1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.rob 18 19import org.chipsalliance.cde.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 24import utility._ 25import utils._ 26import xiangshan._ 27import xiangshan.backend.BackendParams 28import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 29import xiangshan.backend.fu.{FuType, FuConfig} 30import xiangshan.frontend.FtqPtr 31import xiangshan.mem.{LqPtr, LsqEnqIO, SqPtr} 32import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 33import xiangshan.backend.ctrlblock.{DebugLSIO, DebugLsInfo, LsTopdownInfo} 34import xiangshan.backend.rename.SnapshotGenerator 35 36class LsTopdownInfo(implicit p: Parameters) extends XSBundle { 37 val s1 = new Bundle { 38 val robIdx = UInt(log2Ceil(RobSize).W) 39 val vaddr_valid = Bool() 40 val vaddr_bits = UInt(VAddrBits.W) 41 } 42 val s2 = new Bundle { 43 val robIdx = UInt(log2Ceil(RobSize).W) 44 val paddr_valid = Bool() 45 val paddr_bits = UInt(PAddrBits.W) 46 val cache_miss_en = Bool() 47 val first_real_miss = Bool() 48 } 49 50 def s1SignalEnable(ena: LsTopdownInfo) = { 51 when(ena.s1.vaddr_valid) { 52 s1.vaddr_valid := true.B 53 s1.vaddr_bits := ena.s1.vaddr_bits 54 } 55 } 56 57 def s2SignalEnable(ena: LsTopdownInfo) = { 58 when(ena.s2.paddr_valid) { 59 s2.paddr_valid := true.B 60 s2.paddr_bits := ena.s2.paddr_bits 61 } 62 when(ena.s2.cache_miss_en) { 63 s2.first_real_miss := ena.s2.first_real_miss 64 } 65 } 66} 67 68object LsTopdownInfo { 69 def init(implicit p: Parameters): LsTopdownInfo = 0.U.asTypeOf(new LsTopdownInfo) 70} 71 72class RobPtr(entries: Int) extends CircularQueuePtr[RobPtr]( 73 entries 74) with HasCircularQueuePtrHelper { 75 76 def this()(implicit p: Parameters) = this(p(XSCoreParamsKey).RobSize) 77 78 def needFlush(redirect: Valid[Redirect]): Bool = { 79 val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx 80 redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx)) 81 } 82 83 def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR 84} 85 86object RobPtr { 87 def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = { 88 val ptr = Wire(new RobPtr) 89 ptr.flag := f 90 ptr.value := v 91 ptr 92 } 93} 94 95class RobCSRIO(implicit p: Parameters) extends XSBundle { 96 val intrBitSet = Input(Bool()) 97 val trapTarget = Input(UInt(VAddrBits.W)) 98 val isXRet = Input(Bool()) 99 val wfiEvent = Input(Bool()) 100 101 val fflags = Output(Valid(UInt(5.W))) 102 val vxsat = Output(Valid(Bool())) 103 val dirty_fs = Output(Bool()) 104 val perfinfo = new Bundle { 105 val retiredInstr = Output(UInt(3.W)) 106 } 107 108 val vcsrFlag = Output(Bool()) 109} 110 111class RobLsqIO(implicit p: Parameters) extends XSBundle { 112 val lcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 113 val scommit = Output(UInt(log2Up(CommitWidth + 1).W)) 114 val pendingld = Output(Bool()) 115 val pendingst = Output(Bool()) 116 val commit = Output(Bool()) 117 val pendingPtr = Output(new RobPtr) 118 119 val mmio = Input(Vec(LoadPipelineWidth, Bool())) 120 val uop = Input(Vec(LoadPipelineWidth, new DynInst)) 121} 122 123class RobEnqIO(implicit p: Parameters) extends XSBundle { 124 val canAccept = Output(Bool()) 125 val isEmpty = Output(Bool()) 126 // valid vector, for robIdx gen and walk 127 val needAlloc = Vec(RenameWidth, Input(Bool())) 128 val req = Vec(RenameWidth, Flipped(ValidIO(new DynInst))) 129 val resp = Vec(RenameWidth, Output(new RobPtr)) 130} 131 132class RobCoreTopDownIO(implicit p: Parameters) extends XSBundle { 133 val robHeadVaddr = Valid(UInt(VAddrBits.W)) 134 val robHeadPaddr = Valid(UInt(PAddrBits.W)) 135} 136 137class RobDispatchTopDownIO extends Bundle { 138 val robTrueCommit = Output(UInt(64.W)) 139 val robHeadLsIssue = Output(Bool()) 140} 141 142class RobDebugRollingIO extends Bundle { 143 val robTrueCommit = Output(UInt(64.W)) 144} 145 146class RobDispatchData(implicit p: Parameters) extends RobCommitInfo {} 147 148class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 149 val io = IO(new Bundle { 150 // for commits/flush 151 val state = Input(UInt(2.W)) 152 val deq_v = Vec(CommitWidth, Input(Bool())) 153 val deq_w = Vec(CommitWidth, Input(Bool())) 154 val exception_state = Flipped(ValidIO(new RobExceptionInfo)) 155 // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth) 156 val intrBitSetReg = Input(Bool()) 157 val hasNoSpecExec = Input(Bool()) 158 val interrupt_safe = Input(Bool()) 159 val blockCommit = Input(Bool()) 160 // output: the CommitWidth deqPtr 161 val out = Vec(CommitWidth, Output(new RobPtr)) 162 val next_out = Vec(CommitWidth, Output(new RobPtr)) 163 }) 164 165 val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr)))) 166 167 // for exceptions (flushPipe included) and interrupts: 168 // only consider the first instruction 169 val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe 170 val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0) 171 val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable) 172 173 // for normal commits: only to consider when there're no exceptions 174 // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions. 175 val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last) 176 val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i))) 177 val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B) 178 // when io.intrBitSetReg or there're possible exceptions in these instructions, 179 // only one instruction is allowed to commit 180 val allowOnlyOne = commit_exception || io.intrBitSetReg 181 val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt) 182 183 val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt)) 184 val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec) 185 186 deqPtrVec := deqPtrVec_next 187 188 io.next_out := deqPtrVec_next 189 io.out := deqPtrVec 190 191 when (io.state === 0.U) { 192 XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt) 193 } 194 195} 196 197class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 198 val io = IO(new Bundle { 199 // for input redirect 200 val redirect = Input(Valid(new Redirect)) 201 // for enqueue 202 val allowEnqueue = Input(Bool()) 203 val hasBlockBackward = Input(Bool()) 204 val enq = Vec(RenameWidth, Input(Bool())) 205 val out = Output(Vec(RenameWidth, new RobPtr)) 206 }) 207 208 val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr))) 209 210 // enqueue 211 val canAccept = io.allowEnqueue && !io.hasBlockBackward 212 val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U) 213 214 for ((ptr, i) <- enqPtrVec.zipWithIndex) { 215 when(io.redirect.valid) { 216 ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 217 }.otherwise { 218 ptr := ptr + dispatchNum 219 } 220 } 221 222 io.out := enqPtrVec 223 224} 225 226class RobExceptionInfo(implicit p: Parameters) extends XSBundle { 227 // val valid = Bool() 228 val robIdx = new RobPtr 229 val exceptionVec = ExceptionVec() 230 val flushPipe = Bool() 231 val isVset = Bool() 232 val replayInst = Bool() // redirect to that inst itself 233 val singleStep = Bool() // TODO add frontend hit beneath 234 val crossPageIPFFix = Bool() 235 val trigger = new TriggerCf 236 237// def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend 238// def trigger_after = trigger.getTimingBackend && trigger.getHitBackend 239 def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit 240 def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit 241 // only exceptions are allowed to writeback when enqueue 242 def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit 243} 244 245class ExceptionGen(params: BackendParams)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 