1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.rob 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 24import utility._ 25import utils._ 26import xiangshan._ 27import xiangshan.backend.BackendParams 28import xiangshan.backend.fu.FuType 29import xiangshan.frontend.FtqPtr 30import xiangshan.mem.{LqPtr, SqPtr} 31import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 32 33class DebugMdpInfo(implicit p: Parameters) extends XSBundle{ 34 val ssid = UInt(SSIDWidth.W) 35 val waitAllStore = Bool() 36} 37 38class DebugLsInfo(implicit p: Parameters) extends XSBundle{ 39 val s1 = new Bundle{ 40 val isTlbFirstMiss = Bool() // in s1 41 val isBankConflict = Bool() // in s1 42 val isLoadToLoadForward = Bool() 43 val isReplayFast = Bool() 44 } 45 val s2 = new Bundle{ 46 val isDcacheFirstMiss = Bool() // in s2 (predicted result is in s1 when using WPU, real result is in s2) 47 val isForwardFail = Bool() // in s2 48 val isReplaySlow = Bool() 49 val isLoadReplayTLBMiss = Bool() 50 val isLoadReplayCacheMiss = Bool() 51 } 52 val replayCnt = UInt(XLEN.W) 53 54 def s1SignalEnable(ena: DebugLsInfo) = { 55 when(ena.s1.isTlbFirstMiss) { s1.isTlbFirstMiss := true.B } 56 when(ena.s1.isBankConflict) { s1.isBankConflict := true.B } 57 when(ena.s1.isLoadToLoadForward) { s1.isLoadToLoadForward := true.B } 58 when(ena.s1.isReplayFast) { 59 s1.isReplayFast := true.B 60 replayCnt := replayCnt + 1.U 61 } 62 } 63 64 def s2SignalEnable(ena: DebugLsInfo) = { 65 when(ena.s2.isDcacheFirstMiss) { s2.isDcacheFirstMiss := true.B } 66 when(ena.s2.isForwardFail) { s2.isForwardFail := true.B } 67 when(ena.s2.isLoadReplayTLBMiss) { s2.isLoadReplayTLBMiss := true.B } 68 when(ena.s2.isLoadReplayCacheMiss) { s2.isLoadReplayCacheMiss := true.B } 69 when(ena.s2.isReplaySlow) { 70 s2.isReplaySlow := true.B 71 replayCnt := replayCnt + 1.U 72 } 73 } 74 75} 76object DebugLsInfo{ 77 def init(implicit p: Parameters): DebugLsInfo = { 78 val lsInfo = Wire(new DebugLsInfo) 79 lsInfo.s1.isTlbFirstMiss := false.B 80 lsInfo.s1.isBankConflict := false.B 81 lsInfo.s1.isLoadToLoadForward := false.B 82 lsInfo.s1.isReplayFast := false.B 83 lsInfo.s2.isDcacheFirstMiss := false.B 84 lsInfo.s2.isForwardFail := false.B 85 lsInfo.s2.isReplaySlow := false.B 86 lsInfo.s2.isLoadReplayTLBMiss := false.B 87 lsInfo.s2.isLoadReplayCacheMiss := false.B 88 lsInfo.replayCnt := 0.U 89 lsInfo 90 } 91 92} 93class DebugLsInfoBundle(implicit p: Parameters) extends DebugLsInfo { 94 // unified processing at the end stage of load/store ==> s2 ==> bug that will write error robIdx data 95 val s1_robIdx = UInt(log2Ceil(RobSize).W) 96 val s2_robIdx = UInt(log2Ceil(RobSize).W) 97} 98class DebugLSIO(implicit p: Parameters) extends XSBundle { 99 val debugLsInfo = Vec(exuParameters.LduCnt + exuParameters.StuCnt, Output(new DebugLsInfoBundle)) 100} 101 102class RobPtr(entries: Int) extends CircularQueuePtr[RobPtr]( 103 entries 104) with HasCircularQueuePtrHelper { 105 106 def this()(implicit p: Parameters) = this(p(XSCoreParamsKey).RobSize) 107 108 def needFlush(redirect: Valid[Redirect]): Bool = { 109 val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx 110 redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx)) 111 } 112 113 def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR 114} 115 116object RobPtr { 117 def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = { 118 val ptr = Wire(new RobPtr) 119 ptr.flag := f 120 ptr.value := v 121 ptr 122 } 123} 124 125class RobCSRIO(implicit p: Parameters) extends XSBundle { 126 val intrBitSet = Input(Bool()) 127 val trapTarget = Input(UInt(VAddrBits.W)) 128 val isXRet = Input(Bool()) 129 val wfiEvent = Input(Bool()) 130 131 val fflags = Output(Valid(UInt(5.W))) 132 val dirty_fs = Output(Bool()) 133 val perfinfo = new Bundle { 134 val retiredInstr = Output(UInt(3.W)) 135 } 136 137 val vcsrFlag = Output(Bool()) 138} 139 140class RobLsqIO(implicit p: Parameters) extends XSBundle { 141 val lcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 142 val scommit = Output(UInt(log2Up(CommitWidth + 1).W)) 143 val pendingld = Output(Bool()) 144 val pendingst = Output(Bool()) 145 val commit = Output(Bool()) 146} 147 148class RobEnqIO(implicit p: Parameters) extends XSBundle { 149 val canAccept = Output(Bool()) 150 val isEmpty = Output(Bool()) 151 // valid vector, for robIdx gen and walk 152 val needAlloc = Vec(RenameWidth, Input(Bool())) 153 val req = Vec(RenameWidth, Flipped(ValidIO(new DynInst))) 154 val resp = Vec(RenameWidth, Output(new RobPtr)) 155} 156 157class RobDispatchData(implicit p: Parameters) extends RobCommitInfo 158 159class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 160 val io = IO(new Bundle { 161 // for commits/flush 162 val state = Input(UInt(2.W)) 163 val deq_v = Vec(CommitWidth, Input(Bool())) 164 val deq_w = Vec(CommitWidth, Input(Bool())) 165 val exception_state = Flipped(ValidIO(new RobExceptionInfo)) 166 // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth) 167 val intrBitSetReg = Input(Bool()) 168 val hasNoSpecExec = Input(Bool()) 169 val interrupt_safe = Input(Bool()) 170 val blockCommit = Input(Bool()) 171 // output: the CommitWidth deqPtr 172 val out = Vec(CommitWidth, Output(new RobPtr)) 173 val next_out = Vec(CommitWidth, Output(new RobPtr)) 174 }) 175 176 val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr)))) 177 178 // for exceptions (flushPipe included) and interrupts: 179 // only consider the first instruction 180 val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe 181 val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0) 182 val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable) 183 184 // for normal commits: only to consider when there're no exceptions 185 // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions. 186 val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last) 187 val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i))) 188 val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B) 189 // when io.intrBitSetReg or there're possible exceptions in these instructions, 190 // only one instruction is allowed to commit 191 val allowOnlyOne = commit_exception || io.intrBitSetReg 192 val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt) 193 194 val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt)) 195 val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec) 196 197 deqPtrVec := deqPtrVec_next 198 199 io.next_out := deqPtrVec_next 200 io.out := deqPtrVec 201 202 when (io.state === 0.U) { 203 XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt) 204 } 205 206} 207 208class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 209 val io = IO(new Bundle { 210 // for input redirect 211 val redirect = Input(Valid(new Redirect)) 212 // for enqueue 213 val allowEnqueue = Input(Bool()) 214 val hasBlockBackward = Input(Bool()) 215 val enq = Vec(RenameWidth, Input(Bool())) 216 val out = Output(Vec(RenameWidth, new RobPtr)) 217 }) 218 219 val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr))) 220 221 // enqueue 222 val canAccept = io.allowEnqueue && !io.hasBlockBackward 