1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.rob 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 24import utility._ 25import utils._ 26import xiangshan._ 27import xiangshan.frontend.FtqPtr 28import xiangshan.v2backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 29import xiangshan.v2backend.{BackendParams, FuType} 30 31class RobPtr(entries: Int) extends CircularQueuePtr[RobPtr]( 32 entries 33) with HasCircularQueuePtrHelper { 34 35 def this()(implicit p: Parameters) = this(p(XSCoreParamsKey).RobSize) 36 37 def needFlush(redirect: Valid[Redirect]): Bool = { 38 val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx 39 redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx)) 40 } 41 42 def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR 43} 44 45object RobPtr { 46 def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = { 47 val ptr = Wire(new RobPtr) 48 ptr.flag := f 49 ptr.value := v 50 ptr 51 } 52} 53 54class RobCSRIO(implicit p: Parameters) extends XSBundle { 55 val intrBitSet = Input(Bool()) 56 val trapTarget = Input(UInt(VAddrBits.W)) 57 val isXRet = Input(Bool()) 58 val wfiEvent = Input(Bool()) 59 60 val fflags = Output(Valid(UInt(5.W))) 61 val dirty_fs = Output(Bool()) 62 val perfinfo = new Bundle { 63 val retiredInstr = Output(UInt(3.W)) 64 } 65 66 val vcsrFlag = Output(Bool()) 67} 68 69class RobLsqIO(implicit p: Parameters) extends XSBundle { 70 val lcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 71 val scommit = Output(UInt(log2Up(CommitWidth + 1).W)) 72 val pendingld = Output(Bool()) 73 val pendingst = Output(Bool()) 74 val commit = Output(Bool()) 75} 76 77class RobEnqIO(implicit p: Parameters) extends XSBundle { 78 val canAccept = Output(Bool()) 79 val isEmpty = Output(Bool()) 80 // valid vector, for robIdx gen and walk 81 val needAlloc = Vec(RenameWidth, Input(Bool())) 82 val req = Vec(RenameWidth, Flipped(ValidIO(new DynInst))) 83 val resp = Vec(RenameWidth, Output(new RobPtr)) 84} 85 86class RobDispatchData(implicit p: Parameters) extends RobCommitInfo 87 88class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 89 val io = IO(new Bundle { 90 // for commits/flush 91 val state = Input(UInt(2.W)) 92 val deq_v = Vec(CommitWidth, Input(Bool())) 93 val deq_w = Vec(CommitWidth, Input(Bool())) 94 val exception_state = Flipped(ValidIO(new RobExceptionInfo)) 95 // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth) 96 val intrBitSetReg = Input(Bool()) 97 val hasNoSpecExec = Input(Bool()) 98 val interrupt_safe = Input(Bool()) 99 val blockCommit = Input(Bool()) 100 // output: the CommitWidth deqPtr 101 val out = Vec(CommitWidth, Output(new RobPtr)) 102 val next_out = Vec(CommitWidth, Output(new RobPtr)) 103 }) 104 105 val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr)))) 106 107 // for exceptions (flushPipe included) and interrupts: 108 // only consider the first instruction 109 val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe 110 val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0) 111 val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable) 112 113 // for normal commits: only to consider when there're no exceptions 114 // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions. 115 val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last) 116 val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i))) 117 val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B) 118 // when io.intrBitSetReg or there're possible exceptions in these instructions, 119 // only one instruction is allowed to commit 120 val allowOnlyOne = commit_exception || io.intrBitSetReg 121 val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt) 122 123 val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt)) 124 val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec) 125 126 deqPtrVec := deqPtrVec_next 127 128 io.next_out := deqPtrVec_next 129 io.out := deqPtrVec 130 131 when (io.state === 0.U) { 132 XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt) 133 } 134 135} 136 137class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 138 val io = IO(new Bundle { 139 // for input redirect 140 val redirect = Input(Valid(new Redirect)) 141 // for enqueue 142 val allowEnqueue = Input(Bool()) 143 val hasBlockBackward = Input(Bool()) 144 val enq = Vec(RenameWidth, Input(Bool())) 145 val out = Output(Vec(RenameWidth, new RobPtr)) 146 }) 147 148 val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr))) 149 150 // enqueue 151 val canAccept = io.allowEnqueue && !io.hasBlockBackward 152 val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U) 153 154 for ((ptr, i) <- enqPtrVec.zipWithIndex) { 155 when(io.redirect.valid) { 156 ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 157 }.otherwise { 158 ptr := ptr + dispatchNum 159 } 160 } 161 162 io.out := enqPtrVec 163 164} 165 166class RobExceptionInfo(implicit p: Parameters) extends XSBundle { 167 // val valid = Bool() 168 val robIdx = new RobPtr 169 val exceptionVec = ExceptionVec() 170 val flushPipe = Bool() 171 val isVset = Bool() 172 val replayInst = Bool() // redirect to that inst itself 173 val singleStep = Bool() // TODO add frontend hit beneath 174 val crossPageIPFFix = Bool() 175 val trigger = new TriggerCf 176 177// def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend 178// def trigger_after = trigger.getTimingBackend && trigger.getHitBackend 179 def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit 180 def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit 181 // only exceptions are allowed to writeback when enqueue 182 def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit 183} 184 185class ExceptionGen(params: BackendParams)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 186 val io = IO(new Bundle { 187 val redirect = Input(Valid(new Redirect)) 188 val flush = Input(Bool()) 189 val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo))) 190 // csr + load + store 191 val wb = Vec(params.numException, Flipped(ValidIO(new RobExceptionInfo))) 192 val out = ValidIO(new RobExceptionInfo) 193 val state = ValidIO(new RobExceptionInfo) 194 }) 195 196 def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = { 197 assert(valid.length == bits.length) 198 assert(isPow2(valid.length)) 199 if (valid.length == 1) { 200 (valid, bits) 201 } else if (valid.length == 2) { 202 val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0))))) 203 for (i <- res.indices) { 204 res(i).valid := valid(i) 205 res(i).bits := bits(i) 206 } 207 val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1)) 208 (Seq(oldest.valid), Seq(oldest.bits)) 209 } else { 210 val left = getOldest(valid.take(valid.length / 2), bits.take(valid.length / 2)) 211 val right = getOldest(valid.takeRight(valid.length / 2), bits.takeRight(valid.length / 2)) 212 getOldest(left._1 ++ right._1, left._2 ++ right._2) 213 } 214 } 215 216 val currentValid = RegInit(false.B) 217 val current = Reg(new RobExceptionInfo) 218 219 // orR the exceptionVec 220 val lastCycleFlush = RegNext(io.flush) 221 val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush)) 222 val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush) 223 224 // s0: compare wb(1)~wb(LoadPipelineWidth) and wb(1 + LoadPipelineWidth)~wb(LoadPipelineWidth + StorePipelineWidth) 225 val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) } 226 val csr_wb_bits = io.wb(0).bits 227 val load_wb_bits = getOldest(in_wb_valid.slice(1, 1 + LoadPipelineWidth), io.wb.map(_.bits).slice(1, 1 + LoadPipelineWidth))._2(0) 228 val store_wb_bits = getOldest(in_wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth), io.wb.map(_.bits).slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth))._2(0) 229 val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid.slice(1, 1 + LoadPipelineWidth).reduce(_ || _), wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth).reduce(_ || _)))) 230 val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits))) 231 232 // s1: compare last four and current flush 233 val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) }) 234 val compare_01_valid = s0_out_valid(0) || s0_out_valid(1) 235 val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0)) 236 val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2)) 237 val s1_out_bits = RegNext(compare_bits) 238 val s1_out_valid = RegNext(s1_valid.asUInt.orR) 239 240 val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 241 val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits))) 242 243 // s2: compare the input exception with the current one 244 // priorities: 245 // (1) system reset 246 // (2) current is valid: flush, remain, merge, update 247 // (3) current is not valid: s1 or enq 248 val current_flush = current.robIdx.needFlush(io.redirect) || io.flush 249 val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush 250 when (currentValid) { 251 when (current_flush) { 252 currentValid := Mux(s1_flush, false.B, s1_out_valid) 253 } 254 when (s1_out_valid && !s1_flush) { 255 when (isAfter(current.robIdx, s1_out_bits.robIdx)) { 256 current := s1_out_bits 257 }.elsewhen (current.robIdx === s1_out_bits.robIdx) { 258 current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec()) 259 current.flushPipe := s1_out_bits.flushPipe || current.flushPipe 260 current.replayInst := s1_out_bits.replayInst || current.replayInst 261 current.singleStep := s1_out_bits.singleStep || current.singleStep 262 current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf) 263 } 264 } 265 }.elsewhen (s1_out_valid && !s1_flush) { 266 currentValid := true.B 267 current := s1_out_bits 268 }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) { 269 currentValid := true.B 270 current := enq_bits 271 } 272 273 io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback 274 io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits) 275 io.state.valid := currentValid 276 io.state.bits := current 277 278} 279 280class RobFlushInfo(implicit p: Parameters) extends XSBundle { 281 val ftqIdx = new FtqPtr 282 val robIdx = new RobPtr 283 val ftqOffset = UInt(log2Up(PredictWidth).W) 284 val replayInst = Bool() 285} 286 287class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter { 288 289 lazy val module = new RobImp(this)(p, params) 290 // 291 // override def generateWritebackIO( 292 // thisMod: Option[HasWritebackSource] = None, 293 // thisModImp: Option[HasWritebackSourceImp] = None 294 // ): Unit = { 295 // val sources = writebackSinksImp(thisMod, thisModImp) 296 // module.io.writeback.zip(sources).foreach(x => x._1 := x._2) 297 // } 298 //} 299} 300 301class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper) 302 with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents { 303 304 val io = IO(new Bundle() { 305 val hartId = Input(UInt(8.W)) 306 val redirect = Input(Valid(new Redirect)) 307 val enq = new RobEnqIO 308 val flushOut = ValidIO(new Redirect) 309 val isVsetFlushPipe = Output(Bool()) 310 val exception = ValidIO(new ExceptionInfo) 311 // exu + brq 312 val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles) 313 val commits = Output(new RobCommitIO) 314 val lsq = new RobLsqIO 315 val robDeqPtr = Output(new RobPtr) 316 val csr = new RobCSRIO 317 val robFull = Output(Bool()) 318 val cpu_halt = Output(Bool()) 319 val wfi_enable = Input(Bool()) 320 }) 321 322// def selectWb(index: Int, func: Seq[ExuConfig] => Boolean): Seq[(Seq[ExuConfig], ValidIO[ExuOutput])] = { 323// wbExuConfigs(index).zip(io.writeback(index)).filter(x => func(x._1)) 324// } 325 326 val exuWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(!_.bits.params.hasStdFu).toSeq 327 val stdWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(_.bits.params.hasStdFu).toSeq 328 val fflagsWBs = io.writeback.filter(x => x.bits.fflags.nonEmpty) 329 val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty) 330 val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty) 331 332 val exuWbPorts = io.writeback.filter(!_.bits.params.hasStdFu) 333 val stdWbPorts = io.writeback.filter(_.bits.params.hasStdFu) 334 val fflagsPorts = io.writeback.filter(x => x.bits.fflags.nonEmpty) 335 val exceptionPorts = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty) 336 val numExuWbPorts = exuWBs.length 337 val numStdWbPorts = stdWBs.length 338 339 340// val exeWbSel = wrapper.selWritebackSinks(_.exuConfigs.length) 341// val fflagsWbSel = wrapper.selWritebackSinks(_.exuConfigs.count(_.exists(_.writeFflags))) 342// val fflagsPorts = selectWb(fflagsWbSel, _.exists(_.writeFflags)) 343// val exceptionWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.needExceptionGen))) 344// val exceptionPorts = selectWb(fflagsWbSel, _.exists(_.needExceptionGen)) 345// val exuWbPorts = selectWb(exeWbSel, _.forall(_ != StdExeUnitCfg)) 346// val stdWbPorts = selectWb(exeWbSel, _.contains(StdExeUnitCfg)) 347 println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth") 348// println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}") 349// println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}") 350// println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}") 351 352 353 // instvalid field 354 val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 355 // writeback status 356 val writebacked = Mem(RobSize, Bool()) 357 val store_data_writebacked = Mem(RobSize, Bool()) 358 // data for redirect, exception, etc. 359 val flagBkup = Mem(RobSize, Bool()) 360 // some instructions are not allowed to trigger interrupts 361 // They have side effects on the states of the processor before they write back 362 val interrupt_safe = Mem(RobSize, Bool()) 363 364 // data for debug 365 // Warn: debug_* prefix should not exist in generated verilog. 