1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15* 16* 17* Acknowledgement 18* 19* This implementation is inspired by several key papers: 20* [1] James E. Smith, and Andrew R. Pleszkun. "[Implementation of precise interrupts in pipelined processors.] 21* (https://dl.acm.org/doi/10.5555/327010.327125)" 12th Annual International Symposium on Computer Architecture (ISCA). 22* 1985. 23***************************************************************************************/ 24 25package xiangshan.backend.rob 26 27import org.chipsalliance.cde.config.Parameters 28import chisel3._ 29import chisel3.util._ 30import chisel3.experimental.BundleLiterals._ 31import difftest._ 32import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 33import utility._ 34import utils._ 35import xiangshan._ 36import xiangshan.backend.GPAMemEntry 37import xiangshan.backend.{BackendParams, RatToVecExcpMod, RegWriteFromRab, VecExcpInfo} 38import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 39import xiangshan.backend.fu.{FuConfig, FuType} 40import xiangshan.frontend.FtqPtr 41import xiangshan.mem.{LqPtr, LsqEnqIO, SqPtr} 42import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 43import xiangshan.backend.ctrlblock.{DebugLSIO, DebugLsInfo, LsTopdownInfo} 44import xiangshan.backend.fu.vector.Bundles.VType 45import xiangshan.backend.rename.SnapshotGenerator 46import yunsuan.VfaluType 47import xiangshan.backend.rob.RobBundles._ 48import xiangshan.backend.trace._ 49import chisel3.experimental.BundleLiterals._ 50 51class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter { 52 override def shouldBeInlined: Boolean = false 53 54 lazy val module = new RobImp(this)(p, params) 55} 56 57class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper) 58 with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents with HasCriticalErrors { 59 60 private val LduCnt = params.LduCnt 61 private val StaCnt = params.StaCnt 62 private val HyuCnt = params.HyuCnt 63 64 val io = IO(new Bundle() { 65 val hartId = Input(UInt(hartIdLen.W)) 66 val redirect = Input(Valid(new Redirect)) 67 val enq = new RobEnqIO 68 val flushOut = ValidIO(new Redirect) 69 val exception = ValidIO(new ExceptionInfo) 70 // exu + brq 71 val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles) 72 val exuWriteback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles) 73 val writebackNums = Flipped(Vec(writeback.size - params.StdCnt, ValidIO(UInt(writeback.size.U.getWidth.W)))) 74 val writebackNeedFlush = Input(Vec(params.allExuParams.filter(_.needExceptionGen).length, Bool())) 75 val commits = Output(new RobCommitIO) 76 val trace = new Bundle { 77 val blockCommit = Input(Bool()) 78 val traceCommitInfo = new TraceBundle(hasIaddr = false, CommitWidth, IretireWidthInPipe) 79 } 80 val rabCommits = Output(new RabCommitIO) 81 val diffCommits = if (backendParams.basicDebugEn) Some(Output(new DiffCommitIO)) else None 82 val isVsetFlushPipe = Output(Bool()) 83 val lsq = new RobLsqIO 84 val robDeqPtr = Output(new RobPtr) 85 val csr = new RobCSRIO 86 val snpt = Input(new SnapshotPort) 87 val robFull = Output(Bool()) 88 val headNotReady = Output(Bool()) 89 val cpu_halt = Output(Bool()) 90 val wfi_enable = Input(Bool()) 91 val toDecode = new Bundle { 92 val isResumeVType = Output(Bool()) 93 val walkToArchVType = Output(Bool()) 94 val walkVType = ValidIO(VType()) 95 val commitVType = new Bundle { 96 val vtype = ValidIO(VType()) 97 val hasVsetvl = Output(Bool()) 98 } 99 } 100 val fromVecExcpMod = Input(new Bundle { 101 val busy = Bool() 102 }) 103 val readGPAMemAddr = ValidIO(new Bundle { 104 val ftqPtr = new FtqPtr() 105 val ftqOffset = UInt(log2Up(PredictWidth).W) 106 }) 107 val readGPAMemData = Input(new GPAMemEntry) 108 val vstartIsZero = Input(Bool()) 109 110 val toVecExcpMod = Output(new Bundle { 111 val logicPhyRegMap = Vec(RabCommitWidth, ValidIO(new RegWriteFromRab)) 112 val excpInfo = ValidIO(new VecExcpInfo) 113 }) 114 val debug_ls = Flipped(new DebugLSIO) 115 val debugRobHead = Output(new DynInst) 116 val debugEnqLsq = Input(new LsqEnqIO) 117 val debugHeadLsIssue = Input(Bool()) 118 val lsTopdownInfo = Vec(LduCnt + HyuCnt, Input(new LsTopdownInfo)) 119 val debugTopDown = new Bundle { 120 val toCore = new RobCoreTopDownIO 121 val toDispatch = new RobDispatchTopDownIO 122 val robHeadLqIdx = Valid(new LqPtr) 123 } 124 val debugRolling = new RobDebugRollingIO 125 126 // store event difftest information 127 val storeDebugInfo = Vec(EnsbufferWidth, new Bundle { 128 val robidx = Input(new RobPtr) 129 val pc = Output(UInt(VAddrBits.W)) 130 }) 131 }) 132 133 val exuWBs: Seq[ValidIO[ExuOutput]] = io.exuWriteback.filter(!_.bits.params.hasStdFu).toSeq 134 val stdWBs: Seq[ValidIO[ExuOutput]] = io.exuWriteback.filter(_.bits.params.hasStdFu).toSeq 135 val fflagsWBs = io.exuWriteback.filter(x => x.bits.fflags.nonEmpty).toSeq 136 val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty).toSeq 137 val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty).toSeq 138 val vxsatWBs = io.exuWriteback.filter(x => x.bits.vxsat.nonEmpty).toSeq 139 val branchWBs = io.exuWriteback.filter(_.bits.params.hasBrhFu).toSeq 140 val csrWBs = io.exuWriteback.filter(x => x.bits.params.hasCSR).toSeq 141 142 val numExuWbPorts = exuWBs.length 143 val numStdWbPorts = stdWBs.length 144 val bankAddrWidth = log2Up(CommitWidth) 145 146 println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth") 147 148 val rab = Module(new RenameBuffer(RabSize)) 149 val vtypeBuffer = Module(new VTypeBuffer(VTypeBufferSize)) 150 val bankNum = 8 151 assert(RobSize % bankNum == 0, "RobSize % bankNum must be 0") 152 val robEntries = RegInit(VecInit.fill(RobSize)((new RobEntryBundle).Lit(_.valid -> false.B))) 153 // pointers 154 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 155 val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr)) 156 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 157 val deqPtrVec_next = Wire(Vec(CommitWidth, Output(new RobPtr))) 158 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 159 val walkPtrTrue = Reg(new RobPtr) 160 val lastWalkPtr = Reg(new RobPtr) 161 val allowEnqueue = RegInit(true.B) 162 val vecExcpInfo = RegInit(ValidIO(new VecExcpInfo).Lit( 163 _.valid -> false.B, 164 )) 165 166 /** 167 * Enqueue (from dispatch) 168 */ 169 // special cases 170 val hasBlockBackward = RegInit(false.B) 171 val hasWaitForward = RegInit(false.B) 172 val doingSvinval = RegInit(false.B) 173 val enqPtr = enqPtrVec(0) 174 val deqPtr = deqPtrVec(0) 175 val walkPtr = walkPtrVec(0) 176 val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.req.take(i).map(req => req.valid && req.bits.firstUop))))) 177 io.enq.canAccept := allowEnqueue && !hasBlockBackward && rab.io.canEnq && vtypeBuffer.io.canEnq && !io.fromVecExcpMod.busy 178 io.enq.resp := allocatePtrVec 179 val canEnqueue = VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop && io.enq.canAccept)) 180 val timer = GTimer() 181 // robEntries enqueue 182 for (i <- 0 until RobSize) { 183 val enqOH = VecInit(canEnqueue.zip(allocatePtrVec.map(_.value === i.U)).map(x => x._1 && x._2)) 184 assert(PopCount(enqOH) < 2.U, s"robEntries$i enqOH is not one hot") 185 when(enqOH.asUInt.orR && !io.redirect.valid){ 186 connectEnq(robEntries(i), Mux1H(enqOH, io.enq.req.map(_.bits))) 187 } 188 } 189 // robBanks0 include robidx : 0 8 16 24 32 ... 