1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.rob 18 19import org.chipsalliance.cde.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 24import utils._ 25import utility._ 26import xiangshan._ 27import xiangshan.backend.SnapshotGenerator 28import xiangshan.backend.exu.ExuConfig 29import xiangshan.frontend.FtqPtr 30import xiangshan.mem.{LsqEnqIO, LqPtr} 31 32class DebugMdpInfo(implicit p: Parameters) extends XSBundle{ 33 val ssid = UInt(SSIDWidth.W) 34 val waitAllStore = Bool() 35} 36 37class DebugLsInfo(implicit p: Parameters) extends XSBundle { 38 val s1 = new Bundle { 39 val isTlbFirstMiss = Bool() // in s1 40 val isBankConflict = Bool() // in s1 41 val isLoadToLoadForward = Bool() 42 val isReplayFast = Bool() 43 } 44 val s2 = new Bundle{ 45 val isDcacheFirstMiss = Bool() // in s2 (predicted result is in s1 when using WPU, real result is in s2) 46 val isForwardFail = Bool() // in s2 47 val isReplaySlow = Bool() 48 val isLoadReplayTLBMiss = Bool() 49 val isLoadReplayCacheMiss = Bool() 50 } 51 val replayCnt = UInt(XLEN.W) 52 53 def s1SignalEnable(ena: DebugLsInfo) = { 54 when(ena.s1.isTlbFirstMiss) { s1.isTlbFirstMiss := true.B } 55 when(ena.s1.isBankConflict) { s1.isBankConflict := true.B } 56 when(ena.s1.isLoadToLoadForward) { s1.isLoadToLoadForward := true.B } 57 when(ena.s1.isReplayFast) { 58 s1.isReplayFast := true.B 59 replayCnt := replayCnt + 1.U 60 } 61 } 62 63 def s2SignalEnable(ena: DebugLsInfo) = { 64 when(ena.s2.isDcacheFirstMiss) { s2.isDcacheFirstMiss := true.B } 65 when(ena.s2.isForwardFail) { s2.isForwardFail := true.B } 66 when(ena.s2.isLoadReplayTLBMiss) { s2.isLoadReplayTLBMiss := true.B } 67 when(ena.s2.isLoadReplayCacheMiss) { s2.isLoadReplayCacheMiss := true.B } 68 when(ena.s2.isReplaySlow) { 69 s2.isReplaySlow := true.B 70 replayCnt := replayCnt + 1.U 71 } 72 } 73 74} 75object DebugLsInfo { 76 def init(implicit p: Parameters): DebugLsInfo = { 77 val lsInfo = Wire(new DebugLsInfo) 78 lsInfo.s1.isTlbFirstMiss := false.B 79 lsInfo.s1.isBankConflict := false.B 80 lsInfo.s1.isLoadToLoadForward := false.B 81 lsInfo.s1.isReplayFast := false.B 82 lsInfo.s2.isDcacheFirstMiss := false.B 83 lsInfo.s2.isForwardFail := false.B 84 lsInfo.s2.isReplaySlow := false.B 85 lsInfo.s2.isLoadReplayTLBMiss := false.B 86 lsInfo.s2.isLoadReplayCacheMiss := false.B 87 lsInfo.replayCnt := 0.U 88 lsInfo 89 } 90 91} 92class DebugLsInfoBundle(implicit p: Parameters) extends DebugLsInfo { 93 // unified processing at the end stage of load/store ==> s2 ==> bug that will write error robIdx data 94 val s1_robIdx = UInt(log2Ceil(RobSize).W) 95 val s2_robIdx = UInt(log2Ceil(RobSize).W) 96} 97class DebugLSIO(implicit p: Parameters) extends XSBundle { 98 val debugLsInfo = Vec(exuParameters.LduCnt + exuParameters.StuCnt, Output(new DebugLsInfoBundle)) 99} 100 101class LsTopdownInfo(implicit p: Parameters) extends XSBundle { 102 val s1 = new Bundle { 103 val robIdx = UInt(log2Ceil(RobSize).W) 104 val vaddr_valid = Bool() 105 val vaddr_bits = UInt(VAddrBits.W) 106 } 107 val s2 = new Bundle { 108 val robIdx = UInt(log2Ceil(RobSize).W) 109 val paddr_valid = Bool() 110 val paddr_bits = UInt(PAddrBits.W) 111 val cache_miss_en = Bool() 112 val first_real_miss = Bool() 113 } 114 115 def s1SignalEnable(ena: LsTopdownInfo) = { 116 when(ena.s1.vaddr_valid) { 117 s1.vaddr_valid := true.B 118 s1.vaddr_bits := ena.s1.vaddr_bits 119 } 120 } 121 122 def s2SignalEnable(ena: LsTopdownInfo) = { 123 when(ena.s2.paddr_valid) { 124 s2.paddr_valid := true.B 125 s2.paddr_bits := ena.s2.paddr_bits 126 } 127 when(ena.s2.cache_miss_en) { 128 s2.first_real_miss := ena.s2.first_real_miss 129 } 130 } 131} 132 133object LsTopdownInfo { 134 def init(implicit p: Parameters): LsTopdownInfo = 0.U.asTypeOf(new LsTopdownInfo) 135} 136 137class RobPtr(implicit p: Parameters) extends CircularQueuePtr[RobPtr]( 138 p => p(XSCoreParamsKey).RobSize 139) with HasCircularQueuePtrHelper { 140 141 def needFlush(redirect: Valid[Redirect]): Bool = { 142 val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx 143 redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx)) 144 } 145 146 def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR 147} 148 149object RobPtr { 150 def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = { 151 val ptr = Wire(new RobPtr) 152 ptr.flag := f 153 ptr.value := v 154 ptr 155 } 156} 157 158class RobCSRIO(implicit p: Parameters) extends XSBundle { 159 val intrBitSet = Input(Bool()) 160 val trapTarget = Input(UInt(VAddrBits.W)) 161 val isXRet = Input(Bool()) 162 val wfiEvent = Input(Bool()) 163 164 val fflags = Output(Valid(UInt(5.W))) 165 val dirty_fs = Output(Bool()) 166 val perfinfo = new Bundle { 167 val retiredInstr = Output(UInt(3.W)) 168 } 169} 170 171class RobLsqIO(implicit p: Parameters) extends XSBundle { 172 val lcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 173 val scommit = Output(UInt(log2Up(CommitWidth + 1).W)) 174 val pendingld = Output(Bool()) 175 val pendingst = Output(Bool()) 176 val commit = Output(Bool()) 177 val pendingPtr = Output(new RobPtr) 178 179 val mmio = Input(Vec(LoadPipelineWidth, Bool())) 180 val uop = Input(Vec(LoadPipelineWidth, new MicroOp)) 181} 182 183class RobEnqIO(implicit p: Parameters) extends XSBundle { 184 val canAccept = Output(Bool()) 185 val isEmpty = Output(Bool()) 186 // valid vector, for robIdx gen and walk 187 val needAlloc = Vec(RenameWidth, Input(Bool())) 188 val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp))) 189 val resp = Vec(RenameWidth, Output(new RobPtr)) 190} 191 192class RobCoreTopDownIO(implicit p: Parameters) extends XSBundle { 193 val robHeadVaddr = Valid(UInt(VAddrBits.W)) 194 val robHeadPaddr = Valid(UInt(PAddrBits.W)) 195} 196 197class RobDispatchTopDownIO extends Bundle { 198 val robTrueCommit = Output(UInt(64.W)) 199 val robHeadLsIssue = Output(Bool()) 200} 201 202class RobDebugRollingIO extends Bundle { 203 val robTrueCommit = Output(UInt(64.W)) 204} 205 206class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 207 val io = IO(new Bundle { 208 // for commits/flush 209 val state = Input(UInt(2.W)) 210 val deq_v = Vec(CommitWidth, Input(Bool())) 211 val deq_w = Vec(CommitWidth, Input(Bool())) 212 val exception_state = Flipped(ValidIO(new RobExceptionInfo)) 213 // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth) 214 val intrBitSetReg = Input(Bool()) 215 val hasNoSpecExec = Input(Bool()) 216 val interrupt_safe = Input(Bool()) 217 val blockCommit = Input(Bool()) 218 // output: the CommitWidth deqPtr 219 val out = Vec(CommitWidth, Output(new RobPtr)) 220 val next_out = Vec(CommitWidth, Output(new RobPtr)) 221 }) 222 223 val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr)))) 224 225 // for exceptions (flushPipe included) and interrupts: 226 // only consider the first instruction 227 val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe 228 val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0) 229 val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable) 230 231 // for normal commits: only to consider when there're no exceptions 232 // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions. 233 val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last) 234 val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i))) 235 val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B) 236 // when io.intrBitSetReg or there're possible exceptions in these instructions, 237 // only one instruction is allowed to commit 238 val allowOnlyOne = commit_exception || io.intrBitSetReg 239 val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt) 240 241 val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt)) 242 val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec) 243 244 deqPtrVec := deqPtrVec_next 245 246 io.next_out := deqPtrVec_next 247 io.out := deqPtrVec 248 249 when (io.state === 0.U) { 250 XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt) 251 } 252 253} 254 255class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 256 val io = IO(new Bundle { 257 // for input redirect 258 val redirect = Input(Valid(new Redirect)) 259 // for enqueue 260 val allowEnqueue = Input(Bool()) 261 val hasBlockBackward = Input(Bool()) 262 val enq = Vec(RenameWidth, Input(Bool())) 263 val out = Output(Vec(RenameWidth, new RobPtr)) 264 }) 265 266 val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr))) 267 268 // enqueue 269 val canAccept = io.allowEnqueue && !io.hasBlockBackward 270 val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U) 271 272 for ((ptr, i) <- enqPtrVec.zipWithIndex) { 273 when(io.redirect.valid) { 274 ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 275 }.otherwise { 276 ptr := ptr + dispatchNum 277 } 278 } 279 280 io.out := enqPtrVec 281 282} 283 284class RobExceptionInfo(implicit p: Parameters) extends XSBundle { 285 // val valid = Bool() 286 val robIdx = new RobPtr 287 val exceptionVec = ExceptionVec() 288 val flushPipe = Bool() 289 val replayInst = Bool() // redirect to that inst itself 290 val singleStep = Bool() // TODO add frontend hit beneath 291 val crossPageIPFFix = Bool() 292 val trigger = new TriggerCf 293 294// def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend 295// def trigger_after = trigger.getTimingBackend && trigger.getHitBackend 296 def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit 297 def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit 298 // only exceptions are allowed to writeback when enqueue 299 def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit 300} 301 302class ExceptionGen(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 303 val io = IO(new Bundle { 304 val redirect = Input(Valid(new Redirect)) 305 val flush = Input(Bool()) 306 val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo))) 307 val wb = Vec(1 + LoadPipelineWidth + StorePipelineWidth, Flipped(ValidIO(new RobExceptionInfo))) 308 val out = ValidIO(new RobExceptionInfo) 309 val state = ValidIO(new RobExceptionInfo) 310 }) 311 312 def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = { 313 assert(valid.length == bits.length) 314 assert(isPow2(valid.length)) 315 if (valid.length == 1) { 316 (valid, bits) 317 } else if (valid.length == 2) { 318 val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0))))) 319 for (i <- res.indices) { 320 res(i).valid := valid(i) 321 res(i).bits := bits(i) 322 } 323 val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1)) 324 (Seq(oldest.valid), Seq(oldest.bits)) 325 } else { 326 val left = getOldest(valid.take(valid.length / 2), bits.take(valid.length / 2)) 327 val right = getOldest(valid.takeRight(valid.length / 2), bits.takeRight(valid.length / 2)) 328 getOldest(left._1 ++ right._1, left._2 ++ right._2) 329 } 330 } 331 332 val currentValid = RegInit(false.B) 333 val current = Reg(new RobExceptionInfo) 334 335 // orR the exceptionVec 336 val lastCycleFlush = RegNext(io.flush) 337 val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush)) 338 val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush) 339 340 // s0: compare wb(1)~wb(LoadPipelineWidth) and wb(1 + LoadPipelineWidth)~wb(LoadPipelineWidth + StorePipelineWidth) 341 val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) } 342 val csr_wb_bits = io.wb(0).bits 343 val load_wb_bits = getOldest(in_wb_valid.slice(1, 1 + LoadPipelineWidth), io.wb.map(_.bits).slice(1, 1 + LoadPipelineWidth))._2(0) 344 val store_wb_bits = getOldest(in_wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth), io.wb.map(_.bits).slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth))._2(0) 345 val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid.slice(1, 1 + LoadPipelineWidth).reduce(_ || _), wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth).reduce(_ || _)))) 346 val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits))) 347 348 // s1: compare last four and current flush 349 val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) }) 350 val compare_01_valid = s0_out_valid(0) || s0_out_valid(1) 351 val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0)) 352 val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2)) 353 val s1_out_bits = RegNext(compare_bits) 354 val s1_out_valid = RegNext(s1_valid.asUInt.orR) 355 356 val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 357 val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits))) 358 359 // s2: compare the input exception with the current one 360 // priorities: 361 // (1) system reset 362 // (2) current is valid: flush, remain, merge, update 363 // (3) current is not valid: s1 or enq 364 val current_flush = current.robIdx.needFlush(io.redirect) || io.flush 365 val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush 366 when (currentValid) { 367 when (current_flush) { 368 currentValid := Mux(s1_flush, false.B, s1_out_valid) 369 } 370 when (s1_out_valid && !s1_flush) { 371 when (isAfter(current.robIdx, s1_out_bits.robIdx)) { 372 current := s1_out_bits 373 }.elsewhen (current.robIdx === s1_out_bits.robIdx) { 374 current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec()) 375 current.flushPipe := s1_out_bits.flushPipe || current.flushPipe 376 current.replayInst := s1_out_bits.replayInst || current.replayInst 377 current.singleStep := s1_out_bits.singleStep || current.singleStep 378 current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf) 379 } 380 } 381 }.elsewhen (s1_out_valid && !s1_flush) { 382 currentValid := true.B 383 current := s1_out_bits 384 }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) { 385 currentValid := true.B 386 current := enq_bits 387 } 388 389 io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback 390 io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits) 391 io.state.valid := currentValid 392 io.state.bits := current 393 394} 395 396class RobFlushInfo(implicit p: Parameters) extends XSBundle { 397 val ftqIdx = new FtqPtr 398 val robIdx = new RobPtr 399 val ftqOffset = UInt(log2Up(PredictWidth).W) 400 val replayInst = Bool() 401} 402 403class Rob(implicit p: Parameters) extends LazyModule with HasWritebackSink with HasXSParameter { 404 override def shouldBeInlined: Boolean = false 405 406 lazy val module = new RobImp(this) 407 408 override def