xref: /XiangShan/src/main/scala/xiangshan/backend/rob/Rob.scala (revision 730cfbc0bf03569aa07dd82ba3fb41eb7413e13c)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.backend.rob
18
19import chipsalliance.rocketchip.config.Parameters
20import chisel3._
21import chisel3.util._
22import difftest._
23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp}
24import utility._
25import utils._
26import xiangshan._
27import xiangshan.backend.BackendParams
28import xiangshan.backend.fu.FuType
29import xiangshan.frontend.FtqPtr
30import xiangshan.mem.{LqPtr, SqPtr}
31import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput}
32
33class RobPtr(entries: Int) extends CircularQueuePtr[RobPtr](
34  entries
35) with HasCircularQueuePtrHelper {
36
37  def this()(implicit p: Parameters) = this(p(XSCoreParamsKey).RobSize)
38
39  def needFlush(redirect: Valid[Redirect]): Bool = {
40    val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx
41    redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx))
42  }
43
44  def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR
45}
46
47object RobPtr {
48  def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = {
49    val ptr = Wire(new RobPtr)
50    ptr.flag := f
51    ptr.value := v
52    ptr
53  }
54}
55
56class RobCSRIO(implicit p: Parameters) extends XSBundle {
57  val intrBitSet = Input(Bool())
58  val trapTarget = Input(UInt(VAddrBits.W))
59  val isXRet     = Input(Bool())
60  val wfiEvent   = Input(Bool())
61
62  val fflags     = Output(Valid(UInt(5.W)))
63  val dirty_fs   = Output(Bool())
64  val perfinfo   = new Bundle {
65    val retiredInstr = Output(UInt(3.W))
66  }
67
68  val vcsrFlag   = Output(Bool())
69}
70
71class RobLsqIO(implicit p: Parameters) extends XSBundle {
72  val lcommit = Output(UInt(log2Up(CommitWidth + 1).W))
73  val scommit = Output(UInt(log2Up(CommitWidth + 1).W))
74  val pendingld = Output(Bool())
75  val pendingst = Output(Bool())
76  val commit = Output(Bool())
77}
78
79class RobEnqIO(implicit p: Parameters) extends XSBundle {
80  val canAccept = Output(Bool())
81  val isEmpty = Output(Bool())
82  // valid vector, for robIdx gen and walk
83  val needAlloc = Vec(RenameWidth, Input(Bool()))
84  val req = Vec(RenameWidth, Flipped(ValidIO(new DynInst)))
85  val resp = Vec(RenameWidth, Output(new RobPtr))
86}
87
88class RobDispatchData(implicit p: Parameters) extends RobCommitInfo
89
90class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
91  val io = IO(new Bundle {
92    // for commits/flush
93    val state = Input(UInt(2.W))
94    val deq_v = Vec(CommitWidth, Input(Bool()))
95    val deq_w = Vec(CommitWidth, Input(Bool()))
96    val exception_state = Flipped(ValidIO(new RobExceptionInfo))
97    // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth)
98    val intrBitSetReg = Input(Bool())
99    val hasNoSpecExec = Input(Bool())
100    val interrupt_safe = Input(Bool())
101    val blockCommit = Input(Bool())
102    // output: the CommitWidth deqPtr
103    val out = Vec(CommitWidth, Output(new RobPtr))
104    val next_out = Vec(CommitWidth, Output(new RobPtr))
105  })
106
107  val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr))))
108
109  // for exceptions (flushPipe included) and interrupts:
110  // only consider the first instruction
111  val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe
112  val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0)
113  val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable)
114
115  // for normal commits: only to consider when there're no exceptions
116  // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions.
117  val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last)
118  val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i)))
119  val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B)
120  // when io.intrBitSetReg or there're possible exceptions in these instructions,
121  // only one instruction is allowed to commit
122  val allowOnlyOne = commit_exception || io.intrBitSetReg
123  val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt)
124
125  val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt))
126  val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec)
127
128  deqPtrVec := deqPtrVec_next
129
130  io.next_out := deqPtrVec_next
131  io.out      := deqPtrVec
132
133  when (io.state === 0.U) {
134    XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt)
135  }
136
137}
138
139class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
140  val io = IO(new Bundle {
141    // for input redirect
142    val redirect = Input(Valid(new Redirect))
143    // for enqueue
144    val allowEnqueue = Input(Bool())
145    val hasBlockBackward = Input(Bool())
146    val enq = Vec(RenameWidth, Input(Bool()))
147    val out = Output(Vec(RenameWidth, new RobPtr))
148  })
149
150  val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr)))
151
152  // enqueue
153  val canAccept = io.allowEnqueue && !io.hasBlockBackward
154  val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U)
155
156  for ((ptr, i) <- enqPtrVec.zipWithIndex) {
157    when(io.redirect.valid) {
158      ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
159    }.otherwise {
160      ptr := ptr + dispatchNum
161    }
162  }
163
164  io.out := enqPtrVec
165
166}
167
168class RobExceptionInfo(implicit p: Parameters) extends XSBundle {
169  // val valid = Bool()
170  val robIdx = new RobPtr
171  val exceptionVec = ExceptionVec()
172  val flushPipe = Bool()
173  val isVset = Bool()
174  val replayInst = Bool() // redirect to that inst itself
175  val singleStep = Bool() // TODO add frontend hit beneath
176  val crossPageIPFFix = Bool()
177  val trigger = new TriggerCf
178
179//  def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend
180//  def trigger_after = trigger.getTimingBackend && trigger.getHitBackend
181  def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit
182  def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit
183  // only exceptions are allowed to writeback when enqueue
184  def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit
185}
186
187class ExceptionGen(params: BackendParams)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
188  val io = IO(new Bundle {
189    val redirect = Input(Valid(new Redirect))
190    val flush = Input(Bool())
191    val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo)))
192    // csr + load + store
193    val wb = Vec(params.numException, Flipped(ValidIO(new RobExceptionInfo)))
194    val out = ValidIO(new RobExceptionInfo)
195    val state = ValidIO(new RobExceptionInfo)
196  })
197
198  def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = {
199    assert(valid.length == bits.length)
200    assert(isPow2(valid.length))
201    if (valid.length == 1) {
202      (valid, bits)
203    } else if (valid.length == 2) {
