1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.rob 18 19import org.chipsalliance.cde.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 24import utility._ 25import utils._ 26import xiangshan._ 27import xiangshan.backend.BackendParams 28import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 29import xiangshan.backend.fu.{FuType, FuConfig} 30import xiangshan.frontend.FtqPtr 31import xiangshan.mem.{LqPtr, LsqEnqIO, SqPtr} 32import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 33import xiangshan.backend.ctrlblock.{DebugLSIO, DebugLsInfo, LsTopdownInfo} 34import xiangshan.backend.rename.SnapshotGenerator 35 36 37class RobPtr(entries: Int) extends CircularQueuePtr[RobPtr]( 38 entries 39) with HasCircularQueuePtrHelper { 40 41 def this()(implicit p: Parameters) = this(p(XSCoreParamsKey).RobSize) 42 43 def needFlush(redirect: Valid[Redirect]): Bool = { 44 val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx 45 redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx)) 46 } 47 48 def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR 49} 50 51object RobPtr { 52 def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = { 53 val ptr = Wire(new RobPtr) 54 ptr.flag := f 55 ptr.value := v 56 ptr 57 } 58} 59 60class RobCSRIO(implicit p: Parameters) extends XSBundle { 61 val intrBitSet = Input(Bool()) 62 val trapTarget = Input(UInt(VAddrBits.W)) 63 val isXRet = Input(Bool()) 64 val wfiEvent = Input(Bool()) 65 66 val fflags = Output(Valid(UInt(5.W))) 67 val vxsat = Output(Valid(Bool())) 68 val dirty_fs = Output(Bool()) 69 val perfinfo = new Bundle { 70 val retiredInstr = Output(UInt(3.W)) 71 } 72 73 val vcsrFlag = Output(Bool()) 74} 75 76class RobLsqIO(implicit p: Parameters) extends XSBundle { 77 val lcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 78 val scommit = Output(UInt(log2Up(CommitWidth + 1).W)) 79 val pendingld = Output(Bool()) 80 val pendingst = Output(Bool()) 81 val commit = Output(Bool()) 82 val pendingPtr = Output(new RobPtr) 83 84 val mmio = Input(Vec(LoadPipelineWidth, Bool())) 85 val uop = Input(Vec(LoadPipelineWidth, new DynInst)) 86} 87 88class RobEnqIO(implicit p: Parameters) extends XSBundle { 89 val canAccept = Output(Bool()) 90 val isEmpty = Output(Bool()) 91 // valid vector, for robIdx gen and walk 92 val needAlloc = Vec(RenameWidth, Input(Bool())) 93 val req = Vec(RenameWidth, Flipped(ValidIO(new DynInst))) 94 val resp = Vec(RenameWidth, Output(new RobPtr)) 95} 96 97class RobCoreTopDownIO(implicit p: Parameters) extends XSBundle { 98 val robHeadVaddr = Valid(UInt(VAddrBits.W)) 99 val robHeadPaddr = Valid(UInt(PAddrBits.W)) 100} 101 102class RobDispatchTopDownIO extends Bundle { 103 val robTrueCommit = Output(UInt(64.W)) 104 val robHeadLsIssue = Output(Bool()) 105} 106 107class RobDebugRollingIO extends Bundle { 108 val robTrueCommit = Output(UInt(64.W)) 109} 110 111class RobDispatchData(implicit p: Parameters) extends RobCommitInfo {} 112 113class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 114 val io = IO(new Bundle { 115 // for commits/flush 116 val state = Input(UInt(2.W)) 117 val deq_v = Vec(CommitWidth, Input(Bool())) 118 val deq_w = Vec(CommitWidth, Input(Bool())) 119 val exception_state = Flipped(ValidIO(new RobExceptionInfo)) 120 // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth) 121 val intrBitSetReg = Input(Bool()) 122 val hasNoSpecExec = Input(Bool()) 123 val interrupt_safe = Input(Bool()) 124 val blockCommit = Input(Bool()) 125 // output: the CommitWidth deqPtr 126 val out = Vec(CommitWidth, Output(new RobPtr)) 127 val next_out = Vec(CommitWidth, Output(new RobPtr)) 128 }) 129 130 val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr)))) 131 132 // for exceptions (flushPipe included) and interrupts: 133 // only consider the first instruction 134 val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe 135 val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0) 136 val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable) 137 138 // for normal commits: only to consider when there're no exceptions 139 // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions. 140 val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last) 141 val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i))) 142 val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B) 143 // when io.intrBitSetReg or there're possible exceptions in these instructions, 144 // only one instruction is allowed to commit 145 val allowOnlyOne = commit_exception || io.intrBitSetReg 146 val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt) 147 148 val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt)) 149 val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec) 150 151 deqPtrVec := deqPtrVec_next 152 153 io.next_out := deqPtrVec_next 154 io.out := deqPtrVec 155 156 when (io.state === 0.U) { 157 XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt) 158 } 159 160} 161 162class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 163 val io = IO(new Bundle { 164 // for input redirect 165 val redirect = Input(Valid(new Redirect)) 166 // for enqueue 167 val allowEnqueue = Input(Bool()) 168 val hasBlockBackward = Input(Bool()) 169 val enq = Vec(RenameWidth, Input(Bool())) 170 val out = Output(Vec(RenameWidth, new RobPtr)) 171 }) 172 173 val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr))) 174 175 // enqueue 176 val canAccept = io.allowEnqueue && !io.hasBlockBackward 177 val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U) 178 179 for ((ptr, i) <- enqPtrVec.zipWithIndex) { 180 when(io.redirect.valid) { 181 ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 182 }.otherwise { 183 ptr := ptr + dispatchNum 184 } 185 } 186 187 io.out := enqPtrVec 188 189} 190 191class RobExceptionInfo(implicit p: Parameters) extends XSBundle { 192 // val valid = Bool() 193 val robIdx = new RobPtr 194 val exceptionVec = ExceptionVec() 195 val flushPipe = Bool() 196 val isVset = Bool() 197 val replayInst = Bool() // redirect to that inst itself 198 val singleStep = Bool() // TODO add frontend hit beneath 199 val crossPageIPFFix = Bool() 200 val trigger = new TriggerCf 201 202// def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend 203// def trigger_after = trigger.getTimingBackend && trigger.getHitBackend 204 def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit 205 def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit 206 // only exceptions are allowed to writeback when enqueue 207 def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit 208} 209 210class ExceptionGen(params: BackendParams)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 211 val io = IO(new Bundle { 212 val redirect = Input(Valid(new Redirect)) 213 val flush = Input(Bool()) 214 val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo))) 215 // csr + load + store 216 val wb = Vec(params.numException, Flipped(ValidIO(new RobExceptionInfo))) 217 val out = ValidIO(new RobExceptionInfo) 218 val state = ValidIO(new RobExceptionInfo) 219 }) 220 221 val wbExuParams = params.allExuParams.filter(_.exceptionOut.nonEmpty) 222 223 def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): RobExceptionInfo = { 224 def getOldest_recursion(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = { 225 assert(valid.length == bits.length) 226 if (valid.length == 1) { 227 (valid, bits) 228 } else if (valid.length == 2) { 229 val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0))))) 