xref: /XiangShan/src/main/scala/xiangshan/backend/rob/Rob.scala (revision 7a2fc509e2d355879c4db3dc3f17a6ccacd3d09e)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.backend.rob
18
19import chipsalliance.rocketchip.config.Parameters
20import chisel3._
21import chisel3.util._
22import difftest._
23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp}
24import utils._
25import xiangshan._
26import xiangshan.backend.exu.ExuConfig
27import xiangshan.frontend.FtqPtr
28
29class RobPtr(implicit p: Parameters) extends CircularQueuePtr[RobPtr](
30  p => p(XSCoreParamsKey).RobSize
31) with HasCircularQueuePtrHelper {
32
33  def needFlush(redirect: Valid[Redirect]): Bool = {
34    val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx
35    redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx))
36  }
37
38}
39
40object RobPtr {
41  def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = {
42    val ptr = Wire(new RobPtr)
43    ptr.flag := f
44    ptr.value := v
45    ptr
46  }
47}
48
49class RobCSRIO(implicit p: Parameters) extends XSBundle {
50  val intrBitSet = Input(Bool())
51  val trapTarget = Input(UInt(VAddrBits.W))
52  val isXRet     = Input(Bool())
53  val wfiEvent   = Input(Bool())
54
55  val fflags     = Output(Valid(UInt(5.W)))
56  val dirty_fs   = Output(Bool())
57  val perfinfo   = new Bundle {
58    val retiredInstr = Output(UInt(3.W))
59  }
60}
61
62class RobLsqIO(implicit p: Parameters) extends XSBundle {
63  val lcommit = Output(UInt(log2Up(CommitWidth + 1).W))
64  val scommit = Output(UInt(log2Up(CommitWidth + 1).W))
65  val pendingld = Output(Bool())
66  val pendingst = Output(Bool())
67  val commit = Output(Bool())
68}
69
70class RobEnqIO(implicit p: Parameters) extends XSBundle {
71  val canAccept = Output(Bool())
72  val isEmpty = Output(Bool())
73  // valid vector, for robIdx gen and walk
74  val needAlloc = Vec(RenameWidth, Input(Bool()))
75  val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp)))
76  val resp = Vec(RenameWidth, Output(new RobPtr))
77}
78
79class RobDispatchData(implicit p: Parameters) extends RobCommitInfo
80
81class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
82  val io = IO(new Bundle {
83    // for commits/flush
84    val state = Input(UInt(2.W))
85    val deq_v = Vec(CommitWidth, Input(Bool()))
86    val deq_w = Vec(CommitWidth, Input(Bool()))
87    val exception_state = Flipped(ValidIO(new RobExceptionInfo))
88    // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth)
89    val intrBitSetReg = Input(Bool())
90    val hasNoSpecExec = Input(Bool())
91    val interrupt_safe = Input(Bool())
92    val misPredBlock = Input(Bool())
93    val isReplaying = Input(Bool())
94    val hasWFI = Input(Bool())
95    // output: the CommitWidth deqPtr
96    val out = Vec(CommitWidth, Output(new RobPtr))
97    val next_out = Vec(CommitWidth, Output(new RobPtr))
98  })
99
100  val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr))))
101
102  // for exceptions (flushPipe included) and interrupts:
103  // only consider the first instruction
104  val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe
105  val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0)
106  val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable)
107
108  // for normal commits: only to consider when there're no exceptions
109  // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions.
110  val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last)
111  val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i) && !io.misPredBlock && !io.isReplaying && !io.hasWFI))
112  val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B)
113  // when io.intrBitSetReg or there're possible exceptions in these instructions,
114  // only one instruction is allowed to commit
115  val allowOnlyOne = commit_exception || io.intrBitSetReg
116  val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt)
117
118  val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt))
119  val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid, commitDeqPtrVec, deqPtrVec)
120
121  deqPtrVec := deqPtrVec_next
122
123  io.next_out := deqPtrVec_next
124  io.out      := deqPtrVec
125
126  when (io.state === 0.U) {
127    XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt)
128  }
129
130}
131
132class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
133  val io = IO(new Bundle {
134    // for input redirect
135    val redirect = Input(Valid(new Redirect))
136    // for enqueue
137    val allowEnqueue = Input(Bool())
138    val hasBlockBackward = Input(Bool())
139    val enq = Vec(RenameWidth, Input(Bool()))
140    val out = Output(new RobPtr)
141  })
142
143  val enqPtr = RegInit(0.U.asTypeOf(new RobPtr))
144
145  // enqueue
146  val canAccept = io.allowEnqueue && !io.hasBlockBackward
147  val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U)
148
149  when (io.redirect.valid) {
150    enqPtr := io.redirect.bits.robIdx + Mux(io.redirect.bits.flushItself(), 0.U, 1.U)
151  }.otherwise {
152    enqPtr := enqPtr + dispatchNum
153  }
154
155  io.out := enqPtr
156
157}
158
159class RobExceptionInfo(implicit p: Parameters) extends XSBundle {
160  // val valid = Bool()
161  val robIdx = new RobPtr
162  val exceptionVec = ExceptionVec()
163  val flushPipe = Bool()
164  val replayInst = Bool() // redirect to that inst itself
165  val singleStep = Bool() // TODO add frontend hit beneath
166  val crossPageIPFFix = Bool()
167  val trigger = new TriggerCf
168
169//  def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend
170//  def trigger_after = trigger.getTimingBackend && trigger.getHitBackend
171  def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit
172  def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit
173  // only exceptions are allowed to writeback when enqueue
174  def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit
175}
176
177class ExceptionGen(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
178  val io = IO(new Bundle {
179    val redirect = Input(Valid(new Redirect))
180    val flush = Input(Bool())
181    val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo)))
182    val wb = Vec(1 + LoadPipelineWidth + StorePipelineWidth, Flipped(ValidIO(new RobExceptionInfo)))
183    val out = ValidIO(new RobExceptionInfo)
184    val state = ValidIO(new RobExceptionInfo)
185  })
186
187  def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = {
188    assert(valid.length == bits.length)
189    assert(isPow2(valid.length))
190    if (valid.length == 1) {
191      (valid, bits)
192    } else if (valid.length == 2) {
193      val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0)))))
194      for (i <- res.indices) {
195        res(i).valid := valid(i)
196        res(i).bits := bits(i)
197      }
198      val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1))
199      (Seq(oldest.valid), Seq(oldest.bits))