223 val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U) 224 225 for ((ptr, i) <- enqPtrVec.zipWithIndex) { 226 when(io.redirect.valid) { 227 ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 228 }.otherwise { 229 ptr := ptr + dispatchNum 230 } 231 } 232 233 io.out := enqPtrVec 234 235} 236 237class RobExceptionInfo(implicit p: Parameters) extends XSBundle { 238 // val valid = Bool() 239 val robIdx = new RobPtr 240 val exceptionVec = ExceptionVec() 241 val flushPipe = Bool() 242 val isVset = Bool() 243 val replayInst = Bool() // redirect to that inst itself 244 val singleStep = Bool() // TODO add frontend hit beneath 245 val crossPageIPFFix = Bool() 246 val trigger = new TriggerCf 247 248// def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend 249// def trigger_after = trigger.getTimingBackend && trigger.getHitBackend 250 def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit 251 def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit 252 // only exceptions are allowed to writeback when enqueue 253 def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit 254} 255 256class ExceptionGen(params: BackendParams)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 257 val io = IO(new Bundle { 258 val redirect = Input(Valid(new Redirect)) 259 val flush = Input(Bool()) 260 val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo))) 261 // csr + load + store 262 val wb = Vec(params.numException, Flipped(ValidIO(new RobExceptionInfo))) 263 val out = ValidIO(new RobExceptionInfo) 264 val state = ValidIO(new RobExceptionInfo) 265 }) 266 267 def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = { 268 assert(valid.length == bits.length) 269 assert(isPow2(valid.length)) 270 if (valid.length == 1) { 271 (valid, bits) 272 } else if (valid.length == 2) { 273 val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0))))) 274 for (i <- res.indices) { 275 res(i).valid := valid(i) 276 res(i).bits := bits(i) 277 } 278 val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1)) 279 (Seq(oldest.valid), Seq(oldest.bits)) 280 } else { 281 val left = getOldest(valid.take(valid.length / 2), bits.take(valid.length / 2)) 282 val right = getOldest(valid.takeRight(valid.length / 2), bits.takeRight(valid.length / 2)) 283 getOldest(left._1 ++ right._1, left._2 ++ right._2) 284 } 285 } 286 287 val currentValid = RegInit(false.B) 288 val current = Reg(new RobExceptionInfo) 289 290 // orR the exceptionVec 291 val lastCycleFlush = RegNext(io.flush) 292 val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush)) 293 val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush) 294 295 // s0: compare wb(1)~wb(LoadPipelineWidth) and wb(1 + LoadPipelineWidth)~wb(LoadPipelineWidth + StorePipelineWidth) 296 val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) } 297 val csr_wb_bits = io.wb(0).bits 298 val load_wb_bits = getOldest(in_wb_valid.slice(1, 1 + LoadPipelineWidth), io.wb.map(_.bits).slice(1, 1 + LoadPipelineWidth))._2(0) 299 val store_wb_bits = getOldest(in_wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth), io.wb.map(_.bits).slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth))._2(0) 300 val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid.slice(1, 1 + LoadPipelineWidth).reduce(_ || _), wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth).reduce(_ || _)))) 301 val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits))) 302 303 // s1: compare last four and current flush 304 val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) }) 305 val compare_01_valid = s0_out_valid(0) || s0_out_valid(1) 306 val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0)) 307 val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2)) 308 val s1_out_bits = RegNext(compare_bits) 309 val s1_out_valid = RegNext(s1_valid.asUInt.orR) 310 311 val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 312 val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits))) 313 314 // s2: compare the input exception with the current one 315 // priorities: 316 // (1) system reset 317 // (2) current is valid: flush, remain, merge, update 318 // (3) current is not valid: s1 or enq 319 val current_flush = current.robIdx.needFlush(io.redirect) || io.flush 320 val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush 321 when (currentValid) { 322 when (current_flush) { 323 currentValid := Mux(s1_flush, false.B, s1_out_valid) 324 } 325 when (s1_out_valid && !s1_flush) { 326 when (isAfter(current.robIdx, s1_out_bits.robIdx)) { 327 current := s1_out_bits 328 }.elsewhen (current.robIdx === s1_out_bits.robIdx) { 329 current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec()) 330 current.flushPipe := s1_out_bits.flushPipe || current.flushPipe 331 current.replayInst := s1_out_bits.replayInst || current.replayInst 332 current.singleStep := s1_out_bits.singleStep || current.singleStep 333 current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf) 334 } 335 } 336 }.elsewhen (s1_out_valid && !s1_flush) { 337 currentValid := true.B 338 current := s1_out_bits 339 }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) { 340 currentValid := true.B 341 current := enq_bits 342 } 343 344 io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback 345 io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits) 346 io.state.valid := currentValid 347 io.state.bits := current 348 349} 350 351class RobFlushInfo(implicit p: Parameters) extends XSBundle { 352 val ftqIdx = new FtqPtr 353 val robIdx = new RobPtr 354 val ftqOffset = UInt(log2Up(PredictWidth).W) 355 val replayInst = Bool() 356} 357 358class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter { 359 360 lazy val module = new RobImp(this)(p, params) 361 // 362 // override def generateWritebackIO( 363 // thisMod: Option[HasWritebackSource] = None, 364 // thisModImp: Option[HasWritebackSourceImp] = None 365 // ): Unit = { 366 // val sources = writebackSinksImp(thisMod, thisModImp) 367 // module.io.writeback.zip(sources).foreach(x => x._1 := x._2) 368 // } 369 //} 370} 371 372class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper) 373 with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents { 374 375 val io = IO(new Bundle() { 376 val hartId = Input(UInt(8.W)) 377 val redirect = Input(Valid(new Redirect)) 378 val enq = new RobEnqIO 379 val flushOut = ValidIO(new Redirect) 380 val isVsetFlushPipe = Output(Bool()) 381 val exception = ValidIO(new ExceptionInfo) 382 // exu + brq 383 val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles) 384 val commits = Output(new RobCommitIO) 385 val lsq = new RobLsqIO 386 val robDeqPtr = Output(new RobPtr) 387 val csr = new RobCSRIO 388 val robFull = Output(Bool()) 389 val cpu_halt = Output(Bool()) 390 val wfi_enable = Input(Bool()) 391 val debug_ls = Flipped(new DebugLSIO) 392 }) 393 394 val exuWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(!_.bits.params.hasStdFu) 395 val stdWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(_.bits.params.hasStdFu) 396 val fflagsWBs = io.writeback.filter(x => x.bits.fflags.nonEmpty) 397 val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty) 398 val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty) 399 400 val exuWbPorts = io.writeback.filter(!