230 for (i <- res.indices) { 231 res(i).valid := valid(i) 232 res(i).bits := bits(i) 233 } 234 val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1)) 235 (Seq(oldest.valid), Seq(oldest.bits)) 236 } else { 237 val left = getOldest_recursion(valid.take(valid.length / 2), bits.take(valid.length / 2)) 238 val right = getOldest_recursion(valid.drop(valid.length / 2), bits.drop(valid.length / 2)) 239 getOldest_recursion(left._1 ++ right._1, left._2 ++ right._2) 240 } 241 } 242 getOldest_recursion(valid, bits)._2.head 243 } 244 245 246 val currentValid = RegInit(false.B) 247 val current = Reg(new RobExceptionInfo) 248 249 // orR the exceptionVec 250 val lastCycleFlush = RegNext(io.flush) 251 val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush)) 252 253 // s0: compare wb in 4 groups 254 val csrvldu_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(t => t.isCsr || t.fuType == FuType.vldu).nonEmpty).map(_._1) 255 val load_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.ldu).nonEmpty).map(_._1) 256 val store_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(t => t.isSta || t.fuType == FuType.mou).nonEmpty).map(_._1) 257 val varith_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.isVecArith).nonEmpty).map(_._1) 258 // TODO: vsta_wb = ??? 259 260 val writebacks = Seq(csrvldu_wb, load_wb, store_wb, varith_wb) 261 val in_wb_valids = writebacks.map(_.map(w => w.valid && w.bits.has_exception && !lastCycleFlush)) 262 val wb_valid = in_wb_valids.zip(writebacks).map { case (valid, wb) => 263 valid.zip(wb.map(_.bits)).map { case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }.reduce(_ || _) 264 } 265 val wb_bits = in_wb_valids.zip(writebacks).map { case (valid, wb) => getOldest(valid, wb.map(_.bits))} 266 267 val s0_out_valid = wb_valid.map(x => RegNext(x)) 268 val s0_out_bits = wb_bits.map(x => RegNext(x)) 269 270 // s1: compare last four and current flush 271 val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) }) 272 val s1_out_bits = RegNext(getOldest(s0_out_valid, s0_out_bits)) 273 val s1_out_valid = RegNext(s1_valid.asUInt.orR) 274 275 val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 276 val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits))) 277 278 // s2: compare the input exception with the current one 279 // priorities: 280 // (1) system reset 281 // (2) current is valid: flush, remain, merge, update 282 // (3) current is not valid: s1 or enq 283 val current_flush = current.robIdx.needFlush(io.redirect) || io.flush 284 val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush 285 when (currentValid) { 286 when (current_flush) { 287 currentValid := Mux(s1_flush, false.B, s1_out_valid) 288 } 289 when (s1_out_valid && !s1_flush) { 290 when (isAfter(current.robIdx, s1_out_bits.robIdx)) { 291 current := s1_out_bits 292 }.elsewhen (current.robIdx === s1_out_bits.robIdx) { 293 current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec()) 294 current.flushPipe := s1_out_bits.flushPipe || current.flushPipe 295 current.replayInst := s1_out_bits.replayInst || current.replayInst 296 current.singleStep := s1_out_bits.singleStep || current.singleStep 297 current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf) 298 } 299 } 300 }.elsewhen (s1_out_valid && !s1_flush) { 301 currentValid := true.B 302 current := s1_out_bits 303 }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) { 304 currentValid := true.B 305 current := enq_bits 306 } 307 308 io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback 309 io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits) 310 io.state.valid := currentValid 311 io.state.bits := current 312 313} 314 315class RobFlushInfo(implicit p: Parameters) extends XSBundle { 316 val ftqIdx = new FtqPtr 317 val robIdx = new RobPtr 318 val ftqOffset = UInt(log2Up(PredictWidth).W) 319 val replayInst = Bool() 320} 321 322class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter { 323 override def shouldBeInlined: Boolean = false 324 325 lazy val module = new RobImp(this)(p, params) 326} 327 328class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper) 329 with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents { 330 331 private val LduCnt = params.LduCnt 332 private val StaCnt = params.StaCnt 333 334 val io = IO(new Bundle() { 335 val hartId = Input(UInt(8.W)) 336 val redirect = Input(Valid(new Redirect)) 337 val enq = new RobEnqIO 338 val flushOut = ValidIO(new Redirect) 339 val exception = ValidIO(new ExceptionInfo) 340 // exu + brq 341 val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles) 342 val commits = Output(new RobCommitIO) 343 val rabCommits = Output(new RobCommitIO) 344 val diffCommits = Output(new DiffCommitIO) 345 val isVsetFlushPipe = Output(Bool()) 346 val vconfigPdest = Output(UInt(PhyRegIdxWidth.W)) 347 val lsq = new RobLsqIO 348 val robDeqPtr = Output(new RobPtr) 349 val csr = new RobCSRIO 350 val snpt = Input(new SnapshotPort) 351 val robFull = Output(Bool()) 352 val headNotReady = Output(Bool()) 353 val cpu_halt = Output(Bool()) 354 val wfi_enable = Input(Bool()) 355 356 val debug_ls = Flipped(new DebugLSIO) 357 val debugRobHead = Output(new DynInst) 358 val debugEnqLsq = Input(new LsqEnqIO) 359 val debugHeadLsIssue = Input(Bool()) 360 val lsTopdownInfo = Vec(LduCnt, Input(new LsTopdownInfo)) 361 val debugTopDown = new Bundle { 362 val toCore = new RobCoreTopDownIO 363 val toDispatch = new RobDispatchTopDownIO 364 val robHeadLqIdx = Valid(new LqPtr) 365 } 366 val debugRolling = new RobDebugRollingIO 367 }) 368 369 val exuWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(!_.bits.params.hasStdFu).toSeq 370 val stdWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(_.bits.params.hasStdFu).toSeq 371 val fflagsWBs = io.writeback.filter(x => x.bits.fflags.nonEmpty) 372 val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty) 373 val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty) 374 375 val exuWbPorts = io.writeback.filter(!_.bits.params.hasStdFu) 376 val stdWbPorts = io.writeback.filter(_.bits.params.hasStdFu) 377 val fflagsPorts = io.writeback.filter(x => x.bits.fflags.nonEmpty) 378 val vxsatPorts = io.writeback.filter(x => x.bits.vxsat.nonEmpty) 379 val exceptionPorts = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty) 380 val numExuWbPorts = exuWBs.length 381 val numStdWbPorts = stdWBs.length 382 383 384 println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth") 385// println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}") 386// println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}") 387// println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}") 388 389 390 // instvalid field 391 val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 392 // writeback status 393 394 val stdWritebacked = Reg(Vec(RobSize, Bool())) 395 val uopNumVec = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W)))) 396 val realDestSize = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W)))) 397 val fflagsDataModule = RegInit(VecInit(Seq.fill(RobSize)(0.U(5.W)))) 398 val vxsatDataModule = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 399 400 def isWritebacked(ptr: UInt): Bool = { 401 !uopNumVec(ptr).orR && stdWritebacked(ptr) 402 } 403 404 def isUopWritebacked(ptr: UInt): Bool = { 405 !uopNumVec(ptr).orR 406 } 407 408 val mmio = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 409 410 // data for redirect, exception, etc. 411 val flagBkup = Mem(RobSize, Bool()) 412 // some instructions are not allowed to trigger interrupts 413 // They have side effects on the states of the processor before they write back 414 val interrupt_safe = Mem(RobSize, Bool()) 415 416 // data for debug 417 // Warn: debug_* prefix should not exist in generated verilog. 