1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.rob 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 24import utility._ 25import utils._ 26import xiangshan._ 27import xiangshan.backend.BackendParams 28import xiangshan.backend.fu.FuType 29import xiangshan.frontend.FtqPtr 30import xiangshan.mem.{LqPtr, SqPtr} 31import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 32 33class RobPtr(entries: Int) extends CircularQueuePtr[RobPtr]( 34 entries 35) with HasCircularQueuePtrHelper { 36 37 def this()(implicit p: Parameters) = this(p(XSCoreParamsKey).RobSize) 38 39 def needFlush(redirect: Valid[Redirect]): Bool = { 40 val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx 41 redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx)) 42 } 43 44 def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR 45} 46 47object RobPtr { 48 def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = { 49 val ptr = Wire(new RobPtr) 50 ptr.flag := f 51 ptr.value := v 52 ptr 53 } 54} 55 56class RobCSRIO(implicit p: Parameters) extends XSBundle { 57 val intrBitSet = Input(Bool()) 58 val trapTarget = Input(UInt(VAddrBits.W)) 59 val isXRet = Input(Bool()) 60 val wfiEvent = Input(Bool()) 61 62 val fflags = Output(Valid(UInt(5.W))) 63 val dirty_fs = Output(Bool()) 64 val perfinfo = new Bundle { 65 val retiredInstr = Output(UInt(3.W)) 66 } 67 68 val vcsrFlag = Output(Bool()) 69} 70 71class RobLsqIO(implicit p: Parameters) extends XSBundle { 72 val lcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 73 val scommit = Output(UInt(log2Up(CommitWidth + 1).W)) 74 val pendingld = Output(Bool()) 75 val pendingst = Output(Bool()) 76 val commit = Output(Bool()) 77} 78 79class RobEnqIO(implicit p: Parameters) extends XSBundle { 80 val canAccept = Output(Bool()) 81 val isEmpty = Output(Bool()) 82 // valid vector, for robIdx gen and walk 83 val needAlloc = Vec(RenameWidth, Input(Bool())) 84 val req = Vec(RenameWidth, Flipped(ValidIO(new DynInst))) 85 val resp = Vec(RenameWidth, Output(new RobPtr)) 86} 87 88class RobDispatchData(implicit p: Parameters) extends RobCommitInfo 89 90class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 91 val io = IO(new Bundle { 92 // for commits/flush 93 val state = Input(UInt(2.W)) 94 val deq_v = Vec(CommitWidth, Input(Bool())) 95 val deq_w = Vec(CommitWidth, Input(Bool())) 96 val exception_state = Flipped(ValidIO(new RobExceptionInfo)) 97 // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth) 98 val intrBitSetReg = Input(Bool()) 99 val hasNoSpecExec = Input(Bool()) 100 val interrupt_safe = Input(Bool()) 101 val blockCommit = Input(Bool()) 102 // output: the CommitWidth deqPtr 103 val out = Vec(CommitWidth, Output(new RobPtr)) 104 val next_out = Vec(CommitWidth, Output(new RobPtr)) 105 }) 106 107 val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr)))) 108 109 // for exceptions (flushPipe included) and interrupts: 110 // only consider the first instruction 111 val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe 112 val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0) 113 val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable) 114 115 // for normal commits: only to consider when there're no exceptions 116 // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions. 117 val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last) 118 val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i))) 119 val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B) 120 // when io.intrBitSetReg or there're possible exceptions in these instructions, 121 // only one instruction is allowed to commit 122 val allowOnlyOne = commit_exception || io.intrBitSetReg 123 val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt) 124 125 val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt)) 126 val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec) 127 128 deqPtrVec := deqPtrVec_next 129 130 io.next_out := deqPtrVec_next 131 io.out := deqPtrVec 132 133 when (io.state === 0.U) { 134 XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt) 135 } 136 137} 138 139class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 140 val io = IO(new Bundle { 141 // for input redirect 142 val redirect = Input(Valid(new Redirect)) 143 // for enqueue 144 val allowEnqueue = Input(Bool()) 145 val hasBlockBackward = Input(Bool()) 146 val enq = Vec(RenameWidth, Input(Bool())) 147 val out = Output(Vec(RenameWidth, new RobPtr)) 148 }) 149 150 val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr))) 151 152 // enqueue 153 val canAccept = io.allowEnqueue && !io.hasBlockBackward 154 val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U) 155 156 for ((ptr, i) <- enqPtrVec.zipWithIndex) { 157 when(io.redirect.valid) { 158 ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 159 }.otherwise { 160 ptr := ptr + dispatchNum 161 } 162 } 163 164 io.out := enqPtrVec 165 166} 167 168class RobExceptionInfo(implicit p: Parameters) extends XSBundle { 169 // val valid = Bool() 170 val robIdx = new RobPtr 171 val exceptionVec = ExceptionVec() 172 val flushPipe = Bool() 173 val isVset = Bool() 174 val replayInst = Bool() // redirect to that inst itself 175 val singleStep = Bool() // TODO add frontend hit beneath 176 val crossPageIPFFix = Bool() 177 val trigger = new TriggerCf 178 179// def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend 180// def trigger_after = trigger.getTimingBackend && trigger.getHitBackend 181 def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit 182 def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit 183 // only exceptions are allowed to writeback when enqueue 184 def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit 185} 186 187class ExceptionGen(params: BackendParams)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 188 val io = IO(new Bundle { 189 val redirect = Input(Valid(new Redirect)) 190 val flush = Input(Bool()) 191 val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo))) 192 // csr + load + store 193 val wb = Vec(params.numException, Flipped(ValidIO(new RobExceptionInfo))) 194 val out = ValidIO(new RobExceptionInfo) 195 val state = ValidIO(new RobExceptionInfo) 196 }) 197 198 def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = { 199 assert(valid.length == bits.length) 200 assert(isPow2(valid.length)) 201 if (valid.length == 1) { 202 (valid, bits) 203 } else if (valid.length == 2) { 204 val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0))))) 205 for (i <- res.indices) { 206 res(i).valid := valid(i) 207 res(i).bits := bits(i) 208 } 209 val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1)) 210 (Seq(oldest.valid), Seq(oldest.bits)) 211 } else { 212 val left = getOldest(valid.take(valid.length / 2), bits.take(valid.length / 2)) 213 val right = getOldest(valid.takeRight(valid.length / 2), bits.takeRight(valid.length / 2)) 214 getOldest(left._1 ++ right._1, left._2 ++ right._2) 215 } 216 } 217 218 val currentValid = RegInit(false.B) 219 val current = Reg(new RobExceptionInfo) 220 221 // orR the exceptionVec 222 val lastCycleFlush = RegNext(io.flush) 223 val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush)) 224 val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush) 225 226 // s0: compare wb(1)~wb(LoadPipelineWidth) and wb(1 + LoadPipelineWidth)~wb(LoadPipelineWidth + StorePipelineWidth) 227 val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) } 228 val csr_wb_bits = io.wb(0).bits 229 val load_wb_bits = getOldest(in_wb_valid.slice(1, 1 + LoadPipelineWidth), io.wb.map(_.bits).slice(1, 1 + LoadPipelineWidth))._2(0) 230 val store_wb_bits = getOldest(in_wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth), io.wb.map(_.bits).slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth))._2(0) 231 val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid.slice(1, 1 + LoadPipelineWidth).reduce(_ || _), wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth).reduce(_ || _)))) 232 val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits))) 233 234 // s1: compare last four and current flush 235 val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) }) 236 val compare_01_valid = s0_out_valid(0) || s0_out_valid(1) 237 val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0)) 238 val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2)) 239 val s1_out_bits = RegNext(compare_bits) 240 val s1_out_valid = RegNext(s1_valid.asUInt.orR) 241 242 val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 243 val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits))) 244 245 // s2: compare the input exception with the current one 246 // priorities: 247 // (1) system reset 248 // (2) current is valid: flush, remain, merge, update 249 // (3) current is not valid: s1 or enq 250 val current_flush = current.robIdx.needFlush(io.redirect) || io.flush 251 val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush 252 when (currentValid) { 253 when (current_flush) { 254 currentValid := Mux(s1_flush, false.B, s1_out_valid) 255 } 256 when (s1_out_valid && !s1_flush) { 257 when (isAfter(current.robIdx, s1_out_bits.robIdx)) { 258 current := s1_out_bits 259 }.elsewhen (current.robIdx === s1_out_bits.robIdx) { 260 current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec()) 261 current.flushPipe := s1_out_bits.flushPipe || current.flushPipe 262 current.replayInst := s1_out_bits.replayInst || current.replayInst 263 current.singleStep := s1_out_bits.singleStep || current.singleStep 264 current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf) 265 } 266 } 267 }.elsewhen (s1_out_valid && !s1_flush) { 268 currentValid := true.B 269 current := s1_out_bits 270 }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) { 271 currentValid := true.B 272 current := enq_bits 273 } 274 275 io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback 276 io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits) 277 io.state.valid := currentValid 278 io.state.bits := current 279 280} 281 282class RobFlushInfo(implicit p: Parameters) extends XSBundle { 283 val ftqIdx = new FtqPtr 284 val robIdx = new RobPtr 285 val ftqOffset = UInt(log2Up(PredictWidth).W) 286 val replayInst = Bool() 287} 288 289class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter { 290 291 lazy val module = new RobImp(this)(p, params) 292 // 293 // override def generateWritebackIO( 294 // thisMod: Option[HasWritebackSource] = None, 295 // thisModImp: Option[HasWritebackSourceImp] = None 296 // ): Unit = { 297 // val sources = writebackSinksImp(thisMod, thisModImp) 298 // module.io.writeback.zip(sources).foreach(x => x._1 := x._2) 299 // } 300 //} 301} 302 303class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper) 304 with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents { 305 306 val io = IO(new Bundle() { 307 val hartId = Input(UInt(8.W)) 308 val redirect = Input(Valid(new Redirect)) 309 val enq = new RobEnqIO 310 val flushOut = ValidIO(new Redirect) 311 val isVsetFlushPipe = Output(Bool()) 312 val exception = ValidIO(new ExceptionInfo) 313 // exu + brq 314 val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles) 315 val commits = Output(new RobCommitIO) 316 val lsq = new RobLsqIO 317 val robDeqPtr = Output(new RobPtr) 318 val csr = new RobCSRIO 319 val robFull = Output(Bool()) 320 val cpu_halt = Output(Bool()) 321 val wfi_enable = Input(Bool()) 322 }) 323 324 val exuWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(!_.bits.params.hasStdFu) 325 val stdWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(_.bits.params.hasStdFu) 326 val fflagsWBs = io.writeback.filter(x => x.bits.fflags.nonEmpty) 327 val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty) 328 val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty) 329 330 val exuWbPorts = io.writeback.filter(!_.bits.params.hasStdFu) 331 val stdWbPorts = io.writeback.filter(_.bits.params.hasStdFu) 332 val fflagsPorts = io.writeback.filter(x => x.bits.fflags.nonEmpty) 333 val exceptionPorts = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty) 334 val numExuWbPorts = exuWBs.length 335 val numStdWbPorts = stdWBs.length 336 337 338 println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth") 339// println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}") 340// println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}") 341// println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}") 342 343 344 // instvalid field 345 val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 346 // writeback status 347 val writebacked = Mem(RobSize, Bool()) 348 val store_data_writebacked = Mem(RobSize, Bool()) 349 // data for redirect, exception, etc. 350 val flagBkup = Mem(RobSize, Bool()) 351 // some instructions are not allowed to trigger interrupts 352 // They have side effects on the states of the processor before they write back 353 val interrupt_safe = Mem(RobSize, Bool()) 354 355 // data for debug 356 // Warn: debug_* prefix should not exist in generated verilog. 