246 val io = IO(new Bundle { 247 val redirect = Input(Valid(new Redirect)) 248 val flush = Input(Bool()) 249 val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo))) 250 // csr + load + store 251 val wb = Vec(params.numException, Flipped(ValidIO(new RobExceptionInfo))) 252 val out = ValidIO(new RobExceptionInfo) 253 val state = ValidIO(new RobExceptionInfo) 254 }) 255 256 val wbExuParams = params.allExuParams.filter(_.exceptionOut.nonEmpty) 257 258 def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): RobExceptionInfo = { 259 def getOldest_recursion(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = { 260 assert(valid.length == bits.length) 261 if (valid.length == 1) { 262 (valid, bits) 263 } else if (valid.length == 2) { 264 val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0))))) 265 for (i <- res.indices) { 266 res(i).valid := valid(i) 267 res(i).bits := bits(i) 268 } 269 val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1)) 270 (Seq(oldest.valid), Seq(oldest.bits)) 271 } else { 272 val left = getOldest_recursion(valid.take(valid.length / 2), bits.take(valid.length / 2)) 273 val right = getOldest_recursion(valid.drop(valid.length / 2), bits.drop(valid.length / 2)) 274 getOldest_recursion(left._1 ++ right._1, left._2 ++ right._2) 275 } 276 } 277 getOldest_recursion(valid, bits)._2.head 278 } 279 280 281 val currentValid = RegInit(false.B) 282 val current = Reg(new RobExceptionInfo) 283 284 // orR the exceptionVec 285 val lastCycleFlush = RegNext(io.flush) 286 val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush)) 287 288 // s0: compare wb in 4 groups 289 val csrvldu_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(t => t.isCsr || t.fuType == FuType.vldu).nonEmpty).map(_._1) 290 val load_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.ldu).nonEmpty).map(_._1) 291 val store_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(t => t.isSta || t.fuType == FuType.mou).nonEmpty).map(_._1) 292 val varith_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.isVecArith).nonEmpty).map(_._1) 293 // TODO: vsta_wb = ??? 294 295 val writebacks = Seq(csrvldu_wb, load_wb, store_wb, varith_wb) 296 val in_wb_valids = writebacks.map(_.map(w => w.valid && w.bits.has_exception && !lastCycleFlush)) 297 val wb_valid = in_wb_valids.zip(writebacks).map { case (valid, wb) => 298 valid.zip(wb.map(_.bits)).map { case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }.reduce(_ || _) 299 } 300 val wb_bits = in_wb_valids.zip(writebacks).map { case (valid, wb) => getOldest(valid, wb.map(_.bits))} 301 302 val s0_out_valid = wb_valid.map(x => RegNext(x)) 303 val s0_out_bits = wb_bits.map(x => RegNext(x)) 304 305 // s1: compare last four and current flush 306 val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) }) 307 val s1_out_bits = RegNext(getOldest(s0_out_valid, s0_out_bits)) 308 val s1_out_valid = RegNext(s1_valid.asUInt.orR) 309 310 val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 311 val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits))) 312 313 // s2: compare the input exception with the current one 314 // priorities: 315 // (1) system reset 316 // (2) current is valid: flush, remain, merge, update 317 // (3) current is not valid: s1 or enq 318 val current_flush = current.robIdx.needFlush(io.redirect) || io.flush 319 val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush 320 when (currentValid) { 321 when (current_flush) { 322 currentValid := Mux(s1_flush, false.B, s1_out_valid) 323 } 324 when (s1_out_valid && !s1_flush) { 325 when (isAfter(current.robIdx, s1_out_bits.robIdx)) { 326 current := s1_out_bits 327 }.elsewhen (current.robIdx === s1_out_bits.robIdx) { 328 current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec()) 329 current.flushPipe := s1_out_bits.flushPipe || current.flushPipe 330 current.replayInst := s1_out_bits.replayInst || current.replayInst 331 current.singleStep := s1_out_bits.singleStep || current.singleStep 332 current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf) 333 } 334 } 335 }.elsewhen (s1_out_valid && !s1_flush) { 336 currentValid := true.B 337 current := s1_out_bits 338 }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) { 339 currentValid := true.B 340 current := enq_bits 341 } 342 343 io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback 344 io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits) 345 io.state.valid := currentValid 346 io.state.bits := current 347 348} 349 350class RobFlushInfo(implicit p: Parameters) extends XSBundle { 351 val ftqIdx = new FtqPtr 352 val robIdx = new RobPtr 353 val ftqOffset = UInt(log2Up(PredictWidth).W) 354 val replayInst = Bool() 355} 356 357class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter { 358 override def shouldBeInlined: Boolean = false 359 360 lazy val module = new RobImp(this) 361 362 lazy val module = new RobImp(this)(p, params) 363} 364 365class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper) 366 with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents { 367 368 private val LduCnt = params.LduCnt 369 private val StaCnt = params.StaCnt 370 371 val io = IO(new Bundle() { 372 val hartId = Input(UInt(8.W)) 373 val redirect = Input(Valid(new Redirect)) 374 val enq = new RobEnqIO 375 val flushOut = ValidIO(new Redirect) 376 val exception = ValidIO(new ExceptionInfo) 377 // exu + brq 378 val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles) 379 val commits = Output(new RobCommitIO) 380 val rabCommits = Output(new RobCommitIO) 381 val diffCommits = Output(new DiffCommitIO) 382 val isVsetFlushPipe = Output(Bool()) 383 val vconfigPdest = Output(UInt(PhyRegIdxWidth.W)) 384 val lsq = new RobLsqIO 385 val robDeqPtr = Output(new RobPtr) 386 val csr = new RobCSRIO 387 val snpt = Input(new SnapshotPort) 388 val robFull = Output(Bool()) 389 val headNotReady = Output(Bool()) 390 val cpu_halt = Output(Bool()) 391 val wfi_enable = Input(Bool()) 392 393 val debug_ls = Flipped(new DebugLSIO) 394 val debugRobHead = Output(new DynInst) 395 val debugEnqLsq = Input(new LsqEnqIO) 396 val debugHeadLsIssue = Input(Bool()) 397 val lsTopdownInfo = Vec(LduCnt, Input(new LsTopdownInfo)) 398 val debugTopDown = new Bundle { 399 val toCore = new RobCoreTopDownIO 400 val toDispatch = new RobDispatchTopDownIO 401 val robHeadLqIdx = Valid(new LqPtr) 402 } 403 val debugRolling = new RobDebugRollingIO 404 }) 405 406 val exuWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(!_.bits.params.hasStdFu) 407 val stdWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(_.bits.params.hasStdFu) 408 val fflagsWBs = io.writeback.filter(x => x.bits.fflags.nonEmpty) 409 val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty) 410 val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty) 411 412 val exuWbPorts = io.writeback.filter(!