xref: /XiangShan/src/main/scala/xiangshan/backend/rob/Rob.scala (revision 84e47f35db7c435223b222af2342463b2f92e059)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.backend.rob
18
19import chipsalliance.rocketchip.config.Parameters
20import chisel3.ExcitingUtils._
21import chisel3._
22import chisel3.util._
23import xiangshan._
24import utils._
25import xiangshan.frontend.FtqPtr
26import difftest._
27
28class RobPtr(implicit p: Parameters) extends CircularQueuePtr[RobPtr](
29  p => p(XSCoreParamsKey).RobSize
30) with HasCircularQueuePtrHelper {
31
32  def needFlush(redirect: Valid[Redirect]): Bool = {
33    val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx
34    redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx))
35  }
36
37  override def cloneType = (new RobPtr).asInstanceOf[this.type]
38}
39
40object RobPtr {
41  def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = {
42    val ptr = Wire(new RobPtr)
43    ptr.flag := f
44    ptr.value := v
45    ptr
46  }
47}
48
49class RobCSRIO(implicit p: Parameters) extends XSBundle {
50  val intrBitSet = Input(Bool())
51  val trapTarget = Input(UInt(VAddrBits.W))
52  val isXRet = Input(Bool())
53
54  val fflags = Output(Valid(UInt(5.W)))
55  val dirty_fs = Output(Bool())
56  val perfinfo = new Bundle {
57    val retiredInstr = Output(UInt(3.W))
58  }
59}
60
61class RobLsqIO(implicit p: Parameters) extends XSBundle {
62  val lcommit = Output(UInt(log2Up(CommitWidth + 1).W))
63  val scommit = Output(UInt(log2Up(CommitWidth + 1).W))
64  val pendingld = Output(Bool())
65  val pendingst = Output(Bool())
66  val commit = Output(Bool())
67  val storeDataRobWb = Input(Vec(StorePipelineWidth, Valid(new RobPtr)))
68}
69
70class RobEnqIO(implicit p: Parameters) extends XSBundle {
71  val canAccept = Output(Bool())
72  val isEmpty = Output(Bool())
73  // valid vector, for robIdx gen and walk
74  val needAlloc = Vec(RenameWidth, Input(Bool()))
75  val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp)))
76  val resp = Vec(RenameWidth, Output(new RobPtr))
77}
78
79class RobDispatchData(implicit p: Parameters) extends RobCommitInfo
80
81class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
82  val io = IO(new Bundle {
83    // for commits/flush
84    val state = Input(UInt(2.W))
85    val deq_v = Vec(CommitWidth, Input(Bool()))
86    val deq_w = Vec(CommitWidth, Input(Bool()))
87    val exception_state = Flipped(ValidIO(new RobExceptionInfo))
88    // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth)
89    val intrBitSetReg = Input(Bool())
90    val hasNoSpecExec = Input(Bool())
91    val commitType = Input(CommitType())
92    val misPredBlock = Input(Bool())
93    val isReplaying = Input(Bool())
94    // output: the CommitWidth deqPtr
95    val out = Vec(CommitWidth, Output(new RobPtr))
96    val next_out = Vec(CommitWidth, Output(new RobPtr))
97  })
98
99  val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr))))
100
101  // for exceptions (flushPipe included) and interrupts:
102  // only consider the first instruction
103  val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && !CommitType.isLoadStore(io.commitType)
104  val exceptionEnable = io.deq_w(0) && io.exception_state.valid && !io.exception_state.bits.flushPipe && io.exception_state.bits.robIdx === deqPtrVec(0)
105  val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable)
106
107  // for normal commits: only to consider when there're no exceptions
108  // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions.
109  val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last)
110  val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i) && !io.misPredBlock && !io.isReplaying))
111  val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B)
112  // when io.intrBitSetReg or there're possible exceptions in these instructions,
113  // only one instruction is allowed to commit
114  val allowOnlyOne = commit_exception || io.intrBitSetReg
115  val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt)
116
117  val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt))
118  val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid, commitDeqPtrVec, deqPtrVec)
119
120  deqPtrVec := deqPtrVec_next
121
122  io.next_out := deqPtrVec_next
123  io.out      := deqPtrVec
124
125  when (io.state === 0.U) {
126    XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt)
127  }
128
129}
130
131class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
132  val io = IO(new Bundle {
133    // for input redirect
134    val redirect = Input(Valid(new Redirect))
135    // for enqueue
136    val allowEnqueue = Input(Bool())
137    val hasBlockBackward = Input(Bool())
138    val enq = Vec(RenameWidth, Input(Bool()))
139    val out = Output(new RobPtr)
140  })
141
142  val enqPtr = RegInit(0.U.asTypeOf(new RobPtr))
143
144  // enqueue
145  val canAccept = io.allowEnqueue && !io.hasBlockBackward
146  val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U)
147
148  when (io.redirect.valid) {
149    enqPtr := io.redirect.bits.robIdx + Mux(io.redirect.bits.flushItself(), 0.U, 1.U)
150  }.otherwise {
151    enqPtr := enqPtr + dispatchNum
152  }
153
154  io.out := enqPtr
155
156}
157
158class RobExceptionInfo(implicit p: Parameters) extends XSBundle {
159  // val valid = Bool()
160  val robIdx = new RobPtr
161  val exceptionVec = ExceptionVec()
162  val flushPipe = Bool()
163  val replayInst = Bool() // redirect to that inst itself
164  val singleStep = Bool() // TODO add frontend hit beneath
165  val crossPageIPFFix = Bool()
166  val trigger = new TriggerCf
167
168//  def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend
169//  def trigger_after = trigger.getTimingBackend && trigger.getHitBackend
170  def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.getHitBackend || trigger.frontendException
171  // only exceptions are allowed to writeback when enqueue
172  def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.getHitBackend || trigger.frontendException
173}
174
175class ExceptionGen(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
176  val io = IO(new Bundle {
177    val redirect = Input(Valid(new Redirect))
178    val flush = Input(Bool())
179    val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo)))
180    val wb = Vec(5, Flipped(ValidIO(new RobExceptionInfo)))
181    val out = ValidIO(new RobExceptionInfo)
182    val state = ValidIO(new RobExceptionInfo)
183  })
184
185  val current = Reg(Valid(new RobExceptionInfo))
186
187  // orR the exceptionVec
