xref: /XiangShan/src/main/scala/xiangshan/backend/rob/Rob.scala (revision 67fcf090b92eeb68aff35affc52316c799043ffb)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.backend.rob
18
19import chipsalliance.rocketchip.config.Parameters
20import chisel3._
21import chisel3.util._
22import difftest._
23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp}
24import utility._
25import utils._
26import xiangshan._
27import xiangshan.backend.BackendParams
28import xiangshan.backend.fu.FuType
29import xiangshan.frontend.FtqPtr
30import xiangshan.mem.{LqPtr, SqPtr}
31import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput}
32
33class DebugMdpInfo(implicit p: Parameters) extends XSBundle{
34  val ssid = UInt(SSIDWidth.W)
35  val waitAllStore = Bool()
36}
37
38class DebugLsInfo(implicit p: Parameters) extends XSBundle{
39  val s1 = new Bundle{
40    val isTlbFirstMiss = Bool() // in s1
41    val isBankConflict = Bool() // in s1
42    val isLoadToLoadForward = Bool()
43    val isReplayFast = Bool()
44  }
45  val s2 = new Bundle{
46    val isDcacheFirstMiss = Bool() // in s2 (predicted result is in s1 when using WPU, real result is in s2)
47    val isForwardFail = Bool() // in s2
48    val isReplaySlow = Bool()
49    val isLoadReplayTLBMiss = Bool()
50    val isLoadReplayCacheMiss = Bool()
51  }
52  val replayCnt = UInt(XLEN.W)
53
54  def s1SignalEnable(ena: DebugLsInfo) = {
55    when(ena.s1.isTlbFirstMiss) { s1.isTlbFirstMiss := true.B }
56    when(ena.s1.isBankConflict) { s1.isBankConflict := true.B }
57    when(ena.s1.isLoadToLoadForward) { s1.isLoadToLoadForward := true.B }
58    when(ena.s1.isReplayFast) {
59      s1.isReplayFast := true.B
60      replayCnt := replayCnt + 1.U
61    }
62  }
63
64  def s2SignalEnable(ena: DebugLsInfo) = {
65    when(ena.s2.isDcacheFirstMiss) { s2.isDcacheFirstMiss := true.B }
66    when(ena.s2.isForwardFail) { s2.isForwardFail := true.B }
67    when(ena.s2.isLoadReplayTLBMiss) { s2.isLoadReplayTLBMiss := true.B }
68    when(ena.s2.isLoadReplayCacheMiss) { s2.isLoadReplayCacheMiss := true.B }
69    when(ena.s2.isReplaySlow) {
70      s2.isReplaySlow := true.B
71      replayCnt := replayCnt + 1.U
72    }
73  }
74
75}
76object DebugLsInfo{
77  def init(implicit p: Parameters): DebugLsInfo = {
78    val lsInfo = Wire(new DebugLsInfo)
79    lsInfo.s1.isTlbFirstMiss := false.B
80    lsInfo.s1.isBankConflict := false.B
81    lsInfo.s1.isLoadToLoadForward := false.B
82    lsInfo.s1.isReplayFast := false.B
83    lsInfo.s2.isDcacheFirstMiss := false.B
84    lsInfo.s2.isForwardFail := false.B
85    lsInfo.s2.isReplaySlow := false.B
86    lsInfo.s2.isLoadReplayTLBMiss := false.B
87    lsInfo.s2.isLoadReplayCacheMiss := false.B
88    lsInfo.replayCnt := 0.U
89    lsInfo
90  }
91
92}
93class DebugLsInfoBundle(implicit p: Parameters) extends DebugLsInfo {
94  // unified processing at the end stage of load/store  ==> s2  ==> bug that will write error robIdx data
95  val s1_robIdx = UInt(log2Ceil(RobSize).W)
96  val s2_robIdx = UInt(log2Ceil(RobSize).W)
97}
98class DebugLSIO(implicit p: Parameters) extends XSBundle {
99  val debugLsInfo = Vec(exuParameters.LduCnt + exuParameters.StuCnt, Output(new DebugLsInfoBundle))
100}
101
102class RobPtr(entries: Int) extends CircularQueuePtr[RobPtr](
103  entries
104) with HasCircularQueuePtrHelper {
105
106  def this()(implicit p: Parameters) = this(p(XSCoreParamsKey).RobSize)
107
108  def needFlush(redirect: Valid[Redirect]): Bool = {
109    val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx
110    redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx))
111  }
112
113  def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR
114}
115
116object RobPtr {
117  def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = {
118    val ptr = Wire(new RobPtr)
119    ptr.flag := f
120    ptr.value := v
121    ptr
122  }
123}
124
125class RobCSRIO(implicit p: Parameters) extends XSBundle {
126  val intrBitSet = Input(Bool())
127  val trapTarget = Input(UInt(VAddrBits.W))
128  val isXRet     = Input(Bool())
129  val wfiEvent   = Input(Bool())
130
131  val fflags     = Output(Valid(UInt(5.W)))
132  val dirty_fs   = Output(Bool())
133  val perfinfo   = new Bundle {
134    val retiredInstr = Output(UInt(3.W))
135  }
136
137  val vcsrFlag   = Output(Bool())
138}
139
140class RobLsqIO(implicit p: Parameters) extends XSBundle {
141  val lcommit = Output(UInt(log2Up(CommitWidth + 1).W))
142  val scommit = Output(UInt(log2Up(CommitWidth + 1).W))
143  val pendingld = Output(Bool())
144  val pendingst = Output(Bool())
145  val commit = Output(Bool())
146}
147
148class RobEnqIO(implicit p: Parameters) extends XSBundle {
149  val canAccept = Output(Bool())
150  val isEmpty = Output(Bool())
151  // valid vector, for robIdx gen and walk
152  val needAlloc = Vec(RenameWidth, Input(Bool()))
153  val req = Vec(RenameWidth, Flipped(ValidIO(new DynInst)))
154  val resp = Vec(RenameWidth, Output(new RobPtr))
155}
156
157class RobDispatchData(implicit p: Parameters) extends RobCommitInfo
158
159class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
160  val io = IO(new Bundle {
161    // for commits/flush
162    val state = Input(UInt(2.W))
163    val deq_v = Vec(CommitWidth, Input(Bool()))
164    val deq_w = Vec(CommitWidth, Input(Bool()))
165    val exception_state = Flipped(ValidIO(new RobExceptionInfo))
166    // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth)
167    val intrBitSetReg = Input(Bool())
168    val hasNoSpecExec = Input(Bool())
169    val interrupt_safe = Input(Bool())
170    val blockCommit = Input(Bool())
171    // output: the CommitWidth deqPtr
172    val out = Vec(CommitWidth, Output(new RobPtr))
173    val next_out = Vec(CommitWidth, Output(new RobPtr))
174  })
175
176  val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr))))
177
178  // for exceptions (flushPipe included) and interrupts:
179  // only consider the first instruction
180  val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe
181  val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0)
182  val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable)
183
184  // for normal commits: only to consider when there're no exceptions
185  // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions.