366 val debug_microOp = Mem(RobSize, new DynInst) 367 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug 368 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug 369 370 // pointers 371 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 372 val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr)) 373 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 374 375 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 376 val allowEnqueue = RegInit(true.B) 377 378 val enqPtr = enqPtrVec.head 379 val deqPtr = deqPtrVec(0) 380 val walkPtr = walkPtrVec(0) 381 382 val isEmpty = enqPtr === deqPtr 383 val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level) 384 385 /** 386 * states of Rob 387 */ 388 val s_idle :: s_walk :: Nil = Enum(2) 389 val state = RegInit(s_idle) 390 391 /** 392 * Data Modules 393 * 394 * CommitDataModule: data from dispatch 395 * (1) read: commits/walk/exception 396 * (2) write: enqueue 397 * 398 * WritebackData: data from writeback 399 * (1) read: commits/walk/exception 400 * (2) write: write back from exe units 401 */ 402 val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth)) 403 val dispatchDataRead = dispatchData.io.rdata 404 405 val exceptionGen = Module(new ExceptionGen(params)) 406 val exceptionDataRead = exceptionGen.io.state 407 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 408 409 io.robDeqPtr := deqPtr 410 411 /** 412 * Enqueue (from dispatch) 413 */ 414 // special cases 415 val hasBlockBackward = RegInit(false.B) 416 val hasWaitForward = RegInit(false.B) 417 val doingSvinval = RegInit(false.B) 418 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 419 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 420 when (isEmpty) { hasBlockBackward:= false.B } 421 // When any instruction commits, hasNoSpecExec should be set to false.B 422 when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasWaitForward:= false.B } 423 424 // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing. 425 // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle. 426 // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts. 427 val hasWFI = RegInit(false.B) 428 io.cpu_halt := hasWFI 429 // WFI Timeout: 2^20 = 1M cycles 430 val wfi_cycles = RegInit(0.U(20.W)) 431 when (hasWFI) { 432 wfi_cycles := wfi_cycles + 1.U 433 }.elsewhen (!hasWFI && RegNext(hasWFI)) { 434 wfi_cycles := 0.U 435 } 436 val wfi_timeout = wfi_cycles.andR 437 when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) { 438 hasWFI := false.B 439 } 440 441 val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.needAlloc.take(i))))) 442 io.enq.canAccept := allowEnqueue && !hasBlockBackward 443 io.enq.resp := allocatePtrVec 444 val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept)) 445 val timer = GTimer() 446 for (i <- 0 until RenameWidth) { 447 // we don't check whether io.redirect is valid here since redirect has higher priority 448 when (canEnqueue(i)) { 449 val enqUop = io.enq.req(i).bits 450 val enqIndex = allocatePtrVec(i).value 451 // store uop in data module and debug_microOp Vec 452 debug_microOp(enqIndex) := enqUop 453 debug_microOp(enqIndex).debugInfo.dispatchTime := timer 454 debug_microOp(enqIndex).debugInfo.enqRsTime := timer 455 debug_microOp(enqIndex).debugInfo.selectTime := timer 456 debug_microOp(enqIndex).debugInfo.issueTime := timer 457 debug_microOp(enqIndex).debugInfo.writebackTime := timer 458 when (enqUop.blockBackward) { 459 hasBlockBackward := true.B 460 } 461 when (enqUop.waitForward) { 462 hasWaitForward := true.B 463 } 464 val enqHasTriggerHit = false.B // io.enq.req(i).bits.cf.trigger.getHitFrontend 465 val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR 466 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 467 when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe)) 468 { 469 doingSvinval := true.B 470 } 471 // the end instruction of Svinval enqs so clear doingSvinval 472 when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe)) 473 { 474 doingSvinval := false.B 475 } 476 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 477 assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe))) 478 when (enqUop.isWFI && !enqHasException && !enqHasTriggerHit) { 479 hasWFI := true.B 480 } 481 } 482 } 483 val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(_.valid)), 0.U) 484 io.enq.isEmpty := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR) 485 486 when (!io.wfi_enable) { 487 hasWFI := false.B 488 } 489 // sel vsetvl's flush position 490 val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3) 491 val vsetvlState = RegInit(vs_idle) 492 493 val firstVInstrFtqPtr = RegInit(0.U.asTypeOf(new FtqPtr)) 494 val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W))) 495 val firstVInstrRobIdx = RegInit(0.U.asTypeOf(new RobPtr)) 496 497 val enq0 = io.enq.req(0) 498 val enq0IsVset = FuType.isInt(enq0.bits.fuType) && ALUOpType.isVset(enq0.bits.fuOpType) && enq0.bits.uopIdx.andR && canEnqueue(0) 499 val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe 500 val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVpu(req.bits.fuType) && fire} 501 // for vs_idle 502 val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType))) 503 // for vs_waitVinstr 504 val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1) 505 val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req) 506 when(vsetvlState === vs_idle){ 507 firstVInstrFtqPtr := firstVInstrIdle.bits.ftqPtr 508 firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset 509 firstVInstrRobIdx := firstVInstrIdle.bits.robIdx 510 }.elsewhen(vsetvlState === vs_waitVinstr){ 511 firstVInstrFtqPtr := firstVInstrWait.bits.ftqPtr 512 firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset 513 firstVInstrRobIdx := firstVInstrWait.bits.robIdx 514 } 515 516 val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR 517 when(vsetvlState === vs_idle){ 518 when(enq0IsVsetFlush){ 519 vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr) 520 } 521 }.elsewhen(vsetvlState === vs_waitVinstr){ 522 when(io.redirect.valid){ 523 vsetvlState := vs_idle 524 }.elsewhen(Cat(enqIsVInstrOrVset).orR){ 525 vsetvlState := vs_waitFlush 526 } 527 }.elsewhen(vsetvlState === vs_waitFlush){ 528 when(io.redirect.valid){ 529 vsetvlState := vs_idle 530 } 531 } 532 533 /** 534 * Writeback (from execution units) 535 */ 536 for (wb <- exuWBs) { 537 when (wb.valid) { 538 val wbIdx = wb.bits.robIdx.value 539 debug_exuData(wbIdx) := wb.bits.data 540 debug_exuDebug(wbIdx) := wb.bits.debug 541 debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime 542 debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime 543 debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime 544 debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime 545 546 // debug for lqidx and sqidx 547// debug_microOp(wbIdx).lqIdx := wb.bits.uop.lqIdx 548// debug_microOp(wbIdx).sqIdx := wb.bits.uop.sqIdx 549 550 val debug_Uop = debug_microOp(wbIdx) 551 XSInfo(true.B, 552 p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " + 553 p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " + 554 p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.robIdx}\n" 555 ) 556 } 557 } 558 559 val writebackNum = PopCount(exuWBs.map(_.valid)) 560 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 561 562 563 /** 564 * RedirectOut: Interrupt and Exceptions 565 */ 566 val deqDispatchData = dispatchDataRead(0) 567 val debug_deqUop = debug_microOp(deqPtr.value) 568 569 val intrBitSetReg = RegNext(io.csr.intrBitSet) 570 val intrEnable = intrBitSetReg && !hasWaitForward && interrupt_safe(deqPtr.value) 571 val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 572 val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR || 573 exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit) 574 val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe 575 val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst 576 val exceptionEnable = writebacked(deqPtr.value) && deqHasException 577 578 XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n") 579 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n") 580 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n") 581 582 val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst) 583 584 val isVsetFlushPipe = writebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset 585 val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush) 586 io.isVsetFlushPipe := RegNext(isVsetFlushPipe) 587 // io.flushOut will trigger redirect at the next cycle. 588 // Block any redirect or commit at the next cycle. 589 val lastCycleFlush = RegNext(io.flushOut.valid) 590 591 io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush 592 io.flushOut.bits := DontCare 593 io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr) 594 io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx) 595 io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset) 596 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next" 597 io.flushOut.bits.interrupt := true.B 598 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 599 XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable) 600 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 601 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 602 603 val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush 604 io.exception.valid := RegNext(exceptionHappen) 605 io.exception.bits.pc := RegEnable(debug_deqUop.pc, exceptionHappen) 606 io.exception.bits.instr := RegEnable(debug_deqUop.instr, exceptionHappen) 607 io.exception.bits.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 608 io.exception.bits.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 609 io.exception.bits.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 610 io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 611 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 612// io.exception.bits.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen) 613 614 XSDebug(io.flushOut.valid, 615 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " + 616 p"excp $exceptionEnable flushPipe $isFlushPipe " + 617 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 618 619 620 /** 621 * Commits (and walk) 622 * They share the same width. 623 */ 624 val walkCounter = Reg(UInt(log2Up(RobSize + 1).W)) 625 val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter)) 626 val walkFinished = walkCounter <= CommitWidth.U 627 628 require(RenameWidth <= CommitWidth) 629 630 // wiring to csr 631 val (wflags, fpWen) = (0 until CommitWidth).map(i => { 632 val v = io.commits.commitValid(i) 633 val info = io.commits.info(i) 634 (v & info.wflags, v & info.fpWen) 635 }).unzip 636 val fflags = Wire(Valid(UInt(5.W))) 637 fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR 638 fflags.bits := wflags.zip(fflagsDataRead).map({ 639 case (w, f) => Mux(w, f, 0.U) 640 }).reduce(_|_) 641 val dirty_fs = io.commits.isCommit && VecInit(fpWen).asUInt.orR 642 643 // when mispredict branches writeback, stop commit in the next 2 cycles 644 // TODO: don't check all exu write back 645 val misPredWb = Cat(VecInit(redirectWBs.map(wb => 646 wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid 647 ))).orR 648 val misPredBlockCounter = Reg(UInt(3.W)) 649 misPredBlockCounter := Mux(misPredWb, 650 "b111".U, 651 misPredBlockCounter >> 1.U 652 ) 653 val misPredBlock = misPredBlockCounter(0) 654 val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI 655 656 io.commits.isWalk := state === s_walk 657 io.commits.isCommit := state === s_idle && !blockCommit 658 val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value))) 659 val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value))) 660 // store will be commited iff both sta & std have been writebacked 661 val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value))) 662 val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last) 663 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i))) 664 val allowOnlyOneCommit = commit_exception || intrBitSetReg 665 // for instructions that may block others, we don't allow them to commit 666 for (i <- 0 until CommitWidth) { 667 // defaults: state === s_idle and instructions commit 668 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 669 val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst 670 io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked 671 io.commits.info(i) := dispatchDataRead(i) 672 673 when (state === s_walk) { 674 io.commits.walkValid(i) := shouldWalkVec(i) 675 when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) { 676 XSError(!walk_v(i), s"why not $i???