_.bits.params.hasStdFu) 413 val stdWbPorts = io.writeback.filter(_.bits.params.hasStdFu) 414 val fflagsPorts = io.writeback.filter(x => x.bits.fflags.nonEmpty) 415 val vxsatPorts = io.writeback.filter(x => x.bits.vxsat.nonEmpty) 416 val exceptionPorts = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty) 417 val numExuWbPorts = exuWBs.length 418 val numStdWbPorts = stdWBs.length 419 420 421 println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth") 422// println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}") 423// println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}") 424// println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}") 425 426 427 // instvalid field 428 val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 429 // writeback status 430 431 val stdWritebacked = Reg(Vec(RobSize, Bool())) 432 val uopNumVec = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W)))) 433 val realDestSize = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W)))) 434 val fflagsDataModule = RegInit(VecInit(Seq.fill(RobSize)(0.U(5.W)))) 435 val vxsatDataModule = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 436 437 def isWritebacked(ptr: UInt): Bool = { 438 !uopNumVec(ptr).orR && stdWritebacked(ptr) 439 } 440 441 def isUopWritebacked(ptr: UInt): Bool = { 442 !uopNumVec(ptr).orR 443 } 444 445 val mmio = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 446 447 // data for redirect, exception, etc. 448 val flagBkup = Mem(RobSize, Bool()) 449 // some instructions are not allowed to trigger interrupts 450 // They have side effects on the states of the processor before they write back 451 val interrupt_safe = Mem(RobSize, Bool()) 452 453 // data for debug 454 // Warn: debug_* prefix should not exist in generated verilog. 455 val debug_microOp = Mem(RobSize, new DynInst) 456 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug 457 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug 458 val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init))) 459 val debug_lsTopdownInfo = RegInit(VecInit(Seq.fill(RobSize)(LsTopdownInfo.init))) 460 val debug_lqIdxValid = RegInit(VecInit.fill(RobSize)(false.B)) 461 val debug_lsIssued = RegInit(VecInit.fill(RobSize)(false.B)) 462 463 // pointers 464 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 465 val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr)) 466 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 467 468 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 469 val lastWalkPtr = Reg(new RobPtr) 470 val allowEnqueue = RegInit(true.B) 471 472 val enqPtr = enqPtrVec.head 473 val deqPtr = deqPtrVec(0) 474 val walkPtr = walkPtrVec(0) 475 476 val isEmpty = enqPtr === deqPtr 477 val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level) 478 479 val snptEnq = io.enq.canAccept && io.enq.req.head.valid && io.enq.req.head.bits.snapshot 480 val snapshots = SnapshotGenerator(enqPtrVec, snptEnq, io.snpt.snptDeq, io.redirect.valid) 481 val debug_lsIssue = WireDefault(debug_lsIssued) 482 debug_lsIssue(deqPtr.value) := io.debugHeadLsIssue 483 484 /** 485 * states of Rob 486 */ 487 val s_idle :: s_walk :: Nil = Enum(2) 488 val state = RegInit(s_idle) 489 490 /** 491 * Data Modules 492 * 493 * CommitDataModule: data from dispatch 494 * (1) read: commits/walk/exception 495 * (2) write: enqueue 496 * 497 * WritebackData: data from writeback 498 * (1) read: commits/walk/exception 499 * (2) write: write back from exe units 500 */ 501 val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth)) 502 val dispatchDataRead = dispatchData.io.rdata 503 504 val exceptionGen = Module(new ExceptionGen(params)) 505 val exceptionDataRead = exceptionGen.io.state 506 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 507 val vxsatDataRead = Wire(Vec(CommitWidth, Bool())) 508 509 io.robDeqPtr := deqPtr 510 io.debugRobHead := debug_microOp(deqPtr.value) 511 512 val rab = Module(new RenameBuffer(RabSize)) 513 514 rab.io.redirect.valid := io.redirect.valid 515 516 rab.io.req.zip(io.enq.req).map { case (dest, src) => 517 dest.bits := src.bits 518 dest.valid := src.valid && io.enq.canAccept 519 } 520 521 val commitDestSizeSeq = (0 until CommitWidth).map(i => realDestSize(deqPtrVec(i).value)) 522 val walkDestSizeSeq = (0 until CommitWidth).map(i => realDestSize(walkPtrVec(i).value)) 523 524 val commitSizeSum = io.commits.commitValid.zip(commitDestSizeSeq).map { case (commitValid, destSize) => 525 Mux(io.commits.isCommit && commitValid, destSize, 0.U) 526 }.reduce(_ +& _) 527 val walkSizeSum = io.commits.walkValid.zip(walkDestSizeSeq).map { case (walkValid, destSize) => 528 Mux(io.commits.isWalk && walkValid, destSize, 0.U) 529 }.reduce(_ +& _) 530 531 rab.io.fromRob.commitSize := commitSizeSum 532 rab.io.fromRob.walkSize := walkSizeSum 533 rab.io.snpt.snptEnq := false.B 534 rab.io.snpt.snptDeq := io.snpt.snptDeq 535 rab.io.snpt.snptSelect := io.snpt.snptSelect 536 rab.io.snpt.useSnpt := io.snpt.useSnpt 537 538 io.rabCommits := rab.io.commits 539 io.diffCommits := rab.io.diffCommits 540 541 /** 542 * Enqueue (from dispatch) 543 */ 544 // special cases 545 val hasBlockBackward = RegInit(false.B) 546 val hasWaitForward = RegInit(false.B) 547 val doingSvinval = RegInit(false.B) 548 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 549 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 550 when (isEmpty) { hasBlockBackward:= false.B } 551 // When any instruction commits, hasNoSpecExec should be set to false.B 552 when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasWaitForward:= false.B } 553 554 // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing. 555 // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle. 556 // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts. 557 val hasWFI = RegInit(false.B) 558 io.cpu_halt := hasWFI 559 // WFI Timeout: 2^20 = 1M cycles 560 val wfi_cycles = RegInit(0.U(20.W)) 561 when (hasWFI) { 562 wfi_cycles := wfi_cycles + 1.U 563 }.elsewhen (!hasWFI && RegNext(hasWFI)) { 564 wfi_cycles := 0.U 565 } 566 val wfi_timeout = wfi_cycles.andR 567 when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) { 568 hasWFI := false.B 569 } 570 571 val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.req.take(i).map(req => req.valid && req.bits.firstUop))))) 572 io.enq.canAccept := allowEnqueue && !hasBlockBackward && rab.io.canEnq 573 io.enq.resp := allocatePtrVec 574 val canEnqueue = VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop && io.enq.canAccept)) 575 val timer = GTimer() 576 for (i <- 0 until RenameWidth) { 577 // we don't check whether io.redirect is valid here since redirect has higher priority 578 when (canEnqueue(i)) { 579 val enqUop = io.enq.req(i).bits 580 val enqIndex = allocatePtrVec(i).value 581 // store uop in data module and debug_microOp Vec 582 debug_microOp(enqIndex) := enqUop 583 debug_microOp(enqIndex).debugInfo.dispatchTime := timer 584 debug_microOp(enqIndex).debugInfo.enqRsTime := timer 585 debug_microOp(enqIndex).debugInfo.selectTime := timer 586 debug_microOp(enqIndex).debugInfo.issueTime := timer 587 debug_microOp(enqIndex).debugInfo.writebackTime := timer 588 debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer 589 debug_microOp(enqIndex).debugInfo.tlbRespTime := timer 590 debug_lsInfo(enqIndex) := DebugLsInfo.init 591 debug_lsTopdownInfo(enqIndex) := LsTopdownInfo.init 592 debug_lqIdxValid(enqIndex) := false.B 593 debug_lsIssued(enqIndex) := false.B 594 595 when (enqUop.blockBackward) { 596 hasBlockBackward := true.B 597 } 598 when (enqUop.waitForward) { 599 hasWaitForward := true.B 600 } 601 val enqHasTriggerHit = false.B // io.enq.req(i).bits.cf.trigger.getHitFrontend 602 val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR 603 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 604 when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe)) 605 { 606 doingSvinval := true.B 607 } 608 // the end instruction of Svinval enqs so clear doingSvinval 609 when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe)) 610 { 611 doingSvinval := false.B 612 } 613 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 614 assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe))) 615 when (enqUop.isWFI && !enqHasException && !enqHasTriggerHit) { 616 hasWFI := true.B 617 } 618 619 