204      val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0)))))
205      for (i <- res.indices) {
206        res(i).valid := valid(i)
207        res(i).bits := bits(i)
208      }
209      val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1))
210      (Seq(oldest.valid), Seq(oldest.bits))
211    } else {
212      val left = getOldest(valid.take(valid.length / 2), bits.take(valid.length / 2))
213      val right = getOldest(valid.takeRight(valid.length / 2), bits.takeRight(valid.length / 2))
214      getOldest(left._1 ++ right._1, left._2 ++ right._2)
215    }
216  }
217
218  val currentValid = RegInit(false.B)
219  val current = Reg(new RobExceptionInfo)
220
221  // orR the exceptionVec
222  val lastCycleFlush = RegNext(io.flush)
223  val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush))
224  val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush)
225
226  // s0: compare wb(1)~wb(LoadPipelineWidth) and wb(1 + LoadPipelineWidth)~wb(LoadPipelineWidth + StorePipelineWidth)
227  val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }
228  val csr_wb_bits = io.wb(0).bits
229  val load_wb_bits = getOldest(in_wb_valid.slice(1, 1 + LoadPipelineWidth), io.wb.map(_.bits).slice(1, 1 + LoadPipelineWidth))._2(0)
230  val store_wb_bits = getOldest(in_wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth), io.wb.map(_.bits).slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth))._2(0)
231  val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid.slice(1, 1 + LoadPipelineWidth).reduce(_ || _), wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth).reduce(_ || _))))
232  val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits)))
233
234  // s1: compare last four and current flush
235  val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) })
236  val compare_01_valid = s0_out_valid(0) || s0_out_valid(1)
237  val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0))
238  val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2))
239  val s1_out_bits = RegNext(compare_bits)
240  val s1_out_valid = RegNext(s1_valid.asUInt.orR)
241
242  val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush)
243  val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits)))
244
245  // s2: compare the input exception with the current one
246  // priorities:
247  // (1) system reset
248  // (2) current is valid: flush, remain, merge, update
249  // (3) current is not valid: s1 or enq
250  val current_flush = current.robIdx.needFlush(io.redirect) || io.flush
251  val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush
252  when (currentValid) {
253    when (current_flush) {
254      currentValid := Mux(s1_flush, false.B, s1_out_valid)
255    }
256    when (s1_out_valid && !s1_flush) {
257      when (isAfter(current.robIdx, s1_out_bits.robIdx)) {
258        current := s1_out_bits
259      }.elsewhen (current.robIdx === s1_out_bits.robIdx) {
260        current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec())
261        current.flushPipe := s1_out_bits.flushPipe || current.flushPipe
262        current.replayInst := s1_out_bits.replayInst || current.replayInst
263        current.singleStep := s1_out_bits.singleStep || current.singleStep
264        current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf)
265      }
266    }
267  }.elsewhen (s1_out_valid && !s1_flush) {
268    currentValid := true.B
269    current := s1_out_bits
270  }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) {
271    currentValid := true.B
272    current := enq_bits
273  }
274
275  io.out.valid   := s1_out_valid || enq_valid && enq_bits.can_writeback
276  io.out.bits    := Mux(s1_out_valid, s1_out_bits, enq_bits)
277  io.state.valid := currentValid
278  io.state.bits  := current
279
280}
281
282class RobFlushInfo(implicit p: Parameters) extends XSBundle {
283  val ftqIdx = new FtqPtr
284  val robIdx = new RobPtr
285  val ftqOffset = UInt(log2Up(PredictWidth).W)
286  val replayInst = Bool()
287}
288
289class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter {
290
291  lazy val module = new RobImp(this)(p, params)
292  //
293  //  override def generateWritebackIO(
294  //    thisMod: Option[HasWritebackSource] = None,
295  //    thisModImp: Option[HasWritebackSourceImp] = None
296  //  ): Unit = {
297  //    val sources = writebackSinksImp(thisMod, thisModImp)
298  //    module.io.writeback.zip(sources).foreach(x => x._1 := x._2)
299  //  }
300  //}
301}
302
303class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper)
304  with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents {
305
306  val io = IO(new Bundle() {
307    val hartId = Input(UInt(8.W))
308    val redirect = Input(Valid(new Redirect))
309    val enq = new RobEnqIO
310    val flushOut = ValidIO(new Redirect)
311    val isVsetFlushPipe = Output(Bool())
312    val exception = ValidIO(new ExceptionInfo)
313    // exu + brq
314    val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles)
315    val commits = Output(new RobCommitIO)
316    val lsq = new RobLsqIO
317    val robDeqPtr = Output(new RobPtr)
318    val csr = new RobCSRIO
319    val robFull = Output(Bool())
320    val cpu_halt = Output(Bool())
321    val wfi_enable = Input(Bool())
322  })
323
324  val exuWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(!_.bits.params.hasStdFu)
325  val stdWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(_.bits.params.hasStdFu)
326  val fflagsWBs = io.writeback.filter(x => x.bits.fflags.nonEmpty)
327  val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty)
328  val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty)
329
330  val exuWbPorts = io.writeback.filter(!_.bits.params.hasStdFu)
331  val stdWbPorts = io.writeback.filter(_.bits.params.hasStdFu)
332  val fflagsPorts = io.writeback.filter(x => x.bits.fflags.nonEmpty)
333  val exceptionPorts = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty)
334  val numExuWbPorts = exuWBs.length
335  val numStdWbPorts = stdWBs.length
336
337
338  println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth")
339//  println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}")
340//  println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}")
341//  println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}")
342
343
344  // instvalid field
345  val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
346  // writeback status
347  val writebacked = Mem(RobSize, Bool())
348  val store_data_writebacked = Mem(RobSize, Bool())
349  // data for redirect, exception, etc.
350  val flagBkup = Mem(RobSize, Bool())
351  // some instructions are not allowed to trigger interrupts
352  // They have side effects on the states of the processor before they write back
353  val interrupt_safe = Mem(RobSize, Bool())
354
355  // data for debug
356  // Warn: debug_* prefix should not exist in generated verilog.