190 val robBanks = VecInit((0 until bankNum).map(i => VecInit(robEntries.zipWithIndex.filter(_._2 % bankNum == i).map(_._1)))) 191 // each Bank has 20 Entries, read addr is one hot 192 // all banks use same raddr 193 val eachBankEntrieNum = robBanks(0).length 194 val robBanksRaddrThisLine = RegInit(1.U(eachBankEntrieNum.W)) 195 val robBanksRaddrNextLine = Wire(UInt(eachBankEntrieNum.W)) 196 robBanksRaddrThisLine := robBanksRaddrNextLine 197 val bankNumWidth = log2Up(bankNum) 198 val deqPtrWidth = deqPtr.value.getWidth 199 val robIdxThisLine = VecInit((0 until bankNum).map(i => Cat(deqPtr.value(deqPtrWidth - 1, bankNumWidth), i.U(bankNumWidth.W)))) 200 val robIdxNextLine = VecInit((0 until bankNum).map(i => Cat(deqPtr.value(deqPtrWidth - 1, bankNumWidth) + 1.U, i.U(bankNumWidth.W)))) 201 // robBanks read 202 val robBanksRdataThisLine = VecInit(robBanks.map{ case bank => 203 Mux1H(robBanksRaddrThisLine, bank) 204 }) 205 val robBanksRdataNextLine = VecInit(robBanks.map{ case bank => 206 val shiftBank = bank.drop(1) :+ bank(0) 207 Mux1H(robBanksRaddrThisLine, shiftBank) 208 }) 209 val robBanksRdataThisLineUpdate = Wire(Vec(CommitWidth, new RobEntryBundle)) 210 val robBanksRdataNextLineUpdate = Wire(Vec(CommitWidth, new RobEntryBundle)) 211 val commitValidThisLine = Wire(Vec(CommitWidth, Bool())) 212 val hasCommitted = RegInit(VecInit(Seq.fill(CommitWidth)(false.B))) 213 val donotNeedWalk = RegInit(VecInit(Seq.fill(CommitWidth)(false.B))) 214 val allCommitted = Wire(Bool()) 215 216 when(allCommitted) { 217 hasCommitted := 0.U.asTypeOf(hasCommitted) 218 }.elsewhen(io.commits.isCommit){ 219 for (i <- 0 until CommitWidth){ 220 hasCommitted(i) := commitValidThisLine(i) || hasCommitted(i) 221 } 222 } 223 allCommitted := io.commits.isCommit && commitValidThisLine.last 224 val walkPtrHead = Wire(new RobPtr) 225 val changeBankAddrToDeqPtr = (walkPtrVec.head + CommitWidth.U) > lastWalkPtr 226 when(io.redirect.valid){ 227 robBanksRaddrNextLine := UIntToOH(walkPtrHead.value(walkPtrHead.value.getWidth-1, bankAddrWidth)) 228 }.elsewhen(allCommitted || io.commits.isWalk && !changeBankAddrToDeqPtr){ 229 robBanksRaddrNextLine := Mux(robBanksRaddrThisLine.head(1) === 1.U, 1.U, robBanksRaddrThisLine << 1) 230 }.elsewhen(io.commits.isWalk && changeBankAddrToDeqPtr){ 231 robBanksRaddrNextLine := UIntToOH(deqPtr.value(deqPtr.value.getWidth-1, bankAddrWidth)) 232 }.otherwise( 233 robBanksRaddrNextLine := robBanksRaddrThisLine 234 ) 235 val robDeqGroup = Reg(Vec(bankNum, new RobCommitEntryBundle)) 236 val rawInfo = VecInit((0 until CommitWidth).map(i => robDeqGroup(deqPtrVec(i).value(bankAddrWidth-1, 0)))).toSeq 237 val commitInfo = VecInit((0 until CommitWidth).map(i => robDeqGroup(deqPtrVec(i).value(bankAddrWidth-1,0)))).toSeq 238 val walkInfo = VecInit((0 until CommitWidth).map(i => robDeqGroup(walkPtrVec(i).value(bankAddrWidth-1, 0)))).toSeq 239 for (i <- 0 until CommitWidth) { 240 connectCommitEntry(robDeqGroup(i), robBanksRdataThisLineUpdate(i)) 241 when(allCommitted){ 242 connectCommitEntry(robDeqGroup(i), robBanksRdataNextLineUpdate(i)) 243 } 244 } 245 246 // In each robentry, the ftqIdx and ftqOffset belong to the first instruction that was compressed, 247 // That is Necessary when exceptions happen. 248 // Update the ftqOffset to correctly notify the frontend which instructions have been committed. 249 // Instructions in multiple Ftq entries compressed to one RobEntry do not occur. 250 for (i <- 0 until CommitWidth) { 251 val lastOffset = (rawInfo(i).traceBlockInPipe.iretire - (1.U << rawInfo(i).traceBlockInPipe.ilastsize.asUInt).asUInt) + rawInfo(i).ftqOffset 252 commitInfo(i).ftqOffset := Mux(CommitType.isFused(rawInfo(i).commitType), rawInfo(i).ftqOffset, lastOffset) 253 } 254 255 // data for debug 256 // Warn: debug_* prefix should not exist in generated verilog. 257 val debug_microOp = DebugMem(RobSize, new DynInst) 258 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W))) //for debug 259 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle)) //for debug 260 val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init))) 261 val debug_lsTopdownInfo = RegInit(VecInit(Seq.fill(RobSize)(LsTopdownInfo.init))) 262 val debug_lqIdxValid = RegInit(VecInit.fill(RobSize)(false.B)) 263 val debug_lsIssued = RegInit(VecInit.fill(RobSize)(false.B)) 264 265 val isEmpty = enqPtr === deqPtr 266 val snptEnq = io.enq.canAccept && io.enq.req.map(x => x.valid && x.bits.snapshot).reduce(_ || _) 267 val snapshotPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 268 snapshotPtrVec(0) := io.enq.req(0).bits.robIdx 269 for (i <- 1 until CommitWidth) { 270 snapshotPtrVec(i) := snapshotPtrVec(0) + i.U 271 } 272 val snapshots = SnapshotGenerator(snapshotPtrVec, snptEnq, io.snpt.snptDeq, io.redirect.valid, io.snpt.flushVec) 273 val debug_lsIssue = WireDefault(debug_lsIssued) 274 debug_lsIssue(deqPtr.value) := io.debugHeadLsIssue 275 276 /** 277 * states of Rob 278 */ 279 val s_idle :: s_walk :: Nil = Enum(2) 280 val state = RegInit(s_idle) 281 val state_next = Wire(chiselTypeOf(state)) 282 283 val tip_computing :: tip_stalled :: tip_walk :: tip_drained :: Nil = Enum(4) 284 val tip_state = WireInit(0.U(4.W)) 285 when(!isEmpty) { // One or more inst in ROB 286 when(state === s_walk || io.redirect.valid) { 287 tip_state := tip_walk 288 }.elsewhen(io.commits.isCommit && PopCount(io.commits.commitValid) =/= 0.U) { 289 tip_state := tip_computing 290 }.otherwise { 291 tip_state := tip_stalled 292 } 293 }.otherwise { 294 tip_state := tip_drained 295 } 296 class TipEntry()(implicit p: Parameters) extends XSBundle { 297 val state = UInt(4.W) 298 val commits = new RobCommitIO() // info of commit 299 val redirect = Valid(new Redirect) // info of redirect 300 val redirect_pc = UInt(VAddrBits.W) // PC of the redirect uop 301 val debugLsInfo = new DebugLsInfo() 302 } 303 val tip_table = ChiselDB.createTable("Tip_" + p(XSCoreParamsKey).HartId.toString, new TipEntry) 304 val tip_data = Wire(new TipEntry()) 305 tip_data.state := tip_state 306 tip_data.commits := io.commits 307 tip_data.redirect := io.redirect 308 tip_data.redirect_pc := debug_microOp(io.redirect.bits.robIdx.value).pc 309 tip_data.debugLsInfo := debug_lsInfo(io.commits.robIdx(0).value) 310 tip_table.log(tip_data, true.B, "", clock, reset) 311 312 val exceptionGen = Module(new ExceptionGen(params)) 313 val exceptionDataRead = exceptionGen.io.state 314 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 315 val vxsatDataRead = Wire(Vec(CommitWidth, Bool())) 316 io.robDeqPtr := deqPtr 317 io.debugRobHead := debug_microOp(deqPtr.value) 318 319 /** 320 * connection of [[rab]] 321 */ 322 rab.io.redirect.valid := io.redirect.valid 323 324 rab.io.req.zip(io.enq.req).map { case (dest, src) => 325 dest.bits := src.bits 326 dest.valid := src.valid && io.enq.canAccept 327 } 328 329 val walkDestSizeDeqGroup = RegInit(VecInit(Seq.fill(CommitWidth)(0.U(log2Up(MaxUopSize + 1).W)))) 330 val realDestSizeSeq = VecInit(robDeqGroup.zip(hasCommitted).map{case (r, h) => Mux(h, 0.U, r.realDestSize)}) 331 val walkDestSizeSeq = VecInit(robDeqGroup.zip(donotNeedWalk).map{case (r, d) => Mux(d, 0.U, r.realDestSize)}) 332 val commitSizeSumSeq = VecInit((0 until CommitWidth).map(i => realDestSizeSeq.take(i + 1).reduce(_ +& _))) 333 val walkSizeSumSeq = VecInit((0 until CommitWidth).map(i => walkDestSizeSeq.take(i + 1).reduce(_ +& _))) 334 val commitSizeSumCond = VecInit(commitValidThisLine.zip(hasCommitted).map{case (c,h) => (c || h) && io.commits.isCommit}) 335 val walkSizeSumCond = VecInit(io.commits.walkValid.zip(donotNeedWalk).map{case (w,d) => (w || d) && io.commits.isWalk}) 336 val commitSizeSum = PriorityMuxDefault(commitSizeSumCond.reverse.zip(commitSizeSumSeq.reverse), 0.U) 337 val walkSizeSum = PriorityMuxDefault(walkSizeSumCond.reverse.zip(walkSizeSumSeq.reverse), 0.U) 338 339 val deqVlsExceptionNeedCommit = RegInit(false.B) 340 val deqVlsExceptionCommitSize = RegInit(0.U(log2Up(MaxUopSize + 1).W)) 341 val deqVlsCanCommit= RegInit(false.B) 342 rab.io.fromRob.commitSize := Mux(deqVlsExceptionNeedCommit, deqVlsExceptionCommitSize, commitSizeSum) 343 rab.io.fromRob.walkSize := walkSizeSum 344 rab.io.fromRob.vecLoadExcp.valid := RegNext(exceptionDataRead.valid && exceptionDataRead.bits.isVecLoad) 345 rab.io.fromRob.vecLoadExcp.bits.isStrided := RegEnable(exceptionDataRead.bits.isStrided, exceptionDataRead.valid) 346 rab.io.fromRob.vecLoadExcp.bits.isVlm := RegEnable(exceptionDataRead.bits.isVlm, exceptionDataRead.valid) 347 rab.io.snpt := io.snpt 348 rab.io.snpt.snptEnq := snptEnq 349 350 // pipe rab commits for better timing and area 351 io.rabCommits := RegNext(rab.io.commits) 352 