mmio(enqIndex) := false.B 620 } 621 } 622 val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(req => req.valid && req.bits.firstUop)), 0.U) 623 io.enq.isEmpty := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR) 624 625 when (!io.wfi_enable) { 626 hasWFI := false.B 627 } 628 // sel vsetvl's flush position 629 val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3) 630 val vsetvlState = RegInit(vs_idle) 631 632 val firstVInstrFtqPtr = RegInit(0.U.asTypeOf(new FtqPtr)) 633 val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W))) 634 val firstVInstrRobIdx = RegInit(0.U.asTypeOf(new RobPtr)) 635 636 val enq0 = io.enq.req(0) 637 val enq0IsVset = enq0.bits.isVset && enq0.bits.lastUop && canEnqueue(0) 638 val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe 639 val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVArith(req.bits.fuType) && fire} 640 // for vs_idle 641 val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType))) 642 // for vs_waitVinstr 643 val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1) 644 val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req) 645 when(vsetvlState === vs_idle){ 646 firstVInstrFtqPtr := firstVInstrIdle.bits.ftqPtr 647 firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset 648 firstVInstrRobIdx := firstVInstrIdle.bits.robIdx 649 }.elsewhen(vsetvlState === vs_waitVinstr){ 650 when(Cat(enqIsVInstrOrVset).orR){ 651 firstVInstrFtqPtr := firstVInstrWait.bits.ftqPtr 652 firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset 653 firstVInstrRobIdx := firstVInstrWait.bits.robIdx 654 } 655 } 656 657 val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR 658 when(vsetvlState === vs_idle && !io.redirect.valid){ 659 when(enq0IsVsetFlush){ 660 vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr) 661 } 662 }.elsewhen(vsetvlState === vs_waitVinstr){ 663 when(io.redirect.valid){ 664 vsetvlState := vs_idle 665 }.elsewhen(Cat(enqIsVInstrOrVset).orR){ 666 vsetvlState := vs_waitFlush 667 } 668 }.elsewhen(vsetvlState === vs_waitFlush){ 669 when(io.redirect.valid){ 670 vsetvlState := vs_idle 671 } 672 } 673 674 // lqEnq 675 io.debugEnqLsq.needAlloc.map(_(0)).zip(io.debugEnqLsq.req).foreach { case (alloc, req) => 676 when(io.debugEnqLsq.canAccept && alloc && req.valid) { 677 debug_microOp(req.bits.robIdx.value).lqIdx := req.bits.lqIdx 678 debug_lqIdxValid(req.bits.robIdx.value) := true.B 679 } 680 } 681 682 // lsIssue 683 when(io.debugHeadLsIssue) { 684 debug_lsIssued(deqPtr.value) := true.B 685 } 686 687 /** 688 * Writeback (from execution units) 689 */ 690 for (wb <- exuWBs) { 691 when (wb.valid) { 692 val wbIdx = wb.bits.robIdx.value 693 debug_exuData(wbIdx) := wb.bits.data 694 debug_exuDebug(wbIdx) := wb.bits.debug 695 debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime 696 debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime 697 debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime 698 debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime 699 700 // debug for lqidx and sqidx 701 debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr)) 702 debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr)) 703 704 val debug_Uop = debug_microOp(wbIdx) 705 XSInfo(true.B, 706 p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " + 707 p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " + 708 p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.robIdx}\n" 709 ) 710 } 711 } 712 713 val writebackNum = PopCount(exuWBs.map(_.valid)) 714 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 715 716 for (i <- 0 until LoadPipelineWidth) { 717 when (RegNext(io.lsq.mmio(i))) { 718 mmio(RegNext(io.lsq.uop(i).robIdx).value) := true.B 719 } 720 } 721 722 /** 723 * RedirectOut: Interrupt and Exceptions 724 */ 725 val deqDispatchData = dispatchDataRead(0) 726 val debug_deqUop = debug_microOp(deqPtr.value) 727 728 val intrBitSetReg = RegNext(io.csr.intrBitSet) 729 val intrEnable = intrBitSetReg && !hasWaitForward && interrupt_safe(deqPtr.value) 730 val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 731 val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR || 732 exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit) 733 val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe 734 val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst 735 val exceptionEnable = isWritebacked(deqPtr.value) && deqHasException 736 737 XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n") 738 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n") 739 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n") 740 741 val isFlushPipe = isWritebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst) 742 743 val isVsetFlushPipe = isWritebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset 744// val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush) 745 val needModifyFtqIdxOffset = false.B 746 io.isVsetFlushPipe := isVsetFlushPipe 747 io.vconfigPdest := rab.io.vconfigPdest 748 // io.flushOut will trigger redirect at the next cycle. 749 // Block any redirect or commit at the next cycle. 750 val lastCycleFlush = RegNext(io.flushOut.valid) 751 752 io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush 753 io.flushOut.bits := DontCare 754 io.flushOut.bits.isRVC := deqDispatchData.isRVC 755 io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr) 756 io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx) 757 io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset) 758 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next" 759 io.flushOut.bits.interrupt := true.B 760 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 761 XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable) 762 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 763 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 764 765 val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush 766 io.exception.valid := RegNext(exceptionHappen) 767 io.exception.bits.pc := RegEnable(debug_deqUop.pc, exceptionHappen) 768 io.exception.bits.instr := RegEnable(debug_deqUop.instr, exceptionHappen) 769 io.exception.bits.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 770 io.exception.bits.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 771 io.exception.bits.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 772 io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 773 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 774// io.exception.bits.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen) 775 776 XSDebug(io.flushOut.valid, 777 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " + 778 p"excp $exceptionEnable flushPipe $isFlushPipe " + 779 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 780 781 782 /** 783 * Commits (and walk) 784 * They share the same width. 