWbPorts + " commitwidth:" + CommitWidth) 274 275 // instvalid field 276 // val valid = RegInit(VecInit(List.fill(RobSize)(false.B))) 277 val valid = Mem(RobSize, Bool()) 278 // writeback status 279 // val writebacked = Reg(Vec(RobSize, Bool())) 280 val writebacked = Mem(RobSize, Bool()) 281 val store_data_writebacked = Mem(RobSize, Bool()) 282 // data for redirect, exception, etc. 283 // val flagBkup = RegInit(VecInit(List.fill(RobSize)(false.B))) 284 val flagBkup = Mem(RobSize, Bool()) 285 286 // data for debug 287 // Warn: debug_* prefix should not exist in generated verilog. 288 val debug_microOp = Mem(RobSize, new MicroOp) 289 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug 290 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug 291 292 // pointers 293 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 294 val enqPtr = Wire(new RobPtr) 295 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 296 297 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 298 val validCounter = RegInit(0.U(log2Ceil(RobSize + 1).W)) 299 val allowEnqueue = RegInit(true.B) 300 301 val enqPtrVec = VecInit((0 until RenameWidth).map(i => enqPtr + PopCount(io.enq.needAlloc.take(i)))) 302 val deqPtr = deqPtrVec(0) 303 val walkPtr = walkPtrVec(0) 304 305 val isEmpty = enqPtr === deqPtr 306 val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level) 307 308 /** 309 * states of Rob 310 */ 311 val s_idle :: s_walk :: s_extrawalk :: Nil = Enum(3) 312 val state = RegInit(s_idle) 313 314 /** 315 * Data Modules 316 * 317 * CommitDataModule: data from dispatch 318 * (1) read: commits/walk/exception 319 * (2) write: enqueue 320 * 321 * WritebackData: data from writeback 322 * (1) read: commits/walk/exception 323 * (2) write: write back from exe units 324 */ 325 val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth)) 326 val dispatchDataRead = dispatchData.io.rdata 327 328 val exceptionGen = Module(new ExceptionGen) 329 val exceptionDataRead = exceptionGen.io.state 330 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 331 332 io.robDeqPtr := deqPtr 333 334 /** 335 * Enqueue (from dispatch) 336 */ 337 // special cases 338 val hasBlockBackward = RegInit(false.B) 339 val hasNoSpecExec = RegInit(false.B) 340 val doingSvinval = RegInit(false.B) 341 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 342 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 343 when (isEmpty) { hasBlockBackward:= false.B } 344 // When any instruction commits, hasNoSpecExec should be set to false.B 345 when (io.commits.valid.asUInt.orR && state =/= s_extrawalk) { hasNoSpecExec:= false.B } 346 347 io.enq.canAccept := allowEnqueue && !hasBlockBackward 348 io.enq.resp := enqPtrVec 349 val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept)) 350 val timer = GTimer() 351 for (i <- 0 until RenameWidth) { 352 // we don't check whether io.redirect is valid here since redirect has higher priority 353 when (canEnqueue(i)) { 354 // store uop in data module and debug_microOp Vec 355 debug_microOp(enqPtrVec(i).value) := io.enq.req(i).bits 356 debug_microOp(enqPtrVec(i).value).debugInfo.dispatchTime := timer 357 debug_microOp(enqPtrVec(i).value).debugInfo.enqRsTime := timer 358 debug_microOp(enqPtrVec(i).value).debugInfo.selectTime := timer 359 debug_microOp(enqPtrVec(i).value).debugInfo.issueTime := timer 360 debug_microOp(enqPtrVec(i).value).debugInfo.writebackTime := timer 361 when (io.enq.req(i).bits.ctrl.blockBackward) { 362 hasBlockBackward := true.B 363 } 364 when (io.enq.req(i).bits.ctrl.noSpecExec) { 365 hasNoSpecExec := true.B 366 } 367 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 368 when(!Cat(io.enq.req(i).bits.cf.exceptionVec).orR && FuType.isSvinvalBegin(io.enq.req(i).bits.ctrl.fuType,io.enq.req(i).bits.ctrl.fuOpType,io.enq.req(i).bits.ctrl.flushPipe)) 369 { 370 doingSvinval := true.B 371 } 372 // the end instruction of Svinval enqs so clear doingSvinval 373 when(!Cat(io.enq.req(i).bits.cf.exceptionVec).orR && FuType.isSvinvalEnd(io.enq.req(i).bits.ctrl.fuType,io.enq.req(i).bits.ctrl.fuOpType,io.enq.req(i).bits.ctrl.flushPipe)) 374 { 375 doingSvinval := false.B 376 } 377 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 378 assert( !doingSvinval || (FuType.isSvinval(io.enq.req(i).bits.ctrl.fuType,io.enq.req(i).bits.ctrl.fuOpType,io.enq.req(i).bits.ctrl.flushPipe) || FuType.isSvinvalEnd(io.enq.req(i).bits.ctrl.fuType,io.enq.req(i).bits.ctrl.fuOpType,io.enq.req(i).bits.ctrl.flushPipe))) 379 } 380 } 381 val dispatchNum = Mux(io.enq.canAccept, PopCount(Cat(io.enq.req.map(_.valid))), 0.U) 382 io.enq.isEmpty := RegNext(isEmpty && dispatchNum === 0.U) 383 384 // debug info for enqueue (dispatch) 385 