200    } else {
201      val left = getOldest(valid.take(valid.length / 2), bits.take(valid.length / 2))
202      val right = getOldest(valid.takeRight(valid.length / 2), bits.takeRight(valid.length / 2))
203      getOldest(left._1 ++ right._1, left._2 ++ right._2)
204    }
205  }
206
207  val current = Reg(Valid(new RobExceptionInfo))
208
209  // orR the exceptionVec
210  val lastCycleFlush = RegNext(io.flush)
211  val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush))
212  val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush)
213
214  // s0: compare wb(1)~wb(LoadPipelineWidth) and wb(1 + LoadPipelineWidth)~wb(LoadPipelineWidth + StorePipelineWidth)
215  val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }
216  val csr_wb_bits = io.wb(0).bits
217  val load_wb_bits = getOldest(in_wb_valid.slice(1, 1 + LoadPipelineWidth), io.wb.map(_.bits).slice(1, 1 + LoadPipelineWidth))._2(0)
218  val store_wb_bits = getOldest(in_wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth), io.wb.map(_.bits).slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth))._2(0)
219  val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid.slice(1, 1 + LoadPipelineWidth).reduce(_ || _), wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth).reduce(_ || _))))
220  val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits)))
221
222  // s1: compare last four and current flush
223  val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) })
224  val compare_01_valid = s0_out_valid(0) || s0_out_valid(1)
225  val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0))
226  val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2))
227  val s1_out_bits = RegNext(compare_bits)
228  val s1_out_valid = RegNext(s1_valid.asUInt.orR)
229
230  val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush)
231  val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits)))
232
233  // s2: compare the input exception with the current one
234  // priorities:
235  // (1) system reset
236  // (2) current is valid: flush, remain, merge, update
237  // (3) current is not valid: s1 or enq
238  val current_flush = current.bits.robIdx.needFlush(io.redirect) || io.flush
239  val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush
240  when (reset.asBool) {
241    current.valid := false.B
242  }.elsewhen (current.valid) {
243    when (current_flush) {
244      current.valid := Mux(s1_flush, false.B, s1_out_valid)
245    }
246    when (s1_out_valid && !s1_flush) {
247      when (isAfter(current.bits.robIdx, s1_out_bits.robIdx)) {
248        current.bits := s1_out_bits
249      }.elsewhen (current.bits.robIdx === s1_out_bits.robIdx) {
250        current.bits.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.bits.exceptionVec.asUInt).asTypeOf(ExceptionVec())
251        current.bits.flushPipe := s1_out_bits.flushPipe || current.bits.flushPipe
252        current.bits.replayInst := s1_out_bits.replayInst || current.bits.replayInst
253        current.bits.singleStep := s1_out_bits.singleStep || current.bits.singleStep
254        current.bits.trigger := (s1_out_bits.trigger.asUInt | current.bits.trigger.asUInt).asTypeOf(new TriggerCf)
255      }
256    }
257  }.elsewhen (s1_out_valid && !s1_flush) {
258    current.valid := true.B
259    current.bits := s1_out_bits
260  }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) {
261    current.valid := true.B
262    current.bits := enq_bits
263  }
264
265  io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback
266  io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits)
267  io.state := current
268
269}
270
271class RobFlushInfo(implicit p: Parameters) extends XSBundle {
272  val ftqIdx = new FtqPtr
273  val robIdx = new RobPtr
274  val ftqOffset = UInt(log2Up(PredictWidth).W)
275  val replayInst = Bool()
276}
277
278class Rob(implicit p: Parameters) extends LazyModule with HasWritebackSink with HasXSParameter {
279
280  lazy val module = new RobImp(this)
281
282  override def generateWritebackIO(
283    thisMod: Option[HasWritebackSource] = None,
284    thisModImp: Option[HasWritebackSourceImp] = None
285  ): Unit = {
286    val sources = writebackSinksImp(thisMod, thisModImp)
287    module.io.writeback.zip(sources).foreach(x => x._1 := x._2)
288  }
289}
290
291class RobImp(outer: Rob)(implicit p: Parameters) extends LazyModuleImp(outer)
292  with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents {
293  val wbExuConfigs = outer.writebackSinksParams.map(_.exuConfigs)
294  val numWbPorts = wbExuConfigs.map(_.length)
295
296  val io = IO(new Bundle() {
297    val hartId = Input(UInt(8.W))
298    val redirect = Input(Valid(new Redirect))
299    val enq = new RobEnqIO
300    val flushOut = ValidIO(new Redirect)
301    val exception = ValidIO(new ExceptionInfo)
302    // exu + brq
303    val writeback = MixedVec(numWbPorts.map(num => Vec(num, Flipped(ValidIO(new ExuOutput)))))
304    val commits = new RobCommitIO
305    val lsq = new RobLsqIO
306    val bcommit = Output(UInt(log2Up(CommitWidth + 1).W))
307    val robDeqPtr = Output(new RobPtr)
308    val csr = new RobCSRIO
309    val robFull = Output(Bool())
310    val cpu_halt = Output(Bool())
311  })
312
313  def selectWb(index: Int, func: Seq[ExuConfig] => Boolean): Seq[(Seq[ExuConfig], ValidIO[ExuOutput])] = {
314    wbExuConfigs(index).zip(io.writeback(index)).filter(x => func(x._1))
315  }
316  val exeWbSel = outer.selWritebackSinks(_.exuConfigs.length)
317  val fflagsWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.writeFflags)))
318  val fflagsPorts = selectWb(fflagsWbSel, _.exists(_.writeFflags))
319  val exceptionWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.needExceptionGen)))
320  val exceptionPorts = selectWb(fflagsWbSel, _.exists(_.needExceptionGen))
321  val exuWbPorts = selectWb(exeWbSel, _.forall(_ != StdExeUnitCfg))
322  val stdWbPorts = selectWb(exeWbSel, _.contains(StdExeUnitCfg))
323  println(s"Rob: size $RobSize, numWbPorts: $numWbPorts, commitwidth: $CommitWidth")
324  println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}")
325  println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}")
326  println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}")
327
328
329  val exuWriteback = exuWbPorts.map(_._2)
330  val stdWriteback = stdWbPorts.map(_._2)
331
332  // instvalid field
333  val valid = Mem(RobSize, Bool())
334  // writeback status
335  val writebacked = Mem(RobSize, Bool())
336  val store_data_writebacked = Mem(RobSize, Bool())
337  // data for redirect, exception, etc.
338  val flagBkup = Mem(RobSize, Bool())
339  // some instructions are not allowed to trigger interrupts
340  // They have side effects on the states of the processor before they write back
341  val interrupt_safe = Mem(RobSize, Bool())
342
343  // data for debug
344  // Warn: debug_* prefix should not exist in generated verilog.