_.bits.params.hasStdFu) 401 val stdWbPorts = io.writeback.filter(_.bits.params.hasStdFu) 402 val fflagsPorts = io.writeback.filter(x => x.bits.fflags.nonEmpty) 403 val exceptionPorts = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty) 404 val numExuWbPorts = exuWBs.length 405 val numStdWbPorts = stdWBs.length 406 407 408 println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth") 409// println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}") 410// println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}") 411// println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}") 412 413 414 // instvalid field 415 val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 416 // writeback status 417 val writebacked = Mem(RobSize, Bool()) 418 val store_data_writebacked = Mem(RobSize, Bool()) 419 // data for redirect, exception, etc. 420 val flagBkup = Mem(RobSize, Bool()) 421 // some instructions are not allowed to trigger interrupts 422 // They have side effects on the states of the processor before they write back 423 val interrupt_safe = Mem(RobSize, Bool()) 424 425 // data for debug 426 // Warn: debug_* prefix should not exist in generated verilog. 427 val debug_microOp = Reg(Vec(RobSize, new DynInst)) 428 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug 429 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug 430 val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init))) 431 432 // pointers 433 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 434 val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr)) 435 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 436 437 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 438 val allowEnqueue = RegInit(true.B) 439 440 val enqPtr = enqPtrVec.head 441 val deqPtr = deqPtrVec(0) 442 val walkPtr = walkPtrVec(0) 443 444 val isEmpty = enqPtr === deqPtr 445 val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level) 446 447 /** 448 * states of Rob 449 */ 450 val s_idle :: s_walk :: Nil = Enum(2) 451 val state = RegInit(s_idle) 452 453 /** 454 * Data Modules 455 * 456 * CommitDataModule: data from dispatch 457 * (1) read: commits/walk/exception 458 * (2) write: enqueue 459 * 460 * WritebackData: data from writeback 461 * (1) read: commits/walk/exception 462 * (2) write: write back from exe units 463 */ 464 val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth)) 465 val dispatchDataRead = dispatchData.io.rdata 466 467 val exceptionGen = Module(new ExceptionGen(params)) 468 val exceptionDataRead = exceptionGen.io.state 469 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 470 471 io.robDeqPtr := deqPtr 472 473 /** 474 * Enqueue (from dispatch) 475 */ 476 // special cases 477 val hasBlockBackward = RegInit(false.B) 478 val hasWaitForward = RegInit(false.B) 479 val doingSvinval = RegInit(false.B) 480 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 481 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 482 when (isEmpty) { hasBlockBackward:= false.B } 483 // When any instruction commits, hasNoSpecExec should be set to false.B 484 when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasWaitForward:= false.B } 485 486 // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing. 487 // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle. 488 // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts. 489 val hasWFI = RegInit(false.B) 490 io.cpu_halt := hasWFI 491 // WFI Timeout: 2^20 = 1M cycles 492 val wfi_cycles = RegInit(0.U(20.W)) 493 when (hasWFI) { 494 wfi_cycles := wfi_cycles + 1.U 495 }.elsewhen (!hasWFI && RegNext(hasWFI)) { 496 wfi_cycles := 0.U 497 } 498 val wfi_timeout = wfi_cycles.andR 499 when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) { 500 hasWFI := false.B 501 } 502 503 val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.needAlloc.take(i))))) 504 io.enq.canAccept := allowEnqueue && !hasBlockBackward 505 io.enq.resp := allocatePtrVec 506 val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept)) 507 val timer = GTimer() 508 for (i <- 0 until RenameWidth) { 509 // we don't check whether io.redirect is valid here since redirect has higher priority 510 when (canEnqueue(i)) { 511 val enqUop = io.enq.req(i).bits 512 val enqIndex = allocatePtrVec(i).value 513 // store uop in data module and debug_microOp Vec 514 debug_microOp(enqIndex) := enqUop 515 debug_microOp(enqIndex).debugInfo.dispatchTime := timer 516 debug_microOp(enqIndex).debugInfo.enqRsTime := timer 517 debug_microOp(enqIndex).debugInfo.selectTime := timer 518 debug_microOp(enqIndex).debugInfo.issueTime := timer 519 debug_microOp(enqIndex).debugInfo.writebackTime := timer 520 debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer 521 debug_microOp(enqIndex).debugInfo.tlbRespTime := timer 522 debug_lsInfo(enqIndex) := DebugLsInfo.init 523 when (enqUop.blockBackward) { 524 hasBlockBackward := true.B 525 } 526 when (enqUop.waitForward) { 527 hasWaitForward := true.B 528 } 529 val enqHasTriggerHit = false.B // io.enq.req(i).bits.cf.trigger.getHitFrontend 530 val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR 531 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 532 when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe)) 533 { 534 doingSvinval := true.B 535 } 536 // the end instruction of Svinval enqs so clear doingSvinval 537 when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe)) 538 { 539 doingSvinval := false.B 540 } 541 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 542 assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe))) 543 when (enqUop.isWFI && !enqHasException && !enqHasTriggerHit) { 544 hasWFI := true.B 545 } 546 } 547 } 548 val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(_.valid)), 0.U) 549 io.enq.isEmpty := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR) 550 551 when (!io.wfi_enable) { 552 hasWFI := false.B 553 } 554 // sel vsetvl's flush position 555 val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3) 556 val vsetvlState = RegInit(vs_idle) 557 558 val firstVInstrFtqPtr = RegInit(0.U.asTypeOf(new FtqPtr)) 559 val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W))) 560 val firstVInstrRobIdx = RegInit(0.U.asTypeOf(new RobPtr)) 561 562 val enq0 = io.enq.req(0) 563 val enq0IsVset = FuType.isInt(enq0.bits.fuType) && ALUOpType.isVset(enq0.bits.fuOpType) && enq0.bits.uopIdx.andR && canEnqueue(0) 564 val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe 565 val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVpu(req.bits.fuType) && fire} 566 // for vs_idle 567 val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType))) 568 // for vs_waitVinstr 569 val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1) 570 val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req) 571 when(vsetvlState === vs_idle){ 572 firstVInstrFtqPtr := firstVInstrIdle.bits.ftqPtr 573 firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset 574 