357  val debug_microOp = Mem(RobSize, new DynInst)
358  val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug
359  val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug
360
361  // pointers
362  // For enqueue ptr, we don't duplicate it since only enqueue needs it.
363  val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr))
364  val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr))
365
366  val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr))
367  val allowEnqueue = RegInit(true.B)
368
369  val enqPtr = enqPtrVec.head
370  val deqPtr = deqPtrVec(0)
371  val walkPtr = walkPtrVec(0)
372
373  val isEmpty = enqPtr === deqPtr
374  val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level)
375
376  /**
377    * states of Rob
378    */
379  val s_idle :: s_walk :: Nil = Enum(2)
380  val state = RegInit(s_idle)
381
382  /**
383    * Data Modules
384    *
385    * CommitDataModule: data from dispatch
386    * (1) read: commits/walk/exception
387    * (2) write: enqueue
388    *
389    * WritebackData: data from writeback
390    * (1) read: commits/walk/exception
391    * (2) write: write back from exe units
392    */
393  val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth))
394  val dispatchDataRead = dispatchData.io.rdata
395
396  val exceptionGen = Module(new ExceptionGen(params))
397  val exceptionDataRead = exceptionGen.io.state
398  val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W)))
399
400  io.robDeqPtr := deqPtr
401
402  /**
403    * Enqueue (from dispatch)
404    */
405  // special cases
406  val hasBlockBackward = RegInit(false.B)
407  val hasWaitForward = RegInit(false.B)
408  val doingSvinval = RegInit(false.B)
409  // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B
410  // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty.
411  when (isEmpty) { hasBlockBackward:= false.B }
412  // When any instruction commits, hasNoSpecExec should be set to false.B
413  when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasWaitForward:= false.B }
414
415  // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing.
416  // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle.
417  // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts.
418  val hasWFI = RegInit(false.B)
419  io.cpu_halt := hasWFI
420  // WFI Timeout: 2^20 = 1M cycles
421  val wfi_cycles = RegInit(0.U(20.W))
422  when (hasWFI) {
423    wfi_cycles := wfi_cycles + 1.U
424  }.elsewhen (!hasWFI && RegNext(hasWFI)) {
425    wfi_cycles := 0.U
426  }
427  val wfi_timeout = wfi_cycles.andR
428  when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) {
429    hasWFI := false.B
430  }
431
432  val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.needAlloc.take(i)))))
433  io.enq.canAccept := allowEnqueue && !hasBlockBackward
434  io.enq.resp      := allocatePtrVec
435  val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept))
436  val timer = GTimer()
437  for (i <- 0 until RenameWidth) {
438    // we don't check whether io.redirect is valid here since redirect has higher priority
439    when (canEnqueue(i)) {
440      val enqUop = io.enq.req(i).bits
441      val enqIndex = allocatePtrVec(i).value
442      // store uop in data module and debug_microOp Vec
443      debug_microOp(enqIndex) := enqUop
444      debug_microOp(enqIndex).debugInfo.dispatchTime := timer
445      debug_microOp(enqIndex).debugInfo.enqRsTime := timer
446      debug_microOp(enqIndex).debugInfo.selectTime := timer
447      debug_microOp(enqIndex).debugInfo.issueTime := timer
448      debug_microOp(enqIndex).debugInfo.writebackTime := timer
449      when (enqUop.blockBackward) {
450        hasBlockBackward := true.B
451      }
452      when (enqUop.waitForward) {
453        hasWaitForward := true.B
454      }
455      val enqHasTriggerHit = false.B // io.enq.req(i).bits.cf.trigger.getHitFrontend
456      val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR
457      // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process
458      when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe))
459      {
460        doingSvinval := true.B
461      }
462      // the end instruction of Svinval enqs so clear doingSvinval
463      when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe))
464      {
465        doingSvinval := false.B
466      }
467      // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear
468      assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe)))
469      when (enqUop.isWFI && !enqHasException && !enqHasTriggerHit) {
470        hasWFI := true.B
471      }
472    }
473  }
474  val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(_.valid)), 0.U)
475  io.enq.isEmpty   := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR)
476
477  when (!io.wfi_enable) {
478    hasWFI := false.B
479  }
480  // sel vsetvl's flush position
481  val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3)
482  val vsetvlState = RegInit(vs_idle)
483
484  val firstVInstrFtqPtr    = RegInit(0.U.asTypeOf(new FtqPtr))
485  val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W)))
486  val firstVInstrRobIdx    = RegInit(0.U.asTypeOf(new RobPtr))
487
488  val enq0            = io.enq.req(0)
489  val enq0IsVset      = FuType.isInt(enq0.bits.fuType) && ALUOpType.isVset(enq0.bits.fuOpType) && enq0.bits.uopIdx.andR && canEnqueue(0)
490  val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe
491  val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVpu(req.bits.fuType) && fire}
492  // for vs_idle
493  val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType)))
494  // for vs_waitVinstr
495  val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1)
496  val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req)
497  when(vsetvlState === vs_idle){
498    firstVInstrFtqPtr    := firstVInstrIdle.bits.ftqPtr
499    firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset
500    firstVInstrRobIdx    := firstVInstrIdle.bits.robIdx
501  }.elsewhen(vsetvlState === vs_waitVinstr){
502    firstVInstrFtqPtr    := firstVInstrWait.bits.ftqPtr
503    firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset
504    firstVInstrRobIdx    := firstVInstrWait.bits.robIdx
505  }
506
507  val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR
508  when(vsetvlState === vs_idle){
509    when(enq0IsVsetFlush){
510      vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr)
511    }
512  }.elsewhen(vsetvlState === vs_waitVinstr){
513    when(io.redirect.valid){
514      vsetvlState := vs_idle
515    }.elsewhen(Cat(enqIsVInstrOrVset).orR){
516      vsetvlState := vs_waitFlush
517    }
518  }.elsewhen(vsetvlState === vs_waitFlush){
519    when(io.redirect.valid){
520      vsetvlState := vs_idle
521    }
522  }
523
524  /**
525    * Writeback (from execution units)
526    */
527  for (wb <- exuWBs) {
528    when (wb.valid) {
529      val wbIdx = wb.bits.robIdx.value
530      debug_exuData(wbIdx) := wb.bits.data
531      debug_exuDebug(wbIdx) := wb.bits.debug
532      debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime
533      debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime
534      debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime
535      debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime
536
537      // debug for lqidx and sqidx
538      debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr))
539      debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr))
540
541      val debug_Uop = debug_microOp(wbIdx)
542      XSInfo(true.B,
543        p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " +
544        p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " +
545        p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.robIdx}\n"
546      )
547    }
548  }
549
550  val writebackNum = PopCount(exuWBs.map(_.valid))
551  XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum)
552
553
554  /**
555    * RedirectOut: Interrupt and Exceptions
556    */
557  val deqDispatchData = dispatchDataRead(0)
558  val debug_deqUop = debug_microOp(deqPtr.value)
559
560  val intrBitSetReg = RegNext(io.csr.intrBitSet)
561  val intrEnable = intrBitSetReg && !hasWaitForward && interrupt_safe(deqPtr.value)
562  val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr
563  val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR ||
564    exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit)
565  val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe
566  val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst
567  val exceptionEnable = writebacked(deqPtr.value) && deqHasException
568
569  XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n")
570  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n")
571  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n")
572
573  val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst)
574
575  val isVsetFlushPipe = writebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset
576  val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush)
577  io.isVsetFlushPipe := RegNext(isVsetFlushPipe)
578  // io.flushOut will trigger redirect at the next cycle.