345  val debug_microOp = Mem(RobSize, new MicroOp)
346  val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug
347  val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug
348
349  // pointers
350  // For enqueue ptr, we don't duplicate it since only enqueue needs it.
351  val enqPtr = Wire(new RobPtr)
352  val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr))
353
354  val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr))
355  val validCounter = RegInit(0.U(log2Ceil(RobSize + 1).W))
356  val allowEnqueue = RegInit(true.B)
357
358  val enqPtrVec = VecInit((0 until RenameWidth).map(i => enqPtr + PopCount(io.enq.needAlloc.take(i))))
359  val deqPtr = deqPtrVec(0)
360  val walkPtr = walkPtrVec(0)
361
362  val isEmpty = enqPtr === deqPtr
363  val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level)
364
365  /**
366    * states of Rob
367    */
368  val s_idle :: s_walk :: s_extrawalk :: Nil = Enum(3)
369  val state = RegInit(s_idle)
370
371  /**
372    * Data Modules
373    *
374    * CommitDataModule: data from dispatch
375    * (1) read: commits/walk/exception
376    * (2) write: enqueue
377    *
378    * WritebackData: data from writeback
379    * (1) read: commits/walk/exception
380    * (2) write: write back from exe units
381    */
382  val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth))
383  val dispatchDataRead = dispatchData.io.rdata
384
385  val exceptionGen = Module(new ExceptionGen)
386  val exceptionDataRead = exceptionGen.io.state
387  val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W)))
388
389  io.robDeqPtr := deqPtr
390
391  /**
392    * Enqueue (from dispatch)
393    */
394  // special cases
395  val hasBlockBackward = RegInit(false.B)
396  val hasNoSpecExec = RegInit(false.B)
397  val doingSvinval = RegInit(false.B)
398  // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B
399  // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty.
400  when (isEmpty) { hasBlockBackward:= false.B }
401  // When any instruction commits, hasNoSpecExec should be set to false.B
402  when (io.commits.valid.asUInt.orR  && state =/= s_extrawalk) { hasNoSpecExec:= false.B }
403
404  // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing.
405  // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle.
406  // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts.
407  val hasWFI = RegInit(false.B)
408  io.cpu_halt := hasWFI
409  when (RegNext(RegNext(io.csr.wfiEvent))) {
410    hasWFI := false.B
411  }
412
413  io.enq.canAccept := allowEnqueue && !hasBlockBackward
414  io.enq.resp      := enqPtrVec
415  val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept))
416  val timer = GTimer()
417  for (i <- 0 until RenameWidth) {
418    // we don't check whether io.redirect is valid here since redirect has higher priority
419    when (canEnqueue(i)) {
420      val enqUop = io.enq.req(i).bits
421      // store uop in data module and debug_microOp Vec
422      debug_microOp(enqPtrVec(i).value) := enqUop
423      debug_microOp(enqPtrVec(i).value).debugInfo.dispatchTime := timer
424      debug_microOp(enqPtrVec(i).value).debugInfo.enqRsTime := timer
425      debug_microOp(enqPtrVec(i).value).debugInfo.selectTime := timer
426      debug_microOp(enqPtrVec(i).value).debugInfo.issueTime := timer
427      debug_microOp(enqPtrVec(i).value).debugInfo.writebackTime := timer
428      when (enqUop.ctrl.blockBackward) {
429        hasBlockBackward := true.B
430      }
431      when (enqUop.ctrl.noSpecExec) {
432        hasNoSpecExec := true.B
433      }
434      val enqHasTriggerHit = io.enq.req(i).bits.cf.trigger.getHitFrontend
435      val enqHasException = ExceptionNO.selectFrontend(enqUop.cf.exceptionVec).asUInt.orR
436      // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process
437      when(!enqHasTriggerHit && !enqHasException && FuType.isSvinvalBegin(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe))
438      {
439        doingSvinval := true.B
440      }
441      // the end instruction of Svinval enqs so clear doingSvinval
442      when(!enqHasTriggerHit && !enqHasException && FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe))
443      {
444        doingSvinval := false.B
445      }
446      // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear
447      assert(!doingSvinval || (FuType.isSvinval(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe) ||
448        FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe)))
449      when (enqUop.ctrl.isWFI && !enqHasException && !enqHasTriggerHit) {
450        hasWFI := true.B
451      }
452    }
453  }
454  val dispatchNum = Mux(io.enq.canAccept, PopCount(Cat(io.enq.req.map(_.valid))), 0.U)
455  io.enq.isEmpty   := RegNext(isEmpty && dispatchNum === 0.U)
456
457  // debug info for enqueue (dispatch)
458  XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n")
459  XSInfo(dispatchNum =/= 0.U, p"dispatched $dispatchNum insts\n")
460
461
462  /**
463    * Writeback (from execution units)
464    */
465  for (wb <- exuWriteback) {
466    when (wb.valid) {
467      val wbIdx = wb.bits.uop.robIdx.value
468      debug_exuData(wbIdx) := wb.bits.data
469      debug_exuDebug(wbIdx) := wb.bits.debug
470      debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.uop.debugInfo.enqRsTime
471      debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.uop.debugInfo.selectTime
472      debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.uop.debugInfo.issueTime
473      debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.uop.debugInfo.writebackTime
474
475      val debug_Uop = debug_microOp(wbIdx)
476      XSInfo(true.B,
477        p"writebacked pc 0x${Hexadecimal(debug_Uop.cf.pc)} wen ${debug_Uop.ctrl.rfWen} " +
478        p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ctrl.ldest} pdst ${debug_Uop.pdest} " +
479        p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.uop.robIdx}\n"
480      )
481    }
482  }
483  val writebackNum = PopCount(exuWriteback.map(_.valid))
484  XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum)
485
486
487  /**
488    * RedirectOut: Interrupt and Exceptions
489    */
490  val deqDispatchData = dispatchDataRead(0)
491  val debug_deqUop = debug_microOp(deqPtr.value)
492
493  val intrBitSetReg = RegNext(io.csr.intrBitSet)
494  val intrEnable = intrBitSetReg && !hasNoSpecExec && interrupt_safe(deqPtr.value)
495  val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr
496  val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR ||
497    exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit)
498  val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe
499  val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst
500  val exceptionEnable = writebacked(deqPtr.value) && deqHasException
501
502  XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n")
503  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n")
504  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n")
505
506  val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst)
507
508  // io.flushOut will trigger redirect at the next cycle.