firstVInstrRobIdx := firstVInstrIdle.bits.robIdx 575 }.elsewhen(vsetvlState === vs_waitVinstr){ 576 firstVInstrFtqPtr := firstVInstrWait.bits.ftqPtr 577 firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset 578 firstVInstrRobIdx := firstVInstrWait.bits.robIdx 579 } 580 581 val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR 582 when(vsetvlState === vs_idle){ 583 when(enq0IsVsetFlush){ 584 vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr) 585 } 586 }.elsewhen(vsetvlState === vs_waitVinstr){ 587 when(io.redirect.valid){ 588 vsetvlState := vs_idle 589 }.elsewhen(Cat(enqIsVInstrOrVset).orR){ 590 vsetvlState := vs_waitFlush 591 } 592 }.elsewhen(vsetvlState === vs_waitFlush){ 593 when(io.redirect.valid){ 594 vsetvlState := vs_idle 595 } 596 } 597 598 /** 599 * Writeback (from execution units) 600 */ 601 for (wb <- exuWBs) { 602 when (wb.valid) { 603 val wbIdx = wb.bits.robIdx.value 604 debug_exuData(wbIdx) := wb.bits.data 605 debug_exuDebug(wbIdx) := wb.bits.debug 606 debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime 607 debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime 608 debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime 609 debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime 610 debug_microOp(wbIdx).debugInfo.tlbFirstReqTime := wb.bits.debugInfo.tlbFirstReqTime 611 debug_microOp(wbIdx).debugInfo.tlbRespTime := wb.bits.debugInfo.tlbRespTime 612 613 // debug for lqidx and sqidx 614 debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr)) 615 debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr)) 616 617 val debug_Uop = debug_microOp(wbIdx) 618 XSInfo(true.B, 619 p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " + 620 p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " + 621 p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.robIdx}\n" 622 ) 623 } 624 } 625 626 val writebackNum = PopCount(exuWBs.map(_.valid)) 627 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 628 629 630 /** 631 * RedirectOut: Interrupt and Exceptions 632 */ 633 val deqDispatchData = dispatchDataRead(0) 634 val debug_deqUop = debug_microOp(deqPtr.value) 635 636 val intrBitSetReg = RegNext(io.csr.intrBitSet) 637 val intrEnable = intrBitSetReg && !hasWaitForward && interrupt_safe(deqPtr.value) 638 val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 639 val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR || 640 exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit) 641 val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe 642 val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst 643 val exceptionEnable = writebacked(deqPtr.value) && deqHasException 644 645 XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n") 646 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n") 647 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n") 648 649 val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst) 650 651 val isVsetFlushPipe = writebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset 652 val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush) 653 io.isVsetFlushPipe := RegNext(isVsetFlushPipe) 654 // io.flushOut will trigger redirect at the next cycle. 655 // Block any redirect or commit at the next cycle. 656 val lastCycleFlush = RegNext(io.flushOut.valid) 657 658 io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush 659 io.flushOut.bits := DontCare 660 io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr) 661 io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx) 662 io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset) 663 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next" 664 io.flushOut.bits.interrupt := true.B 665 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 666 XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable) 667 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 668 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 669 670 val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush 671 io.exception.valid := RegNext(exceptionHappen) 672 io.exception.bits.pc := RegEnable(debug_deqUop.pc, exceptionHappen) 673 io.exception.bits.instr := RegEnable(debug_deqUop.instr, exceptionHappen) 674 io.exception.bits.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 675 io.exception.bits.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 676 io.exception.bits.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 677 io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 678 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 679// io.exception.bits.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen) 680 681 XSDebug(io.flushOut.valid, 682 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " + 683 p"excp $exceptionEnable flushPipe $isFlushPipe " + 684 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 685 686 687 /** 688 * Commits (and walk) 689 * They share the same width. 690 */ 691 val walkCounter = Reg(UInt(log2Up(RobSize + 1).W)) 692 val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter)) 693 val walkFinished = walkCounter <= CommitWidth.U 694 695 require(RenameWidth <= CommitWidth) 696 697 // wiring to csr 698 val (wflags, fpWen) = (0 until CommitWidth).map(i => { 699 val v = io.commits.commitValid(i) 700 val info = io.commits.info(i) 701 (v & info.wflags, v & info.fpWen) 702 }).unzip 703 val fflags = Wire(Valid(UInt(5.W))) 704 fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR 705 fflags.bits := wflags.zip(fflagsDataRead).map({ 706 case (w, f) => Mux(w, f, 0.U) 707 }).reduce(_|_) 708 val dirty_fs = io.commits.isCommit && VecInit(fpWen).asUInt.orR 709 710 // when mispredict branches writeback, stop commit in the next 2 cycles 711 // TODO: don't check all exu write back 712 val misPredWb = Cat(VecInit(redirectWBs.map(wb => 713 wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid 714 ))).orR 715 val misPredBlockCounter = Reg(UInt(3.W)) 716 misPredBlockCounter := Mux(misPredWb, 717 "b111".U, 718 misPredBlockCounter >> 1.U 719 ) 720 val misPredBlock = misPredBlockCounter(0) 721 val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI 722 723 io.commits.isWalk := state === s_walk 724 io.commits.isCommit := state === s_idle && !blockCommit 725 val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value))) 726 val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value))) 727 // store will be commited iff both sta & std have been writebacked 728 val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value))) 729 val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last) 730 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i))) 731 val allowOnlyOneCommit = commit_exception || intrBitSetReg 732 // for instructions that may block others, we don't allow them to commit 733 for (i <- 0 until CommitWidth) { 734 // defaults: state === s_idle and instructions commit 735 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 736 val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst 737 io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked 738 io.commits.info(i) := dispatchDataRead(i) 739 740 when (state === s_walk) { 741 io.commits.walkValid(i) := shouldWalkVec(i) 742 when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) { 743 XSError(!walk_v(i), s"why not $i???