generateWritebackIO( 409 thisMod: Option[HasWritebackSource] = None, 410 thisModImp: Option[HasWritebackSourceImp] = None 411 ): Unit = { 412 val sources = writebackSinksImp(thisMod, thisModImp) 413 module.io.writeback.zip(sources).foreach(x => x._1 := x._2) 414 } 415} 416 417class RobImp(outer: Rob)(implicit p: Parameters) extends LazyModuleImp(outer) 418 with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents { 419 val wbExuConfigs = outer.writebackSinksParams.map(_.exuConfigs) 420 val numWbPorts = wbExuConfigs.map(_.length) 421 422 val io = IO(new Bundle() { 423 val hartId = Input(UInt(8.W)) 424 val redirect = Input(Valid(new Redirect)) 425 val enq = new RobEnqIO 426 val flushOut = ValidIO(new Redirect) 427 val exception = ValidIO(new ExceptionInfo) 428 // exu + brq 429 val writeback = MixedVec(numWbPorts.map(num => Vec(num, Flipped(ValidIO(new ExuOutput))))) 430 val commits = Output(new RobCommitIO) 431 val lsq = new RobLsqIO 432 val robDeqPtr = Output(new RobPtr) 433 val csr = new RobCSRIO 434 val snpt = Input(new SnapshotPort) 435 val robFull = Output(Bool()) 436 val headNotReady = Output(Bool()) 437 val cpu_halt = Output(Bool()) 438 val wfi_enable = Input(Bool()) 439 440 val debug_ls = Flipped(new DebugLSIO) 441 val debugRobHead = Output(new MicroOp) 442 val debugEnqLsq = Input(new LsqEnqIO) 443 val debugHeadLsIssue = Input(Bool()) 444 val lsTopdownInfo = Vec(exuParameters.LduCnt, Input(new LsTopdownInfo)) 445 val debugTopDown = new Bundle { 446 val toCore = new RobCoreTopDownIO 447 val toDispatch = new RobDispatchTopDownIO 448 val robHeadLqIdx = Valid(new LqPtr) 449 } 450 val debugRolling = new RobDebugRollingIO 451 }) 452 453 def selectWb(index: Int, func: Seq[ExuConfig] => Boolean): Seq[(Seq[ExuConfig], ValidIO[ExuOutput])] = { 454 wbExuConfigs(index).zip(io.writeback(index)).filter(x => func(x._1)) 455 } 456 val exeWbSel = outer.selWritebackSinks(_.exuConfigs.length) 457 val fflagsWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.writeFflags))) 458 val fflagsPorts = selectWb(fflagsWbSel, _.exists(_.writeFflags)) 459 val exceptionWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.needExceptionGen))) 460 val exceptionPorts = selectWb(fflagsWbSel, _.exists(_.needExceptionGen)) 461 val exuWbPorts = selectWb(exeWbSel, _.forall(_ != StdExeUnitCfg)) 462 val stdWbPorts = selectWb(exeWbSel, _.contains(StdExeUnitCfg)) 463 println(s"Rob: size $RobSize, numWbPorts: $numWbPorts, commitwidth: $CommitWidth") 464 println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}") 465 println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}") 466 println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}") 467 468 469 val exuWriteback = exuWbPorts.map(_._2) 470 val stdWriteback = stdWbPorts.map(_._2) 471 472 // instvalid field 473 val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 474 // writeback status 475 val writebacked = Mem(RobSize, Bool()) 476 val store_data_writebacked = Mem(RobSize, Bool()) 477 val mmio = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 478 // data for redirect, exception, etc. 479 val flagBkup = Mem(RobSize, Bool()) 480 // some instructions are not allowed to trigger interrupts 481 // They have side effects on the states of the processor before they write back 482 val interrupt_safe = Mem(RobSize, Bool()) 483 484 // data for debug 485 // Warn: debug_* prefix should not exist in generated verilog. 486 val debug_microOp = DebugMem(RobSize, new MicroOp) 487 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug 488 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug 489 val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init))) 490 val debug_lsTopdownInfo = RegInit(VecInit(Seq.fill(RobSize)(LsTopdownInfo.init))) 491 val debug_lqIdxValid = RegInit(VecInit.fill(RobSize)(false.B)) 492 val debug_lsIssued = RegInit(VecInit.fill(RobSize)(false.B)) 493 494 // pointers 495 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 496 val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr)) 497 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 498 499 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 500 val lastWalkPtr = Reg(new RobPtr) 501 val allowEnqueue = RegInit(true.B) 502 503 val enqPtr = enqPtrVec.head 504 val deqPtr = deqPtrVec(0) 505 val walkPtr = walkPtrVec(0) 506 507 val isEmpty = enqPtr === deqPtr 508 val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level) 509 510 val snptEnq = io.enq.canAccept && io.enq.req.head.valid && io.enq.req.head.bits.snapshot 511 val snapshots = SnapshotGenerator(enqPtrVec, snptEnq, io.snpt.snptDeq, io.redirect.valid) 512 513 val debug_lsIssue = WireDefault(debug_lsIssued) 514 debug_lsIssue(deqPtr.value) := io.debugHeadLsIssue 515 516 /** 517 * states of Rob 518 */ 519 val s_idle :: s_walk :: Nil = Enum(2) 520 val state = RegInit(s_idle) 521 522 /** 523 * Data Modules 524 * 525 * CommitDataModule: data from dispatch 526 * (1) read: commits/walk/exception 527 * (2) write: enqueue 528 * 529 * WritebackData: data from writeback 530 * (1) read: commits/walk/exception 531 * (2) write: write back from exe units 532 */ 533 val dispatchData = Module(new SyncDataModuleTemplate(new RobCommitInfo, RobSize, CommitWidth, RenameWidth)) 534 val dispatchDataRead = dispatchData.io.rdata 535 536 val exceptionGen = Module(new ExceptionGen) 537 val exceptionDataRead = exceptionGen.io.state 538 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 539 540 io.robDeqPtr := deqPtr 541 io.debugRobHead := debug_microOp(deqPtr.value) 542 543 /** 544 * Enqueue (from dispatch) 545 */ 546 // special cases 547 val hasBlockBackward = RegInit(false.B) 548 val hasNoSpecExec = RegInit(false.B) 549 val doingSvinval = RegInit(false.B) 550 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 551 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 552 when (isEmpty) { hasBlockBackward:= false.B } 553 // When any instruction commits, hasNoSpecExec should be set to false.B 554 when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasNoSpecExec:= false.B } 555 556 // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing. 557 // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle. 558 // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts. 559 val hasWFI = RegInit(false.B) 560 io.cpu_halt := hasWFI 561 // WFI Timeout: 2^20 = 1M cycles 562 val wfi_cycles = RegInit(0.U(20.W)) 563 when (hasWFI) { 564 wfi_cycles := wfi_cycles + 1.U 565 }.elsewhen (!hasWFI && RegNext(hasWFI)) { 566 wfi_cycles := 0.U 567 } 568 val wfi_timeout = wfi_cycles.andR 569 when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) { 570 hasWFI := false.B 571 } 572 573 val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.needAlloc.take(i))))) 574 io.enq.canAccept := allowEnqueue && !hasBlockBackward 575 io.enq.resp := allocatePtrVec 576 val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept)) 577 val timer = GTimer() 578 for (i <- 0 until RenameWidth) { 579 // we don't check whether io.redirect is valid here since redirect has higher priority 580 when (canEnqueue(i)) { 581 val enqUop = io.enq.req(i).bits 582 