509  // Block any redirect or commit at the next cycle.
510  val lastCycleFlush = RegNext(io.flushOut.valid)
511
512  io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush
513  io.flushOut.bits := DontCare
514  io.flushOut.bits.robIdx := deqPtr
515  io.flushOut.bits.ftqIdx := deqDispatchData.ftqIdx
516  io.flushOut.bits.ftqOffset := deqDispatchData.ftqOffset
517  io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next"
518  io.flushOut.bits.interrupt := true.B
519  XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable)
520  XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable)
521  XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe)
522  XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst)
523
524  val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush
525  io.exception.valid := RegNext(exceptionHappen)
526  io.exception.bits.uop := RegEnable(debug_deqUop, exceptionHappen)
527  io.exception.bits.uop.ctrl.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen)
528  io.exception.bits.uop.cf.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen)
529  io.exception.bits.uop.ctrl.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen)
530  io.exception.bits.uop.cf.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen)
531  io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen)
532  io.exception.bits.uop.cf.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen)
533
534  XSDebug(io.flushOut.valid,
535    p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.uop.cf.pc)} intr $intrEnable " +
536    p"excp $exceptionEnable flushPipe $isFlushPipe " +
537    p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n")
538
539
540  /**
541    * Commits (and walk)
542    * They share the same width.
543    */
544  val walkCounter = Reg(UInt(log2Up(RobSize + 1).W))
545  val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter))
546  val walkFinished = walkCounter <= CommitWidth.U
547
548  // extra space is used when rob has no enough space, but mispredict recovery needs such info to walk regmap
549  require(RenameWidth <= CommitWidth)
550  val extraSpaceForMPR = Reg(Vec(RenameWidth, new RobDispatchData))
551  val usedSpaceForMPR = Reg(Vec(RenameWidth, Bool()))
552  when (io.enq.needAlloc.asUInt.orR && io.redirect.valid) {
553    usedSpaceForMPR := io.enq.needAlloc
554    extraSpaceForMPR := dispatchData.io.wdata
555    XSDebug("rob full, switched to s_extrawalk. needExtraSpaceForMPR: %b\n", io.enq.needAlloc.asUInt)
556  }
557
558  // wiring to csr
559  val (wflags, fpWen) = (0 until CommitWidth).map(i => {
560    val v = io.commits.valid(i)
561    val info = io.commits.info(i)
562    (v & info.wflags, v & info.fpWen)
563  }).unzip
564  val fflags = Wire(Valid(UInt(5.W)))
565  fflags.valid := Mux(io.commits.isWalk, false.B, Cat(wflags).orR())
566  fflags.bits := wflags.zip(fflagsDataRead).map({
567    case (w, f) => Mux(w, f, 0.U)
568  }).reduce(_|_)
569  val dirty_fs = Mux(io.commits.isWalk, false.B, Cat(fpWen).orR())
570
571  // when mispredict branches writeback, stop commit in the next 2 cycles
572  // TODO: don't check all exu write back
573  val misPredWb = Cat(VecInit(exuWriteback.map(wb =>
574    wb.bits.redirect.cfiUpdate.isMisPred && wb.bits.redirectValid
575  ))).orR()
576  val misPredBlockCounter = Reg(UInt(3.W))
577  misPredBlockCounter := Mux(misPredWb,
578    "b111".U,
579    misPredBlockCounter >> 1.U
580  )
581  val misPredBlock = misPredBlockCounter(0)
582
583  io.commits.isWalk := state =/= s_idle
584  val commit_v = Mux(state === s_idle, VecInit(deqPtrVec.map(ptr => valid(ptr.value))), VecInit(walkPtrVec.map(ptr => valid(ptr.value))))
585  // store will be commited iff both sta & std have been writebacked
586  val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value)))
587  val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last)
588  val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i)))
589  val allowOnlyOneCommit = commit_exception || intrBitSetReg
590  // for instructions that may block others, we don't allow them to commit
591  for (i <- 0 until CommitWidth) {
592    // defaults: state === s_idle and instructions commit
593    // when intrBitSetReg, allow only one instruction to commit at each clock cycle
594    val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst
595    io.commits.valid(i) := commit_v(i) && commit_w(i) && !isBlocked && !misPredBlock && !isReplaying && !lastCycleFlush && !hasWFI
596    io.commits.info(i)  := dispatchDataRead(i)
597
598    when (state === s_walk) {
599      io.commits.valid(i) := commit_v(i) && shouldWalkVec(i)
600    }.elsewhen(state === s_extrawalk) {
601      io.commits.valid(i) := (if (i < RenameWidth) usedSpaceForMPR(RenameWidth-i-1) else false.B)
602      io.commits.info(i)  := (if (i < RenameWidth) extraSpaceForMPR(RenameWidth-i-1) else DontCare)
603    }
604
605    XSInfo(state === s_idle && io.commits.valid(i),
606      "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b\n",
607      debug_microOp(deqPtrVec(i).value).cf.pc,
608      io.commits.info(i).rfWen,
609      io.commits.info(i).ldest,
610      io.commits.info(i).pdest,
611      io.commits.info(i).old_pdest,
612      debug_exuData(deqPtrVec(i).value),
613      fflagsDataRead(i)
614    )
615    XSInfo(state === s_walk && io.commits.valid(i), "walked pc %x wen %d ldst %d data %x\n",
616      debug_microOp(walkPtrVec(i).value).cf.pc,
617      io.commits.info(i).rfWen,
618      io.commits.info(i).ldest,
619      debug_exuData(walkPtrVec(i).value)
620    )
621    XSInfo(state === s_extrawalk && io.commits.valid(i), "use extra space walked wen %d ldst %d\n",
622      io.commits.info(i).rfWen,
623      io.commits.info(i).ldest
624    )
625  }
626  if (env.EnableDifftest) {
627    io.commits.info.map(info => dontTouch(info.pc))
628  }
629
630  // sync fflags/dirty_fs to csr
631  io.csr.fflags := RegNext(fflags)
632  io.csr.dirty_fs := RegNext(dirty_fs)
633
634  // commit branch to brq
635  val cfiCommitVec = VecInit(io.commits.valid.zip(io.commits.info.map(_.commitType)).map{case(v, t) => v && CommitType.isBranch(t)})
636  io.bcommit := Mux(io.commits.isWalk, 0.U, PopCount(cfiCommitVec))
637
638  // commit load/store to lsq
639  val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.LOAD))
640  val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.STORE))
641  io.lsq.lcommit := RegNext(Mux(io.commits.isWalk, 0.U, PopCount(ldCommitVec)))
642  io.lsq.scommit := RegNext(Mux(io.commits.isWalk, 0.U, PopCount(stCommitVec)))
643  io.lsq.pendingld := RegNext(!io.commits.isWalk && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value))
644  io.lsq.pendingst := RegNext(!io.commits.isWalk && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value))
645  io.lsq.commit := RegNext(!io.commits.isWalk && io.commits.valid(0))