\n") 744 } 745 } 746 747 XSInfo(io.commits.isCommit && io.commits.commitValid(i), 748 "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b\n", 749 debug_microOp(deqPtrVec(i).value).pc, 750 io.commits.info(i).rfWen, 751 io.commits.info(i).ldest, 752 io.commits.info(i).pdest, 753 io.commits.info(i).old_pdest, 754 debug_exuData(deqPtrVec(i).value), 755 fflagsDataRead(i) 756 ) 757 XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n", 758 debug_microOp(walkPtrVec(i).value).pc, 759 io.commits.info(i).rfWen, 760 io.commits.info(i).ldest, 761 debug_exuData(walkPtrVec(i).value) 762 ) 763 } 764 if (env.EnableDifftest) { 765 io.commits.info.map(info => dontTouch(info.pc)) 766 } 767 768 // sync fflags/dirty_fs to csr 769 io.csr.fflags := RegNext(fflags) 770 io.csr.dirty_fs := RegNext(dirty_fs) 771 772 // sync v csr to csr 773// io.csr.vcsrFlag := RegNext(isVsetFlushPipe) 774 775 // commit load/store to lsq 776 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 777 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE)) 778 io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U)) 779 io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U)) 780 // indicate a pending load or store 781 io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value)) 782 io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value)) 783 io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0)) 784 785 /** 786 * state changes 787 * (1) redirect: switch to s_walk 788 * (2) walk: when walking comes to the end, switch to s_idle 789 */ 790 val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished, s_idle, state)) 791 XSPerfAccumulate("s_idle_to_idle", state === s_idle && state_next === s_idle) 792 XSPerfAccumulate("s_idle_to_walk", state === s_idle && state_next === s_walk) 793 XSPerfAccumulate("s_walk_to_idle", state === s_walk && state_next === s_idle) 794 XSPerfAccumulate("s_walk_to_walk", state === s_walk && state_next === s_walk) 795 state := state_next 796 797 /** 798 * pointers and counters 799 */ 800 val deqPtrGenModule = Module(new RobDeqPtrWrapper) 801 deqPtrGenModule.io.state := state 802 deqPtrGenModule.io.deq_v := commit_v 803 deqPtrGenModule.io.deq_w := commit_w 804 deqPtrGenModule.io.exception_state := exceptionDataRead 805 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 806 deqPtrGenModule.io.hasNoSpecExec := hasWaitForward 807 deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value) 808 deqPtrGenModule.io.blockCommit := blockCommit 809 deqPtrVec := deqPtrGenModule.io.out 810 val deqPtrVec_next = deqPtrGenModule.io.next_out 811 812 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 813 enqPtrGenModule.io.redirect := io.redirect 814 enqPtrGenModule.io.allowEnqueue := allowEnqueue 815 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 816 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid)) 817 enqPtrVec := enqPtrGenModule.io.out 818 819 val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U) 820 // next walkPtrVec: 821 // (1) redirect occurs: update according to state 822 // (2) walk: move forwards 823 val walkPtrVec_next = Mux(io.redirect.valid, 824 deqPtrVec_next, 825 Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec) 826 ) 827 walkPtrVec := walkPtrVec_next 828 829 val numValidEntries = distanceBetween(enqPtr, deqPtr) 830 val isLastUopVec = io.commits.info.map(_.uopIdx.andR) 831 val commitCnt = PopCount(io.commits.commitValid.zip(isLastUopVec).map{case(isCommitValid, isLastUop) => isCommitValid && isLastUop}) 832 833 allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U 834 835 val currentWalkPtr = Mux(state === s_walk, walkPtr, deqPtrVec_next(0)) 836 val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0)) 837 when (io.redirect.valid) { 838 // full condition: 839 // +& is used here because: 840 // When rob is full and the tail instruction causes a misprediction, 841 // the redirect robIdx is the deqPtr - 1. In this case, redirectWalkDistance 842 // is RobSize - 1. 843 // Since misprediction does not flush the instruction itself, flushItSelf is false.B. 844 // Previously we use `+` to count the walk distance and it causes overflows 845 // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize. 846 // The width of walkCounter also needs to be changed. 847 // empty condition: 848 // When the last instruction in ROB commits and causes a flush, a redirect 849 // will be raised later. In such circumstances, the redirect robIdx is before 850 // the deqPtrVec_next(0) and will cause underflow. 851 walkCounter := Mux(isBefore(io.redirect.bits.robIdx, deqPtrVec_next(0)), 0.U, 852 redirectWalkDistance +& !io.redirect.bits.flushItself()) 853 }.elsewhen (state === s_walk) { 854 walkCounter := walkCounter - thisCycleWalkCount 855 XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n") 856 } 857 858 859 /** 860 * States 861 * We put all the stage bits changes here. 862 863 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 864 * All states: (1) valid; (2) writebacked; (3) flagBkup 865 */ 866 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 867 868 // redirect logic writes 6 valid 869 val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr)) 870 val redirectTail = Reg(new RobPtr) 871 val redirectIdle :: redirectBusy :: Nil = Enum(2) 872 val redirectState = RegInit(redirectIdle) 873 val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail)) 874 when(redirectState === redirectBusy) { 875 redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U) 876 redirectHeadVec zip invMask foreach { 877 case (redirectHead, inv) => when(inv) { 878 valid(redirectHead.value) := false.B 879 } 880 } 881 when(!invMask.last) { 882 redirectState := redirectIdle 883 } 884 } 885 when(io.redirect.valid) { 886 redirectState := redirectBusy 887 when(redirectState === redirectIdle) { 888 redirectTail := enqPtr 889 } 890 redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) => 891 redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 892 } 893 } 894 // enqueue logic writes 6 valid 895 for (i <- 0 until RenameWidth) { 896 when (canEnqueue(i) && !io.redirect.valid) { 897 valid(allocatePtrVec(i).value) := true.B 898 } 899 } 900 // dequeue logic writes 6 valid 901 for (i <- 0 until CommitWidth) { 902 val commitValid = io.commits.isCommit && io.commits.commitValid(i) 903 when (commitValid) { 904 valid(commitReadAddr(i)) := false.B 905 } 906 } 907 908 // debug_inst update 909 for(i <- 0 until (exuParameters.LduCnt + exuParameters.StuCnt)) { 910 debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i)) 911 debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i)) 912 } 913 914 // status field: writebacked 915 // enqueue logic set 6 writebacked to false 916 for (i <- 0 until RenameWidth) { 917 when (canEnqueue(i)) { 918 val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec).asUInt.orR 919 val enqHasTriggerHit = io.enq.req(i).bits.trigger.getHitFrontend 