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 386 XSInfo(dispatchNum =/= 0.U, p"dispatched $dispatchNum insts\n") 387 388 389 /** 390 * Writeback (from execution units) 391 */ 392 for (i <- 0 until numWbPorts) { 393 when (io.exeWbResults(i).valid) { 394 val wbIdx = io.exeWbResults(i).bits.uop.robIdx.value 395 debug_microOp(wbIdx).cf.exceptionVec := io.exeWbResults(i).bits.uop.cf.exceptionVec 396 debug_microOp(wbIdx).ctrl.flushPipe := io.exeWbResults(i).bits.uop.ctrl.flushPipe 397 debug_microOp(wbIdx).ctrl.replayInst := io.exeWbResults(i).bits.uop.ctrl.replayInst 398 debug_microOp(wbIdx).diffTestDebugLrScValid := io.exeWbResults(i).bits.uop.diffTestDebugLrScValid 399 debug_exuData(wbIdx) := io.exeWbResults(i).bits.data 400 debug_exuDebug(wbIdx) := io.exeWbResults(i).bits.debug 401 debug_microOp(wbIdx).debugInfo.enqRsTime := io.exeWbResults(i).bits.uop.debugInfo.enqRsTime 402 debug_microOp(wbIdx).debugInfo.selectTime := io.exeWbResults(i).bits.uop.debugInfo.selectTime 403 debug_microOp(wbIdx).debugInfo.issueTime := io.exeWbResults(i).bits.uop.debugInfo.issueTime 404 debug_microOp(wbIdx).debugInfo.writebackTime := io.exeWbResults(i).bits.uop.debugInfo.writebackTime 405 406 val debug_Uop = debug_microOp(wbIdx) 407 XSInfo(true.B, 408 p"writebacked pc 0x${Hexadecimal(debug_Uop.cf.pc)} wen ${debug_Uop.ctrl.rfWen} " + 409 p"data 0x${Hexadecimal(io.exeWbResults(i).bits.data)} ldst ${debug_Uop.ctrl.ldest} pdst ${debug_Uop.pdest} " + 410 p"skip ${io.exeWbResults(i).bits.debug.isMMIO} robIdx: ${io.exeWbResults(i).bits.uop.robIdx}\n" 411 ) 412 } 413 } 414 val writebackNum = PopCount(io.exeWbResults.map(_.valid)) 415 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 416 417 418 /** 419 * RedirectOut: Interrupt and Exceptions 420 */ 421 val deqDispatchData = dispatchDataRead(0) 422 val debug_deqUop = debug_microOp(deqPtr.value) 423 424 // For MMIO instructions, they should not trigger interrupts since they may be sent to lower level before it writes back. 425 // However, we cannot determine whether a load/store instruction is MMIO. 426 // Thus, we don't allow load/store instructions to trigger an interrupt. 427 val intrBitSetReg = RegNext(io.csr.intrBitSet) 428 val intrEnable = intrBitSetReg && !hasNoSpecExec && !CommitType.isLoadStore(deqDispatchData.commitType) 429 val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 430 val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR || 431 exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.getHitFrontend || exceptionDataRead.bits.trigger.getHitBackend) 432 val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe 433 val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst 434 val exceptionEnable = writebacked(deqPtr.value) && deqHasException 435 436 XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n") 437 XSDebug(deqHasException && exceptionDataRead.bits.trigger.frontendException, "Debug Mode: Deq has frontend trigger exception\n") 438 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n") 439 440 val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst) 441 442 // io.flushOut will trigger redirect at the next cycle. 443 // Block any redirect or commit at the next cycle. 444 val lastCycleFlush = RegNext(io.flushOut.valid) 445 446 io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush 447 io.flushOut.bits := DontCare 448 io.flushOut.bits.robIdx := deqPtr 449 io.flushOut.bits.ftqIdx := deqDispatchData.ftqIdx 450 io.flushOut.bits.ftqOffset := deqDispatchData.ftqOffset 451 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next" 452 io.flushOut.bits.interrupt := true.B 453 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 454 XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable) 455 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 456 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 457 458 val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush 459 io.exception.valid := RegNext(exceptionHappen) 460 io.exception.bits.uop := RegEnable(debug_deqUop, exceptionHappen) 461 io.exception.bits.uop.ctrl.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 462 io.exception.bits.uop.cf.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 463 io.exception.bits.uop.ctrl.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 464 io.exception.bits.uop.cf.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 465 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 466 io.exception.bits.uop.cf.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen) 467 468 XSDebug(io.flushOut.valid, 469 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.uop.cf.pc)} intr $intrEnable " + 470 p"excp $exceptionEnable flushPipe $isFlushPipe " + 471 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 472 473 474 /** 475 * Commits (and walk) 476 * They share the same width. 