418 val debug_microOp = Mem(RobSize, new DynInst) 419 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug 420 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug 421 val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init))) 422 val debug_lsTopdownInfo = RegInit(VecInit(Seq.fill(RobSize)(LsTopdownInfo.init))) 423 val debug_lqIdxValid = RegInit(VecInit.fill(RobSize)(false.B)) 424 val debug_lsIssued = RegInit(VecInit.fill(RobSize)(false.B)) 425 426 // pointers 427 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 428 val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr)) 429 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 430 431 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 432 val lastWalkPtr = Reg(new RobPtr) 433 val allowEnqueue = RegInit(true.B) 434 435 val enqPtr = enqPtrVec.head 436 val deqPtr = deqPtrVec(0) 437 val walkPtr = walkPtrVec(0) 438 439 val isEmpty = enqPtr === deqPtr 440 val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level) 441 442 val snptEnq = io.enq.canAccept && io.enq.req.head.valid && io.enq.req.head.bits.snapshot 443 val snapshots = SnapshotGenerator(enqPtrVec, snptEnq, io.snpt.snptDeq, io.redirect.valid) 444 val debug_lsIssue = WireDefault(debug_lsIssued) 445 debug_lsIssue(deqPtr.value) := io.debugHeadLsIssue 446 447 /** 448 * states of Rob 449 */ 450 val s_idle :: s_walk :: Nil = Enum(2) 451 val state = RegInit(s_idle) 452 453 /** 454 * Data Modules 455 * 456 * CommitDataModule: data from dispatch 457 * (1) read: commits/walk/exception 458 * (2) write: enqueue 459 * 460 * WritebackData: data from writeback 461 * (1) read: commits/walk/exception 462 * (2) write: write back from exe units 463 */ 464 val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth)) 465 val dispatchDataRead = dispatchData.io.rdata 466 467 val exceptionGen = Module(new ExceptionGen(params)) 468 val exceptionDataRead = exceptionGen.io.state 469 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 470 val vxsatDataRead = Wire(Vec(CommitWidth, Bool())) 471 472 io.robDeqPtr := deqPtr 473 io.debugRobHead := debug_microOp(deqPtr.value) 474 475 val rab = Module(new RenameBuffer(RabSize)) 476 477 rab.io.redirect.valid := io.redirect.valid 478 479 rab.io.req.zip(io.enq.req).map { case (dest, src) => 480 dest.bits := src.bits 481 dest.valid := src.valid && io.enq.canAccept 482 } 483 484 val commitDestSizeSeq = (0 until CommitWidth).map(i => realDestSize(deqPtrVec(i).value)) 485 val walkDestSizeSeq = (0 until CommitWidth).map(i => realDestSize(walkPtrVec(i).value)) 486 487 val commitSizeSum = io.commits.commitValid.zip(commitDestSizeSeq).map { case (commitValid, destSize) => 488 Mux(io.commits.isCommit && commitValid, destSize, 0.U) 489 }.reduce(_ +& _) 490 val walkSizeSum = io.commits.walkValid.zip(walkDestSizeSeq).map { case (walkValid, destSize) => 491 Mux(io.commits.isWalk && walkValid, destSize, 0.U) 492 }.reduce(_ +& _) 493 494 rab.io.fromRob.commitSize := commitSizeSum 495 rab.io.fromRob.walkSize := walkSizeSum 496 rab.io.snpt.snptEnq := false.B 497 rab.io.snpt.snptDeq := io.snpt.snptDeq 498 rab.io.snpt.snptSelect := io.snpt.snptSelect 499 rab.io.snpt.useSnpt := io.snpt.useSnpt 500 501 io.rabCommits := rab.io.commits 502 io.diffCommits := rab.io.diffCommits 503 504 /** 505 * Enqueue (from dispatch) 506 */ 507 // special cases 508 val hasBlockBackward = RegInit(false.B) 509 val hasWaitForward = RegInit(false.B) 510 val doingSvinval = RegInit(false.B) 511 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 512 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 513 when (isEmpty) { hasBlockBackward:= false.B } 514 // When any instruction commits, hasNoSpecExec should be set to false.B 515 when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasWaitForward:= false.B } 516 517 // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing. 518 // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle. 519 // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts. 520 val hasWFI = RegInit(false.B) 521 io.cpu_halt := hasWFI 522 // WFI Timeout: 2^20 = 1M cycles 523 val wfi_cycles = RegInit(0.U(20.W)) 524 when (hasWFI) { 525 wfi_cycles := wfi_cycles + 1.U 526 }.elsewhen (!hasWFI && RegNext(hasWFI)) { 527 wfi_cycles := 0.U 528 } 529 val wfi_timeout = wfi_cycles.andR 530 when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) { 531 hasWFI := false.B 532 } 533 534 val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.req.take(i).map(req => req.valid && req.bits.firstUop))))) 535 io.enq.canAccept := allowEnqueue && !hasBlockBackward && rab.io.canEnq 536 io.enq.resp := allocatePtrVec 537 val canEnqueue = VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop && io.enq.canAccept)) 538 val timer = GTimer() 539 for (i <- 0 until RenameWidth) { 540 // we don't check whether io.redirect is valid here since redirect has higher priority 541 when (canEnqueue(i)) { 542 val enqUop = io.enq.req(i).bits 543 val enqIndex = allocatePtrVec(i).value 544 // store uop in data module and debug_microOp Vec 545 debug_microOp(enqIndex) := enqUop 546 debug_microOp(enqIndex).debugInfo.dispatchTime := timer 547 debug_microOp(enqIndex).debugInfo.enqRsTime := timer 548 debug_microOp(enqIndex).debugInfo.selectTime := timer 549 debug_microOp(enqIndex).debugInfo.issueTime := timer 550 debug_microOp(enqIndex).debugInfo.writebackTime := timer 551 debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer 552 debug_microOp(enqIndex).debugInfo.tlbRespTime := timer 553 debug_lsInfo(enqIndex) := DebugLsInfo.init 554 debug_lsTopdownInfo(enqIndex) := LsTopdownInfo.init 555 debug_lqIdxValid(enqIndex) := false.B 556 debug_lsIssued(enqIndex) := false.B 557 558 when (enqUop.blockBackward) { 559 hasBlockBackward := true.B 560 } 561 when (enqUop.waitForward) { 562 hasWaitForward := true.B 563 } 564 val enqHasTriggerHit = false.B // io.enq.req(i).bits.cf.trigger.getHitFrontend 565 val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR 566 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 567 when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe)) 568 { 569 doingSvinval := true.B 570 } 571 // the end instruction of Svinval enqs so clear doingSvinval 572 when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe)) 573 { 574 doingSvinval := false.B 575 } 576 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 577 assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe))) 578 when (enqUop.isWFI && !enqHasException && !enqHasTriggerHit) { 579 hasWFI := true.B 580 } 581 582 mmio(enqIndex) := false.B 583 } 584 } 585 val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(req => req.valid && req.bits.firstUop)), 0.U) 586 io.enq.isEmpty := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR) 587 588 when (!io.wfi_enable) { 589 hasWFI := false.B 590 } 591 // sel vsetvl's flush position 592 val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3) 593 val vsetvlState = RegInit(vs_idle) 594 595 val firstVInstrFtqPtr = RegInit(0.U.asTypeOf(new FtqPtr)) 596 val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W))) 597 val firstVInstrRobIdx = RegInit(0.U.asTypeOf(new