785 */ 786 val shouldWalkVec = VecInit(walkPtrVec.map(_ <= lastWalkPtr)) 787 val walkFinished = VecInit(walkPtrVec.map(_ >= lastWalkPtr)).asUInt.orR 788 rab.io.fromRob.walkEnd := state === s_walk && walkFinished 789 790 require(RenameWidth <= CommitWidth) 791 792 // wiring to csr 793 val (wflags, dirtyFs) = (0 until CommitWidth).map(i => { 794 val v = io.commits.commitValid(i) 795 val info = io.commits.info(i) 796 (v & info.wflags, v & info.dirtyFs) 797 }).unzip 798 val fflags = Wire(Valid(UInt(5.W))) 799 fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR 800 fflags.bits := wflags.zip(fflagsDataRead).map({ 801 case (w, f) => Mux(w, f, 0.U) 802 }).reduce(_|_) 803 val dirty_fs = io.commits.isCommit && VecInit(dirtyFs).asUInt.orR 804 805 val vxsat = Wire(Valid(Bool())) 806 vxsat.valid := io.commits.isCommit && vxsat.bits 807 vxsat.bits := io.commits.commitValid.zip(vxsatDataRead).map { 808 case (valid, vxsat) => valid & vxsat 809 }.reduce(_ | _) 810 811 // when mispredict branches writeback, stop commit in the next 2 cycles 812 // TODO: don't check all exu write back 813 val misPredWb = Cat(VecInit(redirectWBs.map(wb => 814 wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid 815 ))).orR 816 val misPredBlockCounter = Reg(UInt(3.W)) 817 misPredBlockCounter := Mux(misPredWb, 818 "b111".U, 819 misPredBlockCounter >> 1.U 820 ) 821 val misPredBlock = misPredBlockCounter(0) 822 val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI 823 824 io.commits.isWalk := state === s_walk 825 io.commits.isCommit := state === s_idle && !blockCommit 826 val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value))) 827 val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value))) 828 // store will be commited iff both sta & std have been writebacked 829 val commit_w = VecInit(deqPtrVec.map(ptr => isWritebacked(ptr.value))) 830 val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last) 831 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i))) 832 val allowOnlyOneCommit = commit_exception || intrBitSetReg 833 // for instructions that may block others, we don't allow them to commit 834 for (i <- 0 until CommitWidth) { 835 // defaults: state === s_idle and instructions commit 836 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 837 val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst 838 io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked 839 io.commits.info(i) := dispatchDataRead(i) 840 io.commits.robIdx(i) := deqPtrVec(i) 841 842 io.commits.walkValid(i) := shouldWalkVec(i) 843 when (state === s_walk) { 844 when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) { 845 XSError(!walk_v(i), s"The walking entry($i) should be valid\n") 846 } 847 } 848 849 XSInfo(io.commits.isCommit && io.commits.commitValid(i), 850 "retired pc %x wen %d ldest %d pdest %x data %x fflags: %b vxsat: %b\n", 851 debug_microOp(deqPtrVec(i).value).pc, 852 io.commits.info(i).rfWen, 853 io.commits.info(i).ldest, 854 io.commits.info(i).pdest, 855 debug_exuData(deqPtrVec(i).value), 856 fflagsDataRead(i), 857 vxsatDataRead(i) 858 ) 859 XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n", 860 debug_microOp(walkPtrVec(i).value).pc, 861 io.commits.info(i).rfWen, 862 io.commits.info(i).ldest, 863 debug_exuData(walkPtrVec(i).value) 864 ) 865 } 866 if (env.EnableDifftest) { 867 io.commits.info.map(info => dontTouch(info.pc)) 868 } 869 870 // sync fflags/dirty_fs/vxsat to csr 871 io.csr.fflags := RegNext(fflags) 872 io.csr.dirty_fs := RegNext(dirty_fs) 873 io.csr.vxsat := RegNext(vxsat) 874 875 // sync v csr to csr 876 // for difftest 877 if(env.AlwaysBasicDiff || env.EnableDifftest) { 878 val isDiffWriteVconfigVec = io.diffCommits.commitValid.zip(io.diffCommits.info).map { case (valid, info) => valid && info.ldest === VCONFIG_IDX.U && info.vecWen }.reverse 879 io.csr.vcsrFlag := RegNext(io.diffCommits.isCommit && Cat(isDiffWriteVconfigVec).orR) 880 } 881 else{ 882 io.csr.vcsrFlag := false.B 883 } 884 885 // commit load/store to lsq 886 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 887 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE)) 888 io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U)) 889 io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U)) 890 // indicate a pending load or store 891 io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value) && mmio(deqPtr.value)) 892 io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value)) 893 io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0)) 894 io.lsq.pendingPtr := RegNext(deqPtr) 895 896 /** 897 * state changes 898 * (1) redirect: switch to s_walk 899 * (2) walk: when walking comes to the end, switch to s_idle 900 */ 901 val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished && rab.io.status.walkEnd, s_idle, state)) 902 XSPerfAccumulate("s_idle_to_idle", state === s_idle && state_next === s_idle) 903 XSPerfAccumulate("s_idle_to_walk", state === s_idle && state_next === s_walk) 904 XSPerfAccumulate("s_walk_to_idle", state === s_walk && state_next === s_idle) 905 XSPerfAccumulate("s_walk_to_walk", state === s_walk && state_next === s_walk) 906 state := state_next 907 908 /** 909 * pointers and counters 910 */ 911 val deqPtrGenModule = Module(new RobDeqPtrWrapper) 912 deqPtrGenModule.io.state := state 913 deqPtrGenModule.io.deq_v := commit_v 914 deqPtrGenModule.io.deq_w := commit_w 915 deqPtrGenModule.io.exception_state := exceptionDataRead 916 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 917 deqPtrGenModule.io.hasNoSpecExec := hasWaitForward 918 deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value) 919 deqPtrGenModule.io.blockCommit := blockCommit 920 deqPtrVec := deqPtrGenModule.io.out 921 val deqPtrVec_next = deqPtrGenModule.io.next_out 922 923 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 924 enqPtrGenModule.io.redirect := io.redirect 925 enqPtrGenModule.io.allowEnqueue := allowEnqueue && rab.io.canEnq 926 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 927 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop)) 928 enqPtrVec := enqPtrGenModule.io.out 929 930 // next walkPtrVec: 931 // (1) redirect occurs: update according to state 932 // (2) walk: move forwards 933 val walkPtrVec_next = Mux(io.redirect.valid, 934 Mux(io.snpt.useSnpt, snapshots(io.snpt.snptSelect), deqPtrVec_next), 935 Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec) 936 ) 937 walkPtrVec := walkPtrVec_next 938 939 val numValidEntries = distanceBetween(enqPtr, deqPtr) 940 val commitCnt = PopCount(io.commits.commitValid) 941 942 allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U 943 944 val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0)) 945 when (io.redirect.valid) { 946 lastWalkPtr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx - 1.U, io.redirect.bits.robIdx) 947 } 948 949 950 /** 951 * States 952 * We put all the stage bits changes here. 953 954 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 955 * All states: (1) valid; (2) writebacked; (3) flagBkup 956 */ 957 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 958 959 // redirect logic writes 6 valid 960 val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr)) 961 val redirectTail = Reg(new RobPtr) 962 val redirectIdle :: redirectBusy :: Nil = Enum(2) 963 val redirectState = RegInit(redirectIdle) 964 val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail)) 965 when(redirectState === redirectBusy) { 966 redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U) 967 redirectHeadVec zip invMask foreach { 968 case (redirectHead, inv) => when(inv) { 969 valid(redirectHead.value) := false.B 970 } 971 } 972 when(!invMask.last) { 973 redirectState := redirectIdle 974 } 975 } 976 when(io.redirect.valid) { 977 redirectState := redirectBusy 978 when(redirectState === redirectIdle) { 979 redirectTail := enqPtr 980 } 981 redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) => 982 redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 983 } 984 } 985 // enqueue logic writes 6 valid 986 for (i <- 0 until RenameWidth) { 987 when (canEnqueue(i) && !io.redirect.valid) { 988 valid(allocatePtrVec(i).value) := true.B 989 } 990 } 991 // dequeue logic writes 6 valid 992 for (i <- 0 until CommitWidth) { 993 val commitValid = io.commits.isCommit && io.commits.commitValid(i) 994 when (commitValid) { 995 valid(commitReadAddr(i)) := false.B 