188  val lastCycleFlush = RegNext(io.flush)
189  val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush))
190  val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush)
191
192  // s0: compare wb(1),wb(2) and wb(3),wb(4)
193  val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }
194  val csr_wb_bits = io.wb(0).bits
195  val load_wb_bits = Mux(!in_wb_valid(2) || in_wb_valid(1) && isAfter(io.wb(2).bits.robIdx, io.wb(1).bits.robIdx), io.wb(1).bits, io.wb(2).bits)
196  val store_wb_bits = Mux(!in_wb_valid(4) || in_wb_valid(3) && isAfter(io.wb(4).bits.robIdx, io.wb(3).bits.robIdx), io.wb(3).bits, io.wb(4).bits)
197  val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid(1) || wb_valid(2), wb_valid(3) || wb_valid(4))))
198  val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits)))
199
200  // s1: compare last four and current flush
201  val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) })
202  val compare_01_valid = s0_out_valid(0) || s0_out_valid(1)
203  val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0))
204  val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2))
205  val s1_out_bits = RegNext(compare_bits)
206  val s1_out_valid = RegNext(s1_valid.asUInt.orR)
207
208  val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush)
209  val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits)))
210
211  // s2: compare the input exception with the current one
212  // priorities:
213  // (1) system reset
214  // (2) current is valid: flush, remain, merge, update
215  // (3) current is not valid: s1 or enq
216  val current_flush = current.bits.robIdx.needFlush(io.redirect) || io.flush
217  val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush
218  when (reset.asBool) {
219    current.valid := false.B
220  }.elsewhen (current.valid) {
221    when (current_flush) {
222      current.valid := Mux(s1_flush, false.B, s1_out_valid)
223    }
224    when (s1_out_valid && !s1_flush) {
225      when (isAfter(current.bits.robIdx, s1_out_bits.robIdx)) {
226        current.bits := s1_out_bits
227      }.elsewhen (current.bits.robIdx === s1_out_bits.robIdx) {
228        current.bits.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.bits.exceptionVec.asUInt).asTypeOf(ExceptionVec())
229        current.bits.flushPipe := s1_out_bits.flushPipe || current.bits.flushPipe
230        current.bits.replayInst := s1_out_bits.replayInst || current.bits.replayInst
231        current.bits.singleStep := s1_out_bits.singleStep || current.bits.singleStep
232        current.bits.trigger := (s1_out_bits.trigger.asUInt | current.bits.trigger.asUInt).asTypeOf(new TriggerCf)
233      }
234    }
235  }.elsewhen (s1_out_valid && !s1_flush) {
236    current.valid := true.B
237    current.bits := s1_out_bits
238  }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) {
239    current.valid := true.B
240    current.bits := enq_bits
241  }
242
243  io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback
244  io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits)
245  io.state := current
246
247}
248
249class RobFlushInfo(implicit p: Parameters) extends XSBundle {
250  val ftqIdx = new FtqPtr
251  val robIdx = new RobPtr
252  val ftqOffset = UInt(log2Up(PredictWidth).W)
253  val replayInst = Bool()
254}
255
256class Rob(numWbPorts: Int)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
257  val io = IO(new Bundle() {
258    val hartId = Input(UInt(8.W))
259    val redirect = Input(Valid(new Redirect))
260    val enq = new RobEnqIO
261    val flushOut = ValidIO(new Redirect)
262    val exception = ValidIO(new ExceptionInfo)
263    // exu + brq
264    val exeWbResults = Vec(numWbPorts, Flipped(ValidIO(new ExuOutput)))
265    val commits = new RobCommitIO
266    val lsq = new RobLsqIO
267    val bcommit = Output(UInt(log2Up(CommitWidth + 1).W))
268    val robDeqPtr = Output(new RobPtr)
269    val csr = new RobCSRIO
270    val robFull = Output(Bool())
271  })
272
273  println("Rob: size:" + RobSize + " wbports:" + numWbPorts  + " commitwidth:" + CommitWidth)
274
275  // instvalid field
276  // val valid = RegInit(VecInit(List.fill(RobSize)(false.B)))
277  val valid = Mem(RobSize, Bool())
278  // writeback status
279  // val writebacked = Reg(Vec(RobSize, Bool()))
280  val writebacked = Mem(RobSize, Bool())
281  val store_data_writebacked = Mem(RobSize, Bool())
282  // data for redirect, exception, etc.
283  // val flagBkup = RegInit(VecInit(List.fill(RobSize)(false.B)))
284  val flagBkup = Mem(RobSize, Bool())
285
286  // data for debug
287  // Warn: debug_* prefix should not exist in generated verilog.
288  val debug_microOp = Mem(RobSize, new MicroOp)
289  val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug
290  val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug
291
292  // pointers
293  // For enqueue ptr, we don't duplicate it since only enqueue needs it.
294  val enqPtr = Wire(new RobPtr)
295  val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr))
296
297  val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr))
298  val validCounter = RegInit(0.U(log2Ceil(RobSize + 1).W))
299  val allowEnqueue = RegInit(true.B)
300
301  val enqPtrVec = VecInit((0 until RenameWidth).map(i => enqPtr + PopCount(io.enq.needAlloc.take(i))))
302  val deqPtr = deqPtrVec(0)
303  val walkPtr = walkPtrVec(0)
304
305  val isEmpty = enqPtr === deqPtr
306  val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level)
307
308  /**
309    * states of Rob
310    */
311  val s_idle :: s_walk :: s_extrawalk :: Nil = Enum(3)
312  val state = RegInit(s_idle)
313
314  /**
315    * Data Modules
316    *
317    * CommitDataModule: data from dispatch
318    * (1) read: commits/walk/exception
319    * (2) write: enqueue
320    *
321    * WritebackData: data from writeback
322    * (1) read: commits/walk/exception
323    * (2) write: write back from exe units
324    */
325  val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth))
326  val dispatchDataRead = dispatchData.io.rdata
327
328  val exceptionGen = Module(new ExceptionGen)
329  val exceptionDataRead = exceptionGen.io.state
330  val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W)))
331
332  io.robDeqPtr := deqPtr
333
334  /**
335    * Enqueue (from dispatch)
336    */
337  // special cases
338  val hasBlockBackward = RegInit(false.B)
339  val hasNoSpecExec = RegInit(false.B)
340  val doingSvinval = RegInit(false.B)
341  // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B
342  // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty.