val enqIndex = allocatePtrVec(i).value 583 // store uop in data module and debug_microOp Vec 584 debug_microOp(enqIndex) := enqUop 585 debug_microOp(enqIndex).debugInfo.dispatchTime := timer 586 debug_microOp(enqIndex).debugInfo.enqRsTime := timer 587 debug_microOp(enqIndex).debugInfo.selectTime := timer 588 debug_microOp(enqIndex).debugInfo.issueTime := timer 589 debug_microOp(enqIndex).debugInfo.writebackTime := timer 590 debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer 591 debug_microOp(enqIndex).debugInfo.tlbRespTime := timer 592 debug_lsInfo(enqIndex) := DebugLsInfo.init 593 debug_lsTopdownInfo(enqIndex) := LsTopdownInfo.init 594 debug_lqIdxValid(enqIndex) := false.B 595 debug_lsIssued(enqIndex) := false.B 596 when (enqUop.ctrl.blockBackward) { 597 hasBlockBackward := true.B 598 } 599 when (enqUop.ctrl.noSpecExec) { 600 hasNoSpecExec := true.B 601 } 602 val enqHasTriggerHit = io.enq.req(i).bits.cf.trigger.getHitFrontend 603 val enqHasException = ExceptionNO.selectFrontend(enqUop.cf.exceptionVec).asUInt.orR 604 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 605 when(!enqHasTriggerHit && !enqHasException && FuType.isSvinvalBegin(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe)) 606 { 607 doingSvinval := true.B 608 } 609 // the end instruction of Svinval enqs so clear doingSvinval 610 when(!enqHasTriggerHit && !enqHasException && FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe)) 611 { 612 doingSvinval := false.B 613 } 614 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 615 assert(!doingSvinval || (FuType.isSvinval(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe) || 616 FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe))) 617 when (enqUop.ctrl.isWFI && !enqHasException && !enqHasTriggerHit) { 618 hasWFI := true.B 619 } 620 621 mmio(enqIndex) := false.B 622 } 623 } 624 val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(_.valid)), 0.U) 625 io.enq.isEmpty := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR) 626 627 when (!io.wfi_enable) { 628 hasWFI := false.B 629 } 630 631 // lqEnq 632 io.debugEnqLsq.needAlloc.map(_(0)).zip(io.debugEnqLsq.req).foreach { case (alloc, req) => 633 when(io.debugEnqLsq.canAccept && alloc && req.valid) { 634 debug_microOp(req.bits.robIdx.value).lqIdx := req.bits.lqIdx 635 debug_lqIdxValid(req.bits.robIdx.value) := true.B 636 } 637 } 638 639 // lsIssue 640 when(io.debugHeadLsIssue) { 641 debug_lsIssued(deqPtr.value) := true.B 642 } 643 644 /** 645 * Writeback (from execution units) 646 */ 647 for (wb <- exuWriteback) { 648 when (wb.valid) { 649 val wbIdx = wb.bits.uop.robIdx.value 650 debug_exuData(wbIdx) := wb.bits.data 651 debug_exuDebug(wbIdx) := wb.bits.debug 652 debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.uop.debugInfo.enqRsTime 653 debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.uop.debugInfo.selectTime 654 debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.uop.debugInfo.issueTime 655 debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.uop.debugInfo.writebackTime 656 debug_microOp(wbIdx).debugInfo.tlbFirstReqTime := wb.bits.uop.debugInfo.tlbFirstReqTime 657 debug_microOp(wbIdx).debugInfo.tlbRespTime := wb.bits.uop.debugInfo.tlbRespTime 658 659 // debug for lqidx and sqidx 660 debug_microOp(wbIdx).lqIdx := wb.bits.uop.lqIdx 661 debug_microOp(wbIdx).sqIdx := wb.bits.uop.sqIdx 662 663 val debug_Uop = debug_microOp(wbIdx) 664 XSInfo(true.B, 665 p"writebacked pc 0x${Hexadecimal(debug_Uop.cf.pc)} wen ${debug_Uop.ctrl.rfWen} " + 666 p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ctrl.ldest} pdst ${debug_Uop.pdest} " + 667 p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.uop.robIdx}\n" 668 ) 669 } 670 } 671 val writebackNum = PopCount(exuWriteback.map(_.valid)) 672 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 673 674 for (i <- 0 until LoadPipelineWidth) { 675 when (RegNext(io.lsq.mmio(i))) { 676 mmio(RegNext(io.lsq.uop(i).robIdx).value) := true.B 677 } 678 } 679 680 /** 681 * RedirectOut: Interrupt and Exceptions 682 */ 683 val deqDispatchData = dispatchDataRead(0) 684 val debug_deqUop = debug_microOp(deqPtr.value) 685 686 val intrBitSetReg = RegNext(io.csr.intrBitSet) 687 val intrEnable = intrBitSetReg && !hasNoSpecExec && interrupt_safe(deqPtr.value) 688 val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 689 val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR || 690 exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit) 691 val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe 692 val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst 693 val exceptionEnable = writebacked(deqPtr.value) && deqHasException 694 695 XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n") 696 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n") 697 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n") 698 699 val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst) 700 701 // io.flushOut will trigger redirect at the next cycle. 702 // Block any redirect or commit at the next cycle. 703 val lastCycleFlush = RegNext(io.flushOut.valid) 704 705 io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush 706 io.flushOut.bits := DontCare 707 io.flushOut.bits.isRVC := deqDispatchData.isRVC 708 io.flushOut.bits.robIdx := deqPtr 709 io.flushOut.bits.ftqIdx := deqDispatchData.ftqIdx 710 io.flushOut.bits.ftqOffset := deqDispatchData.ftqOffset 711 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next" 712 io.flushOut.bits.interrupt := true.B 713 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 714 XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable) 715 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 716 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 717 718 val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush 719 io.exception.valid := RegNext(exceptionHappen) 720 io.exception.bits.uop := RegEnable(debug_deqUop, exceptionHappen) 721 io.exception.bits.uop.ctrl.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 722 io.exception.bits.uop.cf.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 723 io.exception.bits.uop.ctrl.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 724 io.exception.bits.uop.cf.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 725 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 726 io.exception.bits.uop.cf.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen) 727 728 XSDebug(io.flushOut.valid, 729 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.uop.cf.pc)} intr $intrEnable " + 730 p"excp $exceptionEnable flushPipe $isFlushPipe " + 731 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 732 733 734 /** 735 * Commits (and walk) 736 * They share the same width. 