477 */ 478 val walkCounter = Reg(UInt(log2Up(RobSize + 1).W)) 479 val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter)) 480 val walkFinished = walkCounter <= CommitWidth.U 481 482 // extra space is used when rob has no enough space, but mispredict recovery needs such info to walk regmap 483 require(RenameWidth <= CommitWidth) 484 val extraSpaceForMPR = Reg(Vec(RenameWidth, new RobDispatchData)) 485 val usedSpaceForMPR = Reg(Vec(RenameWidth, Bool())) 486 when (io.enq.needAlloc.asUInt.orR && io.redirect.valid) { 487 usedSpaceForMPR := io.enq.needAlloc 488 extraSpaceForMPR := dispatchData.io.wdata 489 XSDebug("rob full, switched to s_extrawalk. needExtraSpaceForMPR: %b\n", io.enq.needAlloc.asUInt) 490 } 491 492 // wiring to csr 493 val (wflags, fpWen) = (0 until CommitWidth).map(i => { 494 val v = io.commits.valid(i) 495 val info = io.commits.info(i) 496 (v & info.wflags, v & info.fpWen) 497 }).unzip 498 val fflags = Wire(Valid(UInt(5.W))) 499 fflags.valid := Mux(io.commits.isWalk, false.B, Cat(wflags).orR()) 500 fflags.bits := wflags.zip(fflagsDataRead).map({ 501 case (w, f) => Mux(w, f, 0.U) 502 }).reduce(_|_) 503 val dirty_fs = Mux(io.commits.isWalk, false.B, Cat(fpWen).orR()) 504 505 // when mispredict branches writeback, stop commit in the next 2 cycles 506 // TODO: don't check all exu write back 507 val misPredWb = Cat(VecInit((0 until numWbPorts).map(i => 508 io.exeWbResults(i).bits.redirect.cfiUpdate.isMisPred && io.exeWbResults(i).bits.redirectValid 509 ))).orR() 510 val misPredBlockCounter = Reg(UInt(3.W)) 511 misPredBlockCounter := Mux(misPredWb, 512 "b111".U, 513 misPredBlockCounter >> 1.U 514 ) 515 val misPredBlock = misPredBlockCounter(0) 516 517 io.commits.isWalk := state =/= s_idle 518 val commit_v = Mux(state === s_idle, VecInit(deqPtrVec.map(ptr => valid(ptr.value))), VecInit(walkPtrVec.map(ptr => valid(ptr.value)))) 519 // store will be commited iff both sta & std have been writebacked 520 val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value))) 521 val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last) 522 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i))) 523 val allowOnlyOneCommit = commit_exception || intrBitSetReg 524 // for instructions that may block others, we don't allow them to commit 525 for (i <- 0 until CommitWidth) { 526 // defaults: state === s_idle and instructions commit 527 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 528 val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst 529 io.commits.valid(i) := commit_v(i) && commit_w(i) && !isBlocked && !misPredBlock && !isReplaying && !lastCycleFlush 530 io.commits.info(i) := dispatchDataRead(i) 531 532 when (state === s_walk) { 533 io.commits.valid(i) := commit_v(i) && shouldWalkVec(i) 534 }.elsewhen(state === s_extrawalk) { 535 io.commits.valid(i) := (if (i < RenameWidth) usedSpaceForMPR(RenameWidth-i-1) else false.B) 536 io.commits.info(i) := (if (i < RenameWidth) extraSpaceForMPR(RenameWidth-i-1) else DontCare) 537 } 538 539 XSInfo(state === s_idle && io.commits.valid(i), 540 "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b\n", 541 debug_microOp(deqPtrVec(i).value).cf.pc, 542 io.commits.info(i).rfWen, 543 io.commits.info(i).ldest, 544 io.commits.info(i).pdest, 545 io.commits.info(i).old_pdest, 546 debug_exuData(deqPtrVec(i).value), 547 fflagsDataRead(i) 548 ) 549 XSInfo(state === s_walk && io.commits.valid(i), "walked pc %x wen %d ldst %d data %x\n", 550 debug_microOp(walkPtrVec(i).value).cf.pc, 551 io.commits.info(i).rfWen, 552 io.commits.info(i).ldest, 553 debug_exuData(walkPtrVec(i).value) 554 ) 555 XSInfo(state === s_extrawalk && io.commits.valid(i), "use extra space walked wen %d ldst %d\n", 556 io.commits.info(i).rfWen, 557 io.commits.info(i).ldest 558 ) 559 } 560 if (env.EnableDifftest) { 561 io.commits.info.map(info => dontTouch(info.pc)) 562 } 563 564 // sync fflags/dirty_fs to csr 565 io.csr.fflags := fflags 566 io.csr.dirty_fs := dirty_fs 567 568 // commit branch to brq 569 val cfiCommitVec = VecInit(io.commits.valid.zip(io.commits.info.map(_.commitType)).map{case(v, t) => v && CommitType.isBranch(t)}) 570 io.bcommit := Mux(io.commits.isWalk, 0.U, PopCount(cfiCommitVec)) 571 572 // commit load/store to lsq 573 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 574 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.STORE)) 575 io.lsq.lcommit := RegNext(Mux(io.commits.isWalk, 0.U, PopCount(ldCommitVec))) 576 io.lsq.scommit := RegNext(Mux(io.commits.isWalk, 0.U, PopCount(stCommitVec))) 577 io.lsq.pendingld := RegNext(!io.commits.isWalk && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value)) 578 io.lsq.pendingst := RegNext(!io.commits.isWalk && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value)) 579 io.lsq.commit := RegNext(!io.commits.isWalk && io.commits.valid(0)) 580 581 /** 582 * state changes 583 * (1) exceptions: when exception occurs, cancels all and switch to s_idle 584 * (2) redirect: switch to s_walk or s_extrawalk (depends on whether there're pending instructions in dispatch1) 585 * (3) walk: when walking comes to the end, switch to s_walk 586 * (4) s_extrawalk to s_walk 587 */ 588 val state_next = Mux(io.redirect.valid, 589 Mux(io.enq.needAlloc.asUInt.orR, s_extrawalk, s_walk), 590 Mux(state === s_walk && walkFinished, 591 s_idle, 592 Mux(state === s_extrawalk, s_walk, state) 593 ) 594 ) 595 state := state_next 596 597 /** 598 * pointers and counters 599 */ 600 val deqPtrGenModule = Module(new RobDeqPtrWrapper) 601 deqPtrGenModule.io.state := state 602 deqPtrGenModule.io.deq_v := commit_v 603 deqPtrGenModule.io.deq_w := commit_w 604 deqPtrGenModule.io.exception_state := exceptionDataRead 605 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 606 deqPtrGenModule.io.hasNoSpecExec := hasNoSpecExec 607 deqPtrGenModule.io.commitType := deqDispatchData.commitType 608 609 deqPtrGenModule.io.misPredBlock := misPredBlock 610 deqPtrGenModule.io.isReplaying := isReplaying 611 deqPtrVec := deqPtrGenModule.io.out 612 val deqPtrVec_next = deqPtrGenModule.io.next_out 613 614 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 615 enqPtrGenModule.io.redirect := io.redirect 616 enqPtrGenModule.io.allowEnqueue := allowEnqueue 617 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 618 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid)) 619 enqPtr := enqPtrGenModule.io.out 620 621 val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U) 622 // next walkPtrVec: 623 // (1) redirect occurs: update according to state 624 // (2) walk: move backwards 625 val walkPtrVec_next = Mux(io.redirect.valid && state =/= s_extrawalk, 626 Mux(state === s_walk, 627 VecInit(walkPtrVec.map(_ - thisCycleWalkCount)), 628 VecInit((0 until CommitWidth).map(i => enqPtr - (i+1).U)) 629 ), 630 Mux(state === s_walk, VecInit(walkPtrVec.map(_ - CommitWidth.U)), walkPtrVec) 631 ) 632 walkPtrVec := walkPtrVec_next 633 634 val lastCycleRedirect = RegNext(io.redirect.valid) 635 val trueValidCounter = Mux(lastCycleRedirect, distanceBetween(enqPtr, deqPtr), validCounter) 636 val commitCnt = PopCount(io.commits.valid) 637 validCounter := Mux(state === s_idle, 638 (validCounter - commitCnt) + dispatchNum, 639 trueValidCounter 640 ) 641 642 allowEnqueue := Mux(state === s_idle, 643 validCounter + dispatchNum <= (RobSize - RenameWidth).U, 644 trueValidCounter <= (RobSize - RenameWidth).U 645 ) 646 647 val currentWalkPtr = Mux(state === s_walk || state === s_extrawalk, walkPtr, enqPtr - 1.U) 648 val redirectWalkDistance = distanceBetween(currentWalkPtr, io.redirect.bits.robIdx) 649 when (io.redirect.valid) { 650 walkCounter := Mux(state === s_walk, 651 // NOTE: +& is used here because: 652 // When rob is full and the head instruction causes an exception, 653 // the redirect robIdx is the deqPtr. In this case, currentWalkPtr is 654 // enqPtr - 1.U and redirectWalkDistance is RobSize - 1. 655 // Since exceptions flush the instruction itself, flushItSelf is true.B. 656 // Previously we use `+` to count the walk distance and it causes overflows 657 // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize. 658 // The width of walkCounter also needs to be changed. 659 redirectWalkDistance +& io.redirect.bits.flushItself() - commitCnt, 660 redirectWalkDistance +& io.redirect.bits.flushItself() 661 ) 662 }.elsewhen (state === s_walk) { 663 walkCounter := walkCounter - commitCnt 664 XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n") 665 } 666 667 668 /** 669 * States 670 * We put all the stage bits changes here. 671 672 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 673 * All states: (1) valid; (2) writebacked; (3) flagBkup 674 */ 675 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 676 677 // enqueue logic writes 6 valid 678 for (i <- 0 until RenameWidth) { 679 when (canEnqueue(i) && !io.redirect.valid) { 680 valid(enqPtrVec(i).value) := true.B 681 } 682 } 683 // dequeue/walk logic writes 6 valid, dequeue and walk will not happen at the same time 684 for (i <- 0 until CommitWidth) { 685 when (io.commits.valid(i) && state =/= s_extrawalk) { 686 valid(commitReadAddr(i)) := false.B 687 } 688 } 689 // reset: when exception, reset all valid to false 690 when (reset.asBool) { 691 for (i <- 0 until RobSize) { 692 valid(i) := false.B 693 } 694 } 695 