579  // Block any redirect or commit at the next cycle.
580  val lastCycleFlush = RegNext(io.flushOut.valid)
581
582  io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush
583  io.flushOut.bits := DontCare
584  io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr)
585  io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx)
586  io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset)
587  io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next"
588  io.flushOut.bits.interrupt := true.B
589  XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable)
590  XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable)
591  XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe)
592  XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst)
593
594  val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush
595  io.exception.valid                := RegNext(exceptionHappen)
596  io.exception.bits.pc              := RegEnable(debug_deqUop.pc, exceptionHappen)
597  io.exception.bits.instr           := RegEnable(debug_deqUop.instr, exceptionHappen)
598  io.exception.bits.commitType      := RegEnable(deqDispatchData.commitType, exceptionHappen)
599  io.exception.bits.exceptionVec    := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen)
600  io.exception.bits.singleStep      := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen)
601  io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen)
602  io.exception.bits.isInterrupt     := RegEnable(intrEnable, exceptionHappen)
603//  io.exception.bits.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen)
604
605  XSDebug(io.flushOut.valid,
606    p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " +
607    p"excp $exceptionEnable flushPipe $isFlushPipe " +
608    p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n")
609
610
611  /**
612    * Commits (and walk)
613    * They share the same width.
614    */
615  val walkCounter = Reg(UInt(log2Up(RobSize + 1).W))
616  val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter))
617  val walkFinished = walkCounter <= CommitWidth.U
618
619  require(RenameWidth <= CommitWidth)
620
621  // wiring to csr
622  val (wflags, fpWen) = (0 until CommitWidth).map(i => {
623    val v = io.commits.commitValid(i)
624    val info = io.commits.info(i)
625    (v & info.wflags, v & info.fpWen)
626  }).unzip
627  val fflags = Wire(Valid(UInt(5.W)))
628  fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR
629  fflags.bits := wflags.zip(fflagsDataRead).map({
630    case (w, f) => Mux(w, f, 0.U)
631  }).reduce(_|_)
632  val dirty_fs = io.commits.isCommit && VecInit(fpWen).asUInt.orR
633
634  // when mispredict branches writeback, stop commit in the next 2 cycles
635  // TODO: don't check all exu write back
636  val misPredWb = Cat(VecInit(redirectWBs.map(wb =>
637    wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid
638  ))).orR
639  val misPredBlockCounter = Reg(UInt(3.W))
640  misPredBlockCounter := Mux(misPredWb,
641    "b111".U,
642    misPredBlockCounter >> 1.U
643  )
644  val misPredBlock = misPredBlockCounter(0)
645  val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI
646
647  io.commits.isWalk := state === s_walk
648  io.commits.isCommit := state === s_idle && !blockCommit
649  val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value)))
650  val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value)))
651  // store will be commited iff both sta & std have been writebacked
652  val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value)))
653  val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last)
654  val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i)))
655  val allowOnlyOneCommit = commit_exception || intrBitSetReg
656  // for instructions that may block others, we don't allow them to commit
657  for (i <- 0 until CommitWidth) {
658    // defaults: state === s_idle and instructions commit
659    // when intrBitSetReg, allow only one instruction to commit at each clock cycle
660    val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst
661    io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked
662    io.commits.info(i)  := dispatchDataRead(i)
663
664    when (state === s_walk) {
665      io.commits.walkValid(i) := shouldWalkVec(i)
666      when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) {
667        XSError(!walk_v(i), s"why not $i???\n")
668      }
669    }
670
671    XSInfo(io.commits.isCommit && io.commits.commitValid(i),
672      "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b\n",
673      debug_microOp(deqPtrVec(i).value).pc,
674      io.commits.info(i).rfWen,
675      io.commits.info(i).ldest,
676      io.commits.info(i).pdest,
677      io.commits.info(i).old_pdest,
678      debug_exuData(deqPtrVec(i).value),
679      fflagsDataRead(i)
680    )
681    XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n",
682      debug_microOp(walkPtrVec(i).value).pc,
683      io.commits.info(i).rfWen,
684      io.commits.info(i).ldest,
685      debug_exuData(walkPtrVec(i).value)
686    )
687  }
688  if (env.EnableDifftest) {
689    io.commits.info.map(info => dontTouch(info.pc))
690  }
691
692  // sync fflags/dirty_fs to csr
693  io.csr.fflags := RegNext(fflags)
694  io.csr.dirty_fs := RegNext(dirty_fs)
695
696  // sync v csr to csr
697//  io.csr.vcsrFlag := RegNext(isVsetFlushPipe)
698
699  // commit load/store to lsq
700  val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD))
701  val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE))
702  io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U))
703  io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U))
704  // indicate a pending load or store
705  io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value))
706  io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value))
707  io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0))
708
709  /**
710    * state changes
711    * (1) redirect: switch to s_walk
712    * (2) walk: when walking comes to the end, switch to s_idle
713    */
714  val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished, s_idle, state))
715  XSPerfAccumulate("s_idle_to_idle",            state === s_idle && state_next === s_idle)
716  XSPerfAccumulate("s_idle_to_walk",            state === s_idle && state_next === s_walk)
717  XSPerfAccumulate("s_walk_to_idle",            state === s_walk && state_next === s_idle)
718  XSPerfAccumulate("s_walk_to_walk",            state === s_walk && state_next === s_walk)
719  state := state_next
720
721  /**
722    * pointers and counters