996 } 997 } 998 999 // debug_inst update 1000 for(i <- 0 until (LduCnt + StaCnt)) { 1001 debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i)) 1002 debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i)) 1003 } 1004 for (i <- 0 until LduCnt) { 1005 debug_lsTopdownInfo(io.lsTopdownInfo(i).s1.robIdx).s1SignalEnable(io.lsTopdownInfo(i)) 1006 debug_lsTopdownInfo(io.lsTopdownInfo(i).s2.robIdx).s2SignalEnable(io.lsTopdownInfo(i)) 1007 } 1008 1009 // writeback logic set numWbPorts writebacked to true 1010 val blockWbSeq = Wire(Vec(exuWBs.length, Bool())) 1011 blockWbSeq.map(_ := false.B) 1012 for ((wb, blockWb) <- exuWBs.zip(blockWbSeq)) { 1013 when(wb.valid) { 1014 val wbHasException = wb.bits.exceptionVec.getOrElse(0.U).asUInt.orR 1015 val wbHasTriggerHit = false.B //Todo: wb.bits.trigger.getHitBackend 1016 val wbHasFlushPipe = wb.bits.flushPipe.getOrElse(false.B) 1017 val wbHasReplayInst = wb.bits.replay.getOrElse(false.B) //Todo: && wb.bits.replayInst 1018 blockWb := wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit 1019 } 1020 } 1021 1022 // if the first uop of an instruction is valid , write writebackedCounter 1023 val uopEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid) 1024 val instEnqValidSeq = io.enq.req.map (req => io.enq.canAccept && req.valid && req.bits.firstUop) 1025 val enqNeedWriteRFSeq = io.enq.req.map(_.bits.needWriteRf) 1026 val enqRobIdxSeq = io.enq.req.map(req => req.bits.robIdx.value) 1027 val enqUopNumVec = VecInit(io.enq.req.map(req => req.bits.numUops)) 1028 val enqEliminatedMoveVec = VecInit(io.enq.req.map(req => req.bits.eliminatedMove)) 1029 1030 private val enqWriteStdVec: Vec[Bool] = VecInit(io.enq.req.map { 1031 req => FuType.isAMO(req.bits.fuType) || FuType.isStore(req.bits.fuType) 1032 }) 1033 val fflags_wb = fflagsPorts 1034 val vxsat_wb = vxsatPorts 1035 for(i <- 0 until RobSize){ 1036 1037 val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === i.U) 1038 val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch } 1039 val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch } 1040 val instCanEnqFlag = Cat(instCanEnqSeq).orR 1041 1042 realDestSize(i) := Mux(!valid(i) && instCanEnqFlag || valid(i), realDestSize(i) + PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map{ case(writeFlag, valid) => writeFlag && valid }), 0.U) 1043 1044 val enqUopNum = PriorityMux(instCanEnqSeq, enqUopNumVec) 1045 val enqEliminatedMove = PriorityMux(instCanEnqSeq, enqEliminatedMoveVec) 1046 val enqWriteStd = PriorityMux(instCanEnqSeq, enqWriteStdVec) 1047 1048 val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 1049 val canWbNoBlockSeq = canWbSeq.zip(blockWbSeq).map{ case(canWb, blockWb) => canWb && !blockWb } 1050 val canStdWbSeq = VecInit(stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)) 1051 val wbCnt = PopCount(canWbNoBlockSeq) 1052 1053 val exceptionHas = RegInit(false.B) 1054 val exceptionHasWire = Wire(Bool()) 1055 exceptionHasWire := MuxCase(exceptionHas, Seq( 1056 (valid(i) && exceptionGen.io.out.valid && exceptionGen.io.out.bits.robIdx.value === i.U) -> true.B, 1057 !valid(i) -> false.B 1058 )) 1059 exceptionHas := exceptionHasWire 1060 1061 when (exceptionHas || exceptionHasWire) { 1062 // exception flush 1063 uopNumVec(i) := 0.U 1064 stdWritebacked(i) := true.B 1065 }.elsewhen(!valid(i) && instCanEnqFlag) { 1066 // enq set num of uops 1067 uopNumVec(i) := enqUopNum 1068 stdWritebacked(i) := Mux(enqWriteStd, false.B, true.B) 1069 }.elsewhen(valid(i)) { 1070 // update by writing back 1071 uopNumVec(i) := uopNumVec(i) - wbCnt 1072 when (canStdWbSeq.asUInt.orR) { 1073 stdWritebacked(i) := true.B 1074 } 1075 }.otherwise { 1076 uopNumVec(i) := 0.U 1077 } 1078 1079 val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U && writeback.bits.wflags.getOrElse(false.B)) 1080 val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.fold(false.B)(_ | _) 1081 fflagsDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, fflagsDataModule(i) | fflagsRes) 1082 1083 val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 1084 val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.fold(false.B)(_ | _) 1085 vxsatDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, vxsatDataModule(i) | vxsatRes) 1086 } 1087 1088 // flagBkup 1089 // enqueue logic set 6 flagBkup at most 1090 for (i <- 0 until RenameWidth) { 1091 when (canEnqueue(i)) { 1092 flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag 1093 } 1094 } 1095 1096 // interrupt_safe 1097 for (i <- 0 until RenameWidth) { 1098 // We RegNext the updates for better timing. 1099 // Note that instructions won't change the system's states in this cycle. 1100 when (RegNext(canEnqueue(i))) { 1101 // For now, we allow non-load-store instructions to trigger interrupts 1102 // For MMIO instructions, they should not trigger interrupts since they may 1103 // be sent to lower level before it writes back. 1104 // However, we cannot determine whether a load/store instruction is MMIO. 1105 // Thus, we don't allow load/store instructions to trigger an interrupt. 1106 // TODO: support non-MMIO load-store instructions to trigger interrupts 1107 val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType) 1108 interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts) 1109 } 1110 } 1111 1112 /** 1113 * read and write of data modules 1114 */ 1115 val commitReadAddr_next = Mux(state_next === s_idle, 1116 VecInit(deqPtrVec_next.map(_.value)), 1117 VecInit(walkPtrVec_next.map(_.value)) 1118 ) 1119 dispatchData.io.wen := canEnqueue 1120 dispatchData.io.waddr := allocatePtrVec.map(_.value) 1121 dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).zipWithIndex.foreach { case ((wdata, req), portIdx) => 1122 wdata.ldest := req.ldest 1123 wdata.rfWen := req.rfWen 1124 wdata.dirtyFs := req.dirtyFs 1125 wdata.vecWen := req.vecWen 1126 wdata.wflags := req.wfflags 1127 wdata.commitType := req.commitType 1128 wdata.pdest := req.pdest 1129 wdata.ftqIdx := req.ftqPtr 1130 wdata.ftqOffset := req.ftqOffset 1131 wdata.isMove := req.eliminatedMove 1132 wdata.isRVC := req.preDecodeInfo.isRVC 1133 wdata.pc := req.pc 1134 wdata.vtype := req.vpu.vtype 1135 wdata.isVset := req.isVset 1136 wdata.instrSize := req.instrSize 1137 } 1138 dispatchData.io.raddr := commitReadAddr_next 1139 1140 exceptionGen.io.redirect <> io.redirect 1141 exceptionGen.io.flush := io.flushOut.valid 1142 1143 val canEnqueueEG = VecInit(io.enq.req.map(req => req.valid && io.enq.canAccept)) 1144 for (i <- 0 until RenameWidth) { 1145 exceptionGen.io.enq(i).valid := canEnqueueEG(i) 1146 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 1147 exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec) 1148 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe 1149 exceptionGen.io.enq(i).bits.isVset := io.enq.req(i).bits.isVset 1150 exceptionGen.io.enq(i).bits.replayInst := false.B 1151 XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst") 1152 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep 1153 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix 1154 exceptionGen.io.enq(i).bits.trigger.clear() 1155 exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.trigger.frontendHit 1156 } 1157 1158 println(s"ExceptionGen:") 1159 println(s"num of exceptions: ${params.numException}") 1160 require(exceptionWBs.length == exceptionGen.io.wb.length, 1161 f"exceptionWBs.length: ${exceptionWBs.length}, " + 1162 f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}") 1163 for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) { 1164 exc_wb.valid := wb.valid 1165 