343  when (isEmpty) { hasBlockBackward:= false.B }
344  // When any instruction commits, hasNoSpecExec should be set to false.B
345  when (io.commits.valid.asUInt.orR  && state =/= s_extrawalk) { hasNoSpecExec:= false.B }
346
347  io.enq.canAccept := allowEnqueue && !hasBlockBackward
348  io.enq.resp      := enqPtrVec
349  val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept))
350  val timer = GTimer()
351  for (i <- 0 until RenameWidth) {
352    // we don't check whether io.redirect is valid here since redirect has higher priority
353    when (canEnqueue(i)) {
354      // store uop in data module and debug_microOp Vec
355      debug_microOp(enqPtrVec(i).value) := io.enq.req(i).bits
356      debug_microOp(enqPtrVec(i).value).debugInfo.dispatchTime := timer
357      debug_microOp(enqPtrVec(i).value).debugInfo.enqRsTime := timer
358      debug_microOp(enqPtrVec(i).value).debugInfo.selectTime := timer
359      debug_microOp(enqPtrVec(i).value).debugInfo.issueTime := timer
360      debug_microOp(enqPtrVec(i).value).debugInfo.writebackTime := timer
361      when (io.enq.req(i).bits.ctrl.blockBackward) {
362        hasBlockBackward := true.B
363      }
364      when (io.enq.req(i).bits.ctrl.noSpecExec) {
365        hasNoSpecExec := true.B
366      }
367      // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process
368      when(!Cat(io.enq.req(i).bits.cf.exceptionVec).orR && FuType.isSvinvalBegin(io.enq.req(i).bits.ctrl.fuType,io.enq.req(i).bits.ctrl.fuOpType,io.enq.req(i).bits.ctrl.flushPipe))
369      {
370        doingSvinval := true.B
371      }
372      // the end instruction of Svinval enqs so clear doingSvinval
373      when(!Cat(io.enq.req(i).bits.cf.exceptionVec).orR && FuType.isSvinvalEnd(io.enq.req(i).bits.ctrl.fuType,io.enq.req(i).bits.ctrl.fuOpType,io.enq.req(i).bits.ctrl.flushPipe))
374      {
375        doingSvinval := false.B
376      }
377      // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear
378      assert( !doingSvinval || (FuType.isSvinval(io.enq.req(i).bits.ctrl.fuType,io.enq.req(i).bits.ctrl.fuOpType,io.enq.req(i).bits.ctrl.flushPipe) || FuType.isSvinvalEnd(io.enq.req(i).bits.ctrl.fuType,io.enq.req(i).bits.ctrl.fuOpType,io.enq.req(i).bits.ctrl.flushPipe)))
379    }
380  }
381  val dispatchNum = Mux(io.enq.canAccept, PopCount(Cat(io.enq.req.map(_.valid))), 0.U)
382  io.enq.isEmpty   := RegNext(isEmpty && dispatchNum === 0.U)
383
384  // debug info for enqueue (dispatch)
385  XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n")
386  XSInfo(dispatchNum =/= 0.U, p"dispatched $dispatchNum insts\n")
387
388
389  /**
390    * Writeback (from execution units)
391    */
392  for (i <- 0 until numWbPorts) {
393    when (io.exeWbResults(i).valid) {
394      val wbIdx = io.exeWbResults(i).bits.uop.robIdx.value
395      debug_microOp(wbIdx).cf.exceptionVec := io.exeWbResults(i).bits.uop.cf.exceptionVec
396      debug_microOp(wbIdx).ctrl.flushPipe := io.exeWbResults(i).bits.uop.ctrl.flushPipe
397      debug_microOp(wbIdx).ctrl.replayInst := io.exeWbResults(i).bits.uop.ctrl.replayInst
398      debug_microOp(wbIdx).diffTestDebugLrScValid := io.exeWbResults(i).bits.uop.diffTestDebugLrScValid
399      debug_exuData(wbIdx) := io.exeWbResults(i).bits.data
400      debug_exuDebug(wbIdx) := io.exeWbResults(i).bits.debug
401      debug_microOp(wbIdx).debugInfo.enqRsTime := io.exeWbResults(i).bits.uop.debugInfo.enqRsTime
402      debug_microOp(wbIdx).debugInfo.selectTime := io.exeWbResults(i).bits.uop.debugInfo.selectTime
403      debug_microOp(wbIdx).debugInfo.issueTime := io.exeWbResults(i).bits.uop.debugInfo.issueTime
404      debug_microOp(wbIdx).debugInfo.writebackTime := io.exeWbResults(i).bits.uop.debugInfo.writebackTime
405
406      val debug_Uop = debug_microOp(wbIdx)
407      XSInfo(true.B,
408        p"writebacked pc 0x${Hexadecimal(debug_Uop.cf.pc)} wen ${debug_Uop.ctrl.rfWen} " +
409        p"data 0x${Hexadecimal(io.exeWbResults(i).bits.data)} ldst ${debug_Uop.ctrl.ldest} pdst ${debug_Uop.pdest} " +
410        p"skip ${io.exeWbResults(i).bits.debug.isMMIO} robIdx: ${io.exeWbResults(i).bits.uop.robIdx}\n"
411      )
412    }
413  }
414  val writebackNum = PopCount(io.exeWbResults.map(_.valid))
415  XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum)
416
417
418  /**
419    * RedirectOut: Interrupt and Exceptions
420    */
421  val deqDispatchData = dispatchDataRead(0)
422  val debug_deqUop = debug_microOp(deqPtr.value)
423
424  // For MMIO instructions, they should not trigger interrupts since they may be sent to lower level before it writes back.
425  // However, we cannot determine whether a load/store instruction is MMIO.
426  // Thus, we don't allow load/store instructions to trigger an interrupt.
427  val intrBitSetReg = RegNext(io.csr.intrBitSet)
428  val intrEnable = intrBitSetReg && !hasNoSpecExec && !CommitType.isLoadStore(deqDispatchData.commitType)
429  val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr
430  val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR ||
431    exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.getHitFrontend || exceptionDataRead.bits.trigger.getHitBackend)
432  val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe
433  val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst
434  val exceptionEnable = writebacked(deqPtr.value) && deqHasException
435
436  XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n")
437  XSDebug(deqHasException && exceptionDataRead.bits.trigger.frontendException, "Debug Mode: Deq has frontend trigger exception\n")
438  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n")
439
440  val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst)
441
442  // io.flushOut will trigger redirect at the next cycle.
443  // Block any redirect or commit at the next cycle.