\n") 677 } 678 } 679 680 XSInfo(io.commits.isCommit && io.commits.commitValid(i), 681 "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b\n", 682 debug_microOp(deqPtrVec(i).value).pc, 683 io.commits.info(i).rfWen, 684 io.commits.info(i).ldest, 685 io.commits.info(i).pdest, 686 io.commits.info(i).old_pdest, 687 debug_exuData(deqPtrVec(i).value), 688 fflagsDataRead(i) 689 ) 690 XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n", 691 debug_microOp(walkPtrVec(i).value).pc, 692 io.commits.info(i).rfWen, 693 io.commits.info(i).ldest, 694 debug_exuData(walkPtrVec(i).value) 695 ) 696 } 697 if (env.EnableDifftest) { 698 io.commits.info.map(info => dontTouch(info.pc)) 699 } 700 701 // sync fflags/dirty_fs to csr 702 io.csr.fflags := RegNext(fflags) 703 io.csr.dirty_fs := RegNext(dirty_fs) 704 705 // sync v csr to csr 706// io.csr.vcsrFlag := RegNext(isVsetFlushPipe) 707 708 // commit load/store to lsq 709 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 710 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE)) 711 io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U)) 712 io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U)) 713 // indicate a pending load or store 714 io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value)) 715 io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value)) 716 io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0)) 717 718 /** 719 * state changes 720 * (1) redirect: switch to s_walk 721 * (2) walk: when walking comes to the end, switch to s_idle 722 */ 723 val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished, s_idle, state)) 724 XSPerfAccumulate("s_idle_to_idle", state === s_idle && state_next === s_idle) 725 XSPerfAccumulate("s_idle_to_walk", state === s_idle && state_next === s_walk) 726 XSPerfAccumulate("s_walk_to_idle", state === s_walk && state_next === s_idle) 727 XSPerfAccumulate("s_walk_to_walk", state === s_walk && state_next === s_walk) 728 state := state_next 729 730 /** 731 * pointers and counters 732 */ 733 val deqPtrGenModule = Module(new RobDeqPtrWrapper) 734 deqPtrGenModule.io.state := state 735 deqPtrGenModule.io.deq_v := commit_v 736 deqPtrGenModule.io.deq_w := commit_w 737 deqPtrGenModule.io.exception_state := exceptionDataRead 738 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 739 deqPtrGenModule.io.hasNoSpecExec := hasWaitForward 740 deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value) 741 deqPtrGenModule.io.blockCommit := blockCommit 742 deqPtrVec := deqPtrGenModule.io.out 743 val deqPtrVec_next = deqPtrGenModule.io.next_out 744 745 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 746 enqPtrGenModule.io.redirect := io.redirect 747 enqPtrGenModule.io.allowEnqueue := allowEnqueue 748 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 749 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid)) 750 enqPtrVec := enqPtrGenModule.io.out 751 752 val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U) 753 // next walkPtrVec: 754 // (1) redirect occurs: update according to state 755 // (2) walk: move forwards 756 val walkPtrVec_next = Mux(io.redirect.valid, 757 deqPtrVec_next, 758 Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec) 759 ) 760 walkPtrVec := walkPtrVec_next 761 762 val numValidEntries = distanceBetween(enqPtr, deqPtr) 763 val isLastUopVec = io.commits.info.map(_.uopIdx.andR) 764 val commitCnt = PopCount(io.commits.commitValid.zip(isLastUopVec).map{case(isCommitValid, isLastUop) => isCommitValid && isLastUop}) 765 766 allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U 767 768 val currentWalkPtr = Mux(state === s_walk, walkPtr, deqPtrVec_next(0)) 769 val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0)) 770 when (io.redirect.valid) { 771 // full condition: 772 // +& is used here because: 773 // When rob is full and the tail instruction causes a misprediction, 774 // the redirect robIdx is the deqPtr - 1. In this case, redirectWalkDistance 775 // is RobSize - 1. 776 // Since misprediction does not flush the instruction itself, flushItSelf is false.B. 777 // Previously we use `+` to count the walk distance and it causes overflows 778 // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize. 779 // The width of walkCounter also needs to be changed. 780 // empty condition: 781 // When the last instruction in ROB commits and causes a flush, a redirect 782 // will be raised later. In such circumstances, the redirect robIdx is before 783 // the deqPtrVec_next(0) and will cause underflow. 784 walkCounter := Mux(isBefore(io.redirect.bits.robIdx, deqPtrVec_next(0)), 0.U, 785 redirectWalkDistance +& !io.redirect.bits.flushItself()) 786 }.elsewhen (state === s_walk) { 787 walkCounter := walkCounter - thisCycleWalkCount 788 XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n") 789 } 790 791 792 /** 793 * States 794 * We put all the stage bits changes here. 795 796 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 797 * All states: (1) valid; (2) writebacked; (3) flagBkup 798 */ 799 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 800 801 // redirect logic writes 6 valid 802 val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr)) 803 val redirectTail = Reg(new RobPtr) 804 val redirectIdle :: redirectBusy :: Nil = Enum(2) 805 val redirectState = RegInit(redirectIdle) 806 val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail)) 807 when(redirectState === redirectBusy) { 808 redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U) 809 redirectHeadVec zip invMask foreach { 810 case (redirectHead, inv) => when(inv) { 811 valid(redirectHead.value) := false.B 812 } 813 } 814 when(!invMask.last) { 815 redirectState := redirectIdle 816 } 817 } 818 when(io.redirect.valid) { 819 redirectState := redirectBusy 820 when(redirectState === redirectIdle) { 821 redirectTail := enqPtr 822 } 823 redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) => 824 redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 825 } 826 } 827 // enqueue logic writes 6 valid 828 for (i <- 0 until RenameWidth) { 829 when (canEnqueue(i) && !io.redirect.valid) { 830 valid(allocatePtrVec(i).value) := true.B 831 } 832 } 833 // dequeue logic writes 6 valid 834 for (i <- 0 until CommitWidth) { 835 val commitValid = io.commits.isCommit && io.commits.commitValid(i) 836 when (commitValid) { 837 valid(commitReadAddr(i)) := false.B 838 } 839 } 840 841 // status field: writebacked 842 // enqueue logic set 6 writebacked to false 843 for (i <- 0 until RenameWidth) { 844 when (canEnqueue(i)) { 845 val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec).asUInt.orR 846 val enqHasTriggerHit = io.enq.req(i).bits.trigger.getHitFrontend 847 val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove 848 writebacked(allocatePtrVec(i).value) := enqIsWritebacked && !enqHasException && !enqHasTriggerHit 849 val isStu = io.enq.req(i).bits.fuType === FuType.stu.U 850 store_data_writebacked(allocatePtrVec(i).value) := !isStu 851 } 852 } 853 when (exceptionGen.io.out.valid) { 854 val wbIdx = exceptionGen.io.out.bits.robIdx.value 855 writebacked(wbIdx) := true.B 856 store_data_writebacked(wbIdx) := true.B 857 } 858 // writeback logic set numWbPorts writebacked to true 859 for (wb <- exuWBs) { 860 when (wb.valid) { 861 val wbIdx = wb.bits.robIdx.value 862 val wbHasException = wb.bits.exceptionVec.getOrElse(0.U).asUInt.orR 863 val wbHasTriggerHit = false.B //Todo: wb.bits.trigger.getHitBackend 864 val wbHasFlushPipe = wb.bits.flushPipe.getOrElse(false.B) 865 val wbHasReplayInst = wb.bits.replay.getOrElse(false.B) //Todo: && wb.bits.replayInst 866 val block_wb = wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit 867 writebacked(wbIdx) := !block_wb 868 } 869 } 870 // store data writeback logic mark store as data_writebacked 871 for (wb <- stdWBs) { 872 when(RegNext(wb.valid)) { 873 store_data_writebacked(RegNext(wb.bits.robIdx.value)) := true.B 874 } 875 } 876 877 // flagBkup 878 // enqueue logic set 6 flagBkup at most 879 for (i <- 0 until RenameWidth) { 880 when (canEnqueue(i)) { 881 flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag 882 } 883 } 884 885 // interrupt_safe 886 for (i <- 0 until RenameWidth) { 887 // We RegNext the updates for better timing. 888 // Note that instructions won't change the system's states in this cycle. 889 when (RegNext(canEnqueue(i))) { 890 // For now, we allow non-load-store instructions to trigger interrupts 891 // For MMIO instructions, they should not trigger interrupts since they may 892 // be sent to lower level before it writes back. 893 // However, we cannot determine whether a load/store instruction is MMIO. 894 // Thus, we don't allow load/store instructions to trigger an interrupt. 895 // TODO: support non-MMIO load-store instructions to trigger interrupts 896 val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType) 897 interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts) 898 } 899 } 900 901 /** 902 * read and write of data modules 903 */ 904 val commitReadAddr_next = Mux(state_next === s_idle, 905 VecInit(deqPtrVec_next.map(_.value)), 906 VecInit(walkPtrVec_next.map(_.value)) 907 ) 908 dispatchData.io.wen := canEnqueue 909 dispatchData.io.waddr := allocatePtrVec.map(_.value) 910 dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) => 911 wdata.ldest := req.ldest 912 wdata.rfWen := req.rfWen 913 wdata.fpWen := req.fpWen 914 wdata.vecWen := req.vecWen 915 wdata.wflags := req.fpu.wflags 916 wdata.commitType := req.commitType 917 wdata.pdest := req.pdest 918 wdata.old_pdest := req.oldPdest 919 wdata.ftqIdx := req.ftqPtr 920 wdata.ftqOffset := req.ftqOffset 921 wdata.isMove := req.eliminatedMove 922 wdata.pc := req.pc 923 wdata.uopIdx := req.uopIdx 924// wdata.vconfig := req.vconfig 925 } 926 dispatchData.io.raddr := commitReadAddr_next 927 928 exceptionGen.io.redirect <> io.redirect 929 exceptionGen.io.flush := io.flushOut.valid 930 for (i <- 0 until RenameWidth) { 931 exceptionGen.io.enq(i).valid := canEnqueue(i) 932 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 933 exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec) 934 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe 935 exceptionGen.io.enq(i).bits.isVset := FuType.isInt(io.enq.req(i).bits.fuType) && ALUOpType.isVset(io.enq.req(i).bits.fuOpType) 936 exceptionGen.io.enq(i).bits.replayInst := false.B 937 XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst") 938 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep 939 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix 940 exceptionGen.io.enq(i).bits.trigger.clear() 941 exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.trigger.frontendHit 942 } 943 944 println(s"ExceptionGen:") 945 println(s"num of exceptions: ${params.numException}") 946 require(exceptionWBs.length == exceptionGen.io.wb.length, 947 f"exceptionWBs.length: ${exceptionWBs.length}, " + 948 f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}") 949 for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) { 950 exc_wb.valid := wb.valid 951 exc_wb.bits.robIdx := wb.bits.robIdx 952 exc_wb.bits.exceptionVec := wb.bits.exceptionVec.get 953 exc_wb.bits.flushPipe := wb.bits.flushPipe.getOrElse(false.B) 954 exc_wb.bits.isVset := false.B 955 exc_wb.bits.replayInst := wb.bits.replay.getOrElse(false.B) 956 exc_wb.bits.singleStep := false.B 957 exc_wb.bits.crossPageIPFFix := false.B 958 exc_wb.bits.trigger := 0.U.asTypeOf(exc_wb.bits.trigger) // Todo 959// println(s" [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " + 960// s"flushPipe ${configs.exists(_.flushPipe)}, " + 961// s"replayInst ${configs.exists(_.replayInst)}") 962 } 963 964 val fflagsDataModule = Module(new SyncDataModuleTemplate( 965 UInt(5.W), RobSize, CommitWidth, fflagsWBs.size) 966 ) 967 require(fflagsWBs.length == fflagsDataModule.io.wen.length) 968 for(i <- fflagsWBs.indices){ 969 fflagsDataModule.io.wen (i) := fflagsWBs(i).valid 970 fflagsDataModule.io.waddr(i) := fflagsWBs(i).bits.robIdx.value 971 fflagsDataModule.io.wdata(i) := fflagsWBs(i).bits.fflags.get 972 } 973 fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value)) 974 fflagsDataRead := fflagsDataModule.io.rdata 975 976 977 val instrCntReg = RegInit(0.U(64.W)) 978 val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) }) 979 val trueCommitCnt = RegNext(commitCnt) +& fuseCommitCnt 980 val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U) 981 val instrCnt = instrCntReg + retireCounter 982 instrCntReg := instrCnt 983 io.csr.perfinfo.retiredInstr := retireCounter 984 io.robFull := !allowEnqueue 985 986 /** 987 * debug info 988 */ 989 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 990 XSDebug("") 991 for(i <- 0 until RobSize){ 992 XSDebug(false, !valid(i), "-") 993 XSDebug(false, valid(i) && writebacked(i), "w") 994 XSDebug(false, valid(i) && !writebacked(i), "v") 995 } 996 XSDebug(false, true.B, "\n") 997 998 for(i <- 0 until RobSize) { 999 if(i % 4 == 0) XSDebug("") 1000 XSDebug(false, true.B, "%x ", debug_microOp(i).pc) 1001 XSDebug(false, !valid(i), "- ") 1002 XSDebug(false, valid(i) && writebacked(i), "w ") 1003 XSDebug(false, valid(i) && !writebacked(i), "v ") 1004 if(i % 4 == 3) XSDebug(false, true.B, "\n") 1005 } 1006 1007 def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U) 1008 def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U) 1009 1010 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 1011 XSPerfAccumulate("clock_cycle", 1.U) 1012 QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue) 1013 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 1014 XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt)) 1015 val commitIsMove = commitDebugUop.map(_.isMove) 1016 XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }))) 1017 val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) 1018 XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e }))) 1019 XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt)) 1020 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 1021 val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t } 1022 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 1023 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 1024 val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t } 1025 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 1026 val commitLoadWaitBit = commitDebugUop.map(_.loadWaitBit) 1027 XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))) 1028 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 1029 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }))) 1030 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i)))) 1031 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire))) 1032 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 1033 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)) 1034 XSPerfAccumulate("walkCycle", state === s_walk) 1035 val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value) 1036 val deqUopCommitType = io.commits.info(0).commitType 1037 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 1038 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 1039 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 1040 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 1041 XSPerfAccumulate("robHeadPC", io.commits.info(0).pc) 1042 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 1043 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 1044 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 1045 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 1046 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 1047 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 1048 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 1049 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 1050 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 1051 } 1052 for (fuType <- FuType.functionNameMap.keys) { 1053 val fuName = FuType.functionNameMap(fuType) 1054 val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U ) 1055 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 1056 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 1057 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 1058 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 1059 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 1060 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 1061 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 1062 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 1063 if (fuType == FuType.fmac) { 1064 val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.fpu.ren3 ) 1065 XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma))) 1066 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency))) 1067 XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency))) 1068 } 1069 } 1070 1071 //difftest signals 1072 val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value 1073 1074 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1075 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1076 1077 for(i <- 0 until CommitWidth) { 1078 val idx = deqPtrVec(i).value 1079 wdata(i) := debug_exuData(idx) 1080 wpc(i) := SignExt(commitDebugUop(i).pc, XLEN) 1081 } 1082 1083 if (env.EnableDifftest) { 1084 for (i <- 0 until CommitWidth) { 1085 val difftest = Module(new DifftestInstrCommit) 1086 // assgin default value 1087 difftest.io := DontCare 1088 1089 difftest.io.clock := clock 1090 difftest.io.coreid := io.hartId 1091 difftest.io.index := i.U 1092 1093 val ptr = deqPtrVec(i).value 1094 val uop = commitDebugUop(i) 1095 val exuOut = debug_exuDebug(ptr) 1096 val exuData = debug_exuData(ptr) 1097 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1098 difftest.io.pc := RegNext(RegNext(RegNext(SignExt(uop.pc, XLEN)))) 1099 difftest.io.instr := RegNext(RegNext(RegNext(uop.instr))) 1100 difftest.io.robIdx := RegNext(RegNext(RegNext(ZeroExt(ptr, 10)))) 1101 difftest.io.lqIdx := RegNext(RegNext(RegNext(ZeroExt(uop.lqIdx.value, 7)))) 1102 difftest.io.sqIdx := RegNext(RegNext(RegNext(ZeroExt(uop.sqIdx.value, 7)))) 1103 difftest.io.isLoad := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.LOAD))) 1104 difftest.io.isStore := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.STORE))) 1105 difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(io.commits.info(i).commitType)))) 1106 // when committing an eliminated move instruction, 1107 // we must make sure that skip is properly set to false (output from EXU is random value) 1108 difftest.io.skip := RegNext(RegNext(RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)))) 1109 difftest.io.isRVC := RegNext(RegNext(RegNext(uop.preDecodeInfo.isRVC))) 