exc_wb.bits.robIdx := wb.bits.robIdx 1166 exc_wb.bits.exceptionVec := wb.bits.exceptionVec.get 1167 exc_wb.bits.flushPipe := wb.bits.flushPipe.getOrElse(false.B) 1168 exc_wb.bits.isVset := false.B 1169 exc_wb.bits.replayInst := wb.bits.replay.getOrElse(false.B) 1170 exc_wb.bits.singleStep := false.B 1171 exc_wb.bits.crossPageIPFFix := false.B 1172 exc_wb.bits.trigger := 0.U.asTypeOf(exc_wb.bits.trigger) // Todo 1173// println(s" [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " + 1174// s"flushPipe ${configs.exists(_.flushPipe)}, " + 1175// s"replayInst ${configs.exists(_.replayInst)}") 1176 } 1177 1178 fflagsDataRead := (0 until CommitWidth).map(i => fflagsDataModule(deqPtrVec(i).value)) 1179 vxsatDataRead := (0 until CommitWidth).map(i => vxsatDataModule(deqPtrVec(i).value)) 1180 1181 val instrCntReg = RegInit(0.U(64.W)) 1182 val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) }) 1183 val trueCommitCnt = RegNext(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => Mux(v, i.instrSize, 0.U) }.reduce(_ +& _)) +& fuseCommitCnt 1184 val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U) 1185 val instrCnt = instrCntReg + retireCounter 1186 instrCntReg := instrCnt 1187 io.csr.perfinfo.retiredInstr := retireCounter 1188 io.robFull := !allowEnqueue 1189 io.headNotReady := commit_v.head && !commit_w.head 1190 1191 /** 1192 * debug info 1193 */ 1194 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 1195 XSDebug("") 1196 XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n") 1197 for(i <- 0 until RobSize) { 1198 XSDebug(false, !valid(i), "-") 1199 XSDebug(false, valid(i) && isWritebacked(i.U), "w") 1200 XSDebug(false, valid(i) && !isWritebacked(i.U), "v") 1201 } 1202 XSDebug(false, true.B, "\n") 1203 1204 for(i <- 0 until RobSize) { 1205 if (i % 4 == 0) XSDebug("") 1206 XSDebug(false, true.B, "%x ", debug_microOp(i).pc) 1207 XSDebug(false, !valid(i), "- ") 1208 XSDebug(false, valid(i) && isWritebacked(i.U), "w ") 1209 XSDebug(false, valid(i) && !isWritebacked(i.U), "v ") 1210 if (i % 4 == 3) XSDebug(false, true.B, "\n") 1211 } 1212 1213 def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U) 1214 def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U) 1215 1216 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 1217 XSPerfAccumulate("clock_cycle", 1.U) 1218 QueuePerf(RobSize, numValidEntries, numValidEntries === RobSize.U) 1219 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 1220 XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt)) 1221 XSPerfRolling("ipc", ifCommitReg(trueCommitCnt), 1000, clock, reset) 1222 XSPerfRolling("cpi", perfCnt = 1.U/*Cycle*/, eventTrigger = ifCommitReg(trueCommitCnt), granularity = 1000, clock, reset) 1223 val commitIsMove = commitDebugUop.map(_.isMove) 1224 XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }))) 1225 val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) 1226 XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e }))) 1227 XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt)) 1228 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 1229 val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t } 1230 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 1231 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 1232 val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t } 1233 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 1234 val commitLoadWaitBit = commitDebugUop.map(_.loadWaitBit) 1235 XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))) 1236 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 1237 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }))) 1238 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && isWritebacked(i.U)))) 1239 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire))) 1240 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 1241 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)) 1242 XSPerfAccumulate("walkCycleTotal", state === s_walk) 1243 XSPerfAccumulate("waitRabWalkEnd", state === s_walk && walkFinished && !rab.io.status.walkEnd) 1244 private val walkCycle = RegInit(0.U(8.W)) 1245 private val waitRabWalkCycle = RegInit(0.U(8.W)) 1246 walkCycle := Mux(io.redirect.valid, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U)) 1247 waitRabWalkCycle := Mux(state === s_walk && walkFinished, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U)) 1248 1249 XSPerfHistogram("walkRobCycleHist", walkCycle, state === s_walk && walkFinished, 0, 32) 1250 XSPerfHistogram("walkRabExtraCycleHist", waitRabWalkCycle, state === s_walk && walkFinished && rab.io.status.walkEnd, 0, 32) 1251 XSPerfHistogram("walkTotalCycleHist", walkCycle, state === s_walk && state_next === s_idle, 0, 32) 1252 1253 private val deqNotWritebacked = valid(deqPtr.value) && !isWritebacked(deqPtr.value) 1254 private val deqStdNotWritebacked = valid(deqPtr.value) && !stdWritebacked(deqPtr.value) 1255 private val deqUopNotWritebacked = valid(deqPtr.value) && !isUopWritebacked(deqPtr.value) 1256 private val deqHeadInfo = debug_microOp(deqPtr.value) 1257 val deqUopCommitType = io.commits.info(0).commitType 1258 1259 XSPerfAccumulate("waitAluCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.alu.U) 1260 XSPerfAccumulate("waitMulCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.mul.U) 1261 XSPerfAccumulate("waitDivCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.div.U) 1262 XSPerfAccumulate("waitBrhCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.brh.U) 1263 XSPerfAccumulate("waitJmpCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.jmp.U) 1264 XSPerfAccumulate("waitCsrCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.csr.U) 1265 XSPerfAccumulate("waitFenCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.fence.U) 1266 XSPerfAccumulate("waitBkuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.bku.U) 1267 XSPerfAccumulate("waitLduCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.ldu.U) 1268 XSPerfAccumulate("waitStuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1269 XSPerfAccumulate("waitStaCycle", deqUopNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1270 XSPerfAccumulate("waitStdCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1271 XSPerfAccumulate("waitAtmCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.mou.U) 1272 1273 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 1274 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 1275 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 1276 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 1277 XSPerfAccumulate("robHeadPC", io.commits.info(0).pc) 1278 XSPerfAccumulate("commitCompressCntAll", PopCount(io.commits.commitValid.zip(io.commits.info).map{case(valid, info) => io.commits.isCommit && valid && info.instrSize > 1.U})) 1279 (2 to RenameWidth).foreach(i => 1280 XSPerfAccumulate(s"commitCompressCnt${i}", PopCount(io.commits.commitValid.zip(io.commits.info).map{case(valid, info) => io.commits.isCommit && valid && info.instrSize === i.U})) 1281 ) 1282 XSPerfAccumulate("compressSize", io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => Mux(io.commits.isCommit && valid && info.instrSize > 1.U, info.instrSize, 0.U) }.reduce(_ +& _)) 1283 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 1284 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 1285 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 1286 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 1287 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 1288 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 