696 // status field: writebacked 697 // enqueue logic set 6 writebacked to false 698 for (i <- 0 until RenameWidth) { 699 when (canEnqueue(i)) { 700 writebacked(enqPtrVec(i).value) := io.enq.req(i).bits.eliminatedMove && !io.enq.req(i).bits.cf.exceptionVec.asUInt.orR 701 val isStu = io.enq.req(i).bits.ctrl.fuType === FuType.stu 702 store_data_writebacked(enqPtrVec(i).value) := !isStu 703 } 704 } 705 when (exceptionGen.io.out.valid) { 706 val wbIdx = exceptionGen.io.out.bits.robIdx.value 707 writebacked(wbIdx) := true.B 708 store_data_writebacked(wbIdx) := true.B 709 } 710 // writeback logic set numWbPorts writebacked to true 711 for (i <- 0 until numWbPorts) { 712 when (io.exeWbResults(i).valid) { 713 val wbIdx = io.exeWbResults(i).bits.uop.robIdx.value 714 val block_wb = 715 selectAll(io.exeWbResults(i).bits.uop.cf.exceptionVec, false, true).asUInt.orR || 716 io.exeWbResults(i).bits.uop.ctrl.flushPipe || 717 io.exeWbResults(i).bits.uop.ctrl.replayInst 718 writebacked(wbIdx) := !block_wb 719 } 720 } 721 // store data writeback logic mark store as data_writebacked 722 for (i <- 0 until StorePipelineWidth) { 723 when(RegNext(io.lsq.storeDataRobWb(i).valid)) { 724 store_data_writebacked(RegNext(io.lsq.storeDataRobWb(i).bits.value)) := true.B // TODO 725 } 726 } 727 728 // flagBkup 729 // enqueue logic set 6 flagBkup at most 730 for (i <- 0 until RenameWidth) { 731 when (canEnqueue(i)) { 732 flagBkup(enqPtrVec(i).value) := enqPtrVec(i).flag 733 } 734 } 735 736 737 /** 738 * read and write of data modules 739 */ 740 val commitReadAddr_next = Mux(state_next === s_idle, 741 VecInit(deqPtrVec_next.map(_.value)), 742 VecInit(walkPtrVec_next.map(_.value)) 743 ) 744 dispatchData.io.wen := canEnqueue 745 dispatchData.io.waddr := enqPtrVec.map(_.value) 746 dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) => 747 wdata.ldest := req.ctrl.ldest 748 wdata.rfWen := req.ctrl.rfWen 749 wdata.fpWen := req.ctrl.fpWen 750 wdata.wflags := req.ctrl.fpu.wflags 751 wdata.commitType := req.ctrl.commitType 752 wdata.pdest := req.pdest 753 wdata.old_pdest := req.old_pdest 754 wdata.ftqIdx := req.cf.ftqPtr 755 wdata.ftqOffset := req.cf.ftqOffset 756 wdata.pc := req.cf.pc 757 } 758 dispatchData.io.raddr := commitReadAddr_next 759 760 exceptionGen.io.redirect <> io.redirect 761 exceptionGen.io.flush := io.flushOut.valid 762 for (i <- 0 until RenameWidth) { 763 exceptionGen.io.enq(i).valid := canEnqueue(i) 764 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 765 exceptionGen.io.enq(i).bits.exceptionVec := selectFrontend(io.enq.req(i).bits.cf.exceptionVec, false, true) 766 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.ctrl.flushPipe 767 exceptionGen.io.enq(i).bits.replayInst := io.enq.req(i).bits.ctrl.replayInst 768 assert(exceptionGen.io.enq(i).bits.replayInst === false.B) 769 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.ctrl.singleStep 770 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.cf.crossPageIPFFix 771 exceptionGen.io.enq(i).bits.trigger := io.enq.req(i).bits.cf.trigger 772 } 773 774 // TODO: don't hard code these idxes 775 val numIntWbPorts = exuParameters.AluCnt + exuParameters.LduCnt + exuParameters.MduCnt 776 // CSR is after Alu and Load 777 def csr_wb_idx = exuParameters.AluCnt + exuParameters.LduCnt 778 def atomic_wb_idx = exuParameters.AluCnt // first port for load 779 def load_wb_idxes = Seq(exuParameters.AluCnt + 1) // second port for load 780 def store_wb_idxes = io.exeWbResults.indices.takeRight(2) 781 val all_exception_possibilities = Seq(csr_wb_idx, atomic_wb_idx) ++ load_wb_idxes ++ store_wb_idxes 782 all_exception_possibilities.zipWithIndex.foreach{ case (p, i) => connect_exception(i, p) } 783 def connect_exception(index: Int, wb_index: Int) = { 784 exceptionGen.io.wb(index).valid := io.exeWbResults(wb_index).valid 785 // A temporary fix for float load writeback 786 // TODO: let int/fp load use the same two wb ports 787 if (wb_index == atomic_wb_idx || load_wb_idxes.contains(wb_index)) { 788 when (io.exeWbResults(wb_index - exuParameters.AluCnt + numIntWbPorts + exuParameters.FmacCnt).valid) { 789 exceptionGen.io.wb(index).valid := true.B 790 } 791 } 792 exceptionGen.io.wb(index).bits.robIdx := io.exeWbResults(wb_index).bits.uop.robIdx 793 val selectFunc = if (wb_index == csr_wb_idx) selectCSR _ 794 else if (wb_index == atomic_wb_idx) selectAtomics _ 795 else if (load_wb_idxes.contains(wb_index)) selectLoad _ 796 else { 797 assert(store_wb_idxes.contains(wb_index)) 798 selectStore _ 799 } 800 exceptionGen.io.wb(index).bits.exceptionVec := selectFunc(io.exeWbResults(wb_index).bits.uop.cf.exceptionVec, false, true) 801 exceptionGen.io.wb(index).bits.flushPipe := io.exeWbResults(wb_index).bits.uop.ctrl.flushPipe 802 exceptionGen.io.wb(index).bits.replayInst := io.exeWbResults(wb_index).bits.uop.ctrl.replayInst 803 exceptionGen.io.wb(index).bits.singleStep := false.B 804 exceptionGen.io.wb(index).bits.crossPageIPFFix := false.B 805 exceptionGen.io.wb(index).bits.trigger := io.exeWbResults(wb_index).bits.uop.cf.trigger 806 } 807 808 // 4 fmac + 2 fmisc + 1 i2f 809 val fmacWb = (0 until exuParameters.FmacCnt).map(_ + numIntWbPorts) 810 val fmiscWb = (0 until exuParameters.FmiscCnt).map(_ + numIntWbPorts + exuParameters.FmacCnt + 2) 811 val i2fWb = Seq(numIntWbPorts - 1) // last port in int 812 val fflags_wb = io.exeWbResults.zipWithIndex.filter(w => { 813 (fmacWb ++ fmiscWb ++ i2fWb).contains(w._2) 814 }).map(_._1) 815 val fflagsDataModule = Module(new SyncDataModuleTemplate( 816 UInt(5.W), RobSize, CommitWidth, fflags_wb.size) 817 ) 818 for(i <- fflags_wb.indices){ 819 fflagsDataModule.io.wen (i) := fflags_wb(i).valid 820 fflagsDataModule.io.waddr(i) := fflags_wb(i).bits.uop.robIdx.value 821 fflagsDataModule.io.wdata(i) := fflags_wb(i).bits.fflags 822 } 823 fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value)) 824 fflagsDataRead := fflagsDataModule.io.rdata 825 826 827 val instrCnt = RegInit(0.U(64.W)) 828 val fuseCommitCnt = PopCount(io.commits.valid.zip(io.commits.info).map{ case (v, i) => v && CommitType.isFused(i.commitType) }) 829 val trueCommitCnt = commitCnt +& fuseCommitCnt 830 val retireCounter = Mux(state === s_idle, trueCommitCnt, 0.U) 831 instrCnt := instrCnt + retireCounter 832 io.csr.perfinfo.retiredInstr := RegNext(retireCounter) 833 io.robFull := !allowEnqueue 834 835 /** 836 * debug info 837 */ 838 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 839 XSDebug("") 840 for(i <- 0 until RobSize){ 841 XSDebug(false, !valid(i), "-") 842 XSDebug(false, valid(i) && writebacked(i), "w") 843 XSDebug(false, valid(i) && !writebacked(i), "v") 844 } 845 XSDebug(false, true.B, "\n") 846 847 for(i <- 0 until RobSize) { 848 if(i % 4 == 0) XSDebug("") 849 XSDebug(false, true.B, "%x ", debug_microOp(i).cf.pc) 850 XSDebug(false, !valid(i), "- ") 851 XSDebug(false, valid(i) && writebacked(i), "w ") 852 XSDebug(false, valid(i) && !writebacked(i), "v ") 853 if(i % 4 == 3) XSDebug(false, true.B, "\n") 854 } 855 856 def ifCommit(counter: UInt): UInt = Mux(io.commits.isWalk, 0.U, counter) 857 858 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 859 XSPerfAccumulate("clock_cycle", 1.U) 860 QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue) 861 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 862 XSPerfAccumulate("commitInstr", ifCommit(trueCommitCnt)) 863 val commitIsMove = commitDebugUop.map(_.ctrl.isMove) 864 XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.valid.zip(commitIsMove).map{ case (v, m) => v && m }))) 865 val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) 866 XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.valid zip commitMoveElim map { case (v, e) => v && e }))) 867 XSPerfAccumulate("commitInstrFused", ifCommit(fuseCommitCnt)) 868 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 869 val commitLoadValid = io.commits.valid.zip(commitIsLoad).map{ case (v, t) => v && t } 870 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 871 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 872 val commitBranchValid = io.commits.valid.zip(commitIsBranch).map{ case (v, t) => v && t } 873 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 874 val commitLoadWaitBit = commitDebugUop.map(_.cf.loadWaitBit) 875 XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))) 876 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 877 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.valid.zip(commitIsStore).map{ case (v, t) => v && t }))) 878 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i)))) 879 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire()))) 880 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 881 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.valid), 0.U)) 882 XSPerfAccumulate("walkCycle", state === s_walk || state === s_extrawalk) 883 val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value) 884 val deqUopCommitType = io.commits.info(0).commitType 885 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 886 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 887 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 888 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 889 XSPerfAccumulate("robHeadPC", io.commits.info(0).pc) 890 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 891 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 892 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 893 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 894 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 895 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 896 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 897 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 898 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 899 } 900 for (fuType <- FuType.functionNameMap.keys) { 901 val fuName = FuType.functionNameMap(fuType) 902 val commitIsFuType = io.commits.valid.