1110 difftest.io.rfwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U))) 1111 difftest.io.fpwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).fpWen))) 1112 difftest.io.wpdest := RegNext(RegNext(RegNext(io.commits.info(i).pdest))) 1113 difftest.io.wdest := RegNext(RegNext(RegNext(io.commits.info(i).ldest))) 1114 1115 difftest.io.isVsetFirst := RegNext(RegNext(RegNext(io.commits.commitValid(i) && !io.commits.info(i).uopIdx.orR))) 1116 // // runahead commit hint 1117 // val runahead_commit = Module(new DifftestRunaheadCommitEvent) 1118 // runahead_commit.io.clock := clock 1119 // runahead_commit.io.coreid := io.hartId 1120 // runahead_commit.io.index := i.U 1121 // runahead_commit.io.valid := difftest.io.valid && 1122 // (commitBranchValid(i) || commitIsStore(i)) 1123 // // TODO: is branch or store 1124 // runahead_commit.io.pc := difftest.io.pc 1125 } 1126 } 1127 else if (env.AlwaysBasicDiff) { 1128 // These are the structures used by difftest only and should be optimized after synthesis. 1129 val dt_eliminatedMove = Mem(RobSize, Bool()) 1130 val dt_isRVC = Mem(RobSize, Bool()) 1131 val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) 1132 for (i <- 0 until RenameWidth) { 1133 when (canEnqueue(i)) { 1134 dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 1135 dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC 1136 } 1137 } 1138 for (wb <- exuWBs) { 1139 when (wb.valid) { 1140 val wbIdx = wb.bits.robIdx.value 1141 dt_exuDebug(wbIdx) := wb.bits.debug 1142 } 1143 } 1144 // Always instantiate basic difftest modules. 1145 for (i <- 0 until CommitWidth) { 1146 val commitInfo = io.commits.info(i) 1147 val ptr = deqPtrVec(i).value 1148 val exuOut = dt_exuDebug(ptr) 1149 val eliminatedMove = dt_eliminatedMove(ptr) 1150 val isRVC = dt_isRVC(ptr) 1151 1152 val difftest = Module(new DifftestBasicInstrCommit) 1153 difftest.io.clock := clock 1154 difftest.io.coreid := io.hartId 1155 difftest.io.index := i.U 1156 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1157 difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(commitInfo.commitType)))) 1158 difftest.io.skip := RegNext(RegNext(RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)))) 1159 difftest.io.isRVC := RegNext(RegNext(RegNext(isRVC))) 1160 difftest.io.rfwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U))) 1161 difftest.io.fpwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.fpWen))) 1162 difftest.io.wpdest := RegNext(RegNext(RegNext(commitInfo.pdest))) 1163 difftest.io.wdest := RegNext(RegNext(RegNext(commitInfo.ldest))) 1164 } 1165 } 1166 1167 if (env.EnableDifftest) { 1168 for (i <- 0 until CommitWidth) { 1169 val difftest = Module(new DifftestLoadEvent) 1170 difftest.io.clock := clock 1171 difftest.io.coreid := io.hartId 1172 difftest.io.index := i.U 1173 1174 val ptr = deqPtrVec(i).value 1175 val uop = commitDebugUop(i) 1176 val exuOut = debug_exuDebug(ptr) 1177 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1178 difftest.io.paddr := RegNext(RegNext(RegNext(exuOut.paddr))) 1179 difftest.io.opType := RegNext(RegNext(RegNext(uop.fuOpType))) 1180 difftest.io.fuType := RegNext(RegNext(RegNext(uop.fuType))) 1181 } 1182 } 1183 1184 // Always instantiate basic difftest modules. 1185 if (env.EnableDifftest) { 1186 val dt_isXSTrap = Mem(RobSize, Bool()) 1187 for (i <- 0 until RenameWidth) { 1188 when (canEnqueue(i)) { 1189 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap 1190 } 1191 } 1192 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) } 1193 val hitTrap = trapVec.reduce(_||_) 1194 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 1195 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN) 1196 val difftest = Module(new DifftestTrapEvent) 1197 difftest.io.clock := clock 1198 difftest.io.coreid := io.hartId 1199 difftest.io.valid := hitTrap 1200 difftest.io.code := trapCode 1201 difftest.io.pc := trapPC 1202 difftest.io.cycleCnt := timer 1203 difftest.io.instrCnt := instrCnt 1204 difftest.io.hasWFI := hasWFI 1205 } 1206 else if (env.AlwaysBasicDiff) { 1207 val dt_isXSTrap = Mem(RobSize, Bool()) 1208 for (i <- 0 until RenameWidth) { 1209 when (canEnqueue(i)) { 1210 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap 1211 } 1212 } 1213 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) } 1214 val hitTrap = trapVec.reduce(_||_) 1215 val difftest = Module(new DifftestBasicTrapEvent) 1216 difftest.io.clock := clock 1217 difftest.io.coreid := io.hartId 1218 difftest.io.valid := hitTrap 1219 difftest.io.cycleCnt := timer 1220 difftest.io.instrCnt := instrCnt 1221 } 1222 1223 val validEntriesBanks = (0 until (RobSize + 63) / 64).map(i => RegNext(PopCount(valid.drop(i * 64).take(64)))) 1224 val validEntries = RegNext(ParallelOperation(validEntriesBanks, (a: UInt, b: UInt) => a +& b)) 1225 val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }) 1226 val commitLoadVec = VecInit(commitLoadValid) 1227 val commitBranchVec = VecInit(commitBranchValid) 1228 val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }) 1229 val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }) 1230 val perfEvents = Seq( 1231 ("rob_interrupt_num ", io.flushOut.valid && intrEnable ), 1232 ("rob_exception_num ", io.flushOut.valid && exceptionEnable ), 1233 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe ), 1234 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst ), 1235 ("rob_commitUop ", ifCommit(commitCnt) ), 1236 ("rob_commitInstr ", ifCommitReg(trueCommitCnt) ), 1237 ("rob_commitInstrMove ", ifCommitReg(PopCount(RegNext(commitMoveVec))) ), 1238 ("rob_commitInstrFused ", ifCommitReg(fuseCommitCnt) ), 1239 ("rob_commitInstrLoad ", ifCommitReg(PopCount(RegNext(commitLoadVec))) ), 1240 ("rob_commitInstrBranch ", ifCommitReg(PopCount(RegNext(commitBranchVec))) ), 1241 ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec))) ), 1242 ("rob_commitInstrStore ", ifCommitReg(PopCount(RegNext(commitStoreVec))) ), 1243 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U) ), 1244 ("rob_walkCycle ", (state === s_walk) ), 1245 ("rob_1_4_valid ", validEntries <= (RobSize / 4).U ), 1246 ("rob_2_4_valid ", validEntries > (RobSize / 4).U && validEntries <= (RobSize / 2).U ), 1247 ("rob_3_4_valid ", validEntries > (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U), 1248 ("rob_4_4_valid ", validEntries > (RobSize * 3 / 4).U ), 1249 ) 1250 generatePerfEvent() 1251} 1252