444  val lastCycleFlush = RegNext(io.flushOut.valid)
445
446  io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush
447  io.flushOut.bits := DontCare
448  io.flushOut.bits.robIdx := deqPtr
449  io.flushOut.bits.ftqIdx := deqDispatchData.ftqIdx
450  io.flushOut.bits.ftqOffset := deqDispatchData.ftqOffset
451  io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next"
452  io.flushOut.bits.interrupt := true.B
453  XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable)
454  XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable)
455  XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe)
456  XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst)
457
458  val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush
459  io.exception.valid := RegNext(exceptionHappen)
460  io.exception.bits.uop := RegEnable(debug_deqUop, exceptionHappen)
461  io.exception.bits.uop.ctrl.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen)
462  io.exception.bits.uop.cf.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen)
463  io.exception.bits.uop.ctrl.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen)
464  io.exception.bits.uop.cf.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen)
465  io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen)
466  io.exception.bits.uop.cf.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen)
467
468  XSDebug(io.flushOut.valid,
469    p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.uop.cf.pc)} intr $intrEnable " +
470    p"excp $exceptionEnable flushPipe $isFlushPipe " +
471    p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n")
472
473
474  /**
475    * Commits (and walk)
476    * They share the same width.
477    */
478  val walkCounter = Reg(UInt(log2Up(RobSize + 1).W))
479  val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter))
480  val walkFinished = walkCounter <= CommitWidth.U
481
482  // extra space is used when rob has no enough space, but mispredict recovery needs such info to walk regmap
483  require(RenameWidth <= CommitWidth)
484  val extraSpaceForMPR = Reg(Vec(RenameWidth, new RobDispatchData))
485  val usedSpaceForMPR = Reg(Vec(RenameWidth, Bool()))
486  when (io.enq.needAlloc.asUInt.orR && io.redirect.valid) {
487    usedSpaceForMPR := io.enq.needAlloc
488    extraSpaceForMPR := dispatchData.io.wdata
489    XSDebug("rob full, switched to s_extrawalk. needExtraSpaceForMPR: %b\n", io.enq.needAlloc.asUInt)
490  }
491
492  // wiring to csr
493  val (wflags, fpWen) = (0 until CommitWidth).map(i => {
494    val v = io.commits.valid(i)
495    val info = io.commits.info(i)
496    (v & info.wflags, v & info.fpWen)
497  }).unzip
498  val fflags = Wire(Valid(UInt(5.W)))
499  fflags.valid := Mux(io.commits.isWalk, false.B, Cat(wflags).orR())
500  fflags.bits := wflags.zip(fflagsDataRead).map({
501    case (w, f) => Mux(w, f, 0.U)
502  }).reduce(_|_)
503  val dirty_fs = Mux(io.commits.isWalk, false.B, Cat(fpWen).orR())
504
505  // when mispredict branches writeback, stop commit in the next 2 cycles
506  // TODO: don't check all exu write back
507  val misPredWb = Cat(VecInit((0 until numWbPorts).map(i =>
508    io.exeWbResults(i).bits.redirect.cfiUpdate.isMisPred && io.exeWbResults(i).bits.redirectValid
509  ))).orR()
510  val misPredBlockCounter = Reg(UInt(3.W))
511  misPredBlockCounter := Mux(misPredWb,
512    "b111".U,
513    misPredBlockCounter >> 1.U
514  )
515  val misPredBlock = misPredBlockCounter(0)
516
517  io.commits.isWalk := state =/= s_idle
518  val commit_v = Mux(state === s_idle, VecInit(deqPtrVec.map(ptr => valid(ptr.value))), VecInit(walkPtrVec.map(ptr => valid(ptr.value))))
519  // store will be commited iff both sta & std have been writebacked
520  val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value)))
521  val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last)
522  val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i)))
523  val allowOnlyOneCommit = commit_exception || intrBitSetReg
524  // for instructions that may block others, we don't allow them to commit
525  for (i <- 0 until CommitWidth) {
526    // defaults: state === s_idle and instructions commit
527    // when intrBitSetReg, allow only one instruction to commit at each clock cycle
528    val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst
529    io.commits.valid(i) := commit_v(i) && commit_w(i) && !isBlocked && !misPredBlock && !isReplaying && !lastCycleFlush
530    io.commits.info(i)  := dispatchDataRead(i)
531
532    when (state === s_walk) {
533      io.commits.valid(i) := commit_v(i) && shouldWalkVec(i)
534    }.elsewhen(state === s_extrawalk) {
535      io.commits.valid(i) := (if (i < RenameWidth) usedSpaceForMPR(RenameWidth-i-1) else false.B)
536      io.commits.info(i)  := (if (i < RenameWidth) extraSpaceForMPR(RenameWidth-i-1) else DontCare)
537    }
538
539    XSInfo(state === s_idle && io.commits.valid(i),
540      "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b\n",
541      debug_microOp(deqPtrVec(i).value).cf.pc,
542      io.commits.info(i).rfWen,
543      io.commits.info(i).ldest,
544      io.commits.info(i).pdest,
545      io.commits.info(i).old_pdest,
546      debug_exuData(deqPtrVec(i).value),
547      fflagsDataRead(i)
548    )
549    XSInfo(state === s_walk && io.commits.valid(i), "walked pc %x wen %d ldst %d data %x\n",
550      debug_microOp(walkPtrVec(i).value).cf.pc,
551      io.commits.info(i).rfWen,
552      io.commits.info(i).ldest,
553      debug_exuData(walkPtrVec(i).value)
554    )
555    XSInfo(state === s_extrawalk && io.commits.valid(i), "use extra space walked wen %d ldst %d\n",
556      io.commits.info(i).rfWen,
557      io.commits.info(i).ldest
558    )
559  }
560  if (env.EnableDifftest) {
561    io.commits.info.map(info => dontTouch(info.pc))
562  }
563
564  // sync fflags/dirty_fs to csr
565  io.csr.fflags := fflags
566  io.csr.dirty_fs := dirty_fs
567
568  // commit branch to brq
569  val cfiCommitVec = VecInit(io.commits.valid.zip(io.commits.info.map(_.commitType)).map{case(v, t) => v && CommitType.isBranch(t)})
570  io.bcommit := Mux(io.commits.isWalk, 0.U, PopCount(cfiCommitVec))
571
572  // commit load/store to lsq
573  val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.LOAD))
574  val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.STORE))
575  io.lsq.lcommit := RegNext(Mux(io.commits.isWalk, 0.U, PopCount(ldCommitVec)))
576  io.lsq.scommit := RegNext(Mux(io.commits.isWalk, 0.U, PopCount(stCommitVec)))
577  io.lsq.pendingld := RegNext(!io.commits.isWalk && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value))