920 val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove 921 writebacked(allocatePtrVec(i).value) := enqIsWritebacked && !enqHasException && !enqHasTriggerHit 922 val isStu = io.enq.req(i).bits.fuType === FuType.stu.U 923 store_data_writebacked(allocatePtrVec(i).value) := !isStu 924 } 925 } 926 when (exceptionGen.io.out.valid) { 927 val wbIdx = exceptionGen.io.out.bits.robIdx.value 928 writebacked(wbIdx) := true.B 929 store_data_writebacked(wbIdx) := true.B 930 } 931 // writeback logic set numWbPorts writebacked to true 932 for (wb <- exuWBs) { 933 when (wb.valid) { 934 val wbIdx = wb.bits.robIdx.value 935 val wbHasException = wb.bits.exceptionVec.getOrElse(0.U).asUInt.orR 936 val wbHasTriggerHit = false.B //Todo: wb.bits.trigger.getHitBackend 937 val wbHasFlushPipe = wb.bits.flushPipe.getOrElse(false.B) 938 val wbHasReplayInst = wb.bits.replay.getOrElse(false.B) //Todo: && wb.bits.replayInst 939 val block_wb = wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit 940 writebacked(wbIdx) := !block_wb 941 } 942 } 943 // store data writeback logic mark store as data_writebacked 944 for (wb <- stdWBs) { 945 when(RegNext(wb.valid)) { 946 store_data_writebacked(RegNext(wb.bits.robIdx.value)) := true.B 947 } 948 } 949 950 // flagBkup 951 // enqueue logic set 6 flagBkup at most 952 for (i <- 0 until RenameWidth) { 953 when (canEnqueue(i)) { 954 flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag 955 } 956 } 957 958 // interrupt_safe 959 for (i <- 0 until RenameWidth) { 960 // We RegNext the updates for better timing. 961 // Note that instructions won't change the system's states in this cycle. 962 when (RegNext(canEnqueue(i))) { 963 // For now, we allow non-load-store instructions to trigger interrupts 964 // For MMIO instructions, they should not trigger interrupts since they may 965 // be sent to lower level before it writes back. 966 // However, we cannot determine whether a load/store instruction is MMIO. 967 // Thus, we don't allow load/store instructions to trigger an interrupt. 968 // TODO: support non-MMIO load-store instructions to trigger interrupts 969 val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType) 970 interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts) 971 } 972 } 973 974 /** 975 * read and write of data modules 976 */ 977 val commitReadAddr_next = Mux(state_next === s_idle, 978 VecInit(deqPtrVec_next.map(_.value)), 979 VecInit(walkPtrVec_next.map(_.value)) 980 ) 981 // NOTE: dispatch info will record the uop of inst 982 dispatchData.io.wen := canEnqueue 983 dispatchData.io.waddr := allocatePtrVec.map(_.value) 984 dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) => 985 wdata.ldest := req.ldest 986 wdata.rfWen := req.rfWen 987 wdata.fpWen := req.fpWen 988 wdata.vecWen := req.vecWen 989 wdata.wflags := req.fpu.wflags 990 wdata.commitType := req.commitType 991 wdata.pdest := req.pdest 992 wdata.old_pdest := req.oldPdest 993 wdata.ftqIdx := req.ftqPtr 994 wdata.ftqOffset := req.ftqOffset 995 wdata.isMove := req.eliminatedMove 996 wdata.pc := req.pc 997 wdata.uopIdx := req.uopIdx 998// wdata.vconfig := req.vconfig 999 } 1000 dispatchData.io.raddr := commitReadAddr_next 1001 1002 exceptionGen.io.redirect <> io.redirect 1003 exceptionGen.io.flush := io.flushOut.valid 1004 for (i <- 0 until RenameWidth) { 1005 exceptionGen.io.enq(i).valid := canEnqueue(i) 1006 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 1007 exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec) 1008 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe 1009 exceptionGen.io.enq(i).bits.isVset := FuType.isInt(io.enq.req(i).bits.fuType) && ALUOpType.isVset(io.enq.req(i).bits.fuOpType) 1010 exceptionGen.io.enq(i).bits.replayInst := false.B 1011 XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst") 1012 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep 1013 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix 1014 exceptionGen.io.enq(i).bits.trigger.clear() 1015 exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.trigger.frontendHit 1016 } 1017 1018 println(s"ExceptionGen:") 1019 println(s"num of exceptions: ${params.numException}") 1020 require(exceptionWBs.length == exceptionGen.io.wb.length, 1021 f"exceptionWBs.length: ${exceptionWBs.length}, " + 1022 f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}") 1023 for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) { 1024 exc_wb.valid := wb.valid 1025 exc_wb.bits.robIdx := wb.bits.robIdx 1026 exc_wb.bits.exceptionVec := wb.bits.exceptionVec.get 1027 exc_wb.bits.flushPipe := wb.bits.flushPipe.getOrElse(false.B) 1028 exc_wb.bits.isVset := false.B 1029 exc_wb.bits.replayInst := wb.bits.replay.getOrElse(false.B) 1030 exc_wb.bits.singleStep := false.B 1031 exc_wb.bits.crossPageIPFFix := false.B 1032 exc_wb.bits.trigger := 0.U.asTypeOf(exc_wb.bits.trigger) // Todo 1033// println(s" [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " + 1034// s"flushPipe ${configs.exists(_.flushPipe)}, " + 1035// s"replayInst ${configs.exists(_.replayInst)}") 1036 } 1037 1038 val fflagsDataModule = Module(new SyncDataModuleTemplate( 1039 UInt(5.W), RobSize, CommitWidth, fflagsWBs.size) 1040 ) 1041 require(fflagsWBs.length == fflagsDataModule.io.wen.length) 1042 for(i <- fflagsWBs.indices){ 1043 fflagsDataModule.io.wen (i) := fflagsWBs(i).valid 1044 fflagsDataModule.io.waddr(i) := fflagsWBs(i).bits.robIdx.value 1045 fflagsDataModule.io.wdata(i) := fflagsWBs(i).bits.fflags.get 1046 } 1047 fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value)) 1048 fflagsDataRead := fflagsDataModule.io.rdata 1049 1050 val instrCntReg = RegInit(0.U(64.W)) 1051 val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) }) 1052 val trueCommitCnt = RegNext(commitCnt) +& fuseCommitCnt 1053 val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U) 1054 val instrCnt = instrCntReg + retireCounter 1055 instrCntReg := instrCnt 1056 io.csr.perfinfo.retiredInstr := retireCounter 1057 io.robFull := !allowEnqueue 1058 1059 /** 1060 * debug info 1061 */ 1062 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 1063 XSDebug("") 1064 XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n") 1065 for(i <- 0 until RobSize){ 1066 XSDebug(false, !valid(i), "-") 1067 XSDebug(false, valid(i) && writebacked(i), "w") 1068 XSDebug(false, valid(i) && !writebacked(i), "v") 1069 } 1070 XSDebug(false, true.B, "\n") 1071 1072 for(i <- 0 until RobSize) { 1073 if(i % 4 == 0) XSDebug("") 1074 XSDebug(false, true.B, "%x ", debug_microOp(i).pc) 1075 XSDebug(false, !valid(i), "- ") 1076 XSDebug(false, valid(i) && writebacked(i), "w ") 1077 XSDebug(false, valid(i) && !writebacked(i), "v ") 1078 if(i % 4 == 3) XSDebug(false, true.B, "\n") 1079 } 1080 1081 def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U) 1082 def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U) 1083 1084 val commitDebugExu = deqPtrVec.map(_.value).map(debug_exuDebug(_)) 1085 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 1086 val commitDebugLsInfo = deqPtrVec.map(_.value).map(debug_lsInfo(_)) 1087 