io.diffCommits.foreach(_ := rab.io.diffCommits.get) 353 354 /** 355 * connection of [[vtypeBuffer]] 356 */ 357 358 vtypeBuffer.io.redirect.valid := io.redirect.valid 359 360 vtypeBuffer.io.req.zip(io.enq.req).map { case (sink, source) => 361 sink.valid := source.valid && io.enq.canAccept 362 sink.bits := source.bits 363 } 364 365 private val commitIsVTypeVec = VecInit(io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => io.commits.isCommit && valid && info.isVset }) 366 private val walkIsVTypeVec = VecInit(io.commits.walkValid.zip(walkInfo).map { case (valid, info) => io.commits.isWalk && valid && info.isVset }) 367 vtypeBuffer.io.fromRob.commitSize := PopCount(commitIsVTypeVec) 368 vtypeBuffer.io.fromRob.walkSize := PopCount(walkIsVTypeVec) 369 vtypeBuffer.io.snpt := io.snpt 370 vtypeBuffer.io.snpt.snptEnq := snptEnq 371 io.toDecode.isResumeVType := vtypeBuffer.io.toDecode.isResumeVType 372 io.toDecode.walkToArchVType := vtypeBuffer.io.toDecode.walkToArchVType 373 io.toDecode.commitVType := vtypeBuffer.io.toDecode.commitVType 374 io.toDecode.walkVType := vtypeBuffer.io.toDecode.walkVType 375 376 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 377 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 378 when(isEmpty) { 379 hasBlockBackward := false.B 380 } 381 // When any instruction commits, hasNoSpecExec should be set to false.B 382 when(io.commits.hasWalkInstr || io.commits.hasCommitInstr) { 383 hasWaitForward := false.B 384 } 385 386 // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing. 387 // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle. 388 // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts. 389 val hasWFI = RegInit(false.B) 390 io.cpu_halt := hasWFI 391 // WFI Timeout: 2^20 = 1M cycles 392 val wfi_cycles = RegInit(0.U(20.W)) 393 when(hasWFI) { 394 wfi_cycles := wfi_cycles + 1.U 395 }.elsewhen(!hasWFI && RegNext(hasWFI)) { 396 wfi_cycles := 0.U 397 } 398 val wfi_timeout = wfi_cycles.andR 399 when(RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) { 400 hasWFI := false.B 401 } 402 403 for (i <- 0 until RenameWidth) { 404 // we don't check whether io.redirect is valid here since redirect has higher priority 405 when(canEnqueue(i)) { 406 val enqUop = io.enq.req(i).bits 407 val enqIndex = allocatePtrVec(i).value 408 // store uop in data module and debug_microOp Vec 409 debug_microOp(enqIndex) := enqUop 410 debug_microOp(enqIndex).debugInfo.dispatchTime := timer 411 debug_microOp(enqIndex).debugInfo.enqRsTime := timer 412 debug_microOp(enqIndex).debugInfo.selectTime := timer 413 debug_microOp(enqIndex).debugInfo.issueTime := timer 414 debug_microOp(enqIndex).debugInfo.writebackTime := timer 415 debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer 416 debug_microOp(enqIndex).debugInfo.tlbRespTime := timer 417 debug_lsInfo(enqIndex) := DebugLsInfo.init 418 debug_lsTopdownInfo(enqIndex) := LsTopdownInfo.init 419 debug_lqIdxValid(enqIndex) := false.B 420 debug_lsIssued(enqIndex) := false.B 421 when (enqUop.waitForward) { 422 hasWaitForward := true.B 423 } 424 val enqTriggerActionIsDebugMode = TriggerAction.isDmode(io.enq.req(i).bits.trigger) 425 val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR 426 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 427 when(!enqTriggerActionIsDebugMode && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe)) { 428 doingSvinval := true.B 429 } 430 // the end instruction of Svinval enqs so clear doingSvinval 431 when(!enqTriggerActionIsDebugMode && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe)) { 432 doingSvinval := false.B 433 } 434 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 435 assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe) || enqUop.isNotSvinval)) 436 when(enqUop.isWFI && !enqHasException && !enqTriggerActionIsDebugMode) { 437 hasWFI := true.B 438 } 439 440 robEntries(enqIndex).mmio := false.B 441 robEntries(enqIndex).vls := enqUop.vlsInstr 442 } 443 } 444 445 for (i <- 0 until RenameWidth) { 446 val enqUop = io.enq.req(i) 447 when(enqUop.valid && enqUop.bits.blockBackward && io.enq.canAccept) { 448 hasBlockBackward := true.B 449 } 450 } 451 452 val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(req => req.valid && req.bits.firstUop)), 0.U) 453 io.enq.isEmpty := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR) 454 455 when(!io.wfi_enable) { 456 hasWFI := false.B 457 } 458 // sel vsetvl's flush position 459 val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3) 460 val vsetvlState = RegInit(vs_idle) 461 462 val firstVInstrFtqPtr = RegInit(0.U.asTypeOf(new FtqPtr)) 463 val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W))) 464 val firstVInstrRobIdx = RegInit(0.U.asTypeOf(new RobPtr)) 465 466 val enq0 = io.enq.req(0) 467 val enq0IsVset = enq0.bits.isVset && enq0.bits.lastUop && canEnqueue(0) 468 val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe 469 val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map { case (req, fire) => FuType.isVArith(req.bits.fuType) && fire } 470 // for vs_idle 471 val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType))) 472 // for vs_waitVinstr 473 val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1) 474 val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req) 475 when(vsetvlState === vs_idle) { 476 firstVInstrFtqPtr := firstVInstrIdle.bits.ftqPtr 477 firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset 478 firstVInstrRobIdx := firstVInstrIdle.bits.robIdx 479 }.elsewhen(vsetvlState === vs_waitVinstr) { 480 when(Cat(enqIsVInstrOrVset).orR) { 481 firstVInstrFtqPtr := firstVInstrWait.bits.ftqPtr 482 firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset 483 firstVInstrRobIdx := firstVInstrWait.bits.robIdx 484 } 485 } 486 487 val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR 488 when(vsetvlState === vs_idle && !io.redirect.valid) { 489 when(enq0IsVsetFlush) { 490 vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr) 491 } 492 }.elsewhen(vsetvlState === vs_waitVinstr) { 493 when(io.redirect.valid) { 494 vsetvlState := vs_idle 495 }.elsewhen(Cat(enqIsVInstrOrVset).orR) { 496 vsetvlState := vs_waitFlush 497 } 498 }.elsewhen(vsetvlState === vs_waitFlush) { 499 when(io.redirect.valid) { 500 vsetvlState := vs_idle 501 } 502 } 503 504 // lqEnq 505 io.debugEnqLsq.needAlloc.map(_(0)).zip(io.debugEnqLsq.req).foreach { case (alloc, req) => 506 when(io.debugEnqLsq.canAccept && alloc && req.valid) { 507 debug_microOp(req.bits.robIdx.value).lqIdx := req.bits.lqIdx 508 debug_lqIdxValid(req.bits.robIdx.value) := true.B 509 } 510 } 511 512 // lsIssue 513 when(io.debugHeadLsIssue) { 514 debug_lsIssued(deqPtr.value) := true.B 515 } 516 517 /** 518 * Writeback (from execution units) 519 */ 520 for (wb <- exuWBs) { 521 when(wb.valid) { 522 val wbIdx = wb.bits.robIdx.value 523 debug_exuData(wbIdx) := wb.bits.data(0) 524 debug_exuDebug(wbIdx) := wb.bits.debug 525 debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime 526 debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime 527 debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime 528 debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime 529 530 // debug for lqidx and sqidx 531 debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr)) 532 debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr)) 533 534 val debug_Uop = debug_microOp(wbIdx) 535 XSInfo(true.B, 536 p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " + 537 p"data 0x${Hexadecimal(wb.bits.data(0))} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " + 538 p"skip ${wb.bits.debug.isSkipDiff} robIdx: ${wb.bits.robIdx}\n" 539 ) 540 } 541 } 542 543 val writebackNum = PopCount(exuWBs.map(_.valid)) 544 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 545 546 for (i <- 0 until LoadPipelineWidth) { 547 when(RegNext(io.lsq.mmio(i))) { 548 robEntries(RegEnable(io.lsq.uop(i).robIdx, io.lsq.mmio(i)).value).mmio := true.B 549 } 550 } 551 552 553 /** 554 * RedirectOut: Interrupt and Exceptions 555 */ 556 val