646
647  /**
648    * state changes
649    * (1) exceptions: when exception occurs, cancels all and switch to s_idle
650    * (2) redirect: switch to s_walk or s_extrawalk (depends on whether there're pending instructions in dispatch1)
651    * (3) walk: when walking comes to the end, switch to s_walk
652    * (4) s_extrawalk to s_walk
653    */
654  val state_next = Mux(io.redirect.valid,
655    Mux(io.enq.needAlloc.asUInt.orR, s_extrawalk, s_walk),
656    Mux(state === s_walk && walkFinished,
657      s_idle,
658      Mux(state === s_extrawalk, s_walk, state)
659    )
660  )
661  state := state_next
662
663  /**
664    * pointers and counters
665    */
666  val deqPtrGenModule = Module(new RobDeqPtrWrapper)
667  deqPtrGenModule.io.state := state
668  deqPtrGenModule.io.deq_v := commit_v
669  deqPtrGenModule.io.deq_w := commit_w
670  deqPtrGenModule.io.exception_state := exceptionDataRead
671  deqPtrGenModule.io.intrBitSetReg := intrBitSetReg
672  deqPtrGenModule.io.hasNoSpecExec := hasNoSpecExec
673  deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value)
674  deqPtrGenModule.io.misPredBlock := misPredBlock
675  deqPtrGenModule.io.isReplaying := isReplaying
676  deqPtrGenModule.io.hasWFI := hasWFI
677  deqPtrVec := deqPtrGenModule.io.out
678  val deqPtrVec_next = deqPtrGenModule.io.next_out
679
680  val enqPtrGenModule = Module(new RobEnqPtrWrapper)
681  enqPtrGenModule.io.redirect := io.redirect
682  enqPtrGenModule.io.allowEnqueue := allowEnqueue
683  enqPtrGenModule.io.hasBlockBackward := hasBlockBackward
684  enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid))
685  enqPtr := enqPtrGenModule.io.out
686
687  val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U)
688  // next walkPtrVec:
689  // (1) redirect occurs: update according to state
690  // (2) walk: move backwards
691  val walkPtrVec_next = Mux(io.redirect.valid && state =/= s_extrawalk,
692    Mux(state === s_walk,
693      VecInit(walkPtrVec.map(_ - thisCycleWalkCount)),
694      VecInit((0 until CommitWidth).map(i => enqPtr - (i+1).U))
695    ),
696    Mux(state === s_walk, VecInit(walkPtrVec.map(_ - CommitWidth.U)), walkPtrVec)
697  )
698  walkPtrVec := walkPtrVec_next
699
700  val lastCycleRedirect = RegNext(io.redirect.valid)
701  val trueValidCounter = Mux(lastCycleRedirect, distanceBetween(enqPtr, deqPtr), validCounter)
702  val commitCnt = PopCount(io.commits.valid)
703  validCounter := Mux(state === s_idle,
704    (validCounter - commitCnt) + dispatchNum,
705    trueValidCounter
706  )
707
708  allowEnqueue := Mux(state === s_idle,
709    validCounter + dispatchNum <= (RobSize - RenameWidth).U,
710    trueValidCounter <= (RobSize - RenameWidth).U
711  )
712
713  val currentWalkPtr = Mux(state === s_walk || state === s_extrawalk, walkPtr, enqPtr - 1.U)
714  val redirectWalkDistance = distanceBetween(currentWalkPtr, io.redirect.bits.robIdx)
715  when (io.redirect.valid) {
716    walkCounter := Mux(state === s_walk,
717      // NOTE: +& is used here because:
718      // When rob is full and the head instruction causes an exception,
719      // the redirect robIdx is the deqPtr. In this case, currentWalkPtr is
720      // enqPtr - 1.U and redirectWalkDistance is RobSize - 1.
721      // Since exceptions flush the instruction itself, flushItSelf is true.B.
722      // Previously we use `+` to count the walk distance and it causes overflows
723      // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize.
724      // The width of walkCounter also needs to be changed.
725      redirectWalkDistance +& io.redirect.bits.flushItself() - commitCnt,
726      redirectWalkDistance +& io.redirect.bits.flushItself()
727    )
728  }.elsewhen (state === s_walk) {
729    walkCounter := walkCounter - commitCnt
730    XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n")
731  }
732
733
734  /**
735    * States
736    * We put all the stage bits changes here.
737
738    * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit);
739    * All states: (1) valid; (2) writebacked; (3) flagBkup
740    */
741  val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value)))
742
743  // enqueue logic writes 6 valid
744  for (i <- 0 until RenameWidth) {
745    when (canEnqueue(i) && !io.redirect.valid) {
746      valid(enqPtrVec(i).value) := true.B
747    }
748  }
749  // dequeue/walk logic writes 6 valid, dequeue and walk will not happen at the same time
750  for (i <- 0 until CommitWidth) {
751    when (io.commits.valid(i) && state =/= s_extrawalk) {
752      valid(commitReadAddr(i)) := false.B
753    }
754  }
755  // reset: when exception, reset all valid to false
756  when (reset.asBool) {
757    for (i <- 0 until RobSize) {
758      valid(i) := false.B
759    }
760  }
761
762  // status field: writebacked
763  // enqueue logic set 6 writebacked to false
764  for (i <- 0 until RenameWidth) {
765    when (canEnqueue(i)) {
766      val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec).asUInt.orR
767      val enqHasTriggerHit = io.enq.req(i).bits.cf.trigger.getHitFrontend
768      val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove
769      writebacked(enqPtrVec(i).value) := enqIsWritebacked && !enqHasException && !enqHasTriggerHit
770      val isStu = io.enq.req(i).bits.ctrl.fuType === FuType.stu
771      store_data_writebacked(enqPtrVec(i).value) := !isStu
772    }
773  }
774  when (exceptionGen.io.out.valid) {
775    val wbIdx = exceptionGen.io.out.bits.robIdx.value
776    writebacked(wbIdx) := true.B
777    store_data_writebacked(wbIdx) := true.B
778  }
779  // writeback logic set numWbPorts writebacked to true
780  for ((wb, cfgs) <- exuWriteback.zip(wbExuConfigs(exeWbSel))) {
781    when (wb.valid) {
782      val wbIdx = wb.bits.uop.robIdx.value
783      val wbHasException = ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, cfgs).asUInt.orR
784      val wbHasTriggerHit = wb.bits.uop.cf.trigger.getHitBackend
785      val wbHasFlushPipe = cfgs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe
786      val wbHasReplayInst = cfgs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst
787      val block_wb = wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit
788      writebacked(wbIdx) := !block_wb
789    }
790  }
791  // store data writeback logic mark store as data_writebacked
792  for (wb <- stdWriteback) {
793    when(RegNext(wb.valid)) {
794      store_data_writebacked(RegNext(wb.bits.uop.robIdx.value)) := true.B
795    }
796  }
797
798  // flagBkup
799  // enqueue logic set 6 flagBkup at most
800  for (i <- 0 until RenameWidth) {
801    when (canEnqueue(i)) {
802      flagBkup(enqPtrVec(i).value) := enqPtrVec(i).flag
803    }
804  }
805
806  // interrupt_safe
807  for (i <- 0 until RenameWidth) {
808    // We RegNext the updates for better timing.