XSPerfAccumulate("clock_cycle", 1.U) 1088 QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue) 1089 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 1090 XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt)) 1091 val commitIsMove = commitDebugUop.map(_.isMove) 1092 XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }))) 1093 val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) 1094 XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e }))) 1095 XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt)) 1096 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 1097 val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t } 1098 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 1099 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 1100 val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t } 1101 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 1102 val commitLoadWaitBit = commitDebugUop.map(_.loadWaitBit) 1103 XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))) 1104 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 1105 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }))) 1106 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i)))) 1107 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire))) 1108 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 1109 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)) 1110 XSPerfAccumulate("walkCycle", state === s_walk) 1111 val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value) 1112 val deqUopCommitType = io.commits.info(0).commitType 1113 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 1114 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 1115 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 1116 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 1117 XSPerfAccumulate("robHeadPC", io.commits.info(0).pc) 1118 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 1119 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 1120 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 1121 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 1122 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 1123 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 1124 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 1125 val accessLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 1126 val tlbLatency = commitDebugUop.map(uop => uop.debugInfo.tlbRespTime - uop.debugInfo.tlbFirstReqTime) 1127 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 1128 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 1129 } 1130 for (fuType <- FuType.functionNameMap.keys) { 1131 val fuName = FuType.functionNameMap(fuType) 1132 val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U ) 1133 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 1134 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 1135 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 1136 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 1137 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 1138 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 1139 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 1140 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 1141 if (fuType == FuType.fmac) { 1142 val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.fpu.ren3 ) 1143 XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma))) 1144 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency))) 1145 XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency))) 1146 } 1147 } 1148 1149 if (env.EnableTopDown) { 1150 ExcitingUtils.addSource(commit_v(0) && !commit_w(0) && state =/= s_walk && io.commits.info(0).commitType === CommitType.LOAD, 1151 "rob_first_load", ExcitingUtils.Perf) 1152 ExcitingUtils.addSource(commit_v(0) && !commit_w(0) && state =/= s_walk && io.commits.info(0).commitType === CommitType.STORE, 1153 "rob_first_store", ExcitingUtils.Perf) 1154 } 1155 1156 /** 1157 * DataBase info: 1158 * log trigger is at writeback valid 1159 * */ 1160 if(!env.FPGAPlatform){ 1161 val isWriteInstInfoTable = WireInit(Constantin.createRecord("isWriteInstInfoTable" + p(XSCoreParamsKey).HartId.toString)) 1162 val instTableName = "InstTable" + p(XSCoreParamsKey).HartId.toString 1163 val instSiteName = "Rob" + p(XSCoreParamsKey).HartId.toString 1164 val debug_instTable = ChiselDB.createTable(instTableName, new InstInfoEntry) 1165 // FIXME lyq: only get inst (alu, bj, ls) in exuWriteback 1166 for (wb <- exuWriteback) { 1167 when(wb.valid) { 1168 val debug_instData = Wire(new InstInfoEntry) 1169 val idx = wb.bits.uop.robIdx.value 1170 debug_instData.globalID := wb.bits.uop.ctrl.debug_globalID 1171 debug_instData.robIdx := idx 1172 debug_instData.instType := wb.bits.uop.ctrl.fuType 1173 debug_instData.ivaddr := wb.bits.uop.cf.pc 1174 debug_instData.dvaddr := wb.bits.debug.vaddr 1175 debug_instData.dpaddr := wb.bits.debug.paddr 1176 debug_instData.tlbLatency := wb.bits.uop.debugInfo.tlbRespTime - wb.bits.uop.debugInfo.tlbFirstReqTime 1177 debug_instData.accessLatency := wb.bits.uop.debugInfo.writebackTime - wb.bits.uop.debugInfo.issueTime 1178 debug_instData.executeLatency := wb.bits.uop.debugInfo.writebackTime - wb.bits.uop.debugInfo.issueTime 1179 debug_instData.issueLatency := wb.bits.uop.debugInfo.issueTime - wb.bits.uop.debugInfo.selectTime 1180 debug_instData.exceptType := Cat(wb.bits.uop.cf.exceptionVec) 1181 debug_instData.lsInfo := debug_lsInfo(idx) 1182 debug_instData.mdpInfo.ssid := wb.bits.uop.cf.ssid 1183 debug_instData.mdpInfo.waitAllStore := wb.bits.uop.cf.loadWaitStrict && wb.bits.uop.cf.loadWaitBit 1184 debug_instData.issueTime := wb.bits.uop.debugInfo.issueTime 1185 debug_instData.writebackTime := wb.bits.uop.debugInfo.writebackTime 1186 debug_instTable.log( 1187 data = debug_instData, 1188 en = wb.valid, 1189 site = instSiteName, 1190 clock = clock, 1191 reset = reset 1192 ) 1193 } 1194 } 1195 } 1196 1197 1198 //difftest signals 1199 val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value 1200 1201 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1202 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1203 1204 for(i <- 0 until CommitWidth) { 1205 val idx = deqPtrVec(i).value 1206 wdata(i) := debug_exuData(idx) 1207 wpc(i) := SignExt(commitDebugUop(i).pc, XLEN) 1208 } 1209 1210 if (env.EnableDifftest) { 1211 for (i <- 0 until CommitWidth) { 1212 val difftest = Module(new DifftestInstrCommit) 1213 // assgin default value 1214 difftest.io := DontCare 1215 1216 difftest.io.clock := clock 1217 difftest.io.coreid := io.hartId 1218 difftest.io.index := i.U 1219 1220 val ptr = deqPtrVec(i).value 1221 val uop = commitDebugUop(i) 1222 val exuOut = debug_exuDebug(ptr) 1223 val exuData = debug_exuData(ptr) 1224 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1225 difftest.io.pc := RegNext(RegNext(RegNext(SignExt(uop.pc, XLEN)))) 1226 difftest.io.instr := RegNext(RegNext(RegNext(uop.instr))) 1227 difftest.io.robIdx := RegNext(RegNext(RegNext(ZeroExt(ptr, 10)))) 1228 difftest.io.lqIdx := RegNext(RegNext(RegNext(ZeroExt(uop.lqIdx.value, 