RobPtr)) 598 599 val enq0 = io.enq.req(0) 600 val enq0IsVset = enq0.bits.isVset && enq0.bits.lastUop && canEnqueue(0) 601 val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe 602 val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVArith(req.bits.fuType) && fire} 603 // for vs_idle 604 val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType))) 605 // for vs_waitVinstr 606 val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1) 607 val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req) 608 when(vsetvlState === vs_idle){ 609 firstVInstrFtqPtr := firstVInstrIdle.bits.ftqPtr 610 firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset 611 firstVInstrRobIdx := firstVInstrIdle.bits.robIdx 612 }.elsewhen(vsetvlState === vs_waitVinstr){ 613 when(Cat(enqIsVInstrOrVset).orR){ 614 firstVInstrFtqPtr := firstVInstrWait.bits.ftqPtr 615 firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset 616 firstVInstrRobIdx := firstVInstrWait.bits.robIdx 617 } 618 } 619 620 val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR 621 when(vsetvlState === vs_idle && !io.redirect.valid){ 622 when(enq0IsVsetFlush){ 623 vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr) 624 } 625 }.elsewhen(vsetvlState === vs_waitVinstr){ 626 when(io.redirect.valid){ 627 vsetvlState := vs_idle 628 }.elsewhen(Cat(enqIsVInstrOrVset).orR){ 629 vsetvlState := vs_waitFlush 630 } 631 }.elsewhen(vsetvlState === vs_waitFlush){ 632 when(io.redirect.valid){ 633 vsetvlState := vs_idle 634 } 635 } 636 637 // lqEnq 638 io.debugEnqLsq.needAlloc.map(_(0)).zip(io.debugEnqLsq.req).foreach { case (alloc, req) => 639 when(io.debugEnqLsq.canAccept && alloc && req.valid) { 640 debug_microOp(req.bits.robIdx.value).lqIdx := req.bits.lqIdx 641 debug_lqIdxValid(req.bits.robIdx.value) := true.B 642 } 643 } 644 645 // lsIssue 646 when(io.debugHeadLsIssue) { 647 debug_lsIssued(deqPtr.value) := true.B 648 } 649 650 /** 651 * Writeback (from execution units) 652 */ 653 for (wb <- exuWBs) { 654 when (wb.valid) { 655 val wbIdx = wb.bits.robIdx.value 656 debug_exuData(wbIdx) := wb.bits.data 657 debug_exuDebug(wbIdx) := wb.bits.debug 658 debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime 659 debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime 660 debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime 661 debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime 662 663 // debug for lqidx and sqidx 664 debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr)) 665 debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr)) 666 667 val debug_Uop = debug_microOp(wbIdx) 668 XSInfo(true.B, 669 p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " + 670 p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " + 671 p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.robIdx}\n" 672 ) 673 } 674 } 675 676 val writebackNum = PopCount(exuWBs.map(_.valid)) 677 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 678 679 for (i <- 0 until LoadPipelineWidth) { 680 when (RegNext(io.lsq.mmio(i))) { 681 mmio(RegNext(io.lsq.uop(i).robIdx).value) := true.B 682 } 683 } 684 685 /** 686 * RedirectOut: Interrupt and Exceptions 687 */ 688 val deqDispatchData = dispatchDataRead(0) 689 val debug_deqUop = debug_microOp(deqPtr.value) 690 691 val intrBitSetReg = RegNext(io.csr.intrBitSet) 692 val intrEnable = intrBitSetReg && !hasWaitForward && interrupt_safe(deqPtr.value) 693 val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 694 val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR || 695 exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit) 696 val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe 697 val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst 698 val exceptionEnable = isWritebacked(deqPtr.value) && deqHasException 699 700 XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n") 701 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n") 702 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n") 703 704 val isFlushPipe = isWritebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst) 705 706 val isVsetFlushPipe = isWritebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset 707// val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush) 708 val needModifyFtqIdxOffset = false.B 709 io.isVsetFlushPipe := isVsetFlushPipe 710 io.vconfigPdest := rab.io.vconfigPdest 711 // io.flushOut will trigger redirect at the next cycle. 712 // Block any redirect or commit at the next cycle. 713 val lastCycleFlush = RegNext(io.flushOut.valid) 714 715 io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush 716 io.flushOut.bits := DontCare 717 io.flushOut.bits.isRVC := deqDispatchData.isRVC 718 io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr) 719 io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx) 720 io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset) 721 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next" 722 io.flushOut.bits.interrupt := true.B 723 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 724 XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable) 725 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 726 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 727 728 val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush 729 io.exception.valid := RegNext(exceptionHappen) 730 io.exception.bits.pc := RegEnable(debug_deqUop.pc, exceptionHappen) 731 io.exception.bits.instr := RegEnable(debug_deqUop.instr, exceptionHappen) 732 io.exception.bits.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 733 io.exception.bits.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 734 io.exception.bits.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 735 io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 736 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 737// io.exception.bits.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen) 738 739 XSDebug(io.flushOut.valid, 740 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " + 741 p"excp $exceptionEnable flushPipe $isFlushPipe " + 742 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 743 744 745 /** 746 * Commits (and walk) 747 * They share the same width. 748 */ 749 val shouldWalkVec = VecInit(walkPtrVec.map(_ <= lastWalkPtr)) 750 val walkFinished = VecInit(walkPtrVec.map(_ >= lastWalkPtr)).asUInt.orR 751 rab.io.fromRob.walkEnd := state === s_walk && walkFinished 752 753 require(RenameWidth <= CommitWidth) 754 755 // wiring to csr 756 val (wflags, dirtyFs) = (0 until CommitWidth).map(i => { 757 val v = io.commits.commitValid(i) 758 val info = io.commits.info(i) 759 (v & info.wflags, v & info.dirtyFs) 760 }).unzip 761 val fflags = Wire(Valid(UInt(5.W))) 762 fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR 763 fflags.bits := wflags.zip(fflagsDataRead).map({ 764 case (w, f) => Mux(w, f, 0.U) 765 }).reduce(_|_) 766 val dirty_fs = io.commits.isCommit && VecInit(dirtyFs).asUInt.orR 767 768 val vxsat = Wire(Valid(Bool())) 769 vxsat.valid := io.commits.isCommit && vxsat.bits 770 vxsat.bits := io.commits.commitValid.zip(vxsatDataRead).map { 771 case (valid, vxsat) => valid & vxsat 772 }.reduce(_ | _) 773 774 // when mispredict branches writeback, stop commit in the next 2 cycles 775 // TODO: don't check all exu write back 776 val misPredWb = Cat(VecInit(redirectWBs.map(wb => 777 wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid 778 ).toSeq)).orR 779 val misPredBlockCounter = Reg(UInt(3.W)) 