737 */ 738 val shouldWalkVec = VecInit(walkPtrVec.map(_ <= lastWalkPtr)) 739 val walkFinished = VecInit(walkPtrVec.map(_ >= lastWalkPtr)).asUInt.orR 740 741 require(RenameWidth <= CommitWidth) 742 743 // wiring to csr 744 val (wflags, fpWen) = (0 until CommitWidth).map(i => { 745 val v = io.commits.commitValid(i) 746 val info = io.commits.info(i) 747 (v & info.wflags, v & info.fpWen) 748 }).unzip 749 val fflags = Wire(Valid(UInt(5.W))) 750 fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR 751 fflags.bits := wflags.zip(fflagsDataRead).map({ 752 case (w, f) => Mux(w, f, 0.U) 753 }).reduce(_|_) 754 val dirty_fs = io.commits.isCommit && VecInit(fpWen).asUInt.orR 755 756 // when mispredict branches writeback, stop commit in the next 2 cycles 757 // TODO: don't check all exu write back 758 val misPredWb = Cat(VecInit(exuWriteback.map(wb => 759 wb.bits.redirect.cfiUpdate.isMisPred && wb.bits.redirectValid && wb.valid 760 ))).orR 761 val misPredBlockCounter = Reg(UInt(3.W)) 762 misPredBlockCounter := Mux(misPredWb, 763 "b111".U, 764 misPredBlockCounter >> 1.U 765 ) 766 val misPredBlock = misPredBlockCounter(0) 767 val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI || io.redirect.valid 768 769 io.commits.isWalk := state === s_walk 770 io.commits.isCommit := state === s_idle && !blockCommit 771 val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value))) 772 val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value))) 773 // store will be commited iff both sta & std have been writebacked 774 val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value))) 775 val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last) 776 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i))) 777 val allowOnlyOneCommit = commit_exception || intrBitSetReg 778 // for instructions that may block others, we don't allow them to commit 779 for (i <- 0 until CommitWidth) { 780 // defaults: state === s_idle and instructions commit 781 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 782 val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst 783 io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked 784 io.commits.info(i) := dispatchDataRead(i) 785 io.commits.robIdx(i) := deqPtrVec(i) 786 787 io.commits.walkValid(i) := shouldWalkVec(i) 788 when (state === s_walk) { 789 when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) { 790 XSError(!walk_v(i), s"why not $i???\n") 791 } 792 } 793 794 XSInfo(io.commits.isCommit && io.commits.commitValid(i), 795 "retired pc %x wen %d ldest %d pdest %x data %x fflags: %b\n", 796 debug_microOp(deqPtrVec(i).value).cf.pc, 797 io.commits.info(i).rfWen, 798 io.commits.info(i).ldest, 799 io.commits.info(i).pdest, 800 debug_exuData(deqPtrVec(i).value), 801 fflagsDataRead(i) 802 ) 803 XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n", 804 debug_microOp(walkPtrVec(i).value).cf.pc, 805 io.commits.info(i).rfWen, 806 io.commits.info(i).ldest, 807 debug_exuData(walkPtrVec(i).value) 808 ) 809 } 810 if (env.EnableDifftest) { 811 io.commits.info.map(info => dontTouch(info.pc)) 812 } 813 814 // sync fflags/dirty_fs to csr 815 io.csr.fflags := RegNext(fflags) 816 io.csr.dirty_fs := RegNext(dirty_fs) 817 818 // commit load/store to lsq 819 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 820 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE)) 821 io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U)) 822 io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U)) 823 // indicate a pending load or store 824 io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value) && mmio(deqPtr.value)) 825 io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value)) 826 io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0)) 827 io.lsq.pendingPtr := RegNext(deqPtr) 828 829 /** 830 * state changes 831 * (1) redirect: switch to s_walk 832 * (2) walk: when walking comes to the end, switch to s_idle 833 */ 834 val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished, s_idle, state)) 835 XSPerfAccumulate("s_idle_to_idle", state === s_idle && state_next === s_idle) 836 XSPerfAccumulate("s_idle_to_walk", state === s_idle && state_next === s_walk) 837 XSPerfAccumulate("s_walk_to_idle", state === s_walk && state_next === s_idle) 838 XSPerfAccumulate("s_walk_to_walk", state === s_walk && state_next === s_walk) 839 state := state_next 840 841 /** 842 * pointers and counters 843 */ 844 val deqPtrGenModule = Module(new RobDeqPtrWrapper) 845 deqPtrGenModule.io.state := state 846 deqPtrGenModule.io.deq_v := commit_v 847 deqPtrGenModule.io.deq_w := commit_w 848 deqPtrGenModule.io.exception_state := exceptionDataRead 849 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 850 deqPtrGenModule.io.hasNoSpecExec := hasNoSpecExec 851 deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value) 852 deqPtrGenModule.io.blockCommit := blockCommit 853 deqPtrVec := deqPtrGenModule.io.out 854 val deqPtrVec_next = deqPtrGenModule.io.next_out 855 856 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 857 enqPtrGenModule.io.redirect := io.redirect 858 enqPtrGenModule.io.allowEnqueue := allowEnqueue 859 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 860 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid)) 861 enqPtrVec := enqPtrGenModule.io.out 862 863 // next walkPtrVec: 864 // (1) redirect occurs: update according to state 865 // (2) walk: move forwards 866 val walkPtrVec_next = Mux(io.redirect.valid, 867 Mux(io.snpt.useSnpt, snapshots(io.snpt.snptSelect), deqPtrVec_next), 868 Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec) 869 ) 870 walkPtrVec := walkPtrVec_next 871 872 val numValidEntries = distanceBetween(enqPtr, deqPtr) 873 val commitCnt = PopCount(io.commits.commitValid) 874 875 allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U 876 877 val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0)) 878 when (io.redirect.valid) { 879 lastWalkPtr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx - 1.U, io.redirect.bits.robIdx) 880 } 881 882 883 /** 884 * States 885 * We put all the stage bits changes here. 886 887 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 888 * All states: (1) valid; (2) writebacked; (3) flagBkup 889 */ 890 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 891 892 // redirect logic writes 6 valid 893 val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr)) 894 val redirectTail = Reg(new RobPtr) 895 val redirectIdle :: redirectBusy :: Nil = Enum(2) 896 val redirectState = RegInit(redirectIdle) 897 val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail)) 898 when(redirectState === redirectBusy) { 899 redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U) 900 redirectHeadVec zip invMask foreach { 901 case (redirectHead, inv) => when(inv) { 902 valid(redirectHead.value) := false.B 903 } 904 } 905 when(!invMask.last) { 906 redirectState := redirectIdle 907 } 908 } 909 when(io.redirect.valid) { 910 redirectState := redirectBusy 911 when(redirectState === redirectIdle) { 912 redirectTail := enqPtr 913 } 914 redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) => 915 redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 916 } 917 } 918 // enqueue logic writes 6 valid 919 for (i <- 0 until RenameWidth) { 920 when (canEnqueue(i) && !io.redirect.valid) { 921 valid(allocatePtrVec(i).value) := true.B 922 } 923 } 924 // dequeue logic writes 6 valid 925 for (i <- 0 until CommitWidth) { 926 val commitValid = io.commits.isCommit && io.commits.commitValid(i) 927 when (commitValid) { 928 valid(commitReadAddr(i)) := false.B 929 } 930 } 931 932 // debug_inst update 933 for(i <- 0 until (exuParameters.LduCnt + exuParameters.StuCnt)) { 934 debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i)) 935 debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i)) 936 } 937 for (i <- 0 until exuParameters.LduCnt) { 938 debug_lsTopdownInfo(io.lsTopdownInfo(i).s1.robIdx).s1SignalEnable(io.lsTopdownInfo(i)) 939 debug_lsTopdownInfo(io.lsTopdownInfo(i).s2.robIdx).s2SignalEnable(io.lsTopdownInfo(i)) 940 } 941 942 // status field: writebacked 943 // enqueue logic set 6 writebacked to false 944 for (i <- 0 until RenameWidth) { 945 when (canEnqueue(i)) { 946 val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec).asUInt.orR 947 val enqHasTriggerHit = io.enq.req(i).bits.cf.trigger.getHitFrontend 948 val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove 949 writebacked(allocatePtrVec(i).value) := enqIsWritebacked && !enqHasException && !enqHasTriggerHit 950 val isStu = io.enq.req(i).bits.ctrl.fuType === FuType.stu 951 store_data_writebacked(allocatePtrVec(i).value) := !isStu 952 } 953 } 954 when (exceptionGen.io.out.valid) { 955 val wbIdx = exceptionGen.io.out.bits.robIdx.value 956 writebacked(wbIdx) := true.B 957 store_data_writebacked(wbIdx) := true.B 958 } 959 // writeback logic set numWbPorts writebacked to true 960 for ((wb, cfgs) <- exuWriteback.zip(wbExuConfigs(exeWbSel))) { 961 when (wb.valid) { 962 val wbIdx = wb.bits.uop.robIdx.value 963 val wbHasException = ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, cfgs).asUInt.orR 964 val wbHasTriggerHit = wb.bits.uop.cf.trigger.getHitBackend 965 val wbHasFlushPipe = cfgs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe 966 val wbHasReplayInst = cfgs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst 967 val block_wb = wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit 968 writebacked(wbIdx) := !block_wb 969 } 970 } 971 // store data writeback logic mark store as data_writebacked 972 for (wb <- stdWriteback) { 973 when(RegNext(wb.valid)) { 974 store_data_writebacked(RegNext(wb.bits.uop.robIdx.value)) := true.B 975 } 976 } 977 978 // flagBkup 979 // enqueue logic set 6 flagBkup at most 980 for (i <- 0 until RenameWidth) { 981 when (canEnqueue(i)) { 982 flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag 983 } 984 } 985 986 // interrupt_safe 987 for (i <- 0 until RenameWidth) { 988 // We RegNext the updates for better timing. 989 // Note that instructions won't change the system's states in this cycle. 990 when (RegNext(canEnqueue(i))) { 991 // For now, we allow non-load-store instructions to trigger interrupts 992 // For MMIO instructions, they should not trigger interrupts since they may 993 // be sent to lower level before it writes back. 994 // However, we cannot determine whether a load/store instruction is MMIO. 995 // Thus, we don't allow load/store instructions to trigger an interrupt. 996 // TODO: support non-MMIO load-store instructions to trigger interrupts 997 val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.ctrl.commitType) 998 interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts) 999 } 1000 } 1001 1002 /** 1003 * read and write of data modules 1004 */ 1005 val commitReadAddr_next = Mux(state_next === s_idle, 1006 VecInit(deqPtrVec_next.map(_.value)), 1007 VecInit(walkPtrVec_next.map(_.value)) 1008 ) 1009 // NOTE: dispatch info will record the uop of inst 1010 dispatchData.io.wen := canEnqueue 1011 dispatchData.io.waddr := allocatePtrVec.map(_.value) 1012 dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) => 1013 wdata.ldest := req.ctrl.ldest 1014 wdata.rfWen := req.ctrl.rfWen 1015 wdata.fpWen := req.ctrl.fpWen 1016 wdata.wflags := req.ctrl.fpu.wflags 1017 wdata.commitType := req.ctrl.commitType 1018 wdata.pdest := req.pdest 1019 wdata.ftqIdx := req.cf.ftqPtr 1020 wdata.ftqOffset := req.cf.ftqOffset 1021 wdata.isMove := req.eliminatedMove 1022 wdata.isRVC := req.cf.pd.isRVC 1023 wdata.pc := req.cf.pc 1024 } 1025 dispatchData.io.raddr := commitReadAddr_next 1026 1027 exceptionGen.io.redirect <> io.redirect 1028 exceptionGen.io.flush := io.flushOut.valid 1029 for (i <- 0 until RenameWidth) { 1030 exceptionGen.io.enq(i).valid := canEnqueue(i) 1031 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 1032 exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec) 1033 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.ctrl.flushPipe 1034 exceptionGen.io.enq(i).bits.replayInst := false.B 1035 XSError(canEnqueue(i) && io.enq.req(i).bits.ctrl.replayInst, "enq should not set replayInst") 1036 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.ctrl.singleStep 1037 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.cf.crossPageIPFFix 1038 exceptionGen.io.enq(i).bits.trigger.clear() 1039 exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.cf.trigger.frontendHit 1040 } 1041 1042 println(s"ExceptionGen:") 1043 val exceptionCases = exceptionPorts.map(_._1.flatMap(_.exceptionOut).distinct.sorted) 1044 require(exceptionCases.length == exceptionGen.io.wb.length) 1045 for ((((configs, wb), exc_wb), i) <- exceptionPorts.zip(exceptionGen.io.wb).zipWithIndex) { 1046 exc_wb.valid := wb.valid 1047 exc_wb.bits.robIdx := wb.bits.uop.robIdx 1048 exc_wb.bits.exceptionVec := ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, configs) 1049 exc_wb.bits.flushPipe := configs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe 1050 exc_wb.bits.replayInst := configs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst 1051 exc_wb.bits.singleStep := false.B 1052 exc_wb.bits.crossPageIPFFix := false.B 1053 // TODO: make trigger configurable 1054 exc_wb.bits.trigger.clear() 1055 exc_wb.bits.trigger.backendHit := wb.bits.uop.cf.trigger.backendHit 1056 println(s" [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " + 1057 s"flushPipe ${configs.exists(_.flushPipe)}, " + 1058 s"replayInst ${configs.exists(_.replayInst)}") 1059 } 1060 1061 val fflags_wb = fflagsPorts.map(_._2) 1062 val fflagsDataModule = Module(new SyncDataModuleTemplate( 1063 UInt(5.W), RobSize, CommitWidth, fflags_wb.size) 1064 ) 1065 for(i <- fflags_wb.indices){ 1066 fflagsDataModule.io.wen (i) := fflags_wb(i).valid 1067 fflagsDataModule.io.waddr(i) := fflags_wb(i).bits.uop.robIdx.value 1068 fflagsDataModule.io.wdata(i) := fflags_wb(i).bits.fflags 1069 } 1070 fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value)) 1071 fflagsDataRead := fflagsDataModule.io.rdata 1072 1073 val instrCntReg = RegInit(0.U(64.W)) 1074 val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) }) 1075 val trueCommitCnt = RegNext(commitCnt) +& fuseCommitCnt 1076 val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U) 1077 val instrCnt = instrCntReg + retireCounter 1078 instrCntReg := instrCnt 1079 io.csr.perfinfo.retiredInstr := retireCounter 1080 io.robFull := !allowEnqueue 1081 io.headNotReady := commit_v.head && !commit_w.head 1082 1083 /** 1084 * debug info 1085 */ 1086 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 1087 XSDebug("") 1088 