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fuType === fuType.U ) 903 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 904 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 905 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 906 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 907 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 908 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 909 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 910 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 911 if (fuType == FuType.fmac.litValue()) { 912 val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fpu.ren3 ) 913 XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma))) 914 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency))) 915 XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency))) 916 } 917 } 918 919 //difftest signals 920 val firstValidCommit = (deqPtr + PriorityMux(io.commits.valid, VecInit(List.tabulate(CommitWidth)(_.U)))).value 921 922 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 923 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 924 925 for(i <- 0 until CommitWidth) { 926 val idx = deqPtrVec(i).value 927 wdata(i) := debug_exuData(idx) 928 wpc(i) := SignExt(commitDebugUop(i).cf.pc, XLEN) 929 } 930 val retireCounterFix = Mux(io.exception.valid, 1.U, retireCounter) 931 val retirePCFix = SignExt(Mux(io.exception.valid, io.exception.bits.uop.cf.pc, debug_microOp(firstValidCommit).cf.pc), XLEN) 932 val retireInstFix = Mux(io.exception.valid, io.exception.bits.uop.cf.instr, debug_microOp(firstValidCommit).cf.instr) 933 934 if (env.EnableDifftest) { 935 for (i <- 0 until CommitWidth) { 936 val difftest = Module(new DifftestInstrCommit) 937 difftest.io.clock := clock 938 difftest.io.coreid := io.hartId 939 difftest.io.index := i.U 940 941 val ptr = deqPtrVec(i).value 942 val uop = commitDebugUop(i) 943 val exuOut = debug_exuDebug(ptr) 944 val exuData = debug_exuData(ptr) 945 difftest.io.valid := RegNext(io.commits.valid(i) && !io.commits.isWalk) 946 difftest.io.pc := RegNext(SignExt(uop.cf.pc, XLEN)) 947 difftest.io.instr := RegNext(uop.cf.instr) 948 difftest.io.special := RegNext(CommitType.isFused(io.commits.info(i).commitType)) 949 // when committing an eliminated move instruction, 950 // we must make sure that skip is properly set to false (output from EXU is random value) 951 difftest.io.skip := RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)) 952 difftest.io.isRVC := RegNext(uop.cf.pd.isRVC) 953 difftest.io.scFailed := RegNext(!uop.diffTestDebugLrScValid && 954 uop.ctrl.fuType === FuType.mou && 955 (uop.ctrl.fuOpType === LSUOpType.sc_d || uop.ctrl.fuOpType === LSUOpType.sc_w)) 956 difftest.io.wen := RegNext(io.commits.valid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U) 957 difftest.io.wpdest := RegNext(io.commits.info(i).pdest) 958 difftest.io.wdest := RegNext(io.commits.info(i).ldest) 959 960 // runahead commit hint 961 val runahead_commit = Module(new DifftestRunaheadCommitEvent) 962 runahead_commit.io.clock := clock 963 runahead_commit.io.coreid := io.hartId 964 runahead_commit.io.index := i.U 965 runahead_commit.io.valid := difftest.io.valid && 966 (commitBranchValid(i) || commitIsStore(i)) 967 // TODO: is branch or store 968 runahead_commit.io.pc := difftest.io.pc 969 } 970 } 971 else if (env.AlwaysBasicDiff) { 972 // These are the structures used by difftest only and should be optimized after synthesis. 973 val dt_eliminatedMove = Mem(RobSize, Bool()) 974 val dt_isRVC = Mem(RobSize, Bool()) 975 val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) 976 for (i <- 0 until RenameWidth) { 977 when (canEnqueue(i)) { 978 dt_eliminatedMove(enqPtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 979 dt_isRVC(enqPtrVec(i).value) := io.enq.req(i).bits.cf.pd.isRVC 980 } 981 } 982 for (i <- 0 until numWbPorts) { 983 when (io.exeWbResults(i).valid) { 984 val wbIdx = io.exeWbResults(i).bits.uop.robIdx.value 985 dt_exuDebug(wbIdx) := io.exeWbResults(i).bits.debug 986 } 987 } 988 // Always instantiate basic difftest modules. 