780 misPredBlockCounter := Mux(misPredWb, 781 "b111".U, 782 misPredBlockCounter >> 1.U 783 ) 784 val misPredBlock = misPredBlockCounter(0) 785 val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI 786 787 io.commits.isWalk := state === s_walk 788 io.commits.isCommit := state === s_idle && !blockCommit 789 val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value))) 790 val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value))) 791 // store will be commited iff both sta & std have been writebacked 792 val commit_w = VecInit(deqPtrVec.map(ptr => isWritebacked(ptr.value))) 793 val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last) 794 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i))) 795 val allowOnlyOneCommit = commit_exception || intrBitSetReg 796 // for instructions that may block others, we don't allow them to commit 797 for (i <- 0 until CommitWidth) { 798 // defaults: state === s_idle and instructions commit 799 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 800 val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst 801 io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked 802 io.commits.info(i) := dispatchDataRead(i) 803 io.commits.robIdx(i) := deqPtrVec(i) 804 805 io.commits.walkValid(i) := shouldWalkVec(i) 806 when (state === s_walk) { 807 when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) { 808 XSError(!walk_v(i), s"The walking entry($i) should be valid\n") 809 } 810 } 811 812 XSInfo(io.commits.isCommit && io.commits.commitValid(i), 813 "retired pc %x wen %d ldest %d pdest %x data %x fflags: %b vxsat: %b\n", 814 debug_microOp(deqPtrVec(i).value).pc, 815 io.commits.info(i).rfWen, 816 io.commits.info(i).ldest, 817 io.commits.info(i).pdest, 818 debug_exuData(deqPtrVec(i).value), 819 fflagsDataRead(i), 820 vxsatDataRead(i) 821 ) 822 XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n", 823 debug_microOp(walkPtrVec(i).value).pc, 824 io.commits.info(i).rfWen, 825 io.commits.info(i).ldest, 826 debug_exuData(walkPtrVec(i).value) 827 ) 828 } 829 if (env.EnableDifftest) { 830 io.commits.info.map(info => dontTouch(info.pc)) 831 } 832 833 // sync fflags/dirty_fs/vxsat to csr 834 io.csr.fflags := RegNext(fflags) 835 io.csr.dirty_fs := RegNext(dirty_fs) 836 io.csr.vxsat := RegNext(vxsat) 837 838 // sync v csr to csr 839 // for difftest 840 if(env.AlwaysBasicDiff || env.EnableDifftest) { 841 val isDiffWriteVconfigVec = io.diffCommits.commitValid.zip(io.diffCommits.info).map { case (valid, info) => valid && info.ldest === VCONFIG_IDX.U && info.vecWen }.reverse 842 io.csr.vcsrFlag := RegNext(io.diffCommits.isCommit && Cat(isDiffWriteVconfigVec).orR) 843 } 844 else{ 845 io.csr.vcsrFlag := false.B 846 } 847 848 // commit load/store to lsq 849 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 850 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE)) 851 io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U)) 852 io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U)) 853 // indicate a pending load or store 854 io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value) && mmio(deqPtr.value)) 855 io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value)) 856 io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0)) 857 io.lsq.pendingPtr := RegNext(deqPtr) 858 859 /** 860 * state changes 861 * (1) redirect: switch to s_walk 862 * (2) walk: when walking comes to the end, switch to s_idle 863 */ 864 val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished && rab.io.status.walkEnd, s_idle, state)) 865 XSPerfAccumulate("s_idle_to_idle", state === s_idle && state_next === s_idle) 866 XSPerfAccumulate("s_idle_to_walk", state === s_idle && state_next === s_walk) 867 XSPerfAccumulate("s_walk_to_idle", state === s_walk && state_next === s_idle) 868 XSPerfAccumulate("s_walk_to_walk", state === s_walk && state_next === s_walk) 869 state := state_next 870 871 /** 872 * pointers and counters 873 */ 874 val deqPtrGenModule = Module(new RobDeqPtrWrapper) 875 deqPtrGenModule.io.state := state 876 deqPtrGenModule.io.deq_v := commit_v 877 deqPtrGenModule.io.deq_w := commit_w 878 deqPtrGenModule.io.exception_state := exceptionDataRead 879 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 880 deqPtrGenModule.io.hasNoSpecExec := hasWaitForward 881 deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value) 882 deqPtrGenModule.io.blockCommit := blockCommit 883 deqPtrVec := deqPtrGenModule.io.out 884 val deqPtrVec_next = deqPtrGenModule.io.next_out 885 886 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 887 enqPtrGenModule.io.redirect := io.redirect 888 enqPtrGenModule.io.allowEnqueue := allowEnqueue && rab.io.canEnq 889 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 890 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop)) 891 enqPtrVec := enqPtrGenModule.io.out 892 893 // next walkPtrVec: 894 // (1) redirect occurs: update according to state 895 // (2) walk: move forwards 896 val walkPtrVec_next = Mux(io.redirect.valid, 897 Mux(io.snpt.useSnpt, snapshots(io.snpt.snptSelect), deqPtrVec_next), 898 Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec) 899 ) 900 walkPtrVec := walkPtrVec_next 901 902 val numValidEntries = distanceBetween(enqPtr, deqPtr) 903 val commitCnt = PopCount(io.commits.commitValid) 904 905 allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U 906 907 val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0)) 908 when (io.redirect.valid) { 909 lastWalkPtr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx - 1.U, io.redirect.bits.robIdx) 910 } 911 912 913 /** 914 * States 915 * We put all the stage bits changes here. 916 917 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 918 * All states: (1) valid; (2) writebacked; (3) flagBkup 919 */ 920 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 921 922 // redirect logic writes 6 valid 923 val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr)) 924 val redirectTail = Reg(new RobPtr) 925 val redirectIdle :: redirectBusy :: Nil = Enum(2) 926 val redirectState = RegInit(redirectIdle) 927 val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail)) 928 when(redirectState === redirectBusy) { 929 redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U) 930 redirectHeadVec zip invMask foreach { 931 case (redirectHead, inv) => when(inv) { 932 valid(redirectHead.value) := false.B 933 } 934 } 935 when(!invMask.last) { 936 redirectState := redirectIdle 937 } 938 } 939 when(io.redirect.valid) { 940 redirectState := redirectBusy 941 when(redirectState === redirectIdle) { 942 redirectTail := enqPtr 943 } 944 redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) => 945 redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 946 } 947 } 948 // enqueue logic writes 6 valid 949 for (i <- 0 until RenameWidth) { 950 when (canEnqueue(i) && !io.redirect.valid) { 951 valid(allocatePtrVec(i).value) := true.B 952 } 953 } 954 // dequeue logic writes 6 valid 955 for (i <- 0 until CommitWidth) { 956 val commitValid = io.commits.isCommit && io.commits.commitValid(i) 957 when (commitValid) { 958 valid(commitReadAddr(i)) := false.B 959 } 960 } 961 962 // debug_inst update 963 for(i <- 0 until (LduCnt + StaCnt)) { 964 debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i)) 965 debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i)) 966 } 967 for (i <- 0 until LduCnt) { 968 debug_lsTopdownInfo(io.lsTopdownInfo(i).s1.robIdx).s1SignalEnable(io.lsTopdownInfo(i)) 