7)))) 1229 difftest.io.sqIdx := RegNext(RegNext(RegNext(ZeroExt(uop.sqIdx.value, 7)))) 1230 difftest.io.isLoad := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.LOAD))) 1231 difftest.io.isStore := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.STORE))) 1232 difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(io.commits.info(i).commitType)))) 1233 // when committing an eliminated move instruction, 1234 // we must make sure that skip is properly set to false (output from EXU is random value) 1235 difftest.io.skip := RegNext(RegNext(RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)))) 1236 difftest.io.isRVC := RegNext(RegNext(RegNext(uop.preDecodeInfo.isRVC))) 1237 difftest.io.rfwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U))) 1238 difftest.io.fpwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).fpWen))) 1239 difftest.io.wpdest := RegNext(RegNext(RegNext(io.commits.info(i).pdest))) 1240 difftest.io.wdest := RegNext(RegNext(RegNext(io.commits.info(i).ldest))) 1241 1242 difftest.io.isVsetFirst := RegNext(RegNext(RegNext(io.commits.commitValid(i) && !io.commits.info(i).uopIdx.orR))) 1243 // // runahead commit hint 1244 // val runahead_commit = Module(new DifftestRunaheadCommitEvent) 1245 // runahead_commit.io.clock := clock 1246 // runahead_commit.io.coreid := io.hartId 1247 // runahead_commit.io.index := i.U 1248 // runahead_commit.io.valid := difftest.io.valid && 1249 // (commitBranchValid(i) || commitIsStore(i)) 1250 // // TODO: is branch or store 1251 // runahead_commit.io.pc := difftest.io.pc 1252 } 1253 } 1254 else if (env.AlwaysBasicDiff) { 1255 // These are the structures used by difftest only and should be optimized after synthesis. 1256 val dt_eliminatedMove = Mem(RobSize, Bool()) 1257 val dt_isRVC = Mem(RobSize, Bool()) 1258 val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) 1259 for (i <- 0 until RenameWidth) { 1260 when (canEnqueue(i)) { 1261 dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 1262 dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC 1263 } 1264 } 1265 for (wb <- exuWBs) { 1266 when (wb.valid) { 1267 val wbIdx = wb.bits.robIdx.value 1268 dt_exuDebug(wbIdx) := wb.bits.debug 1269 } 1270 } 1271 // Always instantiate basic difftest modules. 1272 for (i <- 0 until CommitWidth) { 1273 val commitInfo = io.commits.info(i) 1274 val ptr = deqPtrVec(i).value 1275 val exuOut = dt_exuDebug(ptr) 1276 val eliminatedMove = dt_eliminatedMove(ptr) 1277 val isRVC = dt_isRVC(ptr) 1278 1279 val difftest = Module(new DifftestBasicInstrCommit) 1280 difftest.io.clock := clock 1281 difftest.io.coreid := io.hartId 1282 difftest.io.index := i.U 1283 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1284 difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(commitInfo.commitType)))) 1285 difftest.io.skip := RegNext(RegNext(RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)))) 1286 difftest.io.isRVC := RegNext(RegNext(RegNext(isRVC))) 1287 difftest.io.rfwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U))) 1288 difftest.io.fpwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.fpWen))) 1289 difftest.io.wpdest := RegNext(RegNext(RegNext(commitInfo.pdest))) 1290 difftest.io.wdest := RegNext(RegNext(RegNext(commitInfo.ldest))) 1291 } 1292 } 1293 1294 if (env.EnableDifftest) { 1295 for (i <- 0 until CommitWidth) { 1296 val difftest = Module(new DifftestLoadEvent) 1297 difftest.io.clock := clock 1298 difftest.io.coreid := io.hartId 1299 difftest.io.index := i.U 1300 1301 val ptr = deqPtrVec(i).value 1302 val uop = commitDebugUop(i) 1303 val exuOut = debug_exuDebug(ptr) 1304 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1305 difftest.io.paddr := RegNext(RegNext(RegNext(exuOut.paddr))) 1306 difftest.io.opType := RegNext(RegNext(RegNext(uop.fuOpType))) 1307 difftest.io.fuType := RegNext(RegNext(RegNext(uop.fuType))) 1308 } 1309 } 1310 1311 // Always instantiate basic difftest modules. 1312 if (env.EnableDifftest) { 1313 val dt_isXSTrap = Mem(RobSize, Bool()) 1314 for (i <- 0 until RenameWidth) { 1315 when (canEnqueue(i)) { 1316 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap 1317 } 1318 } 1319 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) } 1320 val hitTrap = trapVec.reduce(_||_) 1321 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 1322 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN) 1323 val difftest = Module(new DifftestTrapEvent) 1324 difftest.io.clock := clock 1325 difftest.io.coreid := io.hartId 1326 difftest.io.valid := hitTrap 1327 difftest.io.code := trapCode 1328 difftest.io.pc := trapPC 1329 difftest.io.cycleCnt := timer 1330 difftest.io.instrCnt := instrCnt 1331 difftest.io.hasWFI := hasWFI 1332 } 1333 else if (env.AlwaysBasicDiff) { 1334 val dt_isXSTrap = Mem(RobSize, Bool()) 1335 for (i <- 0 until RenameWidth) { 1336 when (canEnqueue(i)) { 1337 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap 1338 } 1339 } 1340 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) } 1341 val hitTrap = trapVec.reduce(_||_) 1342 val difftest = Module(new DifftestBasicTrapEvent) 1343 difftest.io.clock := clock 1344 difftest.io.coreid := io.hartId 1345 difftest.io.valid := hitTrap 1346 difftest.io.cycleCnt := timer 1347 difftest.io.instrCnt := instrCnt 1348 } 1349 1350 val validEntriesBanks = (0 until (RobSize + 63) / 64).map(i => RegNext(PopCount(valid.drop(i * 64).take(64)))) 1351 val validEntries = RegNext(ParallelOperation(validEntriesBanks, (a: UInt, b: UInt) => a +& b)) 1352 val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }) 1353 val commitLoadVec = VecInit(commitLoadValid) 1354 val commitBranchVec = VecInit(commitBranchValid) 1355 val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }) 1356 val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }) 1357 val perfEvents = Seq( 1358 ("rob_interrupt_num ", io.flushOut.valid && intrEnable ), 1359 ("rob_exception_num ", io.flushOut.valid && exceptionEnable ), 1360 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe ), 1361 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst ), 1362 ("rob_commitUop ", ifCommit(commitCnt) ), 1363 ("rob_commitInstr ", ifCommitReg(trueCommitCnt) ), 1364 ("rob_commitInstrMove ", ifCommitReg(PopCount(RegNext(commitMoveVec))) ), 1365 ("rob_commitInstrFused ", ifCommitReg(fuseCommitCnt) ), 1366 ("rob_commitInstrLoad ", ifCommitReg(PopCount(RegNext(commitLoadVec))) ), 1367 ("rob_commitInstrBranch ", ifCommitReg(PopCount(RegNext(commitBranchVec))) ), 1368 ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec))) ), 1369 ("rob_commitInstrStore ", ifCommitReg(PopCount(RegNext(commitStoreVec))) ), 1370 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U) ), 1371 ("rob_walkCycle ", (state === s_walk) ), 1372 ("rob_1_4_valid ", validEntries <= (RobSize / 4).U ), 1373 ("rob_2_4_valid ", validEntries > (RobSize / 4).U && validEntries <= (RobSize / 2).U ), 1374 ("rob_3_4_valid ", validEntries > (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U), 1375 ("rob_4_4_valid ", validEntries > (RobSize * 3 / 4).U ), 1376 ) 1377 generatePerfEvent() 1378} 1379