357 val debug_microOp = Mem(RobSize, new DynInst) 358 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug 359 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug 360 361 // pointers 362 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 363 val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr)) 364 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 365 366 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 367 val allowEnqueue = RegInit(true.B) 368 369 val enqPtr = enqPtrVec.head 370 val deqPtr = deqPtrVec(0) 371 val walkPtr = walkPtrVec(0) 372 373 val isEmpty = enqPtr === deqPtr 374 val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level) 375 376 /** 377 * states of Rob 378 */ 379 val s_idle :: s_walk :: Nil = Enum(2) 380 val state = RegInit(s_idle) 381 382 /** 383 * Data Modules 384 * 385 * CommitDataModule: data from dispatch 386 * (1) read: commits/walk/exception 387 * (2) write: enqueue 388 * 389 * WritebackData: data from writeback 390 * (1) read: commits/walk/exception 391 * (2) write: write back from exe units 392 */ 393 val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth)) 394 val dispatchDataRead = dispatchData.io.rdata 395 396 val exceptionGen = Module(new ExceptionGen(params)) 397 val exceptionDataRead = exceptionGen.io.state 398 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 399 400 io.robDeqPtr := deqPtr 401 402 /** 403 * Enqueue (from dispatch) 404 */ 405 // special cases 406 val hasBlockBackward = RegInit(false.B) 407 val hasWaitForward = RegInit(false.B) 408 val doingSvinval = RegInit(false.B) 409 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 410 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 411 when (isEmpty) { hasBlockBackward:= false.B } 412 // When any instruction commits, hasNoSpecExec should be set to false.B 413 when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasWaitForward:= false.B } 414 415 // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing. 416 // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle. 417 // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts. 418 val hasWFI = RegInit(false.B) 419 io.cpu_halt := hasWFI 420 // WFI Timeout: 2^20 = 1M cycles 421 val wfi_cycles = RegInit(0.U(20.W)) 422 when (hasWFI) { 423 wfi_cycles := wfi_cycles + 1.U 424 }.elsewhen (!hasWFI && RegNext(hasWFI)) { 425 wfi_cycles := 0.U 426 } 427 val wfi_timeout = wfi_cycles.andR 428 when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) { 429 hasWFI := false.B 430 } 431 432 val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.needAlloc.take(i))))) 433 io.enq.canAccept := allowEnqueue && !hasBlockBackward 434 io.enq.resp := allocatePtrVec 435 val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept)) 436 val timer = GTimer() 437 for (i <- 0 until RenameWidth) { 438 // we don't check whether io.redirect is valid here since redirect has higher priority 439 when (canEnqueue(i)) { 440 val enqUop = io.enq.req(i).bits 441 val enqIndex = allocatePtrVec(i).value 442 // store uop in data module and debug_microOp Vec 443 debug_microOp(enqIndex) := enqUop 444 debug_microOp(enqIndex).debugInfo.dispatchTime := timer 445 debug_microOp(enqIndex).debugInfo.enqRsTime := timer 446 debug_microOp(enqIndex).debugInfo.selectTime := timer 447 debug_microOp(enqIndex).debugInfo.issueTime := timer 448 debug_microOp(enqIndex).debugInfo.writebackTime := timer 449 when (enqUop.blockBackward) { 450 hasBlockBackward := true.B 451 } 452 when (enqUop.waitForward) { 453 hasWaitForward := true.B 454 } 455 val enqHasTriggerHit = false.B // io.enq.req(i).bits.cf.trigger.getHitFrontend 456 val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR 457 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 458 when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe)) 459 { 460 doingSvinval := true.B 461 } 462 // the end instruction of Svinval enqs so clear doingSvinval 463 when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe)) 464 { 465 doingSvinval := false.B 466 } 467 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 468 assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe))) 469 when (enqUop.isWFI && !enqHasException && !enqHasTriggerHit) { 470 hasWFI := true.B 471 } 472 } 473 } 474 val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(_.valid)), 0.U) 475 io.enq.isEmpty := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR) 476 477 when (!io.wfi_enable) { 478 hasWFI := false.B 479 } 480 // sel vsetvl's flush position 481 val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3) 482 val vsetvlState = RegInit(vs_idle) 483 484 val firstVInstrFtqPtr = RegInit(0.U.asTypeOf(new FtqPtr)) 485 val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W))) 486 val firstVInstrRobIdx = RegInit(0.U.asTypeOf(new RobPtr)) 487 488 val enq0 = io.enq.req(0) 489 val enq0IsVset = FuType.isInt(enq0.bits.fuType) && ALUOpType.isVset(enq0.bits.fuOpType) && enq0.bits.uopIdx.andR && canEnqueue(0) 490 val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe 491 val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVpu(req.bits.fuType) && fire} 492 // for vs_idle 493 val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType))) 494 // for vs_waitVinstr 495 val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1) 496 val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req) 497 when(vsetvlState === vs_idle){ 498 firstVInstrFtqPtr := firstVInstrIdle.bits.ftqPtr 499 firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset 500 firstVInstrRobIdx := firstVInstrIdle.bits.robIdx 501 }.elsewhen(vsetvlState === vs_waitVinstr){ 502 firstVInstrFtqPtr := firstVInstrWait.bits.ftqPtr 503 firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset 504 firstVInstrRobIdx := firstVInstrWait.bits.robIdx 505 } 506 507 val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR 508 when(vsetvlState === vs_idle){ 509 when(enq0IsVsetFlush){ 510 vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr) 511 } 512 }.elsewhen(vsetvlState === vs_waitVinstr){ 513 