186  val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last)
187  val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i)))
188  val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B)
189  // when io.intrBitSetReg or there're possible exceptions in these instructions,
190  // only one instruction is allowed to commit
191  val allowOnlyOne = commit_exception || io.intrBitSetReg
192  val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt)
193
194  val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt))
195  val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec)
196
197  deqPtrVec := deqPtrVec_next
198
199  io.next_out := deqPtrVec_next
200  io.out      := deqPtrVec
201
202  when (io.state === 0.U) {
203    XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt)
204  }
205
206}
207
208class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
209  val io = IO(new Bundle {
210    // for input redirect
211    val redirect = Input(Valid(new Redirect))
212    // for enqueue
213    val allowEnqueue = Input(Bool())
214    val hasBlockBackward = Input(Bool())
215    val enq = Vec(RenameWidth, Input(Bool()))
216    val out = Output(Vec(RenameWidth, new RobPtr))
217  })
218
219  val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr)))
220
221  // enqueue
222  val canAccept = io.allowEnqueue && !io.hasBlockBackward
223  val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U)
224
225  for ((ptr, i) <- enqPtrVec.zipWithIndex) {
226    when(io.redirect.valid) {
227      ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
228    }.otherwise {
229      ptr := ptr + dispatchNum
230    }
231  }
232
233  io.out := enqPtrVec
234
235}
236
237class RobExceptionInfo(implicit p: Parameters) extends XSBundle {
238  // val valid = Bool()
239  val robIdx = new RobPtr
240  val exceptionVec = ExceptionVec()
241  val flushPipe = Bool()
242  val isVset = Bool()
243  val replayInst = Bool() // redirect to that inst itself
244  val singleStep = Bool() // TODO add frontend hit beneath
245  val crossPageIPFFix = Bool()
246  val trigger = new TriggerCf
247
248//  def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend
249//  def trigger_after = trigger.getTimingBackend && trigger.getHitBackend
250  def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit
251  def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit
252  // only exceptions are allowed to writeback when enqueue
253  def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit
254}
255
256class ExceptionGen(params: BackendParams)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
257  val io = IO(new Bundle {
258    val redirect = Input(Valid(new Redirect))
259    val flush = Input(Bool())
260    val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo)))
261    // csr + load + store
262    val wb = Vec(params.numException, Flipped(ValidIO(new RobExceptionInfo)))
263    val out = ValidIO(new RobExceptionInfo)
264    val state = ValidIO(new RobExceptionInfo)
265  })
266
267  def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = {
268    assert(valid.length == bits.length)
269    assert(isPow2(valid.length))
270    if (valid.length == 1) {
271      (valid, bits)
272    } else if (valid.length == 2) {
273      val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0)))))
274      for (i <- res.indices) {
275        res(i).valid := valid(i)
276        res(i).bits := bits(i)
277      }
278      val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1))
279      (Seq(oldest.valid), Seq(oldest.bits))
280    } else {
281      val left = getOldest(valid.take(valid.length / 2), bits.take(valid.length / 2))
282      val right = getOldest(valid.takeRight(valid.length / 2), bits.takeRight(valid.length / 2))
283      getOldest(left._1 ++ right._1, left._2 ++ right._2)
284    }
285  }
286
287  val currentValid = RegInit(false.B)
288  val current = Reg(new RobExceptionInfo)
289
290  // orR the exceptionVec
291  val lastCycleFlush = RegNext(io.flush)
292  val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush))
293  val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush)
294
295  // s0: compare wb(1)~wb(LoadPipelineWidth) and wb(1 + LoadPipelineWidth)~wb(LoadPipelineWidth + StorePipelineWidth)
296  val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }
297  val csr_wb_bits = io.wb(0).bits
298  val load_wb_bits = getOldest(in_wb_valid.slice(1, 1 + LoadPipelineWidth), io.wb.map(_.bits).slice(1, 1 + LoadPipelineWidth))._2(0)
299  val store_wb_bits = getOldest(in_wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth), io.wb.map(_.bits).slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth))._2(0)
300  val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid.slice(1, 1 + LoadPipelineWidth).reduce(_ || _), wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth).reduce(_ || _))))
301  val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits)))
302
303  // s1: compare last four and current flush
304  val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) })
305  val compare_01_valid = s0_out_valid(0) || s0_out_valid(1)
306  val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0))
307  val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2))
308  val s1_out_bits = RegNext(compare_bits)
309  val s1_out_valid = RegNext(s1_valid.asUInt.orR)
310
311  val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush)
312  val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits)))
313
314  // s2: compare the input exception with the current one
315  // priorities:
316  // (1) system reset
317  // (2) current is valid: flush, remain, merge, update
318  // (3) current is not valid: s1 or enq
319  val current_flush = current.robIdx.needFlush(io.redirect) || io.flush
320  val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush
321  when (currentValid) {
322    when (current_flush) {
323      currentValid := Mux(s1_flush, false.B, s1_out_valid)
324    }
325    when (s1_out_valid && !s1_flush) {
326      when (isAfter(current.robIdx, s1_out_bits.robIdx)) {
327        current := s1_out_bits
328      }.elsewhen (current.robIdx === s1_out_bits.robIdx) {
329        current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec())
330        current.flushPipe := s1_out_bits.flushPipe || current.flushPipe
331        current.replayInst := s1_out_bits.replayInst || current.replayInst
332        current.singleStep := s1_out_bits.singleStep || current.singleStep
333        current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf)
334      }
335    }
336  }.elsewhen (s1_out_valid && !s1_flush) {
337    currentValid := true.B
338    current := s1_out_bits
339  }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) {
340    currentValid := true.B
341    current := enq_bits
342  }
343
344  io.out.valid   := s1_out_valid || enq_valid && enq_bits.can_writeback
345  io.out.bits    := Mux(s1_out_valid, s1_out_bits, enq_bits)
346  io.state.valid := currentValid
347  io.state.bits  := current
348
349}
350
351class RobFlushInfo(implicit p: Parameters) extends XSBundle {
352  val ftqIdx = new FtqPtr
353  val robIdx = new RobPtr
354  val ftqOffset = UInt(log2Up(PredictWidth).W)
355  val replayInst = Bool()
356}
357
358class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter {
359
360  lazy val module = new RobImp(this)(p, params)
361  //
362  //  override def generateWritebackIO(
363  //    thisMod: Option[HasWritebackSource] = None,
364  //    thisModImp: Option[HasWritebackSourceImp] = None
365  //  ): Unit = {
366  //    val sources = writebackSinksImp(thisMod, thisModImp)
367  //    module.io.writeback.zip(sources).foreach(x => x._1 := x._2)
368  //  }
369  //}
370}
371
372class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper)
373  with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents {
374
375  val io = IO(new Bundle() {
376    val hartId = Input(UInt(8.W))
377    val redirect = Input(Valid(new Redirect))
378    val enq = new RobEnqIO
379    val flushOut = ValidIO(new Redirect)
380    val isVsetFlushPipe = Output(Bool())
381    val exception = ValidIO(new ExceptionInfo)
382    // exu + brq
383    val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles)
384    val commits = Output(new RobCommitIO)
385    val lsq = new RobLsqIO
386    val robDeqPtr = Output(new RobPtr)
387    val csr = new RobCSRIO
388    val robFull = Output(Bool())
389    val cpu_halt = Output(Bool())
390    val wfi_enable = Input(Bool())
391    val debug_ls = Flipped(new DebugLSIO)
392  })
393
394  val exuWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(!_.bits.params.hasStdFu)
395  val stdWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(_.bits.params.hasStdFu)
396  val fflagsWBs = io.writeback.filter(x => x.bits.fflags.nonEmpty)
397  val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty)
398  val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty)
399
400  val exuWbPorts = io.writeback.filter(!_.bits.params.hasStdFu)
401  val stdWbPorts = io.writeback.filter(_.bits.params.hasStdFu)
402  val fflagsPorts = io.writeback.filter(x => x.bits.fflags.nonEmpty)
403  val exceptionPorts = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty)
404  val numExuWbPorts = exuWBs.length
405  val numStdWbPorts = stdWBs.length
406
407
408  println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth")
409//  println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}")
410//  println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}")
411//  println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}")
412
413
414  // instvalid field
415  val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
416  // writeback status
417  val writebacked = Mem(RobSize, Bool())
418  val store_data_writebacked = Mem(RobSize, Bool())
419  // data for redirect, exception, etc.