578  io.lsq.pendingst := RegNext(!io.commits.isWalk && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value))
579  io.lsq.commit := RegNext(!io.commits.isWalk && io.commits.valid(0))
580
581  /**
582    * state changes
583    * (1) exceptions: when exception occurs, cancels all and switch to s_idle
584    * (2) redirect: switch to s_walk or s_extrawalk (depends on whether there're pending instructions in dispatch1)
585    * (3) walk: when walking comes to the end, switch to s_walk
586    * (4) s_extrawalk to s_walk
587    */
588  val state_next = Mux(io.redirect.valid,
589    Mux(io.enq.needAlloc.asUInt.orR, s_extrawalk, s_walk),
590    Mux(state === s_walk && walkFinished,
591      s_idle,
592      Mux(state === s_extrawalk, s_walk, state)
593    )
594  )
595  state := state_next
596
597  /**
598    * pointers and counters
599    */
600  val deqPtrGenModule = Module(new RobDeqPtrWrapper)
601  deqPtrGenModule.io.state := state
602  deqPtrGenModule.io.deq_v := commit_v
603  deqPtrGenModule.io.deq_w := commit_w
604  deqPtrGenModule.io.exception_state := exceptionDataRead
605  deqPtrGenModule.io.intrBitSetReg := intrBitSetReg
606  deqPtrGenModule.io.hasNoSpecExec := hasNoSpecExec
607  deqPtrGenModule.io.commitType := deqDispatchData.commitType
608
609  deqPtrGenModule.io.misPredBlock := misPredBlock
610  deqPtrGenModule.io.isReplaying := isReplaying
611  deqPtrVec := deqPtrGenModule.io.out
612  val deqPtrVec_next = deqPtrGenModule.io.next_out
613
614  val enqPtrGenModule = Module(new RobEnqPtrWrapper)
615  enqPtrGenModule.io.redirect := io.redirect
616  enqPtrGenModule.io.allowEnqueue := allowEnqueue
617  enqPtrGenModule.io.hasBlockBackward := hasBlockBackward
618  enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid))
619  enqPtr := enqPtrGenModule.io.out
620
621  val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U)
622  // next walkPtrVec:
623  // (1) redirect occurs: update according to state
624  // (2) walk: move backwards
625  val walkPtrVec_next = Mux(io.redirect.valid && state =/= s_extrawalk,
626    Mux(state === s_walk,
627      VecInit(walkPtrVec.map(_ - thisCycleWalkCount)),
628      VecInit((0 until CommitWidth).map(i => enqPtr - (i+1).U))
629    ),
630    Mux(state === s_walk, VecInit(walkPtrVec.map(_ - CommitWidth.U)), walkPtrVec)
631  )
632  walkPtrVec := walkPtrVec_next
633
634  val lastCycleRedirect = RegNext(io.redirect.valid)
635  val trueValidCounter = Mux(lastCycleRedirect, distanceBetween(enqPtr, deqPtr), validCounter)
636  val commitCnt = PopCount(io.commits.valid)
637  validCounter := Mux(state === s_idle,
638    (validCounter - commitCnt) + dispatchNum,
639    trueValidCounter
640  )
641
642  allowEnqueue := Mux(state === s_idle,
643    validCounter + dispatchNum <= (RobSize - RenameWidth).U,
644    trueValidCounter <= (RobSize - RenameWidth).U
645  )
646
647  val currentWalkPtr = Mux(state === s_walk || state === s_extrawalk, walkPtr, enqPtr - 1.U)
648  val redirectWalkDistance = distanceBetween(currentWalkPtr, io.redirect.bits.robIdx)
649  when (io.redirect.valid) {
650    walkCounter := Mux(state === s_walk,
651      // NOTE: +& is used here because:
652      // When rob is full and the head instruction causes an exception,
653      // the redirect robIdx is the deqPtr. In this case, currentWalkPtr is
654      // enqPtr - 1.U and redirectWalkDistance is RobSize - 1.
655      // Since exceptions flush the instruction itself, flushItSelf is true.B.
656      // Previously we use `+` to count the walk distance and it causes overflows
657      // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize.
658      // The width of walkCounter also needs to be changed.
659      redirectWalkDistance +& io.redirect.bits.flushItself() - commitCnt,
660      redirectWalkDistance +& io.redirect.bits.flushItself()
661    )
662  }.elsewhen (state === s_walk) {
663    walkCounter := walkCounter - commitCnt
664    XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n")
665  }
666
667
668  /**
669    * States
670    * We put all the stage bits changes here.
671
672    * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit);
673    * All states: (1) valid; (2) writebacked; (3) flagBkup
674    */
675  val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value)))
676
677  // enqueue logic writes 6 valid
678  for (i <- 0 until RenameWidth) {
679    when (canEnqueue(i) && !io.redirect.valid) {
680      valid(enqPtrVec(i).value) := true.B
681    }
682  }
683  // dequeue/walk logic writes 6 valid, dequeue and walk will not happen at the same time
684  for (i <- 0 until CommitWidth) {
685    when (io.commits.valid(i) && state =/= s_extrawalk) {
686      valid(commitReadAddr(i)) := false.B
687    }
688  }
689  // reset: when exception, reset all valid to false
690  when (reset.asBool) {
691    for (i <- 0 until RobSize) {
692      valid(i) := false.B
693    }
694  }
695
696  // status field: writebacked
697  // enqueue logic set 6 writebacked to false
698  for (i <- 0 until RenameWidth) {
699    when (canEnqueue(i)) {
700      writebacked(enqPtrVec(i).value) := io.enq.req(i).bits.eliminatedMove && !io.enq.req(i).bits.cf.exceptionVec.asUInt.orR
701      val isStu = io.enq.req(i).bits.ctrl.fuType === FuType.stu
702      store_data_writebacked(enqPtrVec(i).value) := !isStu
703    }
704  }
705  when (exceptionGen.io.out.valid) {
706    val wbIdx = exceptionGen.io.out.bits.robIdx.value
707    writebacked(wbIdx) := true.B
708    store_data_writebacked(wbIdx) := true.B
709  }
710  // writeback logic set numWbPorts writebacked to true
711  for (i <- 0 until numWbPorts) {
712    when (io.exeWbResults(i).valid) {
713      val wbIdx = io.exeWbResults(i).bits.uop.robIdx.value
714      val block_wb =
715        selectAll(io.exeWbResults(i).bits.uop.cf.exceptionVec, false, true).asUInt.orR ||
716        io.exeWbResults(i).bits.uop.ctrl.flushPipe ||
717        io.exeWbResults(i).bits.uop.ctrl.replayInst
718      writebacked(wbIdx) := !block_wb
719    }
720  }
721  // store data writeback logic mark store as data_writebacked
722  for (i <- 0 until StorePipelineWidth) {
723    when(RegNext(io.lsq.storeDataRobWb(i).valid)) {
724      store_data_writebacked(RegNext(io.lsq.storeDataRobWb(i).bits.value)) := true.B // TODO
725    }
726  }
727
728  // flagBkup
729  // enqueue logic set 6 flagBkup at most
730  for (i <- 0 until RenameWidth) {
731    when (canEnqueue(i)) {
732      flagBkup(enqPtrVec(i).value) := enqPtrVec(i).flag
733    }
734  }
735
736
737  /**
738    * read and write of data modules
739    */
740  val commitReadAddr_next = Mux(state_next === s_idle,
741    VecInit(deqPtrVec_next.map(_.value)),