deqDispatchData = robEntries(deqPtr.value) 557 val debug_deqUop = debug_microOp(deqPtr.value) 558 559 val deqPtrEntry = robDeqGroup(deqPtr.value(bankAddrWidth-1,0)) 560 val deqPtrEntryValid = deqPtrEntry.commit_v 561 val deqHasFlushed = RegInit(false.B) 562 val intrBitSetReg = RegNext(io.csr.intrBitSet) 563 val intrEnable = intrBitSetReg && !hasWaitForward && deqPtrEntry.interrupt_safe && !deqHasFlushed 564 val deqNeedFlush = deqPtrEntry.needFlush && deqPtrEntry.commit_v && deqPtrEntry.commit_w 565 val deqHitExceptionGenState = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 566 val deqNeedFlushAndHitExceptionGenState = deqNeedFlush && deqHitExceptionGenState 567 val exceptionGenStateIsException = exceptionDataRead.bits.exceptionVec.asUInt.orR || exceptionDataRead.bits.singleStep || TriggerAction.isDmode(exceptionDataRead.bits.trigger) 568 val deqHasException = deqNeedFlushAndHitExceptionGenState && exceptionGenStateIsException 569 val deqHasFlushPipe = deqNeedFlushAndHitExceptionGenState && exceptionDataRead.bits.flushPipe && !deqHasException && (!deqPtrEntry.isVls || RegNext(RegNext(deqPtrEntry.commit_w))) 570 val deqHasReplayInst = deqNeedFlushAndHitExceptionGenState && exceptionDataRead.bits.replayInst 571 val deqIsVlsException = deqHasException && deqPtrEntry.isVls && !exceptionDataRead.bits.isEnqExcp 572 // delay 2 cycle wait exceptionGen out 573 // vls exception can be committed only when RAB commit all its reg pairs 574 deqVlsCanCommit := RegNext(RegNext(deqIsVlsException && deqPtrEntry.commit_w)) && rab.io.status.commitEnd 575 576 // lock at assertion of deqVlsExceptionNeedCommit until condition not assert 577 val deqVlsExcpLock = RegInit(false.B) 578 val handleVlsExcp = deqIsVlsException && deqVlsCanCommit && !deqVlsExcpLock && state === s_idle 579 when(handleVlsExcp) { 580 deqVlsExcpLock := true.B 581 }.elsewhen(deqPtrVec.head =/= deqPtrVec_next.head) { 582 deqVlsExcpLock := false.B 583 } 584 585 // Only assert once when deqVlsExcp occurs until condition not assert to avoid multi message passed to RAB 586 when (deqVlsExceptionNeedCommit) { 587 deqVlsExceptionNeedCommit := false.B 588 }.elsewhen(handleVlsExcp){ 589 deqVlsExceptionCommitSize := deqPtrEntry.realDestSize 590 deqVlsExceptionNeedCommit := true.B 591 } 592 593 XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n") 594 XSDebug(deqHasException && TriggerAction.isDmode(exceptionDataRead.bits.trigger), "Debug Mode: Deq has trigger entry debug Mode\n") 595 596 val isFlushPipe = deqPtrEntry.commit_w && (deqHasFlushPipe || deqHasReplayInst) 597 598 val isVsetFlushPipe = deqPtrEntry.commit_w && deqHasFlushPipe && exceptionDataRead.bits.isVset 599 // val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush) 600 val needModifyFtqIdxOffset = false.B 601 io.isVsetFlushPipe := isVsetFlushPipe 602 // io.flushOut will trigger redirect at the next cycle. 603 // Block any redirect or commit at the next cycle. 604 val lastCycleFlush = RegNext(io.flushOut.valid) 605 606 io.flushOut.valid := (state === s_idle) && deqPtrEntryValid && (intrEnable || deqHasException && (!deqIsVlsException || deqVlsCanCommit) || isFlushPipe) && !lastCycleFlush 607 io.flushOut.bits := DontCare 608 io.flushOut.bits.isRVC := deqDispatchData.isRVC 609 io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr) 610 io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx) 611 io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset) 612 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || deqHasException || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next" 613 io.flushOut.bits.interrupt := true.B 614 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 615 XSPerfAccumulate("exception_num", io.flushOut.valid && deqHasException) 616 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 617 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 618 619 val exceptionHappen = (state === s_idle) && deqPtrEntryValid && (intrEnable || deqHasException && (!deqIsVlsException || deqVlsCanCommit)) && !lastCycleFlush 620 io.exception.valid := RegNext(exceptionHappen) 621 io.exception.bits.pc := RegEnable(debug_deqUop.pc, exceptionHappen) 622 io.exception.bits.gpaddr := io.readGPAMemData.gpaddr 623 io.exception.bits.isForVSnonLeafPTE := io.readGPAMemData.isForVSnonLeafPTE 624 io.exception.bits.instr := RegEnable(debug_deqUop.instr, exceptionHappen) 625 io.exception.bits.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 626 io.exception.bits.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 627 // fetch trigger fire or execute ebreak 628 io.exception.bits.isPcBkpt := RegEnable( 629 exceptionDataRead.bits.exceptionVec(ExceptionNO.EX_BP) && ( 630 exceptionDataRead.bits.isEnqExcp || 631 exceptionDataRead.bits.trigger === TriggerAction.None 632 ), 633 exceptionHappen, 634 ) 635 io.exception.bits.isFetchMalAddr := RegEnable(exceptionDataRead.bits.isFetchMalAddr && deqHasException, exceptionHappen) 636 io.exception.bits.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 637 io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 638 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 639 io.exception.bits.isHls := RegEnable(deqDispatchData.isHls, exceptionHappen) 640 io.exception.bits.vls := RegEnable(robEntries(deqPtr.value).vls, exceptionHappen) 641 io.exception.bits.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen) 642 643 // data will be one cycle after valid 644 io.readGPAMemAddr.valid := exceptionHappen 645 io.readGPAMemAddr.bits.ftqPtr := exceptionDataRead.bits.ftqPtr 646 io.readGPAMemAddr.bits.ftqOffset := exceptionDataRead.bits.ftqOffset 647 648 XSDebug(io.flushOut.valid, 649 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " + 650 p"excp $deqHasException flushPipe $isFlushPipe " + 651 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget.pc)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 652 653 654 /** 655 * Commits (and walk) 656 * They share the same width. 657 */ 658 // T redirect.valid, T+1 use walkPtrVec read robEntries, T+2 start walk, shouldWalkVec used in T+2 659 val shouldWalkVec = Wire(Vec(CommitWidth,Bool())) 660 val walkingPtrVec = RegNext(walkPtrVec) 661 when(io.redirect.valid){ 662 shouldWalkVec := 0.U.asTypeOf(shouldWalkVec) 663 }.elsewhen(RegNext(io.redirect.valid)){ 664 shouldWalkVec := 0.U.asTypeOf(shouldWalkVec) 665 }.elsewhen(state === s_walk){ 666 shouldWalkVec := VecInit(walkingPtrVec.map(_ <= lastWalkPtr).zip(donotNeedWalk).map(x => x._1 && !x._2)) 667 }.otherwise( 668 shouldWalkVec := 0.U.asTypeOf(shouldWalkVec) 669 ) 670 val walkFinished = walkPtrTrue > lastWalkPtr 671 rab.io.fromRob.walkEnd := state === s_walk && walkFinished 672 vtypeBuffer.io.fromRob.walkEnd := state === s_walk && walkFinished 673 674 require(RenameWidth <= CommitWidth) 675 676 // wiring to csr 677 val (wflags, dirtyFs) = (0 until CommitWidth).map(i => { 678 val v = io.commits.commitValid(i) 679 val info = io.commits.info(i) 680 (v & info.wflags, v & info.dirtyFs) 681 }).unzip 682 val fflags = Wire(Valid(UInt(5.W))) 683 fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR 684 fflags.bits := wflags.zip(fflagsDataRead).map({ 685 case (w, f) => Mux(w, f, 0.U) 686 }).reduce(_ | _) 687 val dirtyVs = (0 until CommitWidth).map(i => { 688 val v = io.commits.commitValid(i) 689 val info = io.commits.info(i) 690 v & info.dirtyVs 691 }) 692 val dirty_fs = io.commits.isCommit && VecInit(dirtyFs).asUInt.orR 693 val dirty_vs = io.commits.isCommit && VecInit(dirtyVs).asUInt.orR 694 695 val resetVstart = dirty_vs && !io.vstartIsZero 696 697 vecExcpInfo.valid := exceptionHappen && !intrEnable && exceptionDataRead.bits.vstartEn && exceptionDataRead.bits.isVecLoad && !exceptionDataRead.bits.isEnqExcp 698 when (exceptionHappen) { 699 vecExcpInfo.bits.nf := exceptionDataRead.bits.nf 700 vecExcpInfo.bits.vsew := exceptionDataRead.bits.vsew 701 vecExcpInfo.bits.veew := exceptionDataRead.bits.veew 702 vecExcpInfo.bits.vlmul := exceptionDataRead.bits.vlmul 703 vecExcpInfo.bits.isStride := exceptionDataRead.bits.isStrided 704 vecExcpInfo.bits.isIndexed := exceptionDataRead.bits.isIndexed 705 vecExcpInfo.bits.isWhole := exceptionDataRead.bits.isWhole 706 vecExcpInfo.bits.isVlm := exceptionDataRead.bits.isVlm 707 vecExcpInfo.bits.vstart := exceptionDataRead.bits.vstart 708 } 709 710 io.csr.vstart.valid := RegNext(Mux(exceptionHappen && deqHasException, exceptionDataRead.bits.vstartEn, resetVstart)) 711 io.csr.vstart.bits := RegNext(Mux(exceptionHappen && deqHasException, exceptionDataRead.bits.vstart, 0.U)) 712 713 val vxsat = Wire(Valid(Bool())) 714 vxsat.valid := io.commits.isCommit && vxsat.bits 715 vxsat.bits := io.commits.commitValid.zip(vxsatDataRead).map { 716 case (valid, vxsat) => valid & vxsat 717 }.reduce(_ | _) 718 719 // when mispredict branches writeback, stop commit in the next 2 cycles 720 // TODO: don't check all exu write back 721 val misPredWb = Cat(VecInit(redirectWBs.map(wb => 722 wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid 723 ).toSeq)).orR 724 val misPredBlockCounter = Reg(UInt(3.W)) 725 misPredBlockCounter := Mux(misPredWb, 726 "b111".U, 727 misPredBlockCounter >> 1.U 728 ) 729 val misPredBlock = misPredBlockCounter(0) 730 val deqFlushBlockCounter = Reg(UInt(3.W)) 731 val deqFlushBlock = deqFlushBlockCounter(0) 732 val deqHasCommitted = io.commits.isCommit && io.commits.commitValid(0) 733 // TODO *** WARNING *** 734 // Blocking commit. Don't change this before we fully understand the logic. 735 val deqHitRedirectReg = RegNext(io.redirect.valid && io.redirect.bits.robIdx === deqPtr) || RegNext(RegNext(io.redirect.valid && io.redirect.bits.robIdx === deqPtr)) 736 val criticalErrorState = io.csr.criticalErrorState 737 when(deqNeedFlush && deqHitRedirectReg){ 738 deqFlushBlockCounter := "b111".U 739 }.otherwise{ 740 deqFlushBlockCounter := deqFlushBlockCounter >> 1.U 741 } 742 when(deqHasCommitted){ 743 deqHasFlushed := false.B 744 }.elsewhen(deqNeedFlush && io.flushOut.valid && !io.flushOut.bits.flushItself()){ 745 deqHasFlushed := true.B 746 } 747 val traceBlock = io.trace.blockCommit 748 val blockCommit = misPredBlock || lastCycleFlush || hasWFI || io.redirect.valid || 749 (deqNeedFlush && !deqHasFlushed) || deqFlushBlock || criticalErrorState || traceBlock 750 751 io.commits.isWalk := state === s_walk 752 io.commits.isCommit := state === s_idle && !blockCommit 753 754 val walk_v = VecInit(walkingPtrVec.map(ptr => robEntries(ptr.value).valid)) 755 val commit_vDeqGroup = VecInit(robDeqGroup.map(_.commit_v)) 756 val commit_wDeqGroup = VecInit(robDeqGroup.map(_.commit_w)) 757 val realCommitLast = deqPtrVec(0).lineHeadPtr + Fill(bankAddrWidth, 1.U) 758 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_wDeqGroup(i) && !hasCommitted(i))) 759 val allowOnlyOneCommit = VecInit(robDeqGroup.map(x => x.commit_v && x.needFlush)).asUInt.orR || intrBitSetReg 760 // for instructions that may block others, we don't allow them to commit 761 io.commits.commitValid := PriorityMux(commitValidThisLine, (0 until CommitWidth).map(i => (commitValidThisLine.asUInt >> i).asUInt.asTypeOf(io.commits.commitValid))) 762 763 for (i <- 0 until CommitWidth) { 764 // defaults: state === s_idle and instructions commit 765 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 766 val isBlocked = intrEnable || (deqNeedFlush && !deqHasFlushed && !deqHasFlushPipe) 767 val isBlockedByOlder = if (i != 0) commit_block.asUInt(i, 0).orR || allowOnlyOneCommit && !hasCommitted.asUInt(i - 1, 0).andR else false.B 768 commitValidThisLine(i) := commit_vDeqGroup(i) && commit_wDeqGroup(i) && !isBlocked && !isBlockedByOlder && !hasCommitted(i) 769 io.commits.info(i) := commitInfo(i) 770 io.commits.robIdx(i) := deqPtrVec(i) 771 772 io.commits.walkValid(i) := shouldWalkVec(i) 773 when(state === s_walk) { 774 when(io.commits.isWalk && state === s_walk && shouldWalkVec(i)) { 775 XSError(!walk_v(i), s"The walking entry($i) should be valid\n") 776 } 777 } 778 779 XSInfo(io.commits.isCommit && io.commits.commitValid(i), 780 "retired pc %x wen %d ldest %d pdest %x data %x fflags: %b vxsat: %b\n", 781 debug_microOp(deqPtrVec(i).value).pc, 782 io.commits.info(i).rfWen, 783 io.commits.info(i).debug_ldest.getOrElse(0.U), 784 io.commits.info(i).debug_pdest.getOrElse(0.U), 785 debug_exuData(deqPtrVec(i).value), 786 fflagsDataRead(i), 787 vxsatDataRead(i) 788 ) 789 XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n", 790 debug_microOp(walkPtrVec(i).value).pc, 791 io.commits.info(i).rfWen, 792 io.commits.info(i).debug_ldest.getOrElse(0.U), 793 debug_exuData(walkPtrVec(i).value) 794 ) 795 } 796 797 // sync fflags/dirty_fs/vxsat to csr 798 io.csr.fflags := RegNextWithEnable(fflags) 799 io.csr.dirty_fs := GatedValidRegNext(dirty_fs) 800 io.csr.dirty_vs := GatedValidRegNext(dirty_vs) 801 io.csr.vxsat := RegNextWithEnable(vxsat) 802 803 // commit load/store to lsq 804 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 805 // TODO: Check if meet the require that only set scommit when commit scala store uop 806 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE && !robEntries(deqPtrVec(i).value).vls )) 807 io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U)) 808 io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U)) 809 // indicate a pending load or store 810 io.lsq.pendingMMIOld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && robEntries(deqPtr.value).valid && robEntries(deqPtr.value).mmio) 811 io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && robEntries(deqPtr.value).valid) 812 // TODO: Check if need deassert pendingst when it is vst 813 io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && robEntries(deqPtr.value).valid) 814 // TODO: Check if set correctly when vector store is at the head of ROB 815 io.lsq.pendingVst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && robEntries(deqPtr.value).valid && robEntries(deqPtr.value).vls) 816 io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0)) 817 io.lsq.pendingPtr := RegNext(deqPtr) 818 io.lsq.pendingPtrNext := RegNext(deqPtrVec_next.head) 819 820 /** 821 * state changes 822 * (1) redirect: switch to s_walk 823 * (2) walk: when walking comes to the end, switch to s_idle 824 */ 825 state_next := Mux( 826 io.redirect.valid || RegNext(io.redirect.valid), s_walk, 827 Mux( 828 state === s_walk && walkFinished && rab.io.status.walkEnd && vtypeBuffer.io.status.walkEnd, s_idle, 829 state 830 ) 831 ) 832 XSPerfAccumulate("s_idle_to_idle", state === s_idle && state_next === s_idle) 833 XSPerfAccumulate("s_idle_to_walk", state === s_idle && state_next === s_walk) 834 XSPerfAccumulate("s_walk_to_idle", state === s_walk && state_next === s_idle) 835 XSPerfAccumulate("s_walk_to_walk", state === s_walk && state_next === s_walk) 836 state := state_next 837 838 /** 839 * pointers and counters 840 */ 841 val deqPtrGenModule = Module(new NewRobDeqPtrWrapper) 842 deqPtrGenModule.io.state := state 843 deqPtrGenModule.io.deq_v := commit_vDeqGroup 844 deqPtrGenModule.io.deq_w := commit_wDeqGroup 845 deqPtrGenModule.io.exception_state := exceptionDataRead 846 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 847 deqPtrGenModule.io.hasNoSpecExec := hasWaitForward 848 deqPtrGenModule.io.allowOnlyOneCommit := allowOnlyOneCommit 849 deqPtrGenModule.io.interrupt_safe := robDeqGroup(deqPtr.value(bankAddrWidth-1,0)).interrupt_safe 850 deqPtrGenModule.io.blockCommit := blockCommit 851 deqPtrGenModule.io.hasCommitted := hasCommitted 852 deqPtrGenModule.io.allCommitted := allCommitted 853 deqPtrVec := deqPtrGenModule.io.out 854 deqPtrVec_next := deqPtrGenModule.io.next_out 855 856 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 857 enqPtrGenModule.io.redirect := io.redirect 858 enqPtrGenModule.io.allowEnqueue := allowEnqueue && rab.io.canEnq && !io.fromVecExcpMod.busy 859 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 860 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop)) 861 enqPtrVec := enqPtrGenModule.io.out 862 863 // next walkPtrVec: 864 // (1) redirect occurs: update according to