420  val flagBkup = Mem(RobSize, Bool())
421  // some instructions are not allowed to trigger interrupts
422  // They have side effects on the states of the processor before they write back
423  val interrupt_safe = Mem(RobSize, Bool())
424
425  // data for debug
426  // Warn: debug_* prefix should not exist in generated verilog.
427  val debug_microOp = Reg(Vec(RobSize, new DynInst))
428  val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug
429  val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug
430  val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init)))
431
432  // pointers
433  // For enqueue ptr, we don't duplicate it since only enqueue needs it.
434  val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr))
435  val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr))
436
437  val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr))
438  val allowEnqueue = RegInit(true.B)
439
440  val enqPtr = enqPtrVec.head
441  val deqPtr = deqPtrVec(0)
442  val walkPtr = walkPtrVec(0)
443
444  val isEmpty = enqPtr === deqPtr
445  val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level)
446
447  /**
448    * states of Rob
449    */
450  val s_idle :: s_walk :: Nil = Enum(2)
451  val state = RegInit(s_idle)
452
453  /**
454    * Data Modules
455    *
456    * CommitDataModule: data from dispatch
457    * (1) read: commits/walk/exception
458    * (2) write: enqueue
459    *
460    * WritebackData: data from writeback
461    * (1) read: commits/walk/exception
462    * (2) write: write back from exe units
463    */
464  val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth))
465  val dispatchDataRead = dispatchData.io.rdata
466
467  val exceptionGen = Module(new ExceptionGen(params))
468  val exceptionDataRead = exceptionGen.io.state
469  val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W)))
470
471  io.robDeqPtr := deqPtr
472
473  /**
474    * Enqueue (from dispatch)
475    */
476  // special cases
477  val hasBlockBackward = RegInit(false.B)
478  val hasWaitForward = RegInit(false.B)
479  val doingSvinval = RegInit(false.B)
480  // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B
481  // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty.
482  when (isEmpty) { hasBlockBackward:= false.B }
483  // When any instruction commits, hasNoSpecExec should be set to false.B
484  when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasWaitForward:= false.B }
485
486  // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing.
487  // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle.
488  // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts.
489  val hasWFI = RegInit(false.B)
490  io.cpu_halt := hasWFI
491  // WFI Timeout: 2^20 = 1M cycles
492  val wfi_cycles = RegInit(0.U(20.W))
493  when (hasWFI) {
494    wfi_cycles := wfi_cycles + 1.U
495  }.elsewhen (!hasWFI && RegNext(hasWFI)) {
496    wfi_cycles := 0.U
497  }
498  val wfi_timeout = wfi_cycles.andR
499  when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) {
500    hasWFI := false.B
501  }
502
503  val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.needAlloc.take(i)))))
504  io.enq.canAccept := allowEnqueue && !hasBlockBackward
505  io.enq.resp      := allocatePtrVec
506  val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept))
507  val timer = GTimer()
508  for (i <- 0 until RenameWidth) {
509    // we don't check whether io.redirect is valid here since redirect has higher priority
510    when (canEnqueue(i)) {
511      val enqUop = io.enq.req(i).bits
512      val enqIndex = allocatePtrVec(i).value
513      // store uop in data module and debug_microOp Vec
514      debug_microOp(enqIndex) := enqUop
515      debug_microOp(enqIndex).debugInfo.dispatchTime := timer
516      debug_microOp(enqIndex).debugInfo.enqRsTime := timer
517      debug_microOp(enqIndex).debugInfo.selectTime := timer
518      debug_microOp(enqIndex).debugInfo.issueTime := timer
519      debug_microOp(enqIndex).debugInfo.writebackTime := timer
520      debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer
521      debug_microOp(enqIndex).debugInfo.tlbRespTime := timer
522      debug_lsInfo(enqIndex) := DebugLsInfo.init
523      when (enqUop.blockBackward) {
524        hasBlockBackward := true.B
525      }
526      when (enqUop.waitForward) {
527        hasWaitForward := true.B
528      }
529      val enqHasTriggerHit = false.B // io.enq.req(i).bits.cf.trigger.getHitFrontend
530      val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR
531      // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process
532      when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe))
533      {
534        doingSvinval := true.B
535      }
536      // the end instruction of Svinval enqs so clear doingSvinval
537      when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe))
538      {
539        doingSvinval := false.B
540      }
541      // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear
542      assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe)))
543      when (enqUop.isWFI && !enqHasException && !enqHasTriggerHit) {
544        hasWFI := true.B
545      }
546    }
547  }
548  val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(_.valid)), 0.U)
549  io.enq.isEmpty   := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR)
550
551  when (!io.wfi_enable) {
552    hasWFI := false.B
553  }
554  // sel vsetvl's flush position
555  val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3)
556  val vsetvlState = RegInit(vs_idle)
557
558  val firstVInstrFtqPtr    = RegInit(0.U.asTypeOf(new FtqPtr))
559  val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W)))
560  val firstVInstrRobIdx    = RegInit(0.U.asTypeOf(new RobPtr))
561
562  val enq0            = io.enq.req(0)
563  val enq0IsVset      = FuType.isInt(enq0.bits.fuType) && ALUOpType.isVset(enq0.bits.fuOpType) && enq0.bits.uopIdx.andR && canEnqueue(0)
564  val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe
565  val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVpu(req.bits.fuType) && fire}
566  // for vs_idle
567  val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType)))
568  // for vs_waitVinstr
569  val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1)
570  val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req)
571  when(vsetvlState === vs_idle){
572    firstVInstrFtqPtr    := firstVInstrIdle.bits.ftqPtr
573    firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset
574    firstVInstrRobIdx    := firstVInstrIdle.bits.robIdx
575  }.elsewhen(vsetvlState === vs_waitVinstr){
576    firstVInstrFtqPtr    := firstVInstrWait.bits.ftqPtr
577    firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset
578    firstVInstrRobIdx    := firstVInstrWait.bits.robIdx
579  }
580
581  val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR
582  when(vsetvlState === vs_idle){
583    when(enq0IsVsetFlush){
584      vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr)
585    }
586  }.elsewhen(vsetvlState === vs_waitVinstr){
587    when(io.redirect.valid){
588      vsetvlState := vs_idle
589    }.elsewhen(Cat(enqIsVInstrOrVset).orR){
590      vsetvlState := vs_waitFlush
591    }
592  }.elsewhen(vsetvlState === vs_waitFlush){
593    when(io.redirect.valid){
594      vsetvlState := vs_idle
595    }
596  }
597
598  /**
599    * Writeback (from execution units)
600    */
601  for (wb <- exuWBs) {
602    when (wb.valid) {
603      val wbIdx = wb.bits.robIdx.value
604      debug_exuData(wbIdx) := wb.bits.data
605      debug_exuDebug(wbIdx) := wb.bits.debug
606      debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime
607      debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime
608      debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime
609      debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime
610      debug_microOp(wbIdx).debugInfo.tlbFirstReqTime := wb.bits.debugInfo.tlbFirstReqTime
611      debug_microOp(wbIdx).debugInfo.tlbRespTime := wb.bits.debugInfo.tlbRespTime
612
613      // debug for lqidx and sqidx
614      debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr))
615      debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr))
616
617      val debug_Uop = debug_microOp(wbIdx)
618      XSInfo(true.B,
619        p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " +
620        p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " +
621        p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.robIdx}\n"
622      )
623    }
624  }
625
626  val writebackNum = PopCount(exuWBs.map(_.valid))
627  XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum)
628
629
630  /**
631    * RedirectOut: Interrupt and Exceptions
632    */
633  val deqDispatchData = dispatchDataRead(0)
634  val debug_deqUop = debug_microOp(deqPtr.value)
635
636  val intrBitSetReg = RegNext(io.csr.intrBitSet)
637  val intrEnable = intrBitSetReg && !hasWaitForward && interrupt_safe(deqPtr.value)
638  val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr
639  val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR ||
640    exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit)
641  val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe
642  val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst
643  val exceptionEnable = writebacked(deqPtr.value) && deqHasException
644
645  XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n")
646  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n")
647  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n")
648
649  val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst)
650
651  val isVsetFlushPipe = writebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset
652  val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush)
653  io.isVsetFlushPipe := RegNext(isVsetFlushPipe)
654  // io.flushOut will trigger redirect at the next cycle.
655  // Block any redirect or commit at the next cycle.
656  val lastCycleFlush = RegNext(io.flushOut.valid)
657
658  io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush
659  io.flushOut.bits := DontCare
660  io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr)
661  io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx)
662  io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset)
663  io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next"
664  io.flushOut.bits.interrupt := true.B
665  XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable)
666  XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable)
667  XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe)
668  XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst)
669
670  val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush
671  io.exception.valid                := RegNext(exceptionHappen)
672  io.exception.bits.pc              := RegEnable(debug_deqUop.pc, exceptionHappen)
673  io.exception.bits.instr           := RegEnable(debug_deqUop.instr, exceptionHappen)
674  io.exception.bits.commitType      := RegEnable(deqDispatchData.commitType, exceptionHappen)
675  io.exception.bits.exceptionVec    := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen)
676  io.exception.bits.singleStep      := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen)
677  io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen)
678  io.exception.bits.isInterrupt     := RegEnable(intrEnable, exceptionHappen)
679//  io.exception.bits.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen)
680
681  XSDebug(io.flushOut.valid,
682    p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " +
683    p"excp $exceptionEnable flushPipe $isFlushPipe " +
684    p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n")
685
686
687  /**
688    * Commits (and walk)
689    * They share the same width.
690    */
691  val walkCounter = Reg(UInt(log2Up(RobSize + 1).W))
692  val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter))
693  val walkFinished = walkCounter <= CommitWidth.U
694
695  require(RenameWidth <= CommitWidth)
696
697  // wiring to csr
698  val (wflags, fpWen) = (0 until CommitWidth).map(i => {
699    val v = io.commits.commitValid(i)
700    val info = io.commits.info(i)
701    (v & info.wflags, v & info.fpWen)
702  }).unzip
703  val fflags = Wire(Valid(UInt(5.W)))
704  fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR
705  fflags.bits := wflags.zip(fflagsDataRead).map({
706    case (w, f) => Mux(w, f, 0.U)
707  }).reduce(_|_)
708  val dirty_fs = io.commits.isCommit && VecInit(fpWen).asUInt.orR
709
710  // when mispredict branches writeback, stop commit in the next 2 cycles
711  // TODO: don't check all exu write back
712  val misPredWb = Cat(VecInit(redirectWBs.map(wb =>
713    wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid
714  ))).orR
715  val misPredBlockCounter = Reg(UInt(3.W))
716  misPredBlockCounter := Mux(misPredWb,
717    "b111".U,
718    misPredBlockCounter >> 1.U
719  )
720  val misPredBlock = misPredBlockCounter(0)
721  val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI
722
723  io.commits.isWalk := state === s_walk
724  io.commits.isCommit := state === s_idle && !blockCommit
725  val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value)))
726  val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value)))
727  // store will be commited iff both sta & std have been writebacked
728  val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value)))
729  val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last)
730  val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i)))
731  val allowOnlyOneCommit = commit_exception || intrBitSetReg
732  // for instructions that may block others, we don't allow them to commit
733  for (i <- 0 until CommitWidth) {
734    // defaults: state === s_idle and instructions commit
735    // when intrBitSetReg, allow only one instruction to commit at each clock cycle
736    val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst
737    io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked
738    io.commits.info(i)  := dispatchDataRead(i)
739
740    when (state === s_walk) {
741      io.commits.walkValid(i) := shouldWalkVec(i)
742      when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) {
743        XSError(!walk_v(i), s"why not $i???\n")
744      }
745    }
746
747    XSInfo(io.commits.isCommit && io.commits.commitValid(i),
748      "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b\n",
749      debug_microOp(deqPtrVec(i).value).pc,
750      io.commits.info(i).rfWen,
751      io.commits.info(i).ldest,
752      io.commits.info(i).pdest,
753      io.commits.info(i).old_pdest,
754      debug_exuData(deqPtrVec(i).value),
755      fflagsDataRead(i)
756    )
757    XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n",
758      debug_microOp(walkPtrVec(i).value).pc,
759      io.commits.info(i).rfWen,
760      io.commits.info(i).ldest,
761      debug_exuData(walkPtrVec(i).value)
762    )
763  }
764  if (env.EnableDifftest) {
765    io.commits.info.map(info => dontTouch(info.pc))
766  }
767
768  // sync fflags/dirty_fs to csr
769  io.csr.fflags := RegNext(fflags)
770  io.csr.dirty_fs := RegNext(dirty_fs)
771
772  // sync v csr to csr
773//  io.csr.vcsrFlag := RegNext(isVsetFlushPipe)
774
775  // commit load/store to lsq
776  val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD))
777  val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE))
778  io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U))
779  io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U))