when(io.redirect.valid){ 514 vsetvlState := vs_idle 515 }.elsewhen(Cat(enqIsVInstrOrVset).orR){ 516 vsetvlState := vs_waitFlush 517 } 518 }.elsewhen(vsetvlState === vs_waitFlush){ 519 when(io.redirect.valid){ 520 vsetvlState := vs_idle 521 } 522 } 523 524 /** 525 * Writeback (from execution units) 526 */ 527 for (wb <- exuWBs) { 528 when (wb.valid) { 529 val wbIdx = wb.bits.robIdx.value 530 debug_exuData(wbIdx) := wb.bits.data 531 debug_exuDebug(wbIdx) := wb.bits.debug 532 debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime 533 debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime 534 debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime 535 debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime 536 537 // debug for lqidx and sqidx 538 debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr)) 539 debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr)) 540 541 val debug_Uop = debug_microOp(wbIdx) 542 XSInfo(true.B, 543 p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " + 544 p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " + 545 p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.robIdx}\n" 546 ) 547 } 548 } 549 550 val writebackNum = PopCount(exuWBs.map(_.valid)) 551 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 552 553 554 /** 555 * RedirectOut: Interrupt and Exceptions 556 */ 557 val deqDispatchData = dispatchDataRead(0) 558 val debug_deqUop = debug_microOp(deqPtr.value) 559 560 val intrBitSetReg = RegNext(io.csr.intrBitSet) 561 val intrEnable = intrBitSetReg && !hasWaitForward && interrupt_safe(deqPtr.value) 562 val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 563 val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR || 564 exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit) 565 val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe 566 val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst 567 val exceptionEnable = writebacked(deqPtr.value) && deqHasException 568 569 XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n") 570 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n") 571 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n") 572 573 val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst) 574 575 val isVsetFlushPipe = writebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset 576 val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush) 577 io.isVsetFlushPipe := RegNext(isVsetFlushPipe) 578 // io.flushOut will trigger redirect at the next cycle. 579 // Block any redirect or commit at the next cycle. 580 val lastCycleFlush = RegNext(io.flushOut.valid) 581 582 io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush 583 io.flushOut.bits := DontCare 584 io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr) 585 io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx) 586 io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset) 587 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next" 588 io.flushOut.bits.interrupt := true.B 589 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 590 XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable) 591 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 592 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 593 594 val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush 595 io.exception.valid := RegNext(exceptionHappen) 596 io.exception.bits.pc := RegEnable(debug_deqUop.pc, exceptionHappen) 597 io.exception.bits.instr := RegEnable(debug_deqUop.instr, exceptionHappen) 598 io.exception.bits.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 599 io.exception.bits.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 600 io.exception.bits.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 601 io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 602 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 603// io.exception.bits.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen) 604 605 XSDebug(io.flushOut.valid, 606 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " + 607 p"excp $exceptionEnable flushPipe $isFlushPipe " + 608 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 609 610 611 /** 612 * Commits (and walk) 613 * They share the same width. 614 */ 615 val walkCounter = Reg(UInt(log2Up(RobSize + 1).W)) 616 val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter)) 617 val walkFinished = walkCounter <= CommitWidth.U 618 619 require(RenameWidth <= CommitWidth) 620 621 // wiring to csr 622 val (wflags, fpWen) = (0 until CommitWidth).map(i => { 623 val v = io.commits.commitValid(i) 624 val info = io.commits.info(i) 625 (v & info.wflags, v & info.fpWen) 626 }).unzip 627 val fflags = Wire(Valid(UInt(5.W))) 628 fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR 629 fflags.bits := wflags.zip(fflagsDataRead).map({ 630 case (w, f) => Mux(w, f, 0.U) 631 }).reduce(_|_) 632 val dirty_fs = io.commits.isCommit && VecInit(fpWen).asUInt.orR 633 634 // when mispredict branches writeback, stop commit in the next 2 cycles 635 // TODO: don't check all exu write back 636 val misPredWb = Cat(VecInit(redirectWBs.map(wb => 637 wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid 638 ))).orR 639 val misPredBlockCounter = Reg(UInt(3.W)) 640 misPredBlockCounter := Mux(misPredWb, 641 "b111".U, 642 misPredBlockCounter >> 1.U 643 ) 644 val misPredBlock = misPredBlockCounter(0) 645 val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI 646 647 io.commits.isWalk := state === s_walk 648 io.commits.isCommit := state === s_idle && !blockCommit 649 val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value))) 650 val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value))) 651 // store will be commited iff both sta & std have been writebacked 652 val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value))) 653 val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last) 654 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i))) 655 val allowOnlyOneCommit = commit_exception || intrBitSetReg 656 // for instructions that may block others, we don't allow them to commit 657 for (i <- 0 until CommitWidth) { 658 // defaults: state === s_idle and instructions commit 659 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 660 val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst 661 io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked 662 io.commits.info(i) := dispatchDataRead(i) 663 664 when (state === s_walk) { 665 io.commits.walkValid(i) := shouldWalkVec(i) 666 when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) { 667 XSError(!walk_v(i), s"why not $i???