723    */
724  val deqPtrGenModule = Module(new RobDeqPtrWrapper)
725  deqPtrGenModule.io.state := state
726  deqPtrGenModule.io.deq_v := commit_v
727  deqPtrGenModule.io.deq_w := commit_w
728  deqPtrGenModule.io.exception_state := exceptionDataRead
729  deqPtrGenModule.io.intrBitSetReg := intrBitSetReg
730  deqPtrGenModule.io.hasNoSpecExec := hasWaitForward
731  deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value)
732  deqPtrGenModule.io.blockCommit := blockCommit
733  deqPtrVec := deqPtrGenModule.io.out
734  val deqPtrVec_next = deqPtrGenModule.io.next_out
735
736  val enqPtrGenModule = Module(new RobEnqPtrWrapper)
737  enqPtrGenModule.io.redirect := io.redirect
738  enqPtrGenModule.io.allowEnqueue := allowEnqueue
739  enqPtrGenModule.io.hasBlockBackward := hasBlockBackward
740  enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid))
741  enqPtrVec := enqPtrGenModule.io.out
742
743  val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U)
744  // next walkPtrVec:
745  // (1) redirect occurs: update according to state
746  // (2) walk: move forwards
747  val walkPtrVec_next = Mux(io.redirect.valid,
748    deqPtrVec_next,
749    Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec)
750  )
751  walkPtrVec := walkPtrVec_next
752
753  val numValidEntries = distanceBetween(enqPtr, deqPtr)
754  val isLastUopVec = io.commits.info.map(_.uopIdx.andR)
755  val commitCnt = PopCount(io.commits.commitValid.zip(isLastUopVec).map{case(isCommitValid, isLastUop) => isCommitValid && isLastUop})
756
757  allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U
758
759  val currentWalkPtr = Mux(state === s_walk, walkPtr, deqPtrVec_next(0))
760  val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0))
761  when (io.redirect.valid) {
762    // full condition:
763    // +& is used here because:
764    // When rob is full and the tail instruction causes a misprediction,
765    // the redirect robIdx is the deqPtr - 1. In this case, redirectWalkDistance
766    // is RobSize - 1.
767    // Since misprediction does not flush the instruction itself, flushItSelf is false.B.
768    // Previously we use `+` to count the walk distance and it causes overflows
769    // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize.
770    // The width of walkCounter also needs to be changed.
771    // empty condition:
772    // When the last instruction in ROB commits and causes a flush, a redirect
773    // will be raised later. In such circumstances, the redirect robIdx is before
774    // the deqPtrVec_next(0) and will cause underflow.
775    walkCounter := Mux(isBefore(io.redirect.bits.robIdx, deqPtrVec_next(0)), 0.U,
776                       redirectWalkDistance +& !io.redirect.bits.flushItself())
777  }.elsewhen (state === s_walk) {
778    walkCounter := walkCounter - thisCycleWalkCount
779    XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n")
780  }
781
782
783  /**
784    * States
785    * We put all the stage bits changes here.
786
787    * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit);
788    * All states: (1) valid; (2) writebacked; (3) flagBkup
789    */
790  val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value)))
791
792  // redirect logic writes 6 valid
793  val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr))
794  val redirectTail = Reg(new RobPtr)
795  val redirectIdle :: redirectBusy :: Nil = Enum(2)
796  val redirectState = RegInit(redirectIdle)
797  val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail))
798  when(redirectState === redirectBusy) {
799    redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U)
800    redirectHeadVec zip invMask foreach {
801      case (redirectHead, inv) => when(inv) {
802        valid(redirectHead.value) := false.B
803      }
804    }
805    when(!invMask.last) {
806      redirectState := redirectIdle
807    }
808  }
809  when(io.redirect.valid) {
810    redirectState := redirectBusy
811    when(redirectState === redirectIdle) {
812      redirectTail := enqPtr
813    }
814    redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) =>
815      redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
816    }
817  }
818  // enqueue logic writes 6 valid
819  for (i <- 0 until RenameWidth) {
820    when (canEnqueue(i) && !io.redirect.valid) {
821      valid(allocatePtrVec(i).value) := true.B
822    }
823  }
824  // dequeue logic writes 6 valid
825  for (i <- 0 until CommitWidth) {
826    val commitValid = io.commits.isCommit && io.commits.commitValid(i)
827    when (commitValid) {
828      valid(commitReadAddr(i)) := false.B
829    }
830  }
831
832  // status field: writebacked
833  // enqueue logic set 6 writebacked to false
834  for (i <- 0 until RenameWidth) {
835    when (canEnqueue(i)) {
836      val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec).asUInt.orR
837      val enqHasTriggerHit = io.enq.req(i).bits.trigger.getHitFrontend
838      val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove
839      writebacked(allocatePtrVec(i).value) := enqIsWritebacked && !enqHasException && !enqHasTriggerHit
840      val isStu = io.enq.req(i).bits.fuType === FuType.stu.U
841      store_data_writebacked(allocatePtrVec(i).value) := !isStu
842    }
843  }
844  when (exceptionGen.io.out.valid) {
845    val wbIdx = exceptionGen.io.out.bits.robIdx.value
846    writebacked(wbIdx) := true.B
847    store_data_writebacked(wbIdx) := true.B
848  }
849  // writeback logic set numWbPorts writebacked to true
850  for (wb <- exuWBs) {
851    when (wb.valid) {
852      val wbIdx = wb.bits.robIdx.value
853      val wbHasException = wb.bits.exceptionVec.getOrElse(0.U).asUInt.orR
854      val wbHasTriggerHit = false.B //Todo: wb.bits.trigger.getHitBackend
855      val wbHasFlushPipe = wb.bits.flushPipe.getOrElse(false.B)
856      val wbHasReplayInst = wb.bits.replay.getOrElse(false.B) //Todo: && wb.bits.replayInst
857      val block_wb = wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit
858      writebacked(wbIdx) := !block_wb
859    }
860  }
861  // store data writeback logic mark store as data_writebacked
862  for (wb <- stdWBs) {
863    when(RegNext(wb.valid)) {
864      store_data_writebacked(RegNext(wb.bits.robIdx.value)) := true.B
865    }
866  }
867
868  // flagBkup
869  // enqueue logic set 6 flagBkup at most
870  for (i <- 0 until RenameWidth) {
871    when (canEnqueue(i)) {
872      flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag
873    }
874  }
875
876  // interrupt_safe
877  for (i <- 0 until RenameWidth) {
878    // We RegNext the updates for better timing.