809    // Note that instructions won't change the system's states in this cycle.
810    when (RegNext(canEnqueue(i))) {
811      // For now, we allow non-load-store instructions to trigger interrupts
812      // For MMIO instructions, they should not trigger interrupts since they may
813      // be sent to lower level before it writes back.
814      // However, we cannot determine whether a load/store instruction is MMIO.
815      // Thus, we don't allow load/store instructions to trigger an interrupt.
816      // TODO: support non-MMIO load-store instructions to trigger interrupts
817      val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.ctrl.commitType)
818      interrupt_safe(RegNext(enqPtrVec(i).value)) := RegNext(allow_interrupts)
819    }
820  }
821
822  /**
823    * read and write of data modules
824    */
825  val commitReadAddr_next = Mux(state_next === s_idle,
826    VecInit(deqPtrVec_next.map(_.value)),
827    VecInit(walkPtrVec_next.map(_.value))
828  )
829  dispatchData.io.wen := canEnqueue
830  dispatchData.io.waddr := enqPtrVec.map(_.value)
831  dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) =>
832    wdata.ldest := req.ctrl.ldest
833    wdata.rfWen := req.ctrl.rfWen
834    wdata.fpWen := req.ctrl.fpWen
835    wdata.wflags := req.ctrl.fpu.wflags
836    wdata.commitType := req.ctrl.commitType
837    wdata.pdest := req.pdest
838    wdata.old_pdest := req.old_pdest
839    wdata.ftqIdx := req.cf.ftqPtr
840    wdata.ftqOffset := req.cf.ftqOffset
841    wdata.pc := req.cf.pc
842  }
843  dispatchData.io.raddr := commitReadAddr_next
844
845  exceptionGen.io.redirect <> io.redirect
846  exceptionGen.io.flush := io.flushOut.valid
847  for (i <- 0 until RenameWidth) {
848    exceptionGen.io.enq(i).valid := canEnqueue(i)
849    exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx
850    exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec)
851    exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.ctrl.flushPipe
852    exceptionGen.io.enq(i).bits.replayInst := false.B
853    assert(io.enq.req(i).bits.ctrl.replayInst === false.B)
854    exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.ctrl.singleStep
855    exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.cf.crossPageIPFFix
856    exceptionGen.io.enq(i).bits.trigger.clear()
857    exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.cf.trigger.frontendHit
858  }
859
860  println(s"ExceptionGen:")
861  val exceptionCases = exceptionPorts.map(_._1.flatMap(_.exceptionOut).distinct.sorted)
862  require(exceptionCases.length == exceptionGen.io.wb.length)
863  for ((((configs, wb), exc_wb), i) <- exceptionPorts.zip(exceptionGen.io.wb).zipWithIndex) {
864    exc_wb.valid                := wb.valid
865    exc_wb.bits.robIdx          := wb.bits.uop.robIdx
866    exc_wb.bits.exceptionVec    := ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, configs)
867    exc_wb.bits.flushPipe       := configs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe
868    exc_wb.bits.replayInst      := configs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst
869    exc_wb.bits.singleStep      := false.B
870    exc_wb.bits.crossPageIPFFix := false.B
871    // TODO: make trigger configurable
872    exc_wb.bits.trigger.clear()
873    exc_wb.bits.trigger.backendHit := wb.bits.uop.cf.trigger.backendHit
874    println(s"  [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " +
875      s"flushPipe ${configs.exists(_.flushPipe)}, " +
876      s"replayInst ${configs.exists(_.replayInst)}")
877  }
878
879  val fflags_wb = fflagsPorts.map(_._2)
880  val fflagsDataModule = Module(new SyncDataModuleTemplate(
881    UInt(5.W), RobSize, CommitWidth, fflags_wb.size)
882  )
883  for(i <- fflags_wb.indices){
884    fflagsDataModule.io.wen  (i) := fflags_wb(i).valid
885    fflagsDataModule.io.waddr(i) := fflags_wb(i).bits.uop.robIdx.value
886    fflagsDataModule.io.wdata(i) := fflags_wb(i).bits.fflags
887  }
888  fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value))
889  fflagsDataRead := fflagsDataModule.io.rdata
890
891
892  val instrCnt = RegInit(0.U(64.W))
893  val fuseCommitCnt = PopCount(io.commits.valid.zip(io.commits.info).map{ case (v, i) => v && CommitType.isFused(i.commitType) })
894  val trueCommitCnt = commitCnt +& fuseCommitCnt
895  val retireCounter = Mux(state === s_idle, trueCommitCnt, 0.U)
896  instrCnt := instrCnt + retireCounter
897  io.csr.perfinfo.retiredInstr := RegNext(retireCounter)
898  io.robFull := !allowEnqueue
899
900  /**
901    * debug info
902    */
903  XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n")
904  XSDebug("")
905  for(i <- 0 until RobSize){
906    XSDebug(false, !valid(i), "-")
907    XSDebug(false, valid(i) && writebacked(i), "w")
908    XSDebug(false, valid(i) && !writebacked(i), "v")
909  }
910  XSDebug(false, true.B, "\n")
911
912  for(i <- 0 until RobSize) {
913    if(i % 4 == 0) XSDebug("")
914    XSDebug(false, true.B, "%x ", debug_microOp(i).cf.pc)
915    XSDebug(false, !valid(i), "- ")
916    XSDebug(false, valid(i) && writebacked(i), "w ")
917    XSDebug(false, valid(i) && !writebacked(i), "v ")
918    if(i % 4 == 3) XSDebug(false, true.B, "\n")
919  }
920
921  def ifCommit(counter: UInt): UInt = Mux(io.commits.isWalk, 0.U, counter)
922
923  val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_))
924  XSPerfAccumulate("clock_cycle", 1.U)
925  QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue)
926  XSPerfAccumulate("commitUop", ifCommit(commitCnt))
927  XSPerfAccumulate("commitInstr", ifCommit(trueCommitCnt))
928  val commitIsMove = commitDebugUop.map(_.ctrl.isMove)
929  XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.valid.zip(commitIsMove).map{ case (v, m) => v && m })))
930  val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove)
931  XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.valid zip commitMoveElim map { case (v, e) => v && e })))
932  XSPerfAccumulate("commitInstrFused", ifCommit(fuseCommitCnt))
933  val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD)
934  val commitLoadValid = io.commits.valid.zip(commitIsLoad).map{ case (v, t) => v && t }
935  XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid)))
936  val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH)
937  val commitBranchValid = io.commits.valid.zip(commitIsBranch).map{ case (v, t) => v && t }
938  XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid)))