742    VecInit(walkPtrVec_next.map(_.value))
743  )
744  dispatchData.io.wen := canEnqueue
745  dispatchData.io.waddr := enqPtrVec.map(_.value)
746  dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) =>
747    wdata.ldest := req.ctrl.ldest
748    wdata.rfWen := req.ctrl.rfWen
749    wdata.fpWen := req.ctrl.fpWen
750    wdata.wflags := req.ctrl.fpu.wflags
751    wdata.commitType := req.ctrl.commitType
752    wdata.pdest := req.pdest
753    wdata.old_pdest := req.old_pdest
754    wdata.ftqIdx := req.cf.ftqPtr
755    wdata.ftqOffset := req.cf.ftqOffset
756    wdata.pc := req.cf.pc
757  }
758  dispatchData.io.raddr := commitReadAddr_next
759
760  exceptionGen.io.redirect <> io.redirect
761  exceptionGen.io.flush := io.flushOut.valid
762  for (i <- 0 until RenameWidth) {
763    exceptionGen.io.enq(i).valid := canEnqueue(i)
764    exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx
765    exceptionGen.io.enq(i).bits.exceptionVec := selectFrontend(io.enq.req(i).bits.cf.exceptionVec, false, true)
766    exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.ctrl.flushPipe
767    exceptionGen.io.enq(i).bits.replayInst := io.enq.req(i).bits.ctrl.replayInst
768    assert(exceptionGen.io.enq(i).bits.replayInst === false.B)
769    exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.ctrl.singleStep
770    exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.cf.crossPageIPFFix
771    exceptionGen.io.enq(i).bits.trigger := io.enq.req(i).bits.cf.trigger
772  }
773
774  // TODO: don't hard code these idxes
775  val numIntWbPorts = exuParameters.AluCnt + exuParameters.LduCnt + exuParameters.MduCnt
776  // CSR is after Alu and Load
777  def csr_wb_idx = exuParameters.AluCnt + exuParameters.LduCnt
778  def atomic_wb_idx = exuParameters.AluCnt // first port for load
779  def load_wb_idxes = Seq(exuParameters.AluCnt + 1) // second port for load
780  def store_wb_idxes = io.exeWbResults.indices.takeRight(2)
781  val all_exception_possibilities = Seq(csr_wb_idx, atomic_wb_idx) ++ load_wb_idxes ++ store_wb_idxes
782  all_exception_possibilities.zipWithIndex.foreach{ case (p, i) => connect_exception(i, p) }
783  def connect_exception(index: Int, wb_index: Int) = {
784    exceptionGen.io.wb(index).valid             := io.exeWbResults(wb_index).valid
785    // A temporary fix for float load writeback
786    // TODO: let int/fp load use the same two wb ports
787    if (wb_index == atomic_wb_idx || load_wb_idxes.contains(wb_index)) {
788      when (io.exeWbResults(wb_index - exuParameters.AluCnt + numIntWbPorts + exuParameters.FmacCnt).valid) {
789        exceptionGen.io.wb(index).valid := true.B
790      }
791    }
792    exceptionGen.io.wb(index).bits.robIdx       := io.exeWbResults(wb_index).bits.uop.robIdx
793    val selectFunc = if (wb_index == csr_wb_idx) selectCSR _
794    else if (wb_index == atomic_wb_idx) selectAtomics _
795    else if (load_wb_idxes.contains(wb_index)) selectLoad _
796    else {
797      assert(store_wb_idxes.contains(wb_index))
798      selectStore _
799    }
800    exceptionGen.io.wb(index).bits.exceptionVec    := selectFunc(io.exeWbResults(wb_index).bits.uop.cf.exceptionVec, false, true)
801    exceptionGen.io.wb(index).bits.flushPipe       := io.exeWbResults(wb_index).bits.uop.ctrl.flushPipe
802    exceptionGen.io.wb(index).bits.replayInst      := io.exeWbResults(wb_index).bits.uop.ctrl.replayInst
803    exceptionGen.io.wb(index).bits.singleStep      := false.B
804    exceptionGen.io.wb(index).bits.crossPageIPFFix := false.B
805    exceptionGen.io.wb(index).bits.trigger := io.exeWbResults(wb_index).bits.uop.cf.trigger
806  }
807
808  // 4 fmac + 2 fmisc + 1 i2f
809  val fmacWb = (0 until exuParameters.FmacCnt).map(_ + numIntWbPorts)
810  val fmiscWb = (0 until exuParameters.FmiscCnt).map(_ + numIntWbPorts + exuParameters.FmacCnt + 2)
811  val i2fWb = Seq(numIntWbPorts - 1) // last port in int
812  val fflags_wb = io.exeWbResults.zipWithIndex.filter(w => {
813    (fmacWb ++ fmiscWb ++ i2fWb).contains(w._2)
814  }).map(_._1)
815  val fflagsDataModule = Module(new SyncDataModuleTemplate(
816    UInt(5.W), RobSize, CommitWidth, fflags_wb.size)
817  )
818  for(i <- fflags_wb.indices){
819    fflagsDataModule.io.wen  (i) := fflags_wb(i).valid
820    fflagsDataModule.io.waddr(i) := fflags_wb(i).bits.uop.robIdx.value
821    fflagsDataModule.io.wdata(i) := fflags_wb(i).bits.fflags
822  }
823  fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value))
824  fflagsDataRead := fflagsDataModule.io.rdata
825
826
827  val instrCnt = RegInit(0.U(64.W))
828  val fuseCommitCnt = PopCount(io.commits.valid.zip(io.commits.info).map{ case (v, i) => v && CommitType.isFused(i.commitType) })
829  val trueCommitCnt = commitCnt +& fuseCommitCnt
830  val retireCounter = Mux(state === s_idle, trueCommitCnt, 0.U)
831  instrCnt := instrCnt + retireCounter
832  io.csr.perfinfo.retiredInstr := RegNext(retireCounter)
833  io.robFull := !allowEnqueue
834
835  /**
836    * debug info
837    */
838  XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n")
839  XSDebug("")
840  for(i <- 0 until RobSize){
841    XSDebug(false, !valid(i), "-")
842    XSDebug(false, valid(i) && writebacked(i), "w")
843    XSDebug(false, valid(i) && !writebacked(i), "v")
844  }
845  XSDebug(false, true.B, "\n")
846
847  for(i <- 0 until RobSize) {
848    if(i % 4 == 0) XSDebug("")
849    XSDebug(false, true.B, "%x ", debug_microOp(i).cf.pc)
850    XSDebug(false, !valid(i), "- ")
851    XSDebug(false, valid(i) && writebacked(i), "w ")
852    XSDebug(false, valid(i) && !writebacked(i), "v ")
853    if(i % 4 == 3) XSDebug(false, true.B, "\n")
854  }
855
856  def ifCommit(counter: UInt): UInt = Mux(io.commits.isWalk, 0.U, counter)
857
858  val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_))
859  XSPerfAccumulate("clock_cycle", 1.U)
860  QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue)
861  XSPerfAccumulate("commitUop", ifCommit(commitCnt))
862  XSPerfAccumulate("commitInstr", ifCommit(trueCommitCnt))
863  val commitIsMove = commitDebugUop.map(_.ctrl.isMove)
864  XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.valid.zip(commitIsMove).map{ case (v, m) => v && m })))
865  val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove)
866  XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.valid zip commitMoveElim map { case (v, e) => v && e })))
867  XSPerfAccumulate("commitInstrFused", ifCommit(fuseCommitCnt))
868  val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD)
869  val commitLoadValid = io.commits.valid.zip(commitIsLoad).map{ case (v, t) => v && t }
870  XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid)))