780  // indicate a pending load or store
781  io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value))
782  io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value))
783  io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0))
784
785  /**
786    * state changes
787    * (1) redirect: switch to s_walk
788    * (2) walk: when walking comes to the end, switch to s_idle
789    */
790  val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished, s_idle, state))
791  XSPerfAccumulate("s_idle_to_idle",            state === s_idle && state_next === s_idle)
792  XSPerfAccumulate("s_idle_to_walk",            state === s_idle && state_next === s_walk)
793  XSPerfAccumulate("s_walk_to_idle",            state === s_walk && state_next === s_idle)
794  XSPerfAccumulate("s_walk_to_walk",            state === s_walk && state_next === s_walk)
795  state := state_next
796
797  /**
798    * pointers and counters
799    */
800  val deqPtrGenModule = Module(new RobDeqPtrWrapper)
801  deqPtrGenModule.io.state := state
802  deqPtrGenModule.io.deq_v := commit_v
803  deqPtrGenModule.io.deq_w := commit_w
804  deqPtrGenModule.io.exception_state := exceptionDataRead
805  deqPtrGenModule.io.intrBitSetReg := intrBitSetReg
806  deqPtrGenModule.io.hasNoSpecExec := hasWaitForward
807  deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value)
808  deqPtrGenModule.io.blockCommit := blockCommit
809  deqPtrVec := deqPtrGenModule.io.out
810  val deqPtrVec_next = deqPtrGenModule.io.next_out
811
812  val enqPtrGenModule = Module(new RobEnqPtrWrapper)
813  enqPtrGenModule.io.redirect := io.redirect
814  enqPtrGenModule.io.allowEnqueue := allowEnqueue
815  enqPtrGenModule.io.hasBlockBackward := hasBlockBackward
816  enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid))
817  enqPtrVec := enqPtrGenModule.io.out
818
819  val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U)
820  // next walkPtrVec:
821  // (1) redirect occurs: update according to state
822  // (2) walk: move forwards
823  val walkPtrVec_next = Mux(io.redirect.valid,
824    deqPtrVec_next,
825    Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec)
826  )
827  walkPtrVec := walkPtrVec_next
828
829  val numValidEntries = distanceBetween(enqPtr, deqPtr)
830  val isLastUopVec = io.commits.info.map(_.uopIdx.andR)
831  val commitCnt = PopCount(io.commits.commitValid.zip(isLastUopVec).map{case(isCommitValid, isLastUop) => isCommitValid && isLastUop})
832
833  allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U
834
835  val currentWalkPtr = Mux(state === s_walk, walkPtr, deqPtrVec_next(0))
836  val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0))
837  when (io.redirect.valid) {
838    // full condition:
839    // +& is used here because:
840    // When rob is full and the tail instruction causes a misprediction,
841    // the redirect robIdx is the deqPtr - 1. In this case, redirectWalkDistance
842    // is RobSize - 1.
843    // Since misprediction does not flush the instruction itself, flushItSelf is false.B.
844    // Previously we use `+` to count the walk distance and it causes overflows
845    // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize.
846    // The width of walkCounter also needs to be changed.
847    // empty condition:
848    // When the last instruction in ROB commits and causes a flush, a redirect
849    // will be raised later. In such circumstances, the redirect robIdx is before
850    // the deqPtrVec_next(0) and will cause underflow.
851    walkCounter := Mux(isBefore(io.redirect.bits.robIdx, deqPtrVec_next(0)), 0.U,
852                       redirectWalkDistance +& !io.redirect.bits.flushItself())
853  }.elsewhen (state === s_walk) {
854    walkCounter := walkCounter - thisCycleWalkCount
855    XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n")
856  }
857
858
859  /**
860    * States
861    * We put all the stage bits changes here.
862
863    * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit);
864    * All states: (1) valid; (2) writebacked; (3) flagBkup
865    */
866  val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value)))
867
868  // redirect logic writes 6 valid
869  val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr))
870  val redirectTail = Reg(new RobPtr)
871  val redirectIdle :: redirectBusy :: Nil = Enum(2)
872  val redirectState = RegInit(redirectIdle)
873  val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail))
874  when(redirectState === redirectBusy) {
875    redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U)
876    redirectHeadVec zip invMask foreach {
877      case (redirectHead, inv) => when(inv) {
878        valid(redirectHead.value) := false.B
879      }
880    }
881    when(!invMask.last) {
882      redirectState := redirectIdle
883    }
884  }
885  when(io.redirect.valid) {
886    redirectState := redirectBusy
887    when(redirectState === redirectIdle) {
888      redirectTail := enqPtr
889    }
890    redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) =>
891      redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
892    }
893  }
894  // enqueue logic writes 6 valid
895  for (i <- 0 until RenameWidth) {
896    when (canEnqueue(i) && !io.redirect.valid) {
897      valid(allocatePtrVec(i).value) := true.B
898    }
899  }
900  // dequeue logic writes 6 valid
901  for (i <- 0 until CommitWidth) {
902    val commitValid = io.commits.isCommit && io.commits.commitValid(i)
903    when (commitValid) {
904      valid(commitReadAddr(i)) := false.B
905    }
906  }
907
908  // debug_inst update
909  for(i <- 0 until (exuParameters.LduCnt + exuParameters.StuCnt)) {
910    debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i))
911    debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i))
912  }
913
914  // status field: writebacked
915  // enqueue logic set 6 writebacked to false
916  for (i <- 0 until RenameWidth) {
917    when (canEnqueue(i)) {
918      val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec).asUInt.orR
919      val enqHasTriggerHit = io.enq.req(i).bits.trigger.getHitFrontend
920      val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove
921      writebacked(allocatePtrVec(i).value) := enqIsWritebacked && !enqHasException && !enqHasTriggerHit
922      val isStu = io.enq.req(i).bits.fuType === FuType.stu.U
923      store_data_writebacked(allocatePtrVec(i).value) := !isStu
924    }
925  }
926  when (exceptionGen.io.out.valid) {
927    val wbIdx = exceptionGen.io.out.bits.robIdx.value
928    writebacked(wbIdx) := true.B
929    store_data_writebacked(wbIdx) := true.B
930  }
931  // writeback logic set numWbPorts writebacked to true
932  for (wb <- exuWBs) {
933    when (wb.valid) {
934      val wbIdx = wb.bits.robIdx.value
935      val wbHasException = wb.bits.exceptionVec.getOrElse(0.U).asUInt.orR
936      val wbHasTriggerHit = false.B //Todo: wb.bits.trigger.getHitBackend
937      val wbHasFlushPipe = wb.bits.flushPipe.getOrElse(false.B)
938      val wbHasReplayInst = wb.bits.replay.getOrElse(false.B) //Todo: && wb.bits.replayInst
939      val block_wb = wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit
940      writebacked(wbIdx) := !block_wb
941    }
942  }
943  // store data writeback logic mark store as data_writebacked
944  for (wb <- stdWBs) {
945    when(RegNext(wb.valid)) {
946      store_data_writebacked(RegNext(wb.bits.robIdx.value)) := true.B
947    }
948  }
949
950  // flagBkup
951  // enqueue logic set 6 flagBkup at most
952  for (i <- 0 until RenameWidth) {
953    when (canEnqueue(i)) {
954      flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag
955    }
956  }
957
958  // interrupt_safe
959  for (i <- 0 until RenameWidth) {
960    // We RegNext the updates for better timing.