879    // Note that instructions won't change the system's states in this cycle.
880    when (RegNext(canEnqueue(i))) {
881      // For now, we allow non-load-store instructions to trigger interrupts
882      // For MMIO instructions, they should not trigger interrupts since they may
883      // be sent to lower level before it writes back.
884      // However, we cannot determine whether a load/store instruction is MMIO.
885      // Thus, we don't allow load/store instructions to trigger an interrupt.
886      // TODO: support non-MMIO load-store instructions to trigger interrupts
887      val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType)
888      interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts)
889    }
890  }
891
892  /**
893    * read and write of data modules
894    */
895  val commitReadAddr_next = Mux(state_next === s_idle,
896    VecInit(deqPtrVec_next.map(_.value)),
897    VecInit(walkPtrVec_next.map(_.value))
898  )
899  dispatchData.io.wen := canEnqueue
900  dispatchData.io.waddr := allocatePtrVec.map(_.value)
901  dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) =>
902    wdata.ldest := req.ldest
903    wdata.rfWen := req.rfWen
904    wdata.fpWen := req.fpWen
905    wdata.vecWen := req.vecWen
906    wdata.wflags := req.fpu.wflags
907    wdata.commitType := req.commitType
908    wdata.pdest := req.pdest
909    wdata.old_pdest := req.oldPdest
910    wdata.ftqIdx := req.ftqPtr
911    wdata.ftqOffset := req.ftqOffset
912    wdata.isMove := req.eliminatedMove
913    wdata.pc := req.pc
914    wdata.uopIdx := req.uopIdx
915//    wdata.vconfig := req.vconfig
916  }
917  dispatchData.io.raddr := commitReadAddr_next
918
919  exceptionGen.io.redirect <> io.redirect
920  exceptionGen.io.flush := io.flushOut.valid
921  for (i <- 0 until RenameWidth) {
922    exceptionGen.io.enq(i).valid := canEnqueue(i)
923    exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx
924    exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec)
925    exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe
926    exceptionGen.io.enq(i).bits.isVset := FuType.isInt(io.enq.req(i).bits.fuType) && ALUOpType.isVset(io.enq.req(i).bits.fuOpType)
927    exceptionGen.io.enq(i).bits.replayInst := false.B
928    XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst")
929    exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep
930    exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix
931    exceptionGen.io.enq(i).bits.trigger.clear()
932    exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.trigger.frontendHit
933  }
934
935  println(s"ExceptionGen:")
936  println(s"num of exceptions: ${params.numException}")
937  require(exceptionWBs.length == exceptionGen.io.wb.length,
938    f"exceptionWBs.length: ${exceptionWBs.length}, " +
939      f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}")
940  for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) {
941    exc_wb.valid                := wb.valid
942    exc_wb.bits.robIdx          := wb.bits.robIdx
943    exc_wb.bits.exceptionVec    := wb.bits.exceptionVec.get
944    exc_wb.bits.flushPipe       := wb.bits.flushPipe.getOrElse(false.B)
945    exc_wb.bits.isVset          := false.B
946    exc_wb.bits.replayInst      := wb.bits.replay.getOrElse(false.B)
947    exc_wb.bits.singleStep      := false.B
948    exc_wb.bits.crossPageIPFFix := false.B
949    exc_wb.bits.trigger         := 0.U.asTypeOf(exc_wb.bits.trigger) // Todo
950//    println(s"  [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " +
951//      s"flushPipe ${configs.exists(_.flushPipe)}, " +
952//      s"replayInst ${configs.exists(_.replayInst)}")
953  }
954
955  val fflagsDataModule = Module(new SyncDataModuleTemplate(
956    UInt(5.W), RobSize, CommitWidth, fflagsWBs.size)
957  )
958  require(fflagsWBs.length == fflagsDataModule.io.wen.length)
959  for(i <- fflagsWBs.indices){
960    fflagsDataModule.io.wen  (i) := fflagsWBs(i).valid
961    fflagsDataModule.io.waddr(i) := fflagsWBs(i).bits.robIdx.value
962    fflagsDataModule.io.wdata(i) := fflagsWBs(i).bits.fflags.get
963  }
964  fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value))
965  fflagsDataRead := fflagsDataModule.io.rdata
966
967
968  val instrCntReg = RegInit(0.U(64.W))
969  val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) })
970  val trueCommitCnt = RegNext(commitCnt) +& fuseCommitCnt
971  val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U)
972  val instrCnt = instrCntReg + retireCounter
973  instrCntReg := instrCnt
974  io.csr.perfinfo.retiredInstr := retireCounter
975  io.robFull := !allowEnqueue
976
977  /**
978    * debug info
979    */
980  XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n")
981  XSDebug("")
982  XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n")
983  for(i <- 0 until RobSize){
984    XSDebug(false, !valid(i), "-")
985    XSDebug(false, valid(i) && writebacked(i), "w")
986    XSDebug(false, valid(i) && !writebacked(i), "v")
987  }
988  XSDebug(false, true.B, "\n")
989
990  for(i <- 0 until RobSize) {
991    if(i % 4 == 0) XSDebug("")
992    XSDebug(false, true.B, "%x ", debug_microOp(i).pc)
993    XSDebug(false, !valid(i), "- ")
994    XSDebug(false, valid(i) && writebacked(i), "w ")
995    XSDebug(false, valid(i) && !writebacked(i), "v ")
996    if(i % 4 == 3) XSDebug(false, true.B, "\n")
997  }
998
999  def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U)
1000  def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U)
1001
1002  val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_))
1003  XSPerfAccumulate("clock_cycle", 1.U)
1004  QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue)
1005  XSPerfAccumulate("commitUop", ifCommit(commitCnt))
1006  XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt))
1007  val commitIsMove = commitDebugUop.map(_.isMove)
1008  XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })))
1009  val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove)
1010  XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e })))
1011  XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt))
1012  val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD)