939  val commitLoadWaitBit = commitDebugUop.map(_.cf.loadWaitBit)
940  XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })))
941  val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE)
942  XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.valid.zip(commitIsStore).map{ case (v, t) => v && t })))
943  XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i))))
944  // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire())))
945  // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready)))
946  XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.valid), 0.U))
947  XSPerfAccumulate("walkCycle", state === s_walk || state === s_extrawalk)
948  val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value)
949  val deqUopCommitType = io.commits.info(0).commitType
950  XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL)
951  XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH)
952  XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD)
953  XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE)
954  XSPerfAccumulate("robHeadPC", io.commits.info(0).pc)
955  val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime)
956  val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime)
957  val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime)
958  val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime)
959  val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime)
960  val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime)
961  val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime)
962  def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = {
963    cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _)
964  }
965  for (fuType <- FuType.functionNameMap.keys) {
966    val fuName = FuType.functionNameMap(fuType)
967    val commitIsFuType = io.commits.valid.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fuType === fuType.U )
968    XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType)))
969    XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency)))
970    XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency)))
971    XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency)))
972    XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency)))
973    XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency)))
974    XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency)))
975    XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency)))
976    if (fuType == FuType.fmac.litValue()) {
977      val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fpu.ren3 )
978      XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma)))
979      XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency)))
980      XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency)))
981    }
982  }
983
984  //difftest signals
985  val firstValidCommit = (deqPtr + PriorityMux(io.commits.valid, VecInit(List.tabulate(CommitWidth)(_.U)))).value
986
987  val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W)))
988  val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W)))
989
990  for(i <- 0 until CommitWidth) {
991    val idx = deqPtrVec(i).value
992    wdata(i) := debug_exuData(idx)
993    wpc(i) := SignExt(commitDebugUop(i).cf.pc, XLEN)
994  }
995  val retireCounterFix = Mux(io.exception.valid, 1.U, retireCounter)
996  val retirePCFix = SignExt(Mux(io.exception.valid, io.exception.bits.uop.cf.pc, debug_microOp(firstValidCommit).cf.pc), XLEN)
997  val retireInstFix = Mux(io.exception.valid, io.exception.bits.uop.cf.instr, debug_microOp(firstValidCommit).cf.instr)
998
999  if (env.EnableDifftest) {
1000    for (i <- 0 until CommitWidth) {
1001      val difftest = Module(new DifftestInstrCommit)
1002      difftest.io.clock    := clock
1003      difftest.io.coreid   := io.hartId
1004      difftest.io.index    := i.U
1005
1006      val ptr = deqPtrVec(i).value
1007      val uop = commitDebugUop(i)
1008      val exuOut = debug_exuDebug(ptr)
1009      val exuData = debug_exuData(ptr)
1010      difftest.io.valid    := RegNext(RegNext(RegNext(io.commits.valid(i) && !io.commits.isWalk)))
1011      difftest.io.pc       := RegNext(RegNext(RegNext(SignExt(uop.cf.pc, XLEN))))
1012      difftest.io.instr    := RegNext(RegNext(RegNext(uop.cf.instr)))
1013      difftest.io.special  := RegNext(RegNext(RegNext(CommitType.isFused(io.commits.info(i).commitType))))
1014      // when committing an eliminated move instruction,
1015      // we must make sure that skip is properly set to false (output from EXU is random value)
1016      difftest.io.skip     := RegNext(RegNext(RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))))
1017      difftest.io.isRVC    := RegNext(RegNext(RegNext(uop.cf.pd.isRVC)))
1018      difftest.io.rfwen    := RegNext(RegNext(RegNext(io.commits.valid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U)))
1019      difftest.io.fpwen    := RegNext(RegNext(RegNext(io.commits.valid(i) && io.commits.info(i).fpWen)))
1020      difftest.io.wpdest   := RegNext(RegNext(RegNext(io.commits.info(i).pdest)))
1021      difftest.io.wdest    := RegNext(RegNext(RegNext(io.commits.info(i).ldest)))
1022
1023      // runahead commit hint
1024      val runahead_commit = Module(new DifftestRunaheadCommitEvent)
1025      runahead_commit.io.clock := clock
1026      runahead_commit.io.coreid := io.hartId
1027      runahead_commit.io.index := i.U
1028      runahead_commit.io.valid := difftest.io.valid &&
1029        (commitBranchValid(i) || commitIsStore(i))
1030      // TODO: is branch or store
1031      runahead_commit.io.pc    := difftest.io.pc
1032    }
1033  }
1034  else if (env.AlwaysBasicDiff) {
1035    // These are the structures used by difftest only and should be optimized after synthesis.
1036    val dt_eliminatedMove = Mem(RobSize, Bool())
1037    val dt_isRVC = Mem(RobSize, Bool())
1038    val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle))
1039    for (i <- 0 until RenameWidth) {
1040      when (canEnqueue(i)) {
1041        dt_eliminatedMove(enqPtrVec(i).value) := io.enq.req(i).bits.eliminatedMove
1042        dt_isRVC(enqPtrVec(i).value) := io.enq.req(i).bits.cf.pd.isRVC
1043      }
1044    }
1045    for (wb <- exuWriteback) {
1046      when (wb.valid) {
1047        val wbIdx = wb.bits.uop.robIdx.value
1048        dt_exuDebug(wbIdx) := wb.bits.debug
1049      }
1050    }
1051    // Always instantiate basic difftest modules.