1289 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 1290 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 1291 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 1292 } 1293 for (fuType <- FuType.functionNameMap.keys) { 1294 val fuName = FuType.functionNameMap(fuType) 1295 val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U ) 1296 XSPerfRolling(s"ipc_futype_${fuName}", ifCommit(PopCount(commitIsFuType)), 1000, clock, reset) 1297 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 1298 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 1299 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 1300 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 1301 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 1302 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 1303 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 1304 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 1305 } 1306 1307 // top-down info 1308 io.debugTopDown.toCore.robHeadVaddr.valid := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_valid 1309 io.debugTopDown.toCore.robHeadVaddr.bits := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_bits 1310 io.debugTopDown.toCore.robHeadPaddr.valid := debug_lsTopdownInfo(deqPtr.value).s2.paddr_valid 1311 io.debugTopDown.toCore.robHeadPaddr.bits := debug_lsTopdownInfo(deqPtr.value).s2.paddr_bits 1312 io.debugTopDown.toDispatch.robTrueCommit := ifCommitReg(trueCommitCnt) 1313 io.debugTopDown.toDispatch.robHeadLsIssue := debug_lsIssue(deqPtr.value) 1314 io.debugTopDown.robHeadLqIdx.valid := debug_lqIdxValid(deqPtr.value) 1315 io.debugTopDown.robHeadLqIdx.bits := debug_microOp(deqPtr.value).lqIdx 1316 1317 // rolling 1318 io.debugRolling.robTrueCommit := ifCommitReg(trueCommitCnt) 1319 1320 /** 1321 * DataBase info: 1322 * log trigger is at writeback valid 1323 * */ 1324 1325 /** 1326 * @todo add InstInfoEntry back 1327 * @author Maxpicca-Li 1328 */ 1329 1330 //difftest signals 1331 val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value 1332 1333 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1334 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1335 1336 for(i <- 0 until CommitWidth) { 1337 val idx = deqPtrVec(i).value 1338 wdata(i) := debug_exuData(idx) 1339 wpc(i) := SignExt(commitDebugUop(i).pc, XLEN) 1340 } 1341 1342 if (env.EnableDifftest || env.AlwaysBasicDiff) { 1343 // These are the structures used by difftest only and should be optimized after synthesis. 1344 val dt_eliminatedMove = Mem(RobSize, Bool()) 1345 val dt_isRVC = Mem(RobSize, Bool()) 1346 val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) 1347 for (i <- 0 until RenameWidth) { 1348 when (canEnqueue(i)) { 1349 dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 1350 dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC 1351 } 1352 } 1353 for (wb <- exuWBs) { 1354 when (wb.valid) { 1355 val wbIdx = wb.bits.robIdx.value 1356 dt_exuDebug(wbIdx) := wb.bits.debug 1357 } 1358 } 1359 // Always instantiate basic difftest modules. 1360 for (i <- 0 until CommitWidth) { 1361 val uop = commitDebugUop(i) 1362 val commitInfo = io.commits.info(i) 1363 val ptr = deqPtrVec(i).value 1364 val exuOut = dt_exuDebug(ptr) 1365 val eliminatedMove = dt_eliminatedMove(ptr) 1366 val isRVC = dt_isRVC(ptr) 1367 1368 val difftest = DifftestModule(new DiffInstrCommit(NRPhyRegs), delay = 3, dontCare = true) 1369 difftest.coreid := io.hartId 1370 difftest.index := i.U 1371 difftest.valid := io.commits.commitValid(i) && io.commits.isCommit 1372 difftest.skip := Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt) 1373 difftest.isRVC := isRVC 1374 difftest.rfwen := io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U 1375 difftest.fpwen := io.commits.commitValid(i) && uop.fpWen 1376 difftest.wpdest := commitInfo.pdest 1377 difftest.wdest := commitInfo.ldest 1378 difftest.nFused := Mux(CommitType.isFused(commitInfo.commitType), 1.U, 0.U) 1379 1380 if (env.EnableDifftest) { 1381 val uop = commitDebugUop(i) 1382 difftest.pc := SignExt(uop.cf.pc, XLEN) 1383 difftest.instr := uop.cf.instr 1384 difftest.robIdx := ZeroExt(ptr, 10) 1385 difftest.lqIdx := ZeroExt(uop.lqIdx.value, 7) 1386 difftest.sqIdx := ZeroExt(uop.sqIdx.value, 7) 1387 difftest.isLoad := io.commits.info(i).commitType === CommitType.LOAD 1388 difftest.isStore := io.commits.info(i).commitType === CommitType.STORE 1389 } 1390 } 1391 } 1392 1393 if (env.EnableDifftest) { 1394 for (i <- 0 until CommitWidth) { 1395 val difftest = DifftestModule(new DiffLoadEvent, delay = 3) 1396 difftest.coreid := io.hartId 1397 difftest.index := i.U 1398 1399 val ptr = deqPtrVec(i).value 1400 val uop = commitDebugUop(i) 1401 val exuOut = debug_exuDebug(ptr) 1402 difftest.valid := io.commits.commitValid(i) && io.commits.isCommit 1403 difftest.paddr := exuOut.paddr 1404 difftest.opType := uop.fuOpType 1405 difftest.fuType := uop.fuType 1406 } 1407 } 1408 1409 if (env.EnableDifftest || env.AlwaysBasicDiff) { 1410 val dt_isXSTrap = Mem(RobSize, Bool()) 1411 for (i <- 0 until RenameWidth) { 1412 when (canEnqueue(i)) { 1413 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap 1414 } 1415 } 1416 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => 1417 io.commits.isCommit && v && dt_isXSTrap(d.value) 1418 } 1419 val hitTrap = trapVec.reduce(_||_) 1420 val difftest = DifftestModule(new DiffTrapEvent, dontCare = true) 1421 difftest.coreid := io.hartId 1422 difftest.hasTrap := hitTrap 1423 difftest.cycleCnt := timer 1424 difftest.instrCnt := instrCnt 1425 difftest.hasWFI := hasWFI 1426 1427 if (env.EnableDifftest) { 1428 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 1429 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN) 1430 difftest.code := trapCode 1431 difftest.pc := trapPC 1432 } 1433 } 1434 1435 val validEntriesBanks = (0 until (RobSize + 31) / 32).map(i => RegNext(PopCount(valid.drop(i * 32).take(32)))) 1436 val validEntries = RegNext(VecInit(validEntriesBanks).reduceTree(_ +& _)) 1437 val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }) 1438 val commitLoadVec = VecInit(commitLoadValid) 1439 val commitBranchVec = VecInit(commitBranchValid) 1440 val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }) 1441 val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }) 1442 val perfEvents = Seq( 1443 ("rob_interrupt_num ", io.flushOut.valid && intrEnable ), 1444 ("rob_exception_num ", io.flushOut.valid && exceptionEnable ), 1445 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe ), 1446 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst ), 1447 ("rob_commitUop ", ifCommit(commitCnt) ), 1448 ("rob_commitInstr ", ifCommitReg(trueCommitCnt) ), 1449 ("rob_commitInstrMove ", ifCommitReg(PopCount(RegNext(commitMoveVec))) ), 1450 ("rob_commitInstrFused ", ifCommitReg(fuseCommitCnt) ), 1451 ("rob_commitInstrLoad ", ifCommitReg(PopCount(RegNext(commitLoadVec))) ), 1452 ("rob_commitInstrBranch ", ifCommitReg(PopCount(RegNext(commitBranchVec))) ), 1453 ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec))) ), 1454 ("rob_commitInstrStore ", ifCommitReg(PopCount(RegNext(commitStoreVec))) ), 1455 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U) ), 1456 ("rob_walkCycle ", (state === s_walk) ), 1457 ("rob_1_4_valid ", validEntries <= (RobSize / 4).U ), 1458 ("rob_2_4_valid ", validEntries > (RobSize / 4).U && validEntries <= (RobSize / 2).U ), 1459 ("rob_3_4_valid ", validEntries > (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U), 1460 ("rob_4_4_valid ", validEntries > (RobSize * 3 / 4).U ), 1461 ) 1462 generatePerfEvent() 1463} 1464