969 debug_lsTopdownInfo(io.lsTopdownInfo(i).s2.robIdx).s2SignalEnable(io.lsTopdownInfo(i)) 970 } 971 972 // writeback logic set numWbPorts writebacked to true 973 val blockWbSeq = Wire(Vec(exuWBs.length, Bool())) 974 blockWbSeq.map(_ := false.B) 975 for ((wb, blockWb) <- exuWBs.zip(blockWbSeq)) { 976 when(wb.valid) { 977 val wbHasException = wb.bits.exceptionVec.getOrElse(0.U).asUInt.orR 978 val wbHasTriggerHit = false.B //Todo: wb.bits.trigger.getHitBackend 979 val wbHasFlushPipe = wb.bits.flushPipe.getOrElse(false.B) 980 val wbHasReplayInst = wb.bits.replay.getOrElse(false.B) //Todo: && wb.bits.replayInst 981 blockWb := wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit 982 } 983 } 984 985 // if the first uop of an instruction is valid , write writebackedCounter 986 val uopEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid) 987 val instEnqValidSeq = io.enq.req.map (req => io.enq.canAccept && req.valid && req.bits.firstUop) 988 val enqNeedWriteRFSeq = io.enq.req.map(_.bits.needWriteRf) 989 val enqRobIdxSeq = io.enq.req.map(req => req.bits.robIdx.value) 990 val enqUopNumVec = VecInit(io.enq.req.map(req => req.bits.numUops)) 991 val enqEliminatedMoveVec = VecInit(io.enq.req.map(req => req.bits.eliminatedMove)) 992 993 private val enqWriteStdVec: Vec[Bool] = VecInit(io.enq.req.map { 994 req => FuType.isAMO(req.bits.fuType) || FuType.isStore(req.bits.fuType) 995 }) 996 val fflags_wb = fflagsPorts 997 val vxsat_wb = vxsatPorts 998 for(i <- 0 until RobSize){ 999 1000 val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === i.U) 1001 val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch } 1002 val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch } 1003 val instCanEnqFlag = Cat(instCanEnqSeq).orR 1004 1005 realDestSize(i) := Mux(!valid(i) && instCanEnqFlag || valid(i), realDestSize(i) + PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map{ case(writeFlag, valid) => writeFlag && valid }), 0.U) 1006 1007 val enqUopNum = PriorityMux(instCanEnqSeq, enqUopNumVec) 1008 val enqEliminatedMove = PriorityMux(instCanEnqSeq, enqEliminatedMoveVec) 1009 val enqWriteStd = PriorityMux(instCanEnqSeq, enqWriteStdVec) 1010 1011 val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 1012 val canWbNoBlockSeq = canWbSeq.zip(blockWbSeq).map{ case(canWb, blockWb) => canWb && !blockWb } 1013 val canStdWbSeq = VecInit(stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)) 1014 val wbCnt = PopCount(canWbNoBlockSeq) 1015 1016 val exceptionHas = RegInit(false.B) 1017 val exceptionHasWire = Wire(Bool()) 1018 exceptionHasWire := MuxCase(exceptionHas, Seq( 1019 (valid(i) && exceptionGen.io.out.valid && exceptionGen.io.out.bits.robIdx.value === i.U) -> true.B, 1020 !valid(i) -> false.B 1021 )) 1022 exceptionHas := exceptionHasWire 1023 1024 when (exceptionHas || exceptionHasWire) { 1025 // exception flush 1026 uopNumVec(i) := 0.U 1027 stdWritebacked(i) := true.B 1028 }.elsewhen(!valid(i) && instCanEnqFlag) { 1029 // enq set num of uops 1030 uopNumVec(i) := enqUopNum 1031 stdWritebacked(i) := Mux(enqWriteStd, false.B, true.B) 1032 }.elsewhen(valid(i)) { 1033 // update by writing back 1034 uopNumVec(i) := uopNumVec(i) - wbCnt 1035 when (canStdWbSeq.asUInt.orR) { 1036 stdWritebacked(i) := true.B 1037 } 1038 }.otherwise { 1039 uopNumVec(i) := 0.U 1040 } 1041 1042 val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U && writeback.bits.wflags.getOrElse(false.B)) 1043 val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.fold(false.B)(_ | _) 1044 fflagsDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, fflagsDataModule(i) | fflagsRes) 1045 1046 val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 1047 val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.fold(false.B)(_ | _) 1048 vxsatDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, vxsatDataModule(i) | vxsatRes) 1049 } 1050 1051 // flagBkup 1052 // enqueue logic set 6 flagBkup at most 1053 for (i <- 0 until RenameWidth) { 1054 when (canEnqueue(i)) { 1055 flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag 1056 } 1057 } 1058 1059 // interrupt_safe 1060 for (i <- 0 until RenameWidth) { 1061 // We RegNext the updates for better timing. 1062 // Note that instructions won't change the system's states in this cycle. 1063 when (RegNext(canEnqueue(i))) { 1064 // For now, we allow non-load-store instructions to trigger interrupts 1065 // For MMIO instructions, they should not trigger interrupts since they may 1066 // be sent to lower level before it writes back. 1067 // However, we cannot determine whether a load/store instruction is MMIO. 1068 // Thus, we don't allow load/store instructions to trigger an interrupt. 1069 // TODO: support non-MMIO load-store instructions to trigger interrupts 1070 val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType) 1071 interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts) 1072 } 1073 } 1074 1075 /** 1076 * read and write of data modules 1077 */ 1078 val commitReadAddr_next = Mux(state_next === s_idle, 1079 VecInit(deqPtrVec_next.map(_.value)), 1080 VecInit(walkPtrVec_next.map(_.value)) 1081 ) 1082 dispatchData.io.wen := canEnqueue 1083 dispatchData.io.waddr := allocatePtrVec.map(_.value) 1084 dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).zipWithIndex.foreach { case ((wdata, req), portIdx) => 1085 wdata.ldest := req.ldest 1086 wdata.rfWen := req.rfWen 1087 wdata.dirtyFs := req.dirtyFs 1088 wdata.vecWen := req.vecWen 1089 wdata.wflags := req.wfflags 1090 wdata.commitType := req.commitType 1091 wdata.pdest := req.pdest 1092 wdata.ftqIdx := req.ftqPtr 1093 wdata.ftqOffset := req.ftqOffset 1094 wdata.isMove := req.eliminatedMove 1095 wdata.isRVC := req.preDecodeInfo.isRVC 1096 wdata.pc := req.pc 1097 wdata.vtype := req.vpu.vtype 1098 wdata.isVset := req.isVset 1099 wdata.instrSize := req.instrSize 1100 } 1101 dispatchData.io.raddr := commitReadAddr_next 1102 1103 exceptionGen.io.redirect <> io.redirect 1104 exceptionGen.io.flush := io.flushOut.valid 1105 1106 val canEnqueueEG = VecInit(io.enq.req.map(req => req.valid && io.enq.canAccept)) 1107 for (i <- 0 until RenameWidth) { 1108 exceptionGen.io.enq(i).valid := canEnqueueEG(i) 1109 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 1110 exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec) 1111 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe 1112 exceptionGen.io.enq(i).bits.isVset := io.enq.req(i).bits.isVset 1113 exceptionGen.io.enq(i).bits.replayInst := false.B 1114 XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst") 1115 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep 1116 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix 1117 exceptionGen.io.enq(i).bits.trigger.clear() 1118 exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.trigger.frontendHit 1119 } 1120 1121 println(s"ExceptionGen:") 1122 println(s"num of exceptions: ${params.numException}") 1123 require(exceptionWBs.length == exceptionGen.io.wb.length, 1124 f"exceptionWBs.length: ${exceptionWBs.length}, " + 1125 f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}") 1126 for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) { 1127 exc_wb.valid := wb.valid 1128 exc_wb.bits.robIdx := wb.bits.robIdx 1129 exc_wb.bits.exceptionVec := wb.bits.exceptionVec.get 1130 exc_wb.bits.flushPipe := wb.bits.flushPipe.getOrElse(false.B) 1131 exc_wb.bits.isVset := false.B 1132 exc_wb.bits.replayInst := wb.bits.replay.getOrElse(false.B) 