\n") 668 } 669 } 670 671 XSInfo(io.commits.isCommit && io.commits.commitValid(i), 672 "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b\n", 673 debug_microOp(deqPtrVec(i).value).pc, 674 io.commits.info(i).rfWen, 675 io.commits.info(i).ldest, 676 io.commits.info(i).pdest, 677 io.commits.info(i).old_pdest, 678 debug_exuData(deqPtrVec(i).value), 679 fflagsDataRead(i) 680 ) 681 XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n", 682 debug_microOp(walkPtrVec(i).value).pc, 683 io.commits.info(i).rfWen, 684 io.commits.info(i).ldest, 685 debug_exuData(walkPtrVec(i).value) 686 ) 687 } 688 if (env.EnableDifftest) { 689 io.commits.info.map(info => dontTouch(info.pc)) 690 } 691 692 // sync fflags/dirty_fs to csr 693 io.csr.fflags := RegNext(fflags) 694 io.csr.dirty_fs := RegNext(dirty_fs) 695 696 // sync v csr to csr 697// io.csr.vcsrFlag := RegNext(isVsetFlushPipe) 698 699 // commit load/store to lsq 700 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 701 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE)) 702 io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U)) 703 io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U)) 704 // indicate a pending load or store 705 io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value)) 706 io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value)) 707 io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0)) 708 709 /** 710 * state changes 711 * (1) redirect: switch to s_walk 712 * (2) walk: when walking comes to the end, switch to s_idle 713 */ 714 val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished, s_idle, state)) 715 XSPerfAccumulate("s_idle_to_idle", state === s_idle && state_next === s_idle) 716 XSPerfAccumulate("s_idle_to_walk", state === s_idle && state_next === s_walk) 717 XSPerfAccumulate("s_walk_to_idle", state === s_walk && state_next === s_idle) 718 XSPerfAccumulate("s_walk_to_walk", state === s_walk && state_next === s_walk) 719 state := state_next 720 721 /** 722 * pointers and counters 723 */ 724 val deqPtrGenModule = Module(new RobDeqPtrWrapper) 725 deqPtrGenModule.io.state := state 726 deqPtrGenModule.io.deq_v := commit_v 727 deqPtrGenModule.io.deq_w := commit_w 728 deqPtrGenModule.io.exception_state := exceptionDataRead 729 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 730 deqPtrGenModule.io.hasNoSpecExec := hasWaitForward 731 deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value) 732 deqPtrGenModule.io.blockCommit := blockCommit 733 deqPtrVec := deqPtrGenModule.io.out 734 val deqPtrVec_next = deqPtrGenModule.io.next_out 735 736 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 737 enqPtrGenModule.io.redirect := io.redirect 738 enqPtrGenModule.io.allowEnqueue := allowEnqueue 739 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 740 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid)) 741 enqPtrVec := enqPtrGenModule.io.out 742 743 val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U) 744 // next walkPtrVec: 745 // (1) redirect occurs: update according to state 746 // (2) walk: move forwards 747 val walkPtrVec_next = Mux(io.redirect.valid, 748 deqPtrVec_next, 749 Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec) 750 ) 751 walkPtrVec := walkPtrVec_next 752 753 val numValidEntries = distanceBetween(enqPtr, deqPtr) 754 val isLastUopVec = io.commits.info.map(_.uopIdx.andR) 755 val commitCnt = PopCount(io.commits.commitValid.zip(isLastUopVec).map{case(isCommitValid, isLastUop) => isCommitValid && isLastUop}) 756 757 allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U 758 759 val currentWalkPtr = Mux(state === s_walk, walkPtr, deqPtrVec_next(0)) 760 val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0)) 761 when (io.redirect.valid) { 762 // full condition: 763 // +& is used here because: 764 // When rob is full and the tail instruction causes a misprediction, 765 // the redirect robIdx is the deqPtr - 1. In this case, redirectWalkDistance 766 // is RobSize - 1. 767 // Since misprediction does not flush the instruction itself, flushItSelf is false.B. 768 // Previously we use `+` to count the walk distance and it causes overflows 769 // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize. 770 // The width of walkCounter also needs to be changed. 771 // empty condition: 772 // When the last instruction in ROB commits and causes a flush, a redirect 773 // will be raised later. In such circumstances, the redirect robIdx is before 774 // the deqPtrVec_next(0) and will cause underflow. 775 walkCounter := Mux(isBefore(io.redirect.bits.robIdx, deqPtrVec_next(0)), 0.U, 776 redirectWalkDistance +& !io.redirect.bits.flushItself()) 777 }.elsewhen (state === s_walk) { 778 walkCounter := walkCounter - thisCycleWalkCount 779 XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n") 780 } 781 782 783 /** 784 * States 785 * We put all the stage bits changes here. 786 787 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 788 * All states: (1) valid; (2) writebacked; (3) flagBkup 789 */ 790 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 791 792 // redirect logic writes 6 valid 793 val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr)) 794 val redirectTail = Reg(new RobPtr) 795 val redirectIdle :: redirectBusy :: Nil = Enum(2) 796 val redirectState = RegInit(redirectIdle) 797 val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail)) 798 when(redirectState === redirectBusy) { 799 redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U) 800 redirectHeadVec zip invMask foreach { 801 case (redirectHead, inv) => when(inv) { 802 valid(redirectHead.value) := false.B 803 } 804 } 805 when(!invMask.last) { 806 redirectState := redirectIdle 807 } 808 } 809 when(io.redirect.valid) { 810 redirectState := redirectBusy 811 when(redirectState === redirectIdle) { 812 redirectTail := enqPtr 813 } 814 redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) => 815 redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 816 } 817 } 818 // enqueue logic writes 6 valid 819 for (i <- 0 until RenameWidth) { 820 when (canEnqueue(i) && !io.redirect.valid) { 821 valid(allocatePtrVec(i).value) := true.B 822 } 823 } 824 // dequeue logic writes 6 valid 825 for (i <- 0 until CommitWidth) { 826 val commitValid = io.commits.isCommit && io.commits.commitValid(i) 827 when (commitValid) { 828 valid(commitReadAddr(i)) := false.B 829 } 830 } 831 832 // status field: writebacked 833 // enqueue logic set 6 writebacked to false 834 for (i <- 0 until RenameWidth) { 835 when (canEnqueue(i)) { 836 val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec).asUInt.orR 837 val enqHasTriggerHit = io.enq.req(i).bits.trigger.getHitFrontend 838 val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove 839 writebacked(allocatePtrVec(i).value) := enqIsWritebacked && !enqHasException && !enqHasTriggerHit 840 val isStu = io.enq.req(i).bits.fuType === FuType.stu.U 841 store_data_writebacked(allocatePtrVec(i).value) := !isStu 842 } 843 } 844 when (exceptionGen.io.out.valid) { 845 val wbIdx = exceptionGen.io.out.bits.robIdx.value 846 writebacked(wbIdx) := true.B 847 store_data_writebacked(wbIdx) := true.B 848 } 849 // writeback logic set numWbPorts writebacked to true 850 for (wb <- exuWBs) { 851 when (wb.valid) { 852 val wbIdx = wb.bits.robIdx.value 853 val wbHasException = wb.bits.exceptionVec.getOrElse(0.U).asUInt.orR 854 val wbHasTriggerHit = false.B //Todo: wb.bits.trigger.getHitBackend 855 val wbHasFlushPipe = wb.bits.flushPipe.getOrElse(false.B) 856 val wbHasReplayInst = wb.bits.replay.getOrElse(false.B) //Todo: && wb.bits.replayInst 857 val block_wb = wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit 858 writebacked(wbIdx) := !block_wb 859 } 860 } 861 // store data writeback logic mark store as data_writebacked 862 for (wb <- stdWBs) { 863 when(RegNext(wb.valid)) { 864 store_data_writebacked(RegNext(wb.bits.robIdx.value)) := true.B 865 } 866 } 867 868 // flagBkup 869 // enqueue logic set 6 flagBkup at most 870 for (i <- 0 until RenameWidth) { 871 when (canEnqueue(i)) { 872 flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag 873 } 874 } 875 876 // interrupt_safe 877 for (i <- 0 until RenameWidth) { 878 // We RegNext the updates for better timing. 879 // Note that instructions won't change the system's states in this cycle. 880 when (RegNext(canEnqueue(i))) { 881 // For now, we allow non-load-store instructions to trigger interrupts 882 // For MMIO instructions, they should not trigger interrupts since they may 883 // be sent to lower level before it writes back. 884 // However, we cannot determine whether a load/store instruction is MMIO. 885 // Thus, we don't allow load/store instructions to trigger an interrupt. 886 // TODO: support non-MMIO load-store instructions to trigger interrupts 887 val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType) 888 interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts) 889 } 890 } 891 892 /** 893 * read and write of data modules 894 */ 895 val commitReadAddr_next = Mux(state_next === s_idle, 896 VecInit(deqPtrVec_next.map(_.value)), 897 VecInit(walkPtrVec_next.map(_.value)) 898 ) 899 dispatchData.io.wen := canEnqueue 900 dispatchData.io.waddr := allocatePtrVec.map(_.value) 901 dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) => 902 wdata.ldest := req.ldest 903 wdata.rfWen := req.rfWen 904 wdata.fpWen := req.fpWen 905 wdata.vecWen := req.vecWen 906 wdata.wflags := req.fpu.wflags 907 wdata.commitType := req.commitType 908 wdata.pdest := req.pdest 909 wdata.old_pdest := req.oldPdest 910 wdata.ftqIdx := req.ftqPtr 911 wdata.ftqOffset := req.ftqOffset 912 wdata.isMove := req.eliminatedMove 913 wdata.pc := req.pc 914 wdata.uopIdx := req.uopIdx 915// wdata.vconfig := req.vconfig 916 } 917 dispatchData.io.raddr := commitReadAddr_next 918 919 exceptionGen.io.redirect <> io.redirect 920 exceptionGen.io.flush := io.flushOut.valid 921 for (i <- 0 until RenameWidth) { 922 exceptionGen.io.enq(i).valid := canEnqueue(i) 923 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 924 exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec) 925 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe 926 exceptionGen.io.enq(i).bits.isVset := FuType.isInt(io.enq.req(i).bits.fuType) && ALUOpType.isVset(io.enq.req(i).bits.fuOpType) 927 exceptionGen.io.enq(i).bits.replayInst := false.B 928 XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst") 929 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep 930 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix 931 exceptionGen.io.enq(i).bits.trigger.clear() 932 exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.trigger.frontendHit 933 } 934 935 println(s"ExceptionGen:") 936 println(s"num of exceptions: ${params.numException}") 937 require(exceptionWBs.length == exceptionGen.io.wb.length, 938 f"exceptionWBs.length: ${exceptionWBs.length}, " + 939 f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}") 940 for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) { 941 exc_wb.valid := wb.valid 942 exc_wb.bits.robIdx := wb.bits.robIdx 943 exc_wb.bits.exceptionVec := wb.bits.exceptionVec.get 944 exc_wb.bits.flushPipe := wb.bits.flushPipe.getOrElse(false.B) 945 exc_wb.bits.isVset := false.B 946 exc_wb.bits.replayInst := wb.bits.replay.getOrElse(false.B) 947 exc_wb.bits.singleStep := false.B 948 exc_wb.bits.crossPageIPFFix := false.B 949 exc_wb.bits.trigger := 0.U.asTypeOf(exc_wb.bits.trigger) // Todo 950// println(s" [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " + 951// s"flushPipe ${configs.exists(_.flushPipe)}, " + 952// s"replayInst ${configs.exists(_.replayInst)}") 953 } 954 955 val fflagsDataModule = Module(new SyncDataModuleTemplate( 956 UInt(5.W), RobSize, CommitWidth, fflagsWBs.size) 957 ) 958 require(fflagsWBs.length == fflagsDataModule.io.wen.length) 959 for(i <- fflagsWBs.indices){ 960 fflagsDataModule.io.wen (i) := fflagsWBs(i).valid 961 fflagsDataModule.io.waddr(i) := fflagsWBs(i).bits.robIdx.value 962 fflagsDataModule.io.wdata(i) := fflagsWBs(i).bits.fflags.get 963 } 964 fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value)) 965 fflagsDataRead := fflagsDataModule.io.rdata 966 967 968 val instrCntReg = RegInit(0.U(64.W)) 969 val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) }) 970 val trueCommitCnt = RegNext(commitCnt) +& fuseCommitCnt 971 val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U) 972 val