989 for (i <- 0 until CommitWidth) { 990 val commitInfo = io.commits.info(i) 991 val ptr = deqPtrVec(i).value 992 val exuOut = dt_exuDebug(ptr) 993 val eliminatedMove = dt_eliminatedMove(ptr) 994 val isRVC = dt_isRVC(ptr) 995 996 val difftest = Module(new DifftestBasicInstrCommit) 997 difftest.io.clock := clock 998 difftest.io.coreid := io.hartId 999 difftest.io.index := i.U 1000 difftest.io.valid := RegNext(io.commits.valid(i) && !io.commits.isWalk) 1001 difftest.io.special := RegNext(CommitType.isFused(commitInfo.commitType)) 1002 difftest.io.skip := RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)) 1003 difftest.io.isRVC := RegNext(isRVC) 1004 difftest.io.wen := RegNext(io.commits.valid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U) 1005 difftest.io.wpdest := RegNext(commitInfo.pdest) 1006 difftest.io.wdest := RegNext(commitInfo.ldest) 1007 } 1008 } 1009 1010 if (env.EnableDifftest) { 1011 for (i <- 0 until CommitWidth) { 1012 val difftest = Module(new DifftestLoadEvent) 1013 difftest.io.clock := clock 1014 difftest.io.coreid := io.hartId 1015 difftest.io.index := i.U 1016 1017 val ptr = deqPtrVec(i).value 1018 val uop = commitDebugUop(i) 1019 val exuOut = debug_exuDebug(ptr) 1020 difftest.io.valid := RegNext(io.commits.valid(i) && !io.commits.isWalk) 1021 difftest.io.paddr := RegNext(exuOut.paddr) 1022 difftest.io.opType := RegNext(uop.ctrl.fuOpType) 1023 difftest.io.fuType := RegNext(uop.ctrl.fuType) 1024 } 1025 } 1026 1027 // Always instantiate basic difftest modules. 1028 if (env.EnableDifftest) { 1029 val dt_isXSTrap = Mem(RobSize, Bool()) 1030 for (i <- 0 until RenameWidth) { 1031 when (canEnqueue(i)) { 1032 dt_isXSTrap(enqPtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap 1033 } 1034 } 1035 val trapVec = io.commits.valid.zip(deqPtrVec).map{ case (v, d) => state === s_idle && v && dt_isXSTrap(d.value) } 1036 val hitTrap = trapVec.reduce(_||_) 1037 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 1038 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN) 1039 val difftest = Module(new DifftestTrapEvent) 1040 difftest.io.clock := clock 1041 difftest.io.coreid := io.hartId 1042 difftest.io.valid := hitTrap 1043 difftest.io.code := trapCode 1044 difftest.io.pc := trapPC 1045 difftest.io.cycleCnt := timer 1046 difftest.io.instrCnt := instrCnt 1047 } 1048 else if (env.AlwaysBasicDiff) { 1049 val dt_isXSTrap = Mem(RobSize, Bool()) 1050 for (i <- 0 until RenameWidth) { 1051 when (canEnqueue(i)) { 1052 dt_isXSTrap(enqPtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap 1053 } 1054 } 1055 val trapVec = io.commits.valid.zip(deqPtrVec).map{ case (v, d) => state === s_idle && v && dt_isXSTrap(d.value) } 1056 val hitTrap = trapVec.reduce(_||_) 1057 val difftest = Module(new DifftestBasicTrapEvent) 1058 difftest.io.clock := clock 1059 difftest.io.coreid := io.hartId 1060 difftest.io.valid := hitTrap 1061 difftest.io.cycleCnt := timer 1062 difftest.io.instrCnt := instrCnt 1063 } 1064 1065 val perfinfo = IO(new Bundle(){ 1066 val perfEvents = Output(new PerfEventsBundle(18)) 1067 }) 1068 val perfEvents = Seq( 1069 ("rob_interrupt_num ", io.flushOut.valid && intrEnable ), 1070 ("rob_exception_num ", io.flushOut.valid && exceptionEnable ), 1071 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe ), 1072 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst ), 1073 ("rob_commitUop ", ifCommit(commitCnt) ), 1074 ("rob_commitInstr ", ifCommit(trueCommitCnt) ), 1075 ("rob_commitInstrMove ", ifCommit(PopCount(io.commits.valid.zip(commitIsMove).map{ case (v, m) => v && m })) ), 1076 ("rob_commitInstrFused ", ifCommit(fuseCommitCnt) ), 1077 ("rob_commitInstrLoad ", ifCommit(PopCount(commitLoadValid)) ), 1078 ("rob_commitInstrLoad ", ifCommit(PopCount(commitBranchValid)) ), 1079 ("rob_commitInstrLoadWait ", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })) ), 1080 ("rob_commitInstrStore ", ifCommit(PopCount(io.commits.valid.zip(commitIsStore).map{ case (v, t) => v && t })) ), 1081 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.valid), 0.U) ), 1082 ("rob_walkCycle ", (state === s_walk || state === s_extrawalk) ), 1083 ("rob_1/4_valid ", (PopCount((0 until RobSize).map(valid(_))) < (RobSize.U/4.U)) ), 1084 ("rob_2/4_valid ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U/4.U)) & (PopCount((0 until RobSize).map(valid(_))) <= (RobSize.U/2.U)) ), 1085 ("rob_3/4_valid ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U/2.U)) & (PopCount((0 until RobSize).map(valid(_))) <= (RobSize.U*3.U/4.U))), 1086 ("rob_4/4_valid ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U*3.U/4.U)) ), 1087 ) 1088 1089 for (((perf_out,(perf_name,perf)),i) <- perfinfo.perfEvents.perf_events.zip(perfEvents).zipWithIndex) { 1090 perf_out.incr_step := RegNext(perf) 1091 } 1092} 1093