1133 exc_wb.bits.singleStep := false.B 1134 exc_wb.bits.crossPageIPFFix := false.B 1135 exc_wb.bits.trigger := 0.U.asTypeOf(exc_wb.bits.trigger) // Todo 1136// println(s" [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " + 1137// s"flushPipe ${configs.exists(_.flushPipe)}, " + 1138// s"replayInst ${configs.exists(_.replayInst)}") 1139 } 1140 1141 fflagsDataRead := (0 until CommitWidth).map(i => fflagsDataModule(deqPtrVec(i).value)) 1142 vxsatDataRead := (0 until CommitWidth).map(i => vxsatDataModule(deqPtrVec(i).value)) 1143 1144 val instrCntReg = RegInit(0.U(64.W)) 1145 val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) }) 1146 val trueCommitCnt = RegNext(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => Mux(v, i.instrSize, 0.U) }.reduce(_ +& _)) +& fuseCommitCnt 1147 val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U) 1148 val instrCnt = instrCntReg + retireCounter 1149 instrCntReg := instrCnt 1150 io.csr.perfinfo.retiredInstr := retireCounter 1151 io.robFull := !allowEnqueue 1152 io.headNotReady := commit_v.head && !commit_w.head 1153 1154 /** 1155 * debug info 1156 */ 1157 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 1158 XSDebug("") 1159 XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n") 1160 for(i <- 0 until RobSize) { 1161 XSDebug(false, !valid(i), "-") 1162 XSDebug(false, valid(i) && isWritebacked(i.U), "w") 1163 XSDebug(false, valid(i) && !isWritebacked(i.U), "v") 1164 } 1165 XSDebug(false, true.B, "\n") 1166 1167 for(i <- 0 until RobSize) { 1168 if (i % 4 == 0) XSDebug("") 1169 XSDebug(false, true.B, "%x ", debug_microOp(i).pc) 1170 XSDebug(false, !valid(i), "- ") 1171 XSDebug(false, valid(i) && isWritebacked(i.U), "w ") 1172 XSDebug(false, valid(i) && !isWritebacked(i.U), "v ") 1173 if (i % 4 == 3) XSDebug(false, true.B, "\n") 1174 } 1175 1176 def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U) 1177 def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U) 1178 1179 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 1180 XSPerfAccumulate("clock_cycle", 1.U) 1181 QueuePerf(RobSize, numValidEntries, numValidEntries === RobSize.U) 1182 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 1183 XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt)) 1184 XSPerfRolling("ipc", ifCommitReg(trueCommitCnt), 1000, clock, reset) 1185 XSPerfRolling("cpi", perfCnt = 1.U/*Cycle*/, eventTrigger = ifCommitReg(trueCommitCnt), granularity = 1000, clock, reset) 1186 val commitIsMove = commitDebugUop.map(_.isMove) 1187 XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }))) 1188 val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) 1189 XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e }))) 1190 XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt)) 1191 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 1192 val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t } 1193 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 1194 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 1195 val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t } 1196 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 1197 val commitLoadWaitBit = commitDebugUop.map(_.loadWaitBit) 1198 XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))) 1199 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 1200 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }))) 1201 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && isWritebacked(i.U)))) 1202 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire))) 1203 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 1204 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)) 1205 XSPerfAccumulate("walkCycleTotal", state === s_walk) 1206 XSPerfAccumulate("waitRabWalkEnd", state === s_walk && walkFinished && !rab.io.status.walkEnd) 1207 private val walkCycle = RegInit(0.U(8.W)) 1208 private val waitRabWalkCycle = RegInit(0.U(8.W)) 1209 walkCycle := Mux(io.redirect.valid, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U)) 1210 waitRabWalkCycle := Mux(state === s_walk && walkFinished, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U)) 1211 1212 XSPerfHistogram("walkRobCycleHist", walkCycle, state === s_walk && walkFinished, 0, 32) 1213 XSPerfHistogram("walkRabExtraCycleHist", waitRabWalkCycle, state === s_walk && walkFinished && rab.io.status.walkEnd, 0, 32) 1214 XSPerfHistogram("walkTotalCycleHist", walkCycle, state === s_walk && state_next === s_idle, 0, 32) 1215 1216 private val deqNotWritebacked = valid(deqPtr.value) && !isWritebacked(deqPtr.value) 1217 private val deqStdNotWritebacked = valid(deqPtr.value) && !stdWritebacked(deqPtr.value) 1218 private val deqUopNotWritebacked = valid(deqPtr.value) && !isUopWritebacked(deqPtr.value) 1219 private val deqHeadInfo = debug_microOp(deqPtr.value) 1220 val deqUopCommitType = io.commits.info(0).commitType 1221 1222 XSPerfAccumulate("waitAluCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.alu.U) 1223 XSPerfAccumulate("waitMulCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.mul.U) 1224 XSPerfAccumulate("waitDivCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.div.U) 1225 XSPerfAccumulate("waitBrhCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.brh.U) 1226 XSPerfAccumulate("waitJmpCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.jmp.U) 1227 XSPerfAccumulate("waitCsrCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.csr.U) 1228 XSPerfAccumulate("waitFenCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.fence.U) 1229 XSPerfAccumulate("waitBkuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.bku.U) 1230 XSPerfAccumulate("waitLduCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.ldu.U) 1231 XSPerfAccumulate("waitStuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1232 XSPerfAccumulate("waitStaCycle", deqUopNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1233 XSPerfAccumulate("waitStdCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1234 XSPerfAccumulate("waitAtmCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.mou.U) 1235 1236 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 1237 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 1238 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 1239 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 1240 XSPerfAccumulate("robHeadPC", io.commits.info(0).pc) 1241 XSPerfAccumulate("commitCompressCntAll", PopCount(io.commits.commitValid.zip(io.commits.info).map{case(valid, info) => io.commits.isCommit && valid && info.instrSize > 1.U})) 1242 (2 to RenameWidth).foreach(i => 1243 XSPerfAccumulate(s"commitCompressCnt${i}", PopCount(io.commits.commitValid.zip(io.commits.info).map{case(valid, info) => io.commits.isCommit && valid && info.instrSize === i.U})) 1244 ) 1245 XSPerfAccumulate("compressSize", io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => Mux(io.commits.isCommit && valid && info.instrSize > 1.U, info.instrSize, 0.U) }.reduce(_ +& _)) 1246 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 1247 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 1248 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 1249 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 1250 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 1251 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 1252 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 1253 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 1254 