961    // Note that instructions won't change the system's states in this cycle.
962    when (RegNext(canEnqueue(i))) {
963      // For now, we allow non-load-store instructions to trigger interrupts
964      // For MMIO instructions, they should not trigger interrupts since they may
965      // be sent to lower level before it writes back.
966      // However, we cannot determine whether a load/store instruction is MMIO.
967      // Thus, we don't allow load/store instructions to trigger an interrupt.
968      // TODO: support non-MMIO load-store instructions to trigger interrupts
969      val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType)
970      interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts)
971    }
972  }
973
974  /**
975    * read and write of data modules
976    */
977  val commitReadAddr_next = Mux(state_next === s_idle,
978    VecInit(deqPtrVec_next.map(_.value)),
979    VecInit(walkPtrVec_next.map(_.value))
980  )
981  // NOTE: dispatch info will record the uop of inst
982  dispatchData.io.wen := canEnqueue
983  dispatchData.io.waddr := allocatePtrVec.map(_.value)
984  dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) =>
985    wdata.ldest := req.ldest
986    wdata.rfWen := req.rfWen
987    wdata.fpWen := req.fpWen
988    wdata.vecWen := req.vecWen
989    wdata.wflags := req.fpu.wflags
990    wdata.commitType := req.commitType
991    wdata.pdest := req.pdest
992    wdata.old_pdest := req.oldPdest
993    wdata.ftqIdx := req.ftqPtr
994    wdata.ftqOffset := req.ftqOffset
995    wdata.isMove := req.eliminatedMove
996    wdata.pc := req.pc
997    wdata.uopIdx := req.uopIdx
998//    wdata.vconfig := req.vconfig
999  }
1000  dispatchData.io.raddr := commitReadAddr_next
1001
1002  exceptionGen.io.redirect <> io.redirect
1003  exceptionGen.io.flush := io.flushOut.valid
1004  for (i <- 0 until RenameWidth) {
1005    exceptionGen.io.enq(i).valid := canEnqueue(i)
1006    exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx
1007    exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec)
1008    exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe
1009    exceptionGen.io.enq(i).bits.isVset := FuType.isInt(io.enq.req(i).bits.fuType) && ALUOpType.isVset(io.enq.req(i).bits.fuOpType)
1010    exceptionGen.io.enq(i).bits.replayInst := false.B
1011    XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst")
1012    exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep
1013    exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix
1014    exceptionGen.io.enq(i).bits.trigger.clear()
1015    exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.trigger.frontendHit
1016  }
1017
1018  println(s"ExceptionGen:")
1019  println(s"num of exceptions: ${params.numException}")
1020  require(exceptionWBs.length == exceptionGen.io.wb.length,
1021    f"exceptionWBs.length: ${exceptionWBs.length}, " +
1022      f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}")
1023  for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) {
1024    exc_wb.valid                := wb.valid
1025    exc_wb.bits.robIdx          := wb.bits.robIdx
1026    exc_wb.bits.exceptionVec    := wb.bits.exceptionVec.get
1027    exc_wb.bits.flushPipe       := wb.bits.flushPipe.getOrElse(false.B)
1028    exc_wb.bits.isVset          := false.B
1029    exc_wb.bits.replayInst      := wb.bits.replay.getOrElse(false.B)
1030    exc_wb.bits.singleStep      := false.B
1031    exc_wb.bits.crossPageIPFFix := false.B
1032    exc_wb.bits.trigger         := 0.U.asTypeOf(exc_wb.bits.trigger) // Todo
1033//    println(s"  [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " +
1034//      s"flushPipe ${configs.exists(_.flushPipe)}, " +
1035//      s"replayInst ${configs.exists(_.replayInst)}")
1036  }
1037
1038  val fflagsDataModule = Module(new SyncDataModuleTemplate(
1039    UInt(5.W), RobSize, CommitWidth, fflagsWBs.size)
1040  )
1041  require(fflagsWBs.length == fflagsDataModule.io.wen.length)
1042  for(i <- fflagsWBs.indices){
1043    fflagsDataModule.io.wen  (i) := fflagsWBs(i).valid
1044    fflagsDataModule.io.waddr(i) := fflagsWBs(i).bits.robIdx.value
1045    fflagsDataModule.io.wdata(i) := fflagsWBs(i).bits.fflags.get
1046  }
1047  fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value))
1048  fflagsDataRead := fflagsDataModule.io.rdata
1049
1050  val instrCntReg = RegInit(0.U(64.W))
1051  val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) })
1052  val trueCommitCnt = RegNext(commitCnt) +& fuseCommitCnt
1053  val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U)
1054  val instrCnt = instrCntReg + retireCounter
1055  instrCntReg := instrCnt
1056  io.csr.perfinfo.retiredInstr := retireCounter
1057  io.robFull := !allowEnqueue
1058
1059  /**
1060    * debug info
1061    */
1062  XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n")
1063  XSDebug("")
1064  XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n")
1065  for(i <- 0 until RobSize){
1066    XSDebug(false, !valid(i), "-")
1067    XSDebug(false, valid(i) && writebacked(i), "w")
1068    XSDebug(false, valid(i) && !writebacked(i), "v")
1069  }
1070  XSDebug(false, true.B, "\n")
1071
1072  for(i <- 0 until RobSize) {
1073    if(i % 4 == 0) XSDebug("")
1074    XSDebug(false, true.B, "%x ", debug_microOp(i).pc)
1075    XSDebug(false, !valid(i), "- ")
1076    XSDebug(false, valid(i) && writebacked(i), "w ")
1077    XSDebug(false, valid(i) && !writebacked(i), "v ")
1078    if(i % 4 == 3) XSDebug(false, true.B, "\n")
1079  }
1080
1081  def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U)
1082  def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U)
1083
1084  val commitDebugExu = deqPtrVec.map(_.value).map(debug_exuDebug(_))
1085  val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_))
1086  val commitDebugLsInfo = deqPtrVec.map(_.value).map(debug_lsInfo(_))
1087  XSPerfAccumulate("clock_cycle", 1.U)
1088  QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue)
1089  XSPerfAccumulate("commitUop", ifCommit(commitCnt))
1090  XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt))
1091  val commitIsMove = commitDebugUop.map(_.isMove)
1092  XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })))
1093  val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove)
1094  XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e })))
1095  XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt))
1096  val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD)
1097  val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t }
1098  XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid)))
1099  val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH)
1100  val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t }
1101  XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid)))
1102  val commitLoadWaitBit = commitDebugUop.map(_.loadWaitBit)
1103  XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })))
1104  val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE)
1105  XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })))
1106  XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i))))
1107  // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire)))
1108  // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready)))
1109  XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U))
1110  XSPerfAccumulate("walkCycle", state === s_walk)
1111  val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value)
1112  val deqUopCommitType = io.commits.info(0).commitType
1113  XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL)
1114  XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH)
1115  XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD)
1116  XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE)