instrCnt = instrCntReg + retireCounter 973 instrCntReg := instrCnt 974 io.csr.perfinfo.retiredInstr := retireCounter 975 io.robFull := !allowEnqueue 976 977 /** 978 * debug info 979 */ 980 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 981 XSDebug("") 982 XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n") 983 for(i <- 0 until RobSize){ 984 XSDebug(false, !valid(i), "-") 985 XSDebug(false, valid(i) && writebacked(i), "w") 986 XSDebug(false, valid(i) && !writebacked(i), "v") 987 } 988 XSDebug(false, true.B, "\n") 989 990 for(i <- 0 until RobSize) { 991 if(i % 4 == 0) XSDebug("") 992 XSDebug(false, true.B, "%x ", debug_microOp(i).pc) 993 XSDebug(false, !valid(i), "- ") 994 XSDebug(false, valid(i) && writebacked(i), "w ") 995 XSDebug(false, valid(i) && !writebacked(i), "v ") 996 if(i % 4 == 3) XSDebug(false, true.B, "\n") 997 } 998 999 def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U) 1000 def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U) 1001 1002 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 1003 XSPerfAccumulate("clock_cycle", 1.U) 1004 QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue) 1005 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 1006 XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt)) 1007 val commitIsMove = commitDebugUop.map(_.isMove) 1008 XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }))) 1009 val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) 1010 XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e }))) 1011 XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt)) 1012 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 1013 val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t } 1014 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 1015 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 1016 val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t } 1017 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 1018 val commitLoadWaitBit = commitDebugUop.map(_.loadWaitBit) 1019 XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))) 1020 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 1021 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }))) 1022 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i)))) 1023 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire))) 1024 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 1025 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)) 1026 XSPerfAccumulate("walkCycle", state === s_walk) 1027 val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value) 1028 val deqUopCommitType = io.commits.info(0).commitType 1029 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 1030 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 1031 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 1032 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 1033 XSPerfAccumulate("robHeadPC", io.commits.info(0).pc) 1034 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 1035 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 1036 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 1037 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 1038 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 1039 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 1040 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 1041 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 1042 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 1043 } 1044 for (fuType <- FuType.functionNameMap.keys) { 1045 val fuName = FuType.functionNameMap(fuType) 1046 val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U ) 1047 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 1048 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 1049 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 1050 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 1051 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 1052 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 1053 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 1054 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 1055 if (fuType == FuType.fmac) { 1056 val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.fpu.ren3 ) 1057 XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma))) 1058 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency))) 1059 XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency))) 1060 } 1061 } 1062 1063 //difftest signals 1064 val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value 1065 1066 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1067 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1068 1069 for(i <- 0 until CommitWidth) { 1070 val idx = deqPtrVec(i).value 1071 wdata(i) := debug_exuData(idx) 1072 wpc(i) := SignExt(commitDebugUop(i).pc, XLEN) 1073 } 1074 1075 if (env.EnableDifftest) { 1076 for (i <- 0 until CommitWidth) { 1077 val difftest = Module(new DifftestInstrCommit) 1078 // assgin default value 1079 difftest.io := DontCare 1080 1081 difftest.io.clock := clock 1082 difftest.io.coreid := io.hartId 1083 difftest.io.index := i.U 1084 1085 val ptr = deqPtrVec(i).value 1086 val uop = commitDebugUop(i) 1087 val exuOut = debug_exuDebug(ptr) 1088 val exuData = debug_exuData(ptr) 1089 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1090 difftest.io.pc := RegNext(RegNext(RegNext(SignExt(uop.pc, XLEN)))) 1091 difftest.io.instr := RegNext(RegNext(RegNext(uop.instr))) 1092 difftest.io.robIdx := RegNext(RegNext(RegNext(ZeroExt(ptr, 10)))) 1093 difftest.io.lqIdx := RegNext(RegNext(RegNext(ZeroExt(uop.lqIdx.value, 7)))) 1094 difftest.io.sqIdx := RegNext(RegNext(RegNext(ZeroExt(uop.sqIdx.value, 7)))) 1095 difftest.io.isLoad := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.LOAD))) 1096 difftest.io.isStore := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.STORE))) 1097 difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(io.commits.info(i).commitType)))) 1098 // when committing an eliminated move instruction, 1099 // we must make sure that skip is properly set to false (output from EXU is random value) 1100 difftest.io.skip := RegNext(RegNext(RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)))) 1101 difftest.io.isRVC := RegNext(RegNext(RegNext(uop.preDecodeInfo.isRVC))) 1102 difftest.io.rfwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U))) 