state 865 // (2) walk: move forwards 866 val deqPtrReadBank = deqPtrVec_next(0).lineHeadPtr 867 val deqPtrVecForWalk = VecInit((0 until CommitWidth).map(i => deqPtrReadBank + i.U)) 868 val snapPtrReadBank = snapshots(io.snpt.snptSelect)(0).lineHeadPtr 869 val snapPtrVecForWalk = VecInit((0 until CommitWidth).map(i => snapPtrReadBank + i.U)) 870 val walkPtrVec_next: Vec[RobPtr] = Mux(io.redirect.valid, 871 Mux(io.snpt.useSnpt, snapPtrVecForWalk, deqPtrVecForWalk), 872 Mux((state === s_walk) && !walkFinished, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec) 873 ) 874 val walkPtrTrue_next: RobPtr = Mux(io.redirect.valid, 875 Mux(io.snpt.useSnpt, snapshots(io.snpt.snptSelect)(0), deqPtrVec_next(0)), 876 Mux((state === s_walk) && !walkFinished, walkPtrVec_next.head, walkPtrTrue) 877 ) 878 walkPtrHead := walkPtrVec_next.head 879 walkPtrVec := walkPtrVec_next 880 walkPtrTrue := walkPtrTrue_next 881 // T io.redirect.valid, T+1 walkPtrLowBits update, T+2 donotNeedWalk update 882 val walkPtrLowBits = Reg(UInt(bankAddrWidth.W)) 883 when(io.redirect.valid){ 884 walkPtrLowBits := Mux(io.snpt.useSnpt, snapshots(io.snpt.snptSelect)(0).value(bankAddrWidth-1, 0), deqPtrVec_next(0).value(bankAddrWidth-1, 0)) 885 } 886 when(io.redirect.valid) { 887 donotNeedWalk := Fill(donotNeedWalk.length, true.B).asTypeOf(donotNeedWalk) 888 }.elsewhen(RegNext(io.redirect.valid)){ 889 donotNeedWalk := (0 until CommitWidth).map(i => (i.U < walkPtrLowBits)) 890 }.otherwise{ 891 donotNeedWalk := 0.U.asTypeOf(donotNeedWalk) 892 } 893 walkDestSizeDeqGroup.zip(walkPtrVec_next).map { 894 case (reg, ptrNext) => reg := robEntries(deqPtr.value).realDestSize 895 } 896 val numValidEntries = distanceBetween(enqPtr, deqPtr) 897 val commitCnt = PopCount(io.commits.commitValid) 898 899 allowEnqueue := numValidEntries + dispatchNum <= (RobSize - CommitWidth).U 900 901 val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0)) 902 when(io.redirect.valid) { 903 lastWalkPtr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx - 1.U, io.redirect.bits.robIdx) 904 } 905 906 907 /** 908 * States 909 * We put all the stage bits changes here. 910 * 911 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 912 * All states: (1) valid; (2) writebacked; (3) flagBkup 913 */ 914 915 val deqPtrGroup = Wire(Vec(2 * CommitWidth, new RobPtr)) 916 deqPtrGroup.zipWithIndex.map { case (deq, i) => deq := deqPtrVec(0) + i.U } 917 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 918 919 val redirectValidReg = RegNext(io.redirect.valid) 920 val redirectBegin = Reg(UInt(log2Up(RobSize).W)) 921 val redirectEnd = Reg(UInt(log2Up(RobSize).W)) 922 when(io.redirect.valid){ 923 redirectBegin := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx.value - 1.U, io.redirect.bits.robIdx.value) 924 redirectEnd := enqPtr.value 925 } 926 927 // update robEntries valid 928 for (i <- 0 until RobSize) { 929 val enqOH = VecInit(canEnqueue.zip(allocatePtrVec.map(_.value === i.U)).map(x => x._1 && x._2)) 930 val commitCond = io.commits.isCommit && io.commits.commitValid.zip(deqPtrVec.map(_.value === i.U)).map(x => x._1 && x._2).reduce(_ || _) 931 assert(PopCount(enqOH) < 2.U, s"robEntries$i enqOH is not one hot") 932 val needFlush = redirectValidReg && Mux( 933 redirectEnd > redirectBegin, 934 (i.U > redirectBegin) && (i.U < redirectEnd), 935 (i.U > redirectBegin) || (i.U < redirectEnd) 936 ) 937 when(commitCond) { 938 robEntries(i).valid := false.B 939 }.elsewhen(enqOH.asUInt.orR && !io.redirect.valid) { 940 robEntries(i).valid := true.B 941 }.elsewhen(needFlush){ 942 robEntries(i).valid := false.B 943 } 944 } 945 946 // debug_inst update 947 for (i <- 0 until (LduCnt + StaCnt)) { 948 debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i)) 949 debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i)) 950 debug_lsInfo(io.debug_ls.debugLsInfo(i).s3_robIdx).s3SignalEnable(io.debug_ls.debugLsInfo(i)) 951 } 952 for (i <- 0 until LduCnt) { 953 debug_lsTopdownInfo(io.lsTopdownInfo(i).s1.robIdx).s1SignalEnable(io.lsTopdownInfo(i)) 954 debug_lsTopdownInfo(io.lsTopdownInfo(i).s2.robIdx).s2SignalEnable(io.lsTopdownInfo(i)) 955 } 956 957 // status field: writebacked 958 // enqueue logic set 6 writebacked to false 959 960 // writeback logic set numWbPorts writebacked to true 961 962 // if the first uop of an instruction is valid , write writebackedCounter 963 val uopEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid) 964 val instEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid && req.bits.firstUop) 965 val enqNeedWriteRFSeq = io.enq.req.map(_.bits.needWriteRf) 966 val enqHasExcpSeq = io.enq.req.map(_.bits.hasException) 967 val enqRobIdxSeq = io.enq.req.map(req => req.bits.robIdx.value) 968 val enqUopNumVec = VecInit(io.enq.req.map(req => req.bits.numUops)) 969 val enqWBNumVec = VecInit(io.enq.req.map(req => req.bits.numWB)) 970 971 private val enqWriteStdVec: Vec[Bool] = VecInit(io.enq.req.map { 972 req => FuType.isStore(req.bits.fuType) 973 }) 974 val fflags_wb = fflagsWBs 975 val vxsat_wb = vxsatWBs 976 for (i <- 0 until RobSize) { 977 978 val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === i.U) 979 val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map { case (valid, isMatch) => valid && isMatch } 980 val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map { case (valid, isMatch) => valid && isMatch } 981 val instCanEnqFlag = Cat(instCanEnqSeq).orR 982 val hasExcpSeq = enqHasExcpSeq.lazyZip(robIdxMatchSeq).lazyZip(uopEnqValidSeq).map { case (excp, isMatch, valid) => excp && isMatch && valid } 983 val hasExcpFlag = Cat(hasExcpSeq).orR 984 val isFirstEnq = !robEntries(i).valid && instCanEnqFlag 985 val realDestEnqNum = PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map { case (writeFlag, valid) => writeFlag && valid }) 986 when(isFirstEnq){ 987 robEntries(i).realDestSize := realDestEnqNum //Mux(hasExcpFlag, 0.U, realDestEnqNum) 988 }.elsewhen(robEntries(i).valid && Cat(uopCanEnqSeq).orR){ 989 robEntries(i).realDestSize := robEntries(i).realDestSize + realDestEnqNum 990 } 991 val enqUopNum = PriorityMux(instCanEnqSeq, enqUopNumVec) 992 val enqWBNum = PriorityMux(instCanEnqSeq, enqWBNumVec) 993 val enqWriteStd = PriorityMux(instCanEnqSeq, enqWriteStdVec) 994 995 val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 996 val canStdWbSeq = VecInit(stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)) 997 val wbCnt = Mux1H(canWbSeq, io.writebackNums.map(_.bits)) 998 999 val canWbExceptionSeq = exceptionWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 1000 val needFlush = robEntries(i).needFlush 1001 val needFlushWriteBack = Wire(Bool()) 1002 needFlushWriteBack := Mux1H(canWbExceptionSeq, io.writebackNeedFlush) 1003 when(robEntries(i).valid){ 1004 needFlush := needFlush || needFlushWriteBack 1005 } 1006 1007 when(robEntries(i).valid && (needFlush || needFlushWriteBack)) { 1008 // exception flush 1009 robEntries(i).uopNum := robEntries(i).uopNum - wbCnt 1010 robEntries(i).stdWritebacked := true.B 1011 }.elsewhen(!robEntries(i).valid && instCanEnqFlag) { 1012 // enq set num of uops 1013 robEntries(i).uopNum := enqWBNum 1014 robEntries(i).stdWritebacked := Mux(enqWriteStd, false.B, true.B) 1015 }.elsewhen(robEntries(i).valid) { 1016 // update by writing back 1017 robEntries(i).uopNum := robEntries(i).uopNum - wbCnt 1018 assert(!(robEntries(i).uopNum - wbCnt > robEntries(i).uopNum), s"robEntries $i uopNum is overflow!") 1019 when(canStdWbSeq.asUInt.orR) { 1020 robEntries(i).stdWritebacked := true.B 1021 } 1022 } 1023 1024 val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U && writeback.bits.wflags.getOrElse(false.B)) 1025 val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.fold(false.B)(_ | _) 1026 when(isFirstEnq) { 1027 robEntries(i).fflags := 0.U 1028 }.elsewhen(fflagsRes.orR) { 1029 robEntries(i).fflags := robEntries(i).fflags | fflagsRes 1030 } 1031 1032 val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 1033 val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.fold(false.B)(_ | _) 1034 when(isFirstEnq) { 1035 robEntries(i).vxsat := 0.U 1036 }.elsewhen(vxsatRes.orR) { 1037 robEntries(i).vxsat := robEntries(i).vxsat | vxsatRes 1038 } 1039 1040 // trace 1041 val taken = branchWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U && writeback.bits.redirect.get.bits.cfiUpdate.taken).reduce(_ || _) 1042 when(robEntries(i).valid && Itype.isBranchType(robEntries(i).traceBlockInPipe.itype) && taken){ 1043 // BranchType code(notaken itype = 4) must be correctly replaced! 