1117  XSPerfAccumulate("robHeadPC", io.commits.info(0).pc)
1118  val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime)
1119  val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime)
1120  val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime)
1121  val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime)
1122  val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime)
1123  val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime)
1124  val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime)
1125  val accessLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime)
1126  val tlbLatency = commitDebugUop.map(uop => uop.debugInfo.tlbRespTime - uop.debugInfo.tlbFirstReqTime)
1127  def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = {
1128    cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _)
1129  }
1130  for (fuType <- FuType.functionNameMap.keys) {
1131    val fuName = FuType.functionNameMap(fuType)
1132    val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U )
1133    XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType)))
1134    XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency)))
1135    XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency)))
1136    XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency)))
1137    XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency)))
1138    XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency)))
1139    XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency)))
1140    XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency)))
1141    if (fuType == FuType.fmac) {
1142      val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.fpu.ren3 )
1143      XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma)))
1144      XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency)))
1145      XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency)))
1146    }
1147  }
1148
1149  if (env.EnableTopDown) {
1150    ExcitingUtils.addSource(commit_v(0) && !commit_w(0) && state =/= s_walk && io.commits.info(0).commitType === CommitType.LOAD,
1151                            "rob_first_load", ExcitingUtils.Perf)
1152    ExcitingUtils.addSource(commit_v(0) && !commit_w(0) && state =/= s_walk && io.commits.info(0).commitType === CommitType.STORE,
1153                            "rob_first_store", ExcitingUtils.Perf)
1154  }
1155
1156  /**
1157    * DataBase info:
1158    * log trigger is at writeback valid
1159    * */
1160  if(!env.FPGAPlatform){
1161    val isWriteInstInfoTable = WireInit(Constantin.createRecord("isWriteInstInfoTable" + p(XSCoreParamsKey).HartId.toString))
1162    val instTableName = "InstTable" + p(XSCoreParamsKey).HartId.toString
1163    val instSiteName = "Rob" + p(XSCoreParamsKey).HartId.toString
1164    val debug_instTable = ChiselDB.createTable(instTableName, new InstInfoEntry)
1165    // FIXME lyq: only get inst (alu, bj, ls) in exuWriteback
1166    for (wb <- exuWriteback) {
1167      when(wb.valid) {
1168        val debug_instData = Wire(new InstInfoEntry)
1169        val idx = wb.bits.uop.robIdx.value
1170        debug_instData.globalID := wb.bits.uop.ctrl.debug_globalID
1171        debug_instData.robIdx := idx
1172        debug_instData.instType := wb.bits.uop.ctrl.fuType
1173        debug_instData.ivaddr := wb.bits.uop.cf.pc
1174        debug_instData.dvaddr := wb.bits.debug.vaddr
1175        debug_instData.dpaddr := wb.bits.debug.paddr
1176        debug_instData.tlbLatency := wb.bits.uop.debugInfo.tlbRespTime - wb.bits.uop.debugInfo.tlbFirstReqTime
1177        debug_instData.accessLatency := wb.bits.uop.debugInfo.writebackTime - wb.bits.uop.debugInfo.issueTime
1178        debug_instData.executeLatency := wb.bits.uop.debugInfo.writebackTime - wb.bits.uop.debugInfo.issueTime
1179        debug_instData.issueLatency := wb.bits.uop.debugInfo.issueTime - wb.bits.uop.debugInfo.selectTime
1180        debug_instData.exceptType := Cat(wb.bits.uop.cf.exceptionVec)
1181        debug_instData.lsInfo := debug_lsInfo(idx)
1182        debug_instData.mdpInfo.ssid := wb.bits.uop.cf.ssid
1183        debug_instData.mdpInfo.waitAllStore := wb.bits.uop.cf.loadWaitStrict && wb.bits.uop.cf.loadWaitBit
1184        debug_instData.issueTime := wb.bits.uop.debugInfo.issueTime
1185        debug_instData.writebackTime := wb.bits.uop.debugInfo.writebackTime
1186        debug_instTable.log(
1187          data = debug_instData,
1188          en = wb.valid,
1189          site = instSiteName,
1190          clock = clock,
1191          reset = reset
1192        )
1193      }
1194    }
1195  }
1196
1197
1198  //difftest signals
1199  val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value
1200
1201  val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1202  val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1203
1204  for(i <- 0 until CommitWidth) {
1205    val idx = deqPtrVec(i).value
1206    wdata(i) := debug_exuData(idx)
1207    wpc(i) := SignExt(commitDebugUop(i).pc, XLEN)
1208  }
1209
1210  if (env.EnableDifftest) {
1211    for (i <- 0 until CommitWidth) {
1212      val difftest = Module(new DifftestInstrCommit)
1213      // assgin default value
1214      difftest.io := DontCare
1215
1216      difftest.io.clock    := clock
1217      difftest.io.coreid   := io.hartId
1218      difftest.io.index    := i.U
1219
1220      val ptr = deqPtrVec(i).value
1221      val uop = commitDebugUop(i)
1222      val exuOut = debug_exuDebug(ptr)
1223      val exuData = debug_exuData(ptr)
1224      difftest.io.valid    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1225      difftest.io.pc       := RegNext(RegNext(RegNext(SignExt(uop.pc, XLEN))))
1226      difftest.io.instr    := RegNext(RegNext(RegNext(uop.instr)))
1227      difftest.io.robIdx   := RegNext(RegNext(RegNext(ZeroExt(ptr, 10))))
1228      difftest.io.lqIdx    := RegNext(RegNext(RegNext(ZeroExt(uop.lqIdx.value, 7))))
1229      difftest.io.sqIdx    := RegNext(RegNext(RegNext(ZeroExt(uop.sqIdx.value, 7))))
1230      difftest.io.isLoad   := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.LOAD)))
1231      difftest.io.isStore  := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.STORE)))
1232      difftest.io.special  := RegNext(RegNext(RegNext(CommitType.isFused(io.commits.info(i).commitType))))
1233      // when committing an eliminated move instruction,
1234      // we must make sure that skip is properly set to false (output from EXU is random value)
1235      difftest.io.skip     := RegNext(RegNext(RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))))
1236      difftest.io.isRVC    := RegNext(RegNext(RegNext(uop.preDecodeInfo.isRVC)))
1237      difftest.io.rfwen    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U)))
1238      difftest.io.fpwen    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).fpWen)))
1239      difftest.io.wpdest   := RegNext(RegNext(RegNext(io.commits.info(i).pdest)))
1240      difftest.io.wdest    := RegNext(RegNext(RegNext(io.commits.info(i).ldest)))
1241
1242      difftest.io.isVsetFirst := RegNext(RegNext(RegNext(io.commits.commitValid(i) && !io.commits.info(i).uopIdx.orR)))
1243      // // runahead commit hint
1244      // val runahead_commit = Module(new DifftestRunaheadCommitEvent)
1245      // runahead_commit.io.clock := clock
1246      // runahead_commit.io.coreid := io.hartId
1247      // runahead_commit.io.index := i.U
1248      // runahead_commit.io.valid := difftest.io.valid &&
1249      //   (commitBranchValid(i) || commitIsStore(i))
1250      // // TODO: is branch or store
1251      // runahead_commit.io.pc    := difftest.io.pc
1252    }
1253  }
1254  else if (env.AlwaysBasicDiff) {
1255    // These are the structures used by difftest only and should be optimized after synthesis.