1103 difftest.io.fpwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).fpWen))) 1104 difftest.io.wpdest := RegNext(RegNext(RegNext(io.commits.info(i).pdest))) 1105 difftest.io.wdest := RegNext(RegNext(RegNext(io.commits.info(i).ldest))) 1106 1107 difftest.io.isVsetFirst := RegNext(RegNext(RegNext(io.commits.commitValid(i) && !io.commits.info(i).uopIdx.orR))) 1108 // // runahead commit hint 1109 // val runahead_commit = Module(new DifftestRunaheadCommitEvent) 1110 // runahead_commit.io.clock := clock 1111 // runahead_commit.io.coreid := io.hartId 1112 // runahead_commit.io.index := i.U 1113 // runahead_commit.io.valid := difftest.io.valid && 1114 // (commitBranchValid(i) || commitIsStore(i)) 1115 // // TODO: is branch or store 1116 // runahead_commit.io.pc := difftest.io.pc 1117 } 1118 } 1119 else if (env.AlwaysBasicDiff) { 1120 // These are the structures used by difftest only and should be optimized after synthesis. 1121 val dt_eliminatedMove = Mem(RobSize, Bool()) 1122 val dt_isRVC = Mem(RobSize, Bool()) 1123 val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) 1124 for (i <- 0 until RenameWidth) { 1125 when (canEnqueue(i)) { 1126 dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 1127 dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC 1128 } 1129 } 1130 for (wb <- exuWBs) { 1131 when (wb.valid) { 1132 val wbIdx = wb.bits.robIdx.value 1133 dt_exuDebug(wbIdx) := wb.bits.debug 1134 } 1135 } 1136 // Always instantiate basic difftest modules. 1137 for (i <- 0 until CommitWidth) { 1138 val commitInfo = io.commits.info(i) 1139 val ptr = deqPtrVec(i).value 1140 val exuOut = dt_exuDebug(ptr) 1141 val eliminatedMove = dt_eliminatedMove(ptr) 1142 val isRVC = dt_isRVC(ptr) 1143 1144 val difftest = Module(new DifftestBasicInstrCommit) 1145 difftest.io.clock := clock 1146 difftest.io.coreid := io.hartId 1147 difftest.io.index := i.U 1148 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1149 difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(commitInfo.commitType)))) 1150 difftest.io.skip := RegNext(RegNext(RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)))) 1151 difftest.io.isRVC := RegNext(RegNext(RegNext(isRVC))) 1152 difftest.io.rfwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U))) 1153 difftest.io.fpwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.fpWen))) 1154 difftest.io.wpdest := RegNext(RegNext(RegNext(commitInfo.pdest))) 1155 difftest.io.wdest := RegNext(RegNext(RegNext(commitInfo.ldest))) 1156 } 1157 } 1158 1159 if (env.EnableDifftest) { 1160 for (i <- 0 until CommitWidth) { 1161 val difftest = Module(new DifftestLoadEvent) 1162 difftest.io.clock := clock 1163 difftest.io.coreid := io.hartId 1164 difftest.io.index := i.U 1165 1166 val ptr = deqPtrVec(i).value 1167 val uop = commitDebugUop(i) 1168 val exuOut = debug_exuDebug(ptr) 1169 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1170 difftest.io.paddr := RegNext(RegNext(RegNext(exuOut.paddr))) 1171 difftest.io.opType := RegNext(RegNext(RegNext(uop.fuOpType))) 1172 difftest.io.fuType := RegNext(RegNext(RegNext(uop.fuType))) 1173 } 1174 } 1175 1176 // Always instantiate basic difftest modules. 1177 if (env.EnableDifftest) { 1178 val dt_isXSTrap = Mem(RobSize, Bool()) 1179 for (i <- 0 until RenameWidth) { 1180 when (canEnqueue(i)) { 1181 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap 1182 } 1183 } 1184 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) } 1185 val hitTrap = trapVec.reduce(_||_) 1186 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 1187 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN) 1188 val difftest = Module(new DifftestTrapEvent) 1189 difftest.io.clock := clock 1190 difftest.io.coreid := io.hartId 1191 difftest.io.valid := hitTrap 1192 difftest.io.code := trapCode 1193 difftest.io.pc := trapPC 1194 difftest.io.cycleCnt := timer 1195 difftest.io.instrCnt := instrCnt 1196 difftest.io.hasWFI := hasWFI 1197 } 1198 else if (env.AlwaysBasicDiff) { 1199 val dt_isXSTrap = Mem(RobSize, Bool()) 1200 for (i <- 0 until RenameWidth) { 1201 when (canEnqueue(i)) { 1202 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap 1203 } 1204 } 1205 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) } 1206 val hitTrap = trapVec.reduce(_||_) 1207 val difftest = Module(new DifftestBasicTrapEvent) 1208 difftest.io.clock := clock 1209 difftest.io.coreid := io.hartId 1210 difftest.io.valid := hitTrap 1211 difftest.io.cycleCnt := timer 1212 difftest.io.instrCnt := instrCnt 1213 } 1214 1215 val validEntriesBanks = (0 until (RobSize + 63) / 64).map(i => RegNext(PopCount(valid.drop(i * 64).take(64)))) 1216 val validEntries = RegNext(ParallelOperation(validEntriesBanks, (a: UInt, b: UInt) => a +& b)) 1217 val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }) 1218 val commitLoadVec = VecInit(commitLoadValid) 1219 val commitBranchVec = VecInit(commitBranchValid) 1220 val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }) 1221 val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }) 1222 val perfEvents = Seq( 1223 ("rob_interrupt_num ", io.flushOut.valid && intrEnable ), 1224 ("rob_exception_num ", io.flushOut.valid && exceptionEnable ), 1225 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe ), 1226 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst ), 1227 ("rob_commitUop ", ifCommit(commitCnt) ), 1228 ("rob_commitInstr ", ifCommitReg(trueCommitCnt) ), 1229 ("rob_commitInstrMove ", ifCommitReg(PopCount(RegNext(commitMoveVec))) ), 1230 ("rob_commitInstrFused ", ifCommitReg(fuseCommitCnt) ), 1231 ("rob_commitInstrLoad ", ifCommitReg(PopCount(RegNext(commitLoadVec))) ), 1232 ("rob_commitInstrBranch ", ifCommitReg(PopCount(RegNext(commitBranchVec))) ), 1233 ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec))) ), 1234 ("rob_commitInstrStore ", ifCommitReg(PopCount(RegNext(commitStoreVec))) ), 1235 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U) ), 1236 ("rob_walkCycle ", (state === s_walk) ), 1237 ("rob_1_4_valid ", validEntries <= (RobSize / 4).U ), 1238 ("rob_2_4_valid ", validEntries > (RobSize / 4).U && validEntries <= (RobSize / 2).U ), 1239 ("rob_3_4_valid ", validEntries > (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U), 1240 ("rob_4_4_valid ", validEntries > (RobSize * 3 / 4).U ), 1241 ) 1242 generatePerfEvent() 1243} 1244