871  val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH)
872  val commitBranchValid = io.commits.valid.zip(commitIsBranch).map{ case (v, t) => v && t }
873  XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid)))
874  val commitLoadWaitBit = commitDebugUop.map(_.cf.loadWaitBit)
875  XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })))
876  val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE)
877  XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.valid.zip(commitIsStore).map{ case (v, t) => v && t })))
878  XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i))))
879  // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire())))
880  // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready)))
881  XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.valid), 0.U))
882  XSPerfAccumulate("walkCycle", state === s_walk || state === s_extrawalk)
883  val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value)
884  val deqUopCommitType = io.commits.info(0).commitType
885  XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL)
886  XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH)
887  XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD)
888  XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE)
889  XSPerfAccumulate("robHeadPC", io.commits.info(0).pc)
890  val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime)
891  val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime)
892  val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime)
893  val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime)
894  val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime)
895  val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime)
896  val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime)
897  def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = {
898    cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _)
899  }
900  for (fuType <- FuType.functionNameMap.keys) {
901    val fuName = FuType.functionNameMap(fuType)
902    val commitIsFuType = io.commits.valid.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fuType === fuType.U )
903    XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType)))
904    XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency)))
905    XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency)))
906    XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency)))
907    XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency)))
908    XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency)))
909    XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency)))
910    XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency)))
911    if (fuType == FuType.fmac.litValue()) {
912      val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fpu.ren3 )
913      XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma)))
914      XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency)))
915      XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency)))
916    }
917  }
918
919  //difftest signals
920  val firstValidCommit = (deqPtr + PriorityMux(io.commits.valid, VecInit(List.tabulate(CommitWidth)(_.U)))).value
921
922  val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W)))
923  val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W)))
924
925  for(i <- 0 until CommitWidth) {
926    val idx = deqPtrVec(i).value
927    wdata(i) := debug_exuData(idx)
928    wpc(i) := SignExt(commitDebugUop(i).cf.pc, XLEN)
929  }
930  val retireCounterFix = Mux(io.exception.valid, 1.U, retireCounter)
931  val retirePCFix = SignExt(Mux(io.exception.valid, io.exception.bits.uop.cf.pc, debug_microOp(firstValidCommit).cf.pc), XLEN)
932  val retireInstFix = Mux(io.exception.valid, io.exception.bits.uop.cf.instr, debug_microOp(firstValidCommit).cf.instr)
933
934  if (env.EnableDifftest) {
935    for (i <- 0 until CommitWidth) {
936      val difftest = Module(new DifftestInstrCommit)
937      difftest.io.clock    := clock
938      difftest.io.coreid   := io.hartId
939      difftest.io.index    := i.U
940
941      val ptr = deqPtrVec(i).value
942      val uop = commitDebugUop(i)
943      val exuOut = debug_exuDebug(ptr)
944      val exuData = debug_exuData(ptr)
945      difftest.io.valid    := RegNext(io.commits.valid(i) && !io.commits.isWalk)
946      difftest.io.pc       := RegNext(SignExt(uop.cf.pc, XLEN))
947      difftest.io.instr    := RegNext(uop.cf.instr)
948      difftest.io.special  := RegNext(CommitType.isFused(io.commits.info(i).commitType))
949      // when committing an eliminated move instruction,
950      // we must make sure that skip is properly set to false (output from EXU is random value)
951      difftest.io.skip     := RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))
952      difftest.io.isRVC    := RegNext(uop.cf.pd.isRVC)
953      difftest.io.scFailed := RegNext(!uop.diffTestDebugLrScValid &&
954        uop.ctrl.fuType === FuType.mou &&
955        (uop.ctrl.fuOpType === LSUOpType.sc_d || uop.ctrl.fuOpType === LSUOpType.sc_w))
956      difftest.io.wen      := RegNext(io.commits.valid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U)
957      difftest.io.wpdest   := RegNext(io.commits.info(i).pdest)
958      difftest.io.wdest    := RegNext(io.commits.info(i).ldest)
959
960      // runahead commit hint
961      val runahead_commit = Module(new DifftestRunaheadCommitEvent)
962      runahead_commit.io.clock := clock
963      runahead_commit.io.coreid := io.hartId
964      runahead_commit.io.index := i.U
965      runahead_commit.io.valid := difftest.io.valid &&
966        (commitBranchValid(i) || commitIsStore(i))
967      // TODO: is branch or store
968      runahead_commit.io.pc    := difftest.io.pc
969    }
970  }
971  else if (env.AlwaysBasicDiff) {
972    // These are the structures used by difftest only and should be optimized after synthesis.
973    val dt_eliminatedMove = Mem(RobSize, Bool())
974    val dt_isRVC = Mem(RobSize, Bool())
975    val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle))
976    for (i <- 0 until RenameWidth) {
977      when (canEnqueue(i)) {
978        dt_eliminatedMove(enqPtrVec(i).value) := io.enq.req(i).bits.eliminatedMove
979        dt_isRVC(enqPtrVec(i).value) := io.enq.req(i).bits.cf.pd.isRVC
980      }
981    }
982    for (i <- 0 until numWbPorts) {
983      when (io.exeWbResults(i).valid) {
984        val wbIdx = io.exeWbResults(i).bits.uop.robIdx.value
985        dt_exuDebug(wbIdx) := io.exeWbResults(i).bits.debug
986      }
987    }
988    // Always instantiate basic difftest modules.