1256    val dt_eliminatedMove = Mem(RobSize, Bool())
1257    val dt_isRVC = Mem(RobSize, Bool())
1258    val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle))
1259    for (i <- 0 until RenameWidth) {
1260      when (canEnqueue(i)) {
1261        dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove
1262        dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC
1263      }
1264    }
1265    for (wb <- exuWBs) {
1266      when (wb.valid) {
1267        val wbIdx = wb.bits.robIdx.value
1268        dt_exuDebug(wbIdx) := wb.bits.debug
1269      }
1270    }
1271    // Always instantiate basic difftest modules.
1272    for (i <- 0 until CommitWidth) {
1273      val commitInfo = io.commits.info(i)
1274      val ptr = deqPtrVec(i).value
1275      val exuOut = dt_exuDebug(ptr)
1276      val eliminatedMove = dt_eliminatedMove(ptr)
1277      val isRVC = dt_isRVC(ptr)
1278
1279      val difftest = Module(new DifftestBasicInstrCommit)
1280      difftest.io.clock   := clock
1281      difftest.io.coreid  := io.hartId
1282      difftest.io.index   := i.U
1283      difftest.io.valid   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1284      difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(commitInfo.commitType))))
1285      difftest.io.skip    := RegNext(RegNext(RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))))
1286      difftest.io.isRVC   := RegNext(RegNext(RegNext(isRVC)))
1287      difftest.io.rfwen   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U)))
1288      difftest.io.fpwen   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.fpWen)))
1289      difftest.io.wpdest  := RegNext(RegNext(RegNext(commitInfo.pdest)))
1290      difftest.io.wdest   := RegNext(RegNext(RegNext(commitInfo.ldest)))
1291    }
1292  }
1293
1294  if (env.EnableDifftest) {
1295    for (i <- 0 until CommitWidth) {
1296      val difftest = Module(new DifftestLoadEvent)
1297      difftest.io.clock  := clock
1298      difftest.io.coreid := io.hartId
1299      difftest.io.index  := i.U
1300
1301      val ptr = deqPtrVec(i).value
1302      val uop = commitDebugUop(i)
1303      val exuOut = debug_exuDebug(ptr)
1304      difftest.io.valid  := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1305      difftest.io.paddr  := RegNext(RegNext(RegNext(exuOut.paddr)))
1306      difftest.io.opType := RegNext(RegNext(RegNext(uop.fuOpType)))
1307      difftest.io.fuType := RegNext(RegNext(RegNext(uop.fuType)))
1308    }
1309  }
1310
1311  // Always instantiate basic difftest modules.
1312  if (env.EnableDifftest) {
1313    val dt_isXSTrap = Mem(RobSize, Bool())
1314    for (i <- 0 until RenameWidth) {
1315      when (canEnqueue(i)) {
1316        dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap
1317      }
1318    }
1319    val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) }
1320    val hitTrap = trapVec.reduce(_||_)
1321    val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1))
1322    val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN)
1323    val difftest = Module(new DifftestTrapEvent)
1324    difftest.io.clock    := clock
1325    difftest.io.coreid   := io.hartId
1326    difftest.io.valid    := hitTrap
1327    difftest.io.code     := trapCode
1328    difftest.io.pc       := trapPC
1329    difftest.io.cycleCnt := timer
1330    difftest.io.instrCnt := instrCnt
1331    difftest.io.hasWFI   := hasWFI
1332  }
1333  else if (env.AlwaysBasicDiff) {
1334    val dt_isXSTrap = Mem(RobSize, Bool())
1335    for (i <- 0 until RenameWidth) {
1336      when (canEnqueue(i)) {
1337        dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap
1338      }
1339    }
1340    val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) }
1341    val hitTrap = trapVec.reduce(_||_)
1342    val difftest = Module(new DifftestBasicTrapEvent)
1343    difftest.io.clock    := clock
1344    difftest.io.coreid   := io.hartId
1345    difftest.io.valid    := hitTrap
1346    difftest.io.cycleCnt := timer
1347    difftest.io.instrCnt := instrCnt
1348  }
1349
1350  val validEntriesBanks = (0 until (RobSize + 63) / 64).map(i => RegNext(PopCount(valid.drop(i * 64).take(64))))
1351  val validEntries = RegNext(ParallelOperation(validEntriesBanks, (a: UInt, b: UInt) => a +& b))
1352  val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })
1353  val commitLoadVec = VecInit(commitLoadValid)
1354  val commitBranchVec = VecInit(commitBranchValid)
1355  val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })
1356  val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })
1357  val perfEvents = Seq(
1358    ("rob_interrupt_num      ", io.flushOut.valid && intrEnable                                       ),
1359    ("rob_exception_num      ", io.flushOut.valid && exceptionEnable                                  ),
1360    ("rob_flush_pipe_num     ", io.flushOut.valid && isFlushPipe                                      ),
1361    ("rob_replay_inst_num    ", io.flushOut.valid && isFlushPipe && deqHasReplayInst                  ),
1362    ("rob_commitUop          ", ifCommit(commitCnt)                                                   ),
1363    ("rob_commitInstr        ", ifCommitReg(trueCommitCnt)                                            ),
1364    ("rob_commitInstrMove    ", ifCommitReg(PopCount(RegNext(commitMoveVec)))                         ),
1365    ("rob_commitInstrFused   ", ifCommitReg(fuseCommitCnt)                                            ),
1366    ("rob_commitInstrLoad    ", ifCommitReg(PopCount(RegNext(commitLoadVec)))                         ),
1367    ("rob_commitInstrBranch  ", ifCommitReg(PopCount(RegNext(commitBranchVec)))                       ),
1368    ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec)))                     ),
1369    ("rob_commitInstrStore   ", ifCommitReg(PopCount(RegNext(commitStoreVec)))                        ),
1370    ("rob_walkInstr          ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)           ),
1371    ("rob_walkCycle          ", (state === s_walk)                                                    ),
1372    ("rob_1_4_valid          ", validEntries <= (RobSize / 4).U                                       ),
1373    ("rob_2_4_valid          ", validEntries >  (RobSize / 4).U && validEntries <= (RobSize / 2).U    ),
1374    ("rob_3_4_valid          ", validEntries >  (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U),
1375    ("rob_4_4_valid          ", validEntries >  (RobSize * 3 / 4).U                                   ),
1376  )
1377  generatePerfEvent()
1378}
1379