1013  val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t }
1014  XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid)))
1015  val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH)
1016  val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t }
1017  XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid)))
1018  val commitLoadWaitBit = commitDebugUop.map(_.loadWaitBit)
1019  XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })))
1020  val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE)
1021  XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })))
1022  XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i))))
1023  // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire)))
1024  // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready)))
1025  XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U))
1026  XSPerfAccumulate("walkCycle", state === s_walk)
1027  val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value)
1028  val deqUopCommitType = io.commits.info(0).commitType
1029  XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL)
1030  XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH)
1031  XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD)
1032  XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE)
1033  XSPerfAccumulate("robHeadPC", io.commits.info(0).pc)
1034  val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime)
1035  val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime)
1036  val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime)
1037  val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime)
1038  val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime)
1039  val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime)
1040  val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime)
1041  def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = {
1042    cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _)
1043  }
1044  for (fuType <- FuType.functionNameMap.keys) {
1045    val fuName = FuType.functionNameMap(fuType)
1046    val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U )
1047    XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType)))
1048    XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency)))
1049    XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency)))
1050    XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency)))
1051    XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency)))
1052    XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency)))
1053    XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency)))
1054    XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency)))
1055    if (fuType == FuType.fmac) {
1056      val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.fpu.ren3 )
1057      XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma)))
1058      XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency)))
1059      XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency)))
1060    }
1061  }
1062
1063  //difftest signals
1064  val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value
1065
1066  val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1067  val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1068
1069  for(i <- 0 until CommitWidth) {
1070    val idx = deqPtrVec(i).value
1071    wdata(i) := debug_exuData(idx)
1072    wpc(i) := SignExt(commitDebugUop(i).pc, XLEN)
1073  }
1074
1075  if (env.EnableDifftest) {
1076    for (i <- 0 until CommitWidth) {
1077      val difftest = Module(new DifftestInstrCommit)
1078      // assgin default value
1079      difftest.io := DontCare
1080
1081      difftest.io.clock    := clock
1082      difftest.io.coreid   := io.hartId
1083      difftest.io.index    := i.U
1084
1085      val ptr = deqPtrVec(i).value
1086      val uop = commitDebugUop(i)
1087      val exuOut = debug_exuDebug(ptr)
1088      val exuData = debug_exuData(ptr)
1089      difftest.io.valid    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1090      difftest.io.pc       := RegNext(RegNext(RegNext(SignExt(uop.pc, XLEN))))
1091      difftest.io.instr    := RegNext(RegNext(RegNext(uop.instr)))
1092      difftest.io.robIdx   := RegNext(RegNext(RegNext(ZeroExt(ptr, 10))))
1093      difftest.io.lqIdx    := RegNext(RegNext(RegNext(ZeroExt(uop.lqIdx.value, 7))))
1094      difftest.io.sqIdx    := RegNext(RegNext(RegNext(ZeroExt(uop.sqIdx.value, 7))))
1095      difftest.io.isLoad   := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.LOAD)))
1096      difftest.io.isStore  := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.STORE)))
1097      difftest.io.special  := RegNext(RegNext(RegNext(CommitType.isFused(io.commits.info(i).commitType))))
1098      // when committing an eliminated move instruction,
1099      // we must make sure that skip is properly set to false (output from EXU is random value)
1100      difftest.io.skip     := RegNext(RegNext(RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))))
1101      difftest.io.isRVC    := RegNext(RegNext(RegNext(uop.preDecodeInfo.isRVC)))
1102      difftest.io.rfwen    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U)))
1103      difftest.io.fpwen    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).fpWen)))
1104      difftest.io.wpdest   := RegNext(RegNext(RegNext(io.commits.info(i).pdest)))
1105      difftest.io.wdest    := RegNext(RegNext(RegNext(io.commits.info(i).ldest)))
1106
1107      difftest.io.isVsetFirst := RegNext(RegNext(RegNext(io.commits.commitValid(i) && !io.commits.info(i).uopIdx.orR)))
1108      // // runahead commit hint
1109      // val runahead_commit = Module(new DifftestRunaheadCommitEvent)
1110      // runahead_commit.io.clock := clock
1111      // runahead_commit.io.coreid := io.hartId
1112      // runahead_commit.io.index := i.U
1113      // runahead_commit.io.valid := difftest.io.valid &&
1114      //   (commitBranchValid(i) || commitIsStore(i))
1115      // // TODO: is branch or store
1116      // runahead_commit.io.pc    := difftest.io.pc
1117    }
1118  }
1119  else if (env.AlwaysBasicDiff) {
1120    // These are the structures used by difftest only and should be optimized after synthesis.