for(i <- 0 until RobSize){ 1089 XSDebug(false, !valid(i), "-") 1090 XSDebug(false, valid(i) && writebacked(i), "w") 1091 XSDebug(false, valid(i) && !writebacked(i), "v") 1092 } 1093 XSDebug(false, true.B, "\n") 1094 1095 for(i <- 0 until RobSize) { 1096 if(i % 4 == 0) XSDebug("") 1097 XSDebug(false, true.B, "%x ", debug_microOp(i).cf.pc) 1098 XSDebug(false, !valid(i), "- ") 1099 XSDebug(false, valid(i) && writebacked(i), "w ") 1100 XSDebug(false, valid(i) && !writebacked(i), "v ") 1101 if(i % 4 == 3) XSDebug(false, true.B, "\n") 1102 } 1103 1104 def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U) 1105 def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U) 1106 1107 val commitDebugExu = deqPtrVec.map(_.value).map(debug_exuDebug(_)) 1108 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 1109 val commitDebugLsInfo = deqPtrVec.map(_.value).map(debug_lsInfo(_)) 1110 XSPerfAccumulate("clock_cycle", 1.U) 1111 QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue) 1112 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 1113 XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt)) 1114 XSPerfRolling("ipc", ifCommitReg(trueCommitCnt), 1000, clock, reset) 1115 XSPerfRolling("cpi", perfCnt = 1.U/*Cycle*/, eventTrigger = ifCommitReg(trueCommitCnt), granularity = 1000, clock, reset) 1116 val commitIsMove = commitDebugUop.map(_.ctrl.isMove) 1117 XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }))) 1118 val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) 1119 XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e }))) 1120 XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt)) 1121 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 1122 val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t } 1123 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 1124 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 1125 val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t } 1126 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 1127 val commitLoadWaitBit = commitDebugUop.map(_.cf.loadWaitBit) 1128 XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))) 1129 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 1130 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }))) 1131 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i)))) 1132 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire))) 1133 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 1134 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)) 1135 XSPerfAccumulate("walkCycle", state === s_walk) 1136 val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value) 1137 val deqUopCommitType = io.commits.info(0).commitType 1138 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 1139 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 1140 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 1141 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 1142 XSPerfAccumulate("robHeadPC", io.commits.info(0).pc) 1143 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 1144 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 1145 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 1146 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 1147 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 1148 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 1149 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 1150 val accessLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 1151 val tlbLatency = commitDebugUop.map(uop => uop.debugInfo.tlbRespTime - uop.debugInfo.tlbFirstReqTime) 1152 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 1153 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 1154 } 1155 for (fuType <- FuType.functionNameMap.keys) { 1156 val fuName = FuType.functionNameMap(fuType) 1157 val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fuType === fuType.U ) 1158 XSPerfRolling(s"ipc_futype_${fuName}", ifCommit(PopCount(commitIsFuType)), 1000, clock, reset) 1159 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 1160 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 1161 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 1162 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 1163 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 1164 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 1165 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 1166 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 1167 if (fuType == FuType.fmac.litValue) { 1168 val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fpu.ren3 ) 1169 XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma))) 1170 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency))) 1171 XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency))) 1172 } 1173 } 1174 1175 // top-down info 1176 io.debugTopDown.toCore.robHeadVaddr.valid := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_valid 1177 io.debugTopDown.toCore.robHeadVaddr.bits := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_bits 1178 io.debugTopDown.toCore.robHeadPaddr.valid := debug_lsTopdownInfo(deqPtr.value).s2.paddr_valid 1179 io.debugTopDown.toCore.robHeadPaddr.bits := debug_lsTopdownInfo(deqPtr.value).s2.paddr_bits 1180 io.debugTopDown.toDispatch.robTrueCommit := ifCommitReg(trueCommitCnt) 1181 io.debugTopDown.toDispatch.robHeadLsIssue := debug_lsIssue(deqPtr.value) 1182 io.debugTopDown.robHeadLqIdx.valid := debug_lqIdxValid(deqPtr.value) 1183 io.debugTopDown.robHeadLqIdx.bits := debug_microOp(deqPtr.value).lqIdx 1184 1185 // rolling 1186 io.debugRolling.robTrueCommit := ifCommitReg(trueCommitCnt) 1187 1188 /** 1189 * DataBase info: 1190 * log trigger is at writeback valid 1191 * */ 1192 if(!env.FPGAPlatform){ 1193 val isWriteInstInfoTable = WireInit(Constantin.createRecord("isWriteInstInfoTable" + p(XSCoreParamsKey).HartId.toString)) 1194 val instTableName = "InstTable" + p(XSCoreParamsKey).HartId.toString 1195 val instSiteName = "Rob" + p(XSCoreParamsKey).HartId.toString 1196 val debug_instTable = ChiselDB.createTable(instTableName, new InstInfoEntry) 1197 // FIXME lyq: only get inst (alu, bj, ls) in exuWriteback 1198 for (wb <- exuWriteback) { 1199 when(wb.valid) { 1200 val debug_instData = Wire(new InstInfoEntry) 1201 val idx = wb.bits.uop.robIdx.value 1202 debug_instData.globalID := wb.bits.uop.ctrl.debug_globalID 1203 debug_instData.robIdx := idx 1204 debug_instData.instType := wb.bits.uop.ctrl.fuType 1205 debug_instData.ivaddr := wb.bits.uop.cf.pc 1206 debug_instData.dvaddr := wb.bits.debug.vaddr 1207 debug_instData.dpaddr := wb.bits.debug.paddr 1208 debug_instData.tlbLatency := wb.bits.uop.debugInfo.tlbRespTime - wb.bits.uop.debugInfo.tlbFirstReqTime 1209 debug_instData.accessLatency := wb.bits.uop.debugInfo.writebackTime - wb.bits.uop.debugInfo.issueTime 1210 debug_instData.executeLatency := wb.bits.uop.debugInfo.writebackTime - wb.bits.uop.debugInfo.issueTime 1211 debug_instData.issueLatency := wb.bits.uop.debugInfo.issueTime - wb.bits.uop.debugInfo.selectTime 1212 debug_instData.exceptType := Cat(wb.bits.uop.cf.exceptionVec) 1213 debug_instData.lsInfo := debug_lsInfo(idx) 1214 debug_instData.mdpInfo.ssid := wb.bits.uop.cf.ssid 1215 debug_instData.mdpInfo.waitAllStore := wb.bits.uop.cf.loadWaitStrict && wb.bits.uop.cf.loadWaitBit 1216 debug_instData.issueTime := wb.bits.uop.debugInfo.issueTime 1217 debug_instData.writebackTime := wb.bits.uop.debugInfo.writebackTime 1218 debug_instTable.log( 1219 data = debug_instData, 1220 en = wb.valid, 1221 site = instSiteName, 1222 clock = clock, 1223 reset = reset 1224 ) 1225 } 1226 } 1227 1228 // log when committing 1229 val load_debug_table = ChiselDB.createTable("LoadDebugTable" + p(XSCoreParamsKey).HartId.toString, new LoadInfoEntry, basicDB = false) 1230 for (i <- 0 until CommitWidth) { 1231 val log_enable = io.commits.commitValid(i) && io.commits.isCommit && (io.commits.info(i).commitType === CommitType.LOAD) 1232 val commit_index = deqPtrVec(i).value 1233 val load_debug_data = Wire(new LoadInfoEntry) 1234 1235 load_debug_data.pc := io.commits.info(i).pc 1236 load_debug_data.vaddr := debug_lsTopdownInfo(commit_index).s1.vaddr_bits 1237 load_debug_data.paddr := debug_lsTopdownInfo(commit_index).s2.paddr_bits 1238 load_debug_data.cacheMiss := debug_lsTopdownInfo(commit_index).s2.first_real_miss 1239 load_debug_data.tlbQueryLatency := tlbLatency(i) 1240 load_debug_data.exeLatency := executeLatency(i) 1241 1242 1243 load_debug_table.log( 1244 data = load_debug_data, 1245 en = log_enable, 1246 site = "LoadDebugTable", 1247 clock = clock, 1248 reset = reset 1249 ) 1250 } 1251 } 1252 1253 1254 //difftest signals 1255 val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value 1256 1257 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1258 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1259 1260 for(i <- 0 until CommitWidth) { 1261 val idx = deqPtrVec(i).value 1262 wdata(i) := debug_exuData(idx) 1263 wpc(i) := SignExt(commitDebugUop(i).cf.pc, XLEN) 1264 } 1265 1266 if (env.EnableDifftest || env.AlwaysBasicDiff) { 1267 // These are the structures used by difftest only and should be optimized after synthesis. 1268 val dt_eliminatedMove = Mem(RobSize, Bool()) 1269 val dt_isRVC = Mem(RobSize, Bool()) 1270 val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) 1271 for (i <- 0 until RenameWidth) { 1272 when (canEnqueue(i)) { 1273 dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 1274 dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.cf.pd.isRVC 1275 } 1276 } 1277 for (wb <- exuWriteback) { 1278 when (wb.valid) { 1279 val wbIdx = wb.bits.uop.robIdx.value 1280 dt_exuDebug(wbIdx) := wb.bits.debug 1281 } 1282 } 1283 for (i <- 0 until CommitWidth) { 1284 val commitInfo = io.commits.info(i) 1285 val ptr = deqPtrVec(i).value 1286 val exuOut = dt_exuDebug(ptr) 1287 val eliminatedMove = dt_eliminatedMove(ptr) 1288 val isRVC = dt_isRVC(ptr) 1289 1290 val difftest = DifftestModule(new DiffInstrCommit(NRPhyRegs), delay = 3, dontCare = true) 1291 difftest.coreid := io.hartId 1292 difftest.index := i.U 1293 difftest.valid := io.commits.commitValid(i) && io.commits.isCommit 1294 difftest.skip := Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt) 1295 difftest.isRVC := isRVC 1296 difftest.rfwen := io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U 1297 difftest.fpwen := io.commits.commitValid(i) && commitInfo.fpWen 1298 difftest.wpdest := commitInfo.pdest 1299 difftest.wdest := commitInfo.ldest 1300 difftest.nFused := Mux(CommitType.isFused(commitInfo.commitType), 1.U, 0.U) 1301 1302 if (env.EnableDifftest) { 1303 val uop = commitDebugUop(i) 1304 difftest.pc := SignExt(uop.cf.pc, XLEN) 1305 difftest.instr := uop.cf.instr 1306 difftest.robIdx := ZeroExt(ptr, 10) 1307 difftest.lqIdx := ZeroExt(uop.lqIdx.value, 7) 1308 difftest.sqIdx := ZeroExt(uop.sqIdx.value, 7) 1309 difftest.isLoad := io.commits.info(i).commitType === CommitType.LOAD 1310 difftest.isStore := io.commits.info(i).commitType === CommitType.STORE 1311 } 1312 } 1313 } 1314 1315 if (env.EnableDifftest) { 1316 for (i <- 0 until CommitWidth) { 1317 val difftest = DifftestModule(new DiffLoadEvent, delay = 3) 1318 difftest.coreid := io.hartId 1319 difftest.index := i.U 1320 1321 val ptr = deqPtrVec(i).value 1322 val uop = commitDebugUop(i) 1323 val exuOut = debug_exuDebug(ptr) 1324 difftest.valid := io.commits.commitValid(i) && io.commits.isCommit 1325 difftest.paddr := exuOut.paddr 1326 difftest.opType := uop.ctrl.fuOpType 1327 difftest.fuType := uop.ctrl.fuType 1328 } 1329 } 1330 1331 if (env.EnableDifftest || env.AlwaysBasicDiff) { 1332 val dt_isXSTrap = Mem(RobSize, Bool()) 1333 for (i <- 0 until RenameWidth) { 1334 when (canEnqueue(i)) { 1335 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap 1336 } 1337 } 1338 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => 1339 io.commits.isCommit && v && dt_isXSTrap(d.value) 1340 } 1341 val hitTrap = trapVec.reduce(_||_) 1342 val difftest = DifftestModule(new DiffTrapEvent, dontCare = true) 1343 difftest.coreid := io.hartId 1344 difftest.hasTrap := hitTrap 1345 difftest.cycleCnt := timer 1346 difftest.instrCnt := instrCnt 1347 difftest.hasWFI := hasWFI 1348 1349 if (env.EnableDifftest) { 1350 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 1351 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN) 1352 difftest.code := trapCode 1353 difftest.pc := trapPC 1354 } 1355 } 1356 1357 val validEntriesBanks = (0 until (RobSize + 31) / 32).map(i => RegNext(PopCount(valid.drop(i * 32).take(32)))) 1358 val validEntries = RegNext(VecInit(validEntriesBanks).reduceTree(_ +& _)) 1359 val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }) 1360 val commitLoadVec = VecInit(commitLoadValid) 1361 val commitBranchVec = VecInit(commitBranchValid) 1362 val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }) 1363 val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }) 1364 val perfEvents = Seq( 1365 ("rob_interrupt_num ", io.flushOut.valid && intrEnable ), 1366 ("rob_exception_num ", io.flushOut.valid && exceptionEnable ), 1367 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe ), 1368 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst ), 1369 ("rob_commitUop ", ifCommit(commitCnt) ), 1370 ("rob_commitInstr ", ifCommitReg(trueCommitCnt) ), 1371 ("rob_commitInstrMove ", ifCommitReg(PopCount(RegNext(commitMoveVec))) ), 1372 ("rob_commitInstrFused ", ifCommitReg(fuseCommitCnt) ), 1373 ("rob_commitInstrLoad ", ifCommitReg(PopCount(RegNext(commitLoadVec))) ), 1374 ("rob_commitInstrBranch ", ifCommitReg(PopCount(RegNext(commitBranchVec))) ), 1375 ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec))) ), 1376 ("rob_commitInstrStore ", ifCommitReg(PopCount(RegNext(commitStoreVec))) ), 1377 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U) ), 1378 ("rob_walkCycle ", (state === s_walk) ), 1379 ("rob_1_4_valid ", validEntries <= (RobSize / 4).U ), 1380 ("rob_2_4_valid ", validEntries > (RobSize / 4).U && validEntries <= (RobSize / 2).U ), 1381 ("rob_3_4_valid ", validEntries > (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U), 1382 ("rob_4_4_valid ", validEntries > (RobSize * 3 / 4).U ), 1383 ) 1384 generatePerfEvent() 1385} 1386