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 1255 } 1256 for (fuType <- FuType.functionNameMap.keys) { 1257 val fuName = FuType.functionNameMap(fuType) 1258 val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U ) 1259 XSPerfRolling(s"ipc_futype_${fuName}", ifCommit(PopCount(commitIsFuType)), 1000, clock, reset) 1260 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 1261 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 1262 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 1263 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 1264 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 1265 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 1266 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 1267 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 1268 } 1269 1270 // top-down info 1271 io.debugTopDown.toCore.robHeadVaddr.valid := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_valid 1272 io.debugTopDown.toCore.robHeadVaddr.bits := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_bits 1273 io.debugTopDown.toCore.robHeadPaddr.valid := debug_lsTopdownInfo(deqPtr.value).s2.paddr_valid 1274 io.debugTopDown.toCore.robHeadPaddr.bits := debug_lsTopdownInfo(deqPtr.value).s2.paddr_bits 1275 io.debugTopDown.toDispatch.robTrueCommit := ifCommitReg(trueCommitCnt) 1276 io.debugTopDown.toDispatch.robHeadLsIssue := debug_lsIssue(deqPtr.value) 1277 io.debugTopDown.robHeadLqIdx.valid := debug_lqIdxValid(deqPtr.value) 1278 io.debugTopDown.robHeadLqIdx.bits := debug_microOp(deqPtr.value).lqIdx 1279 1280 // rolling 1281 io.debugRolling.robTrueCommit := ifCommitReg(trueCommitCnt) 1282 1283 /** 1284 * DataBase info: 1285 * log trigger is at writeback valid 1286 * */ 1287 1288 /** 1289 * @todo add InstInfoEntry back 1290 * @author Maxpicca-Li 1291 */ 1292 1293 //difftest signals 1294 val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value 1295 1296 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1297 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1298 1299 for(i <- 0 until CommitWidth) { 1300 val idx = deqPtrVec(i).value 1301 wdata(i) := debug_exuData(idx) 1302 wpc(i) := SignExt(commitDebugUop(i).pc, XLEN) 1303 } 1304 1305 if (env.EnableDifftest || env.AlwaysBasicDiff) { 1306 // These are the structures used by difftest only and should be optimized after synthesis. 1307 val dt_eliminatedMove = Mem(RobSize, Bool()) 1308 val dt_isRVC = Mem(RobSize, Bool()) 1309 val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) 1310 for (i <- 0 until RenameWidth) { 1311 when (canEnqueue(i)) { 1312 dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 1313 dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC 1314 } 1315 } 1316 for (wb <- exuWBs) { 1317 when (wb.valid) { 1318 val wbIdx = wb.bits.robIdx.value 1319 dt_exuDebug(wbIdx) := wb.bits.debug 1320 } 1321 } 1322 // Always instantiate basic difftest modules. 1323 for (i <- 0 until CommitWidth) { 1324 val uop = commitDebugUop(i) 1325 val commitInfo = io.commits.info(i) 1326 val ptr = deqPtrVec(i).value 1327 val exuOut = dt_exuDebug(ptr) 1328 val eliminatedMove = dt_eliminatedMove(ptr) 1329 val isRVC = dt_isRVC(ptr) 1330 1331 val difftest = DifftestModule(new DiffInstrCommit(MaxPhyPregs), delay = 3, dontCare = true) 1332 difftest.coreid := io.hartId 1333 difftest.index := i.U 1334 difftest.valid := io.commits.commitValid(i) && io.commits.isCommit 1335 difftest.skip := Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt) 1336 difftest.isRVC := isRVC 1337 difftest.rfwen := io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U 1338 difftest.fpwen := io.commits.commitValid(i) && uop.fpWen 1339 difftest.wpdest := commitInfo.pdest 1340 difftest.wdest := commitInfo.ldest 1341 difftest.nFused := Mux(CommitType.isFused(commitInfo.commitType), 1.U, 0.U) 1342 1343 if (env.EnableDifftest) { 1344 val uop = commitDebugUop(i) 1345 difftest.pc := SignExt(uop.pc, XLEN) 1346 difftest.instr := uop.instr 1347 difftest.robIdx := ZeroExt(ptr, 10) 1348 difftest.lqIdx := ZeroExt(uop.lqIdx.value, 7) 1349 difftest.sqIdx := ZeroExt(uop.sqIdx.value, 7) 1350 difftest.isLoad := io.commits.info(i).commitType === CommitType.LOAD 1351 difftest.isStore := io.commits.info(i).commitType === CommitType.STORE 1352 } 1353 } 1354 } 1355 1356 if (env.EnableDifftest) { 1357 for (i <- 0 until CommitWidth) { 1358 val difftest = DifftestModule(new DiffLoadEvent, delay = 3) 1359 difftest.coreid := io.hartId 1360 difftest.index := i.U 1361 1362 val ptr = deqPtrVec(i).value 1363 val uop = commitDebugUop(i) 1364 val exuOut = debug_exuDebug(ptr) 1365 difftest.valid := io.commits.commitValid(i) && io.commits.isCommit 1366 difftest.paddr := exuOut.paddr 1367 difftest.opType := uop.fuOpType 1368 difftest.fuType := uop.fuType 1369 } 1370 } 1371 1372 if (env.EnableDifftest || env.AlwaysBasicDiff) { 1373 val dt_isXSTrap = Mem(RobSize, Bool()) 1374 for (i <- 0 until RenameWidth) { 1375 when (canEnqueue(i)) { 1376 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap 1377 } 1378 } 1379 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => 1380 io.commits.isCommit && v && dt_isXSTrap(d.value) 1381 } 1382 val hitTrap = trapVec.reduce(_||_) 1383 val difftest = DifftestModule(new DiffTrapEvent, dontCare = true) 1384 difftest.coreid := io.hartId 1385 difftest.hasTrap := hitTrap 1386 difftest.cycleCnt := timer 1387 difftest.instrCnt := instrCnt 1388 difftest.hasWFI := hasWFI 1389 1390 if (env.EnableDifftest) { 1391 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 1392 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN) 1393 difftest.code := trapCode 1394 difftest.pc := trapPC 1395 } 1396 } 1397 1398 val validEntriesBanks = (0 until (RobSize + 31) / 32).map(i => RegNext(PopCount(valid.drop(i * 32).take(32)))) 1399 val validEntries = RegNext(VecInit(validEntriesBanks).reduceTree(_ +& _)) 1400 val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }) 1401 val commitLoadVec = VecInit(commitLoadValid) 1402 val commitBranchVec = VecInit(commitBranchValid) 1403 val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }) 1404 val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }) 1405 val perfEvents = Seq( 1406 ("rob_interrupt_num ", io.flushOut.valid && intrEnable ), 1407 ("rob_exception_num ", io.flushOut.valid && exceptionEnable ), 1408 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe ), 1409 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst ), 1410 ("rob_commitUop ", ifCommit(commitCnt) ), 1411 ("rob_commitInstr ", ifCommitReg(trueCommitCnt) ), 1412 ("rob_commitInstrMove ", ifCommitReg(PopCount(RegNext(commitMoveVec))) ), 1413 ("rob_commitInstrFused ", ifCommitReg(fuseCommitCnt) ), 1414 ("rob_commitInstrLoad ", ifCommitReg(PopCount(RegNext(commitLoadVec))) ), 1415 ("rob_commitInstrBranch ", ifCommitReg(PopCount(RegNext(commitBranchVec))) ), 1416 ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec))) ), 1417 ("rob_commitInstrStore ", ifCommitReg(PopCount(RegNext(commitStoreVec))) ), 1418 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U) ), 1419 ("rob_walkCycle ", (state === s_walk) ), 1420 ("rob_1_4_valid ", validEntries <= (RobSize / 4).U ), 1421 ("rob_2_4_valid ", validEntries > (RobSize / 4).U && validEntries <= (RobSize / 2).U ), 1422 ("rob_3_4_valid ", validEntries > (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U), 1423 ("rob_4_4_valid ", validEntries > (RobSize * 3 / 4).U ), 1424 ) 1425 generatePerfEvent() 1426} 1427