989    for (i <- 0 until CommitWidth) {
990      val commitInfo = io.commits.info(i)
991      val ptr = deqPtrVec(i).value
992      val exuOut = dt_exuDebug(ptr)
993      val eliminatedMove = dt_eliminatedMove(ptr)
994      val isRVC = dt_isRVC(ptr)
995
996      val difftest = Module(new DifftestBasicInstrCommit)
997      difftest.io.clock   := clock
998      difftest.io.coreid  := io.hartId
999      difftest.io.index   := i.U
1000      difftest.io.valid   := RegNext(io.commits.valid(i) && !io.commits.isWalk)
1001      difftest.io.special := RegNext(CommitType.isFused(commitInfo.commitType))
1002      difftest.io.skip    := RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))
1003      difftest.io.isRVC   := RegNext(isRVC)
1004      difftest.io.wen     := RegNext(io.commits.valid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U)
1005      difftest.io.wpdest  := RegNext(commitInfo.pdest)
1006      difftest.io.wdest   := RegNext(commitInfo.ldest)
1007    }
1008  }
1009
1010  if (env.EnableDifftest) {
1011    for (i <- 0 until CommitWidth) {
1012      val difftest = Module(new DifftestLoadEvent)
1013      difftest.io.clock  := clock
1014      difftest.io.coreid := io.hartId
1015      difftest.io.index  := i.U
1016
1017      val ptr = deqPtrVec(i).value
1018      val uop = commitDebugUop(i)
1019      val exuOut = debug_exuDebug(ptr)
1020      difftest.io.valid  := RegNext(io.commits.valid(i) && !io.commits.isWalk)
1021      difftest.io.paddr  := RegNext(exuOut.paddr)
1022      difftest.io.opType := RegNext(uop.ctrl.fuOpType)
1023      difftest.io.fuType := RegNext(uop.ctrl.fuType)
1024    }
1025  }
1026
1027  // Always instantiate basic difftest modules.
1028  if (env.EnableDifftest) {
1029    val dt_isXSTrap = Mem(RobSize, Bool())
1030    for (i <- 0 until RenameWidth) {
1031      when (canEnqueue(i)) {
1032        dt_isXSTrap(enqPtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap
1033      }
1034    }
1035    val trapVec = io.commits.valid.zip(deqPtrVec).map{ case (v, d) => state === s_idle && v && dt_isXSTrap(d.value) }
1036    val hitTrap = trapVec.reduce(_||_)
1037    val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1))
1038    val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN)
1039    val difftest = Module(new DifftestTrapEvent)
1040    difftest.io.clock    := clock
1041    difftest.io.coreid   := io.hartId
1042    difftest.io.valid    := hitTrap
1043    difftest.io.code     := trapCode
1044    difftest.io.pc       := trapPC
1045    difftest.io.cycleCnt := timer
1046    difftest.io.instrCnt := instrCnt
1047  }
1048  else if (env.AlwaysBasicDiff) {
1049    val dt_isXSTrap = Mem(RobSize, Bool())
1050    for (i <- 0 until RenameWidth) {
1051      when (canEnqueue(i)) {
1052        dt_isXSTrap(enqPtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap
1053      }
1054    }
1055    val trapVec = io.commits.valid.zip(deqPtrVec).map{ case (v, d) => state === s_idle && v && dt_isXSTrap(d.value) }
1056    val hitTrap = trapVec.reduce(_||_)
1057    val difftest = Module(new DifftestBasicTrapEvent)
1058    difftest.io.clock    := clock
1059    difftest.io.coreid   := io.hartId
1060    difftest.io.valid    := hitTrap
1061    difftest.io.cycleCnt := timer
1062    difftest.io.instrCnt := instrCnt
1063  }
1064
1065  val perfinfo = IO(new Bundle(){
1066    val perfEvents = Output(new PerfEventsBundle(18))
1067  })
1068  val perfEvents = Seq(
1069    ("rob_interrupt_num       ", io.flushOut.valid && intrEnable                                                                                                   ),
1070    ("rob_exception_num       ", io.flushOut.valid && exceptionEnable                                                                                              ),
1071    ("rob_flush_pipe_num      ", io.flushOut.valid && isFlushPipe                                                                                                  ),
1072    ("rob_replay_inst_num     ", io.flushOut.valid && isFlushPipe && deqHasReplayInst                                                                              ),
1073    ("rob_commitUop           ", ifCommit(commitCnt)                                                                                                               ),
1074    ("rob_commitInstr         ", ifCommit(trueCommitCnt)                                                                                                           ),
1075    ("rob_commitInstrMove     ", ifCommit(PopCount(io.commits.valid.zip(commitIsMove).map{ case (v, m) => v && m }))                                               ),
1076    ("rob_commitInstrFused    ", ifCommit(fuseCommitCnt)                                                                                                           ),
1077    ("rob_commitInstrLoad     ", ifCommit(PopCount(commitLoadValid))                                                                                               ),
1078    ("rob_commitInstrLoad     ", ifCommit(PopCount(commitBranchValid))                                                                                               ),
1079    ("rob_commitInstrLoadWait ", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))                                           ),
1080    ("rob_commitInstrStore    ", ifCommit(PopCount(io.commits.valid.zip(commitIsStore).map{ case (v, t) => v && t }))                                              ),
1081    ("rob_walkInstr           ", Mux(io.commits.isWalk, PopCount(io.commits.valid), 0.U)                                                                           ),
1082    ("rob_walkCycle           ", (state === s_walk || state === s_extrawalk)                                                                                       ),
1083    ("rob_1/4_valid           ", (PopCount((0 until RobSize).map(valid(_))) < (RobSize.U/4.U))                                                                     ),
1084    ("rob_2/4_valid           ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U/4.U)) & (PopCount((0 until RobSize).map(valid(_))) <= (RobSize.U/2.U))    ),
1085    ("rob_3/4_valid           ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U/2.U)) & (PopCount((0 until RobSize).map(valid(_))) <= (RobSize.U*3.U/4.U))),
1086    ("rob_4/4_valid           ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U*3.U/4.U))                                                                 ),
1087  )
1088
1089  for (((perf_out,(perf_name,perf)),i) <- perfinfo.perfEvents.perf_events.zip(perfEvents).zipWithIndex) {
1090    perf_out.incr_step := RegNext(perf)
1091  }
1092}
1093