1052    for (i <- 0 until CommitWidth) {
1053      val commitInfo = io.commits.info(i)
1054      val ptr = deqPtrVec(i).value
1055      val exuOut = dt_exuDebug(ptr)
1056      val eliminatedMove = dt_eliminatedMove(ptr)
1057      val isRVC = dt_isRVC(ptr)
1058
1059      val difftest = Module(new DifftestBasicInstrCommit)
1060      difftest.io.clock   := clock
1061      difftest.io.coreid  := io.hartId
1062      difftest.io.index   := i.U
1063      difftest.io.valid   := RegNext(RegNext(RegNext(io.commits.valid(i) && !io.commits.isWalk)))
1064      difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(commitInfo.commitType))))
1065      difftest.io.skip    := RegNext(RegNext(RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))))
1066      difftest.io.isRVC   := RegNext(RegNext(RegNext(isRVC)))
1067      difftest.io.rfwen   := RegNext(RegNext(RegNext(io.commits.valid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U)))
1068      difftest.io.fpwen   := RegNext(RegNext(RegNext(io.commits.valid(i) && commitInfo.fpWen)))
1069      difftest.io.wpdest  := RegNext(RegNext(RegNext(commitInfo.pdest)))
1070      difftest.io.wdest   := RegNext(RegNext(RegNext(commitInfo.ldest)))
1071    }
1072  }
1073
1074  if (env.EnableDifftest) {
1075    for (i <- 0 until CommitWidth) {
1076      val difftest = Module(new DifftestLoadEvent)
1077      difftest.io.clock  := clock
1078      difftest.io.coreid := io.hartId
1079      difftest.io.index  := i.U
1080
1081      val ptr = deqPtrVec(i).value
1082      val uop = commitDebugUop(i)
1083      val exuOut = debug_exuDebug(ptr)
1084      difftest.io.valid  := RegNext(RegNext(RegNext(io.commits.valid(i) && !io.commits.isWalk)))
1085      difftest.io.paddr  := RegNext(RegNext(RegNext(exuOut.paddr)))
1086      difftest.io.opType := RegNext(RegNext(RegNext(uop.ctrl.fuOpType)))
1087      difftest.io.fuType := RegNext(RegNext(RegNext(uop.ctrl.fuType)))
1088    }
1089  }
1090
1091  // Always instantiate basic difftest modules.
1092  if (env.EnableDifftest) {
1093    val dt_isXSTrap = Mem(RobSize, Bool())
1094    for (i <- 0 until RenameWidth) {
1095      when (canEnqueue(i)) {
1096        dt_isXSTrap(enqPtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap
1097      }
1098    }
1099    val trapVec = io.commits.valid.zip(deqPtrVec).map{ case (v, d) => state === s_idle && v && dt_isXSTrap(d.value) }
1100    val hitTrap = trapVec.reduce(_||_)
1101    val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1))
1102    val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN)
1103    val difftest = Module(new DifftestTrapEvent)
1104    difftest.io.clock    := clock
1105    difftest.io.coreid   := io.hartId
1106    difftest.io.valid    := hitTrap
1107    difftest.io.code     := trapCode
1108    difftest.io.pc       := trapPC
1109    difftest.io.cycleCnt := timer
1110    difftest.io.instrCnt := instrCnt
1111    difftest.io.hasWFI   := hasWFI
1112  }
1113  else if (env.AlwaysBasicDiff) {
1114    val dt_isXSTrap = Mem(RobSize, Bool())
1115    for (i <- 0 until RenameWidth) {
1116      when (canEnqueue(i)) {
1117        dt_isXSTrap(enqPtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap
1118      }
1119    }
1120    val trapVec = io.commits.valid.zip(deqPtrVec).map{ case (v, d) => state === s_idle && v && dt_isXSTrap(d.value) }
1121    val hitTrap = trapVec.reduce(_||_)
1122    val difftest = Module(new DifftestBasicTrapEvent)
1123    difftest.io.clock    := clock
1124    difftest.io.coreid   := io.hartId
1125    difftest.io.valid    := hitTrap
1126    difftest.io.cycleCnt := timer
1127    difftest.io.instrCnt := instrCnt
1128  }
1129
1130  val perfEvents = Seq(
1131    ("rob_interrupt_num       ", io.flushOut.valid && intrEnable                                                                                                   ),
1132    ("rob_exception_num       ", io.flushOut.valid && exceptionEnable                                                                                              ),
1133    ("rob_flush_pipe_num      ", io.flushOut.valid && isFlushPipe                                                                                                  ),
1134    ("rob_replay_inst_num     ", io.flushOut.valid && isFlushPipe && deqHasReplayInst                                                                              ),
1135    ("rob_commitUop           ", ifCommit(commitCnt)                                                                                                               ),
1136    ("rob_commitInstr         ", ifCommit(trueCommitCnt)                                                                                                           ),
1137    ("rob_commitInstrMove     ", ifCommit(PopCount(io.commits.valid.zip(commitIsMove).map{ case (v, m) => v && m }))                                               ),
1138    ("rob_commitInstrFused    ", ifCommit(fuseCommitCnt)                                                                                                           ),
1139    ("rob_commitInstrLoad     ", ifCommit(PopCount(commitLoadValid))                                                                                               ),
1140    ("rob_commitInstrLoad     ", ifCommit(PopCount(commitBranchValid))                                                                                               ),
1141    ("rob_commitInstrLoadWait ", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))                                           ),
1142    ("rob_commitInstrStore    ", ifCommit(PopCount(io.commits.valid.zip(commitIsStore).map{ case (v, t) => v && t }))                                              ),
1143    ("rob_walkInstr           ", Mux(io.commits.isWalk, PopCount(io.commits.valid), 0.U)                                                                           ),
1144    ("rob_walkCycle           ", (state === s_walk || state === s_extrawalk)                                                                                       ),
1145    ("rob_1_4_valid           ", (PopCount((0 until RobSize).map(valid(_))) < (RobSize.U/4.U))                                                                     ),
1146    ("rob_2_4_valid           ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U/4.U)) & (PopCount((0 until RobSize).map(valid(_))) <= (RobSize.U/2.U))    ),
1147    ("rob_3_4_valid           ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U/2.U)) & (PopCount((0 until RobSize).map(valid(_))) <= (RobSize.U*3.U/4.U))),
1148    ("rob_4_4_valid           ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U*3.U/4.U))                                                                 ),
1149  )
1150  generatePerfEvent()
1151}
1152