1121    val dt_eliminatedMove = Mem(RobSize, Bool())
1122    val dt_isRVC = Mem(RobSize, Bool())
1123    val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle))
1124    for (i <- 0 until RenameWidth) {
1125      when (canEnqueue(i)) {
1126        dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove
1127        dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC
1128      }
1129    }
1130    for (wb <- exuWBs) {
1131      when (wb.valid) {
1132        val wbIdx = wb.bits.robIdx.value
1133        dt_exuDebug(wbIdx) := wb.bits.debug
1134      }
1135    }
1136    // Always instantiate basic difftest modules.
1137    for (i <- 0 until CommitWidth) {
1138      val commitInfo = io.commits.info(i)
1139      val ptr = deqPtrVec(i).value
1140      val exuOut = dt_exuDebug(ptr)
1141      val eliminatedMove = dt_eliminatedMove(ptr)
1142      val isRVC = dt_isRVC(ptr)
1143
1144      val difftest = Module(new DifftestBasicInstrCommit)
1145      difftest.io.clock   := clock
1146      difftest.io.coreid  := io.hartId
1147      difftest.io.index   := i.U
1148      difftest.io.valid   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1149      difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(commitInfo.commitType))))
1150      difftest.io.skip    := RegNext(RegNext(RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))))
1151      difftest.io.isRVC   := RegNext(RegNext(RegNext(isRVC)))
1152      difftest.io.rfwen   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U)))
1153      difftest.io.fpwen   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.fpWen)))
1154      difftest.io.wpdest  := RegNext(RegNext(RegNext(commitInfo.pdest)))
1155      difftest.io.wdest   := RegNext(RegNext(RegNext(commitInfo.ldest)))
1156    }
1157  }
1158
1159  if (env.EnableDifftest) {
1160    for (i <- 0 until CommitWidth) {
1161      val difftest = Module(new DifftestLoadEvent)
1162      difftest.io.clock  := clock
1163      difftest.io.coreid := io.hartId
1164      difftest.io.index  := i.U
1165
1166      val ptr = deqPtrVec(i).value
1167      val uop = commitDebugUop(i)
1168      val exuOut = debug_exuDebug(ptr)
1169      difftest.io.valid  := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1170      difftest.io.paddr  := RegNext(RegNext(RegNext(exuOut.paddr)))
1171      difftest.io.opType := RegNext(RegNext(RegNext(uop.fuOpType)))
1172      difftest.io.fuType := RegNext(RegNext(RegNext(uop.fuType)))
1173    }
1174  }
1175
1176  // Always instantiate basic difftest modules.
1177  if (env.EnableDifftest) {
1178    val dt_isXSTrap = Mem(RobSize, Bool())
1179    for (i <- 0 until RenameWidth) {
1180      when (canEnqueue(i)) {
1181        dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap
1182      }
1183    }
1184    val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) }
1185    val hitTrap = trapVec.reduce(_||_)
1186    val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1))
1187    val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN)
1188    val difftest = Module(new DifftestTrapEvent)
1189    difftest.io.clock    := clock
1190    difftest.io.coreid   := io.hartId
1191    difftest.io.valid    := hitTrap
1192    difftest.io.code     := trapCode
1193    difftest.io.pc       := trapPC
1194    difftest.io.cycleCnt := timer
1195    difftest.io.instrCnt := instrCnt
1196    difftest.io.hasWFI   := hasWFI
1197  }
1198  else if (env.AlwaysBasicDiff) {
1199    val dt_isXSTrap = Mem(RobSize, Bool())
1200    for (i <- 0 until RenameWidth) {
1201      when (canEnqueue(i)) {
1202        dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap
1203      }
1204    }
1205    val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) }
1206    val hitTrap = trapVec.reduce(_||_)
1207    val difftest = Module(new DifftestBasicTrapEvent)
1208    difftest.io.clock    := clock
1209    difftest.io.coreid   := io.hartId
1210    difftest.io.valid    := hitTrap
1211    difftest.io.cycleCnt := timer
1212    difftest.io.instrCnt := instrCnt
1213  }
1214
1215  val validEntriesBanks = (0 until (RobSize + 63) / 64).map(i => RegNext(PopCount(valid.drop(i * 64).take(64))))
1216  val validEntries = RegNext(ParallelOperation(validEntriesBanks, (a: UInt, b: UInt) => a +& b))
1217  val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })
1218  val commitLoadVec = VecInit(commitLoadValid)
1219  val commitBranchVec = VecInit(commitBranchValid)
1220  val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })
1221  val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })
1222  val perfEvents = Seq(
1223    ("rob_interrupt_num      ", io.flushOut.valid && intrEnable                                       ),
1224    ("rob_exception_num      ", io.flushOut.valid && exceptionEnable                                  ),
1225    ("rob_flush_pipe_num     ", io.flushOut.valid && isFlushPipe                                      ),
1226    ("rob_replay_inst_num    ", io.flushOut.valid && isFlushPipe && deqHasReplayInst                  ),
1227    ("rob_commitUop          ", ifCommit(commitCnt)                                                   ),
1228    ("rob_commitInstr        ", ifCommitReg(trueCommitCnt)                                            ),
1229    ("rob_commitInstrMove    ", ifCommitReg(PopCount(RegNext(commitMoveVec)))                         ),
1230    ("rob_commitInstrFused   ", ifCommitReg(fuseCommitCnt)                                            ),
1231    ("rob_commitInstrLoad    ", ifCommitReg(PopCount(RegNext(commitLoadVec)))                         ),
1232    ("rob_commitInstrBranch  ", ifCommitReg(PopCount(RegNext(commitBranchVec)))                       ),
1233    ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec)))                     ),
1234    ("rob_commitInstrStore   ", ifCommitReg(PopCount(RegNext(commitStoreVec)))                        ),
1235    ("rob_walkInstr          ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)           ),
1236    ("rob_walkCycle          ", (state === s_walk)                                                    ),
1237    ("rob_1_4_valid          ", validEntries <= (RobSize / 4).U                                       ),
1238    ("rob_2_4_valid          ", validEntries >  (RobSize / 4).U && validEntries <= (RobSize / 2).U    ),
1239    ("rob_3_4_valid          ", validEntries >  (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U),
1240    ("rob_4_4_valid          ", validEntries >  (RobSize * 3 / 4).U                                   ),
1241  )
1242  generatePerfEvent()
1243}
1244