1044 robEntries(i).traceBlockInPipe.itype := Itype.Taken 1045 } 1046 } 1047 1048 // begin update robBanksRdata 1049 val robBanksRdata = VecInit(robBanksRdataThisLine ++ robBanksRdataNextLine) 1050 val needUpdate = Wire(Vec(2 * CommitWidth, new RobEntryBundle)) 1051 needUpdate := VecInit(robBanksRdataThisLine ++ robBanksRdataNextLine) 1052 val needUpdateRobIdx = robIdxThisLine ++ robIdxNextLine 1053 for (i <- 0 until 2 * CommitWidth) { 1054 val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === needUpdateRobIdx(i)) 1055 val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map { case (valid, isMatch) => valid && isMatch } 1056 val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map { case (valid, isMatch) => valid && isMatch } 1057 val instCanEnqFlag = Cat(instCanEnqSeq).orR 1058 val realDestEnqNum = PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map { case (writeFlag, valid) => writeFlag && valid }) 1059 when(!needUpdate(i).valid && instCanEnqFlag) { 1060 needUpdate(i).realDestSize := realDestEnqNum 1061 }.elsewhen(needUpdate(i).valid && instCanEnqFlag) { 1062 needUpdate(i).realDestSize := robBanksRdata(i).realDestSize + realDestEnqNum 1063 } 1064 val enqUopNum = PriorityMux(instCanEnqSeq, enqUopNumVec) 1065 val enqWBNum = PriorityMux(instCanEnqSeq, enqWBNumVec) 1066 val enqWriteStd = PriorityMux(instCanEnqSeq, enqWriteStdVec) 1067 1068 val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === needUpdateRobIdx(i)) 1069 val canStdWbSeq = VecInit(stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === needUpdateRobIdx(i))) 1070 val wbCnt = Mux1H(canWbSeq, io.writebackNums.map(_.bits)) 1071 1072 val canWbExceptionSeq = exceptionWBs.map(writeback => writeback.valid && (writeback.bits.robIdx.value === needUpdateRobIdx(i))) 1073 val needFlush = robBanksRdata(i).needFlush 1074 val needFlushWriteBack = Wire(Bool()) 1075 needFlushWriteBack := Mux1H(canWbExceptionSeq, io.writebackNeedFlush) 1076 when(needUpdate(i).valid) { 1077 needUpdate(i).needFlush := needFlush || needFlushWriteBack 1078 } 1079 1080 when(needUpdate(i).valid && (needFlush || needFlushWriteBack)) { 1081 // exception flush 1082 needUpdate(i).uopNum := robBanksRdata(i).uopNum - wbCnt 1083 needUpdate(i).stdWritebacked := true.B 1084 }.elsewhen(!needUpdate(i).valid && instCanEnqFlag) { 1085 // enq set num of uops 1086 needUpdate(i).uopNum := enqWBNum 1087 needUpdate(i).stdWritebacked := Mux(enqWriteStd, false.B, true.B) 1088 }.elsewhen(needUpdate(i).valid) { 1089 // update by writing back 1090 needUpdate(i).uopNum := robBanksRdata(i).uopNum - wbCnt 1091 when(canStdWbSeq.asUInt.orR) { 1092 needUpdate(i).stdWritebacked := true.B 1093 } 1094 } 1095 1096 val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === needUpdateRobIdx(i) && writeback.bits.wflags.getOrElse(false.B)) 1097 val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.fold(false.B)(_ | _) 1098 needUpdate(i).fflags := Mux(!robBanksRdata(i).valid && instCanEnqFlag, 0.U, robBanksRdata(i).fflags | fflagsRes) 1099 1100 val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === needUpdateRobIdx(i)) 1101 val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.fold(false.B)(_ | _) 1102 needUpdate(i).vxsat := Mux(!robBanksRdata(i).valid && instCanEnqFlag, 0.U, robBanksRdata(i).vxsat | vxsatRes) 1103 1104 // trace 1105 val taken = branchWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === needUpdateRobIdx(i) && writeback.bits.redirect.get.bits.cfiUpdate.taken).reduce(_ || _) 1106 when(robBanksRdata(i).valid && Itype.isBranchType(robBanksRdata(i).traceBlockInPipe.itype) && taken){ 1107 // BranchType code(notaken itype = 4) must be correctly replaced! 1108 needUpdate(i).traceBlockInPipe.itype := Itype.Taken 1109 } 1110 } 1111 robBanksRdataThisLineUpdate := VecInit(needUpdate.take(8)) 1112 robBanksRdataNextLineUpdate := VecInit(needUpdate.drop(8)) 1113 // end update robBanksRdata 1114 1115 // interrupt_safe 1116 for (i <- 0 until RenameWidth) { 1117 when(canEnqueue(i)) { 1118 // For now, we allow non-load-store instructions to trigger interrupts 1119 // For MMIO instructions, they should not trigger interrupts since they may 1120 // be sent to lower level before it writes back. 1121 // However, we cannot determine whether a load/store instruction is MMIO. 1122 // Thus, we don't allow load/store instructions to trigger an interrupt. 1123 // TODO: support non-MMIO load-store instructions to trigger interrupts 1124 val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType) && !FuType.isFence(io.enq.req(i).bits.fuType) && !FuType.isCsr(io.enq.req(i).bits.fuType) && !FuType.isVset(io.enq.req(i).bits.fuType) 1125 robEntries(allocatePtrVec(i).value).interrupt_safe := allow_interrupts 1126 } 1127 } 1128 1129 /** 1130 * read and write of data modules 1131 */ 1132 val commitReadAddr_next = Mux(state_next === s_idle, 1133 VecInit(deqPtrVec_next.map(_.value)), 1134 VecInit(walkPtrVec_next.map(_.value)) 1135 ) 1136 1137 exceptionGen.io.redirect <> io.redirect 1138 exceptionGen.io.flush := io.flushOut.valid 1139 1140 val canEnqueueEG = VecInit(io.enq.req.map(req => req.valid && io.enq.canAccept)) 1141 for (i <- 0 until RenameWidth) { 1142 exceptionGen.io.enq(i).valid := canEnqueueEG(i) 1143 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 1144 exceptionGen.io.enq(i).bits.ftqPtr := io.enq.req(i).bits.ftqPtr 1145 exceptionGen.io.enq(i).bits.ftqOffset := io.enq.req(i).bits.ftqOffset 1146 exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec) 1147 exceptionGen.io.enq(i).bits.hasException := io.enq.req(i).bits.hasException 1148 exceptionGen.io.enq(i).bits.isEnqExcp := io.enq.req(i).bits.hasException 1149 exceptionGen.io.enq(i).bits.isFetchMalAddr := io.enq.req(i).bits.isFetchMalAddr 1150 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe 1151 exceptionGen.io.enq(i).bits.isVset := io.enq.req(i).bits.isVset 1152 exceptionGen.io.enq(i).bits.replayInst := false.B 1153 XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst") 1154 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep 1155 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix 1156 exceptionGen.io.enq(i).bits.trigger := io.enq.req(i).bits.trigger 1157 exceptionGen.io.enq(i).bits.vstartEn := false.B //DontCare 1158 exceptionGen.io.enq(i).bits.vstart := 0.U //DontCare 1159 exceptionGen.io.enq(i).bits.vuopIdx := 0.U 1160 exceptionGen.io.enq(i).bits.isVecLoad := false.B 1161 exceptionGen.io.enq(i).bits.isVlm := false.B 1162 exceptionGen.io.enq(i).bits.isStrided := false.B 1163 exceptionGen.io.enq(i).bits.isIndexed := false.B 1164 exceptionGen.io.enq(i).bits.isWhole := false.B 1165 exceptionGen.io.enq(i).bits.nf := 0.U 1166 exceptionGen.io.enq(i).bits.vsew := 0.U 1167 exceptionGen.io.enq(i).bits.veew := 0.U 1168 exceptionGen.io.enq(i).bits.vlmul := 0.U 1169 } 1170 1171 println(s"ExceptionGen:") 1172 println(s"num of exceptions: ${params.numException}") 1173 require(exceptionWBs.length == exceptionGen.io.wb.length, 1174 f"exceptionWBs.length: ${exceptionWBs.length}, " + 1175 f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}") 1176 for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) { 1177 exc_wb.valid := wb.valid 1178 exc_wb.bits.robIdx := wb.bits.robIdx 1179 // only enq inst use ftqPtr to read gpa 1180 exc_wb.bits.ftqPtr := 0.U.asTypeOf(exc_wb.bits.ftqPtr) 1181 exc_wb.bits.ftqOffset := 0.U.asTypeOf(exc_wb.bits.ftqOffset) 1182 exc_wb.bits.exceptionVec := wb.bits.exceptionVec.get 1183 exc_wb.bits.hasException := wb.bits.exceptionVec.get.asUInt.orR // Todo: use io.writebackNeedFlush(i) instead 1184 exc_wb.bits.isEnqExcp := false.B 1185 exc_wb.bits.isFetchMalAddr := false.B 1186 exc_wb.bits.flushPipe := wb.bits.flushPipe.getOrElse(false.B) 1187 exc_wb.bits.isVset := false.B 1188 exc_wb.bits.replayInst := wb.bits.replay.getOrElse(false.B) 1189 exc_wb.bits.singleStep := false.B 1190 exc_wb.bits.crossPageIPFFix := false.B 1191 val trigger = wb.bits.trigger.getOrElse(TriggerAction.None).asTypeOf(exc_wb.bits.trigger) 1192 exc_wb.bits.trigger := trigger 1193 exc_wb.bits.vstartEn := (if (wb.bits.vls.nonEmpty) wb.bits.exceptionVec.get.asUInt.orR || TriggerAction.isDmode(trigger) else 0.U) 1194 exc_wb.bits.vstart := (if (wb.bits.vls.nonEmpty) wb.bits.vls.get.vpu.vstart else 0.U) 1195 exc_wb.bits.vuopIdx := (if (wb.bits.vls.nonEmpty) wb.bits.vls.get.vpu.vuopIdx else 0.U) 1196 exc_wb.bits.isVecLoad := wb.bits.vls.map(_.isVecLoad).getOrElse(false.B) 1197 exc_wb.bits.isVlm := wb.bits.vls.map(_.isVlm).getOrElse(false.B) 1198 exc_wb.bits.isStrided := wb.bits.vls.map(_.isStrided).getOrElse(false.B) // strided need two mode tmp vreg 1199 exc_wb.bits.isIndexed := wb.bits.vls.map(_.isIndexed).getOrElse(false.B) // indexed and nf=0 need non-sequential uopidx -> vdidx 1200 exc_wb.bits.isWhole := wb.bits.vls.map(_.isWhole).getOrElse(false.B) // indexed and nf=0 need non-sequential uopidx -> vdidx 1201 exc_wb.bits.nf := wb.bits.vls.map(_.vpu.nf).getOrElse(0.U) 1202 exc_wb.bits.vsew := wb.bits.vls.map(_.vpu.vsew).getOrElse(0.U) 1203 exc_wb.bits.veew := wb.bits.vls.map(_.vpu.veew).getOrElse(0.U) 1204 exc_wb.bits.vlmul := wb.bits.vls.map(_.vpu.vlmul).getOrElse(0.U) 1205 } 1206 1207 fflagsDataRead := (0 until CommitWidth).map(i => robEntries(deqPtrVec(i).value).fflags) 1208 vxsatDataRead := (0 until CommitWidth).map(i => robEntries(deqPtrVec(i).value).vxsat) 1209 1210 val isCommit = io.commits.isCommit 1211 val isCommitReg = GatedValidRegNext(io.commits.isCommit) 1212 val instrCntReg = RegInit(0.U(64.W)) 1213 val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map { case (v, i) => RegEnable(v && CommitType.isFused(i.commitType), isCommit) }) 1214 val trueCommitCnt = RegEnable(io.commits.commitValid.zip(io.commits.info).map { case (v, i) => Mux(v, i.instrSize, 0.U) }.reduce(_ +& _), isCommit) +& fuseCommitCnt 1215 val retireCounter = Mux(isCommitReg, trueCommitCnt, 0.U) 1216 val instrCnt = instrCntReg + retireCounter 1217 when(isCommitReg){ 1218 instrCntReg := instrCnt 1219 } 1220 io.csr.perfinfo.retiredInstr := retireCounter 1221 io.robFull := !allowEnqueue 1222 io.headNotReady := commit_vDeqGroup(deqPtr.value(bankNumWidth-1, 0)) && !commit_wDeqGroup(deqPtr.value(bankNumWidth-1, 0)) 1223 1224 io.toVecExcpMod.logicPhyRegMap := rab.io.toVecExcpMod.logicPhyRegMap 1225 io.toVecExcpMod.excpInfo := vecExcpInfo 1226 1227 /** 1228 * trace 1229 */ 1230 1231 // trace output 1232 val traceValids = io.trace.traceCommitInfo.blocks.map(_.valid) 1233 val traceBlocks = io.trace.traceCommitInfo.blocks 1234 val traceBlockInPipe = io.trace.traceCommitInfo.blocks.map(_.bits.tracePipe) 1235 1236 // The reg 'isTraceXret' only for trace xret instructions. xret only occur in block(0). 1237 val isTraceXret = RegInit(false.B) 1238 when(io.csr.isXRet){ 1239 isTraceXret := true.B 1240 }.elsewhen(isTraceXret && io.commits.isCommit && io.commits.commitValid(0)){ 1241 isTraceXret := false.B 1242 } 1243 1244 for (i <- 0 until CommitWidth) { 1245 traceBlocks(i).bits.ftqIdx.foreach(_ := rawInfo(i).ftqIdx) 1246 traceBlocks(i).bits.ftqOffset.foreach(_ := rawInfo(i).ftqOffset) 1247 traceBlockInPipe(i).itype := rawInfo(i).traceBlockInPipe.itype 1248 traceBlockInPipe(i).iretire := rawInfo(i).traceBlockInPipe.iretire 1249 traceBlockInPipe(i).ilastsize := rawInfo(i).traceBlockInPipe.ilastsize 1250 traceValids(i) := io.commits.isCommit && io.commits.commitValid(i) 1251 // exception/xret only occur in block(0). 1252 if(i == 0) { 1253 when(isTraceXret && io.commits.isCommit && io.commits.commitValid(0)){ // trace xret 1254 traceBlocks(i).bits.tracePipe.itype := Itype.ExpIntReturn 1255 }.elsewhen(io.exception.valid){ // trace exception 1256 traceBlocks(i).bits.tracePipe.itype := Mux(io.exception.bits.isInterrupt, 1257 Itype.Interrupt, 1258 Itype.Exception 1259 ) 1260 traceValids(i) := true.B 1261 traceBlockInPipe(i).iretire := 0.U 1262 } 1263 } 1264 } 1265 1266 /** 1267 * debug info 1268 */ 1269 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 1270 XSDebug("") 1271 XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n") 1272 for (i <- 0 until RobSize) { 1273 XSDebug(false, !robEntries(i).valid, "-") 1274 XSDebug(false, robEntries(i).valid && robEntries(i).isWritebacked, "w") 1275 XSDebug(false, robEntries(i).valid && !robEntries(i).isWritebacked, "v") 1276 } 1277 XSDebug(false, true.B, "\n") 1278 1279 for (i <- 0 until RobSize) { 1280 if (i % 4 == 0) XSDebug("") 1281 XSDebug(false, true.B, "%x ", debug_microOp(i).pc) 1282 XSDebug(false, !robEntries(i).valid, "- ") 1283 XSDebug(false, robEntries(i).valid && robEntries(i).isWritebacked, "w ") 1284 XSDebug(false, robEntries(i).valid && !robEntries(i).isWritebacked, "v ") 1285 if (i % 4 == 3) XSDebug(false, true.B, "\n") 1286 } 1287 1288 def ifCommit(counter: UInt): UInt = Mux(isCommit, counter, 0.U) 1289 1290 def ifCommitReg(counter: UInt): UInt = Mux(isCommitReg, counter, 0.U) 1291 1292 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 1293 XSPerfAccumulate("clock_cycle", 1.U) 1294 QueuePerf(RobSize, numValidEntries, numValidEntries === RobSize.U) 1295 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 1296 XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt)) 1297 XSPerfRolling("ipc", ifCommitReg(trueCommitCnt), 1000, clock, reset) 1298 XSPerfRolling("cpi", perfCnt = 1.U /*Cycle*/ , eventTrigger = ifCommitReg(trueCommitCnt), granularity = 1000, clock, reset) 1299 XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt)) 1300 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 1301 val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map { case (v, t) => v && t } 1302 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 1303 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 1304 val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map { case (v, t) => v && t } 1305 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 1306 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 1307 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map { case (v, t) => v && t }))) 1308 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => robEntries(i).valid && robEntries(i).isWritebacked))) 1309 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire))) 1310 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 1311 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)) 1312 XSPerfAccumulate("walkCycleTotal", state === s_walk) 1313 XSPerfAccumulate("waitRabWalkEnd", state === s_walk && walkFinished && !rab.io.status.walkEnd) 1314 private val walkCycle = RegInit(0.U(8.W)) 1315 private val waitRabWalkCycle = RegInit(0.U(8.W)) 1316 walkCycle := Mux(io.redirect.valid, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U)) 1317 waitRabWalkCycle := Mux(state === s_walk && walkFinished, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U)) 1318 1319 XSPerfHistogram("walkRobCycleHist", walkCycle, state === s_walk && walkFinished, 0, 32) 1320 XSPerfHistogram("walkRabExtraCycleHist", waitRabWalkCycle, state === s_walk && walkFinished && rab.io.status.walkEnd, 0, 32) 1321 XSPerfHistogram("walkTotalCycleHist", walkCycle, state === s_walk && state_next === s_idle, 0, 32) 1322 1323 private val deqNotWritebacked = robEntries(deqPtr.value).valid && !robEntries(deqPtr.value).isWritebacked 1324 private val deqStdNotWritebacked = robEntries(deqPtr.value).valid && !robEntries(deqPtr.value).stdWritebacked 1325 private val deqUopNotWritebacked = robEntries(deqPtr.value).valid && !robEntries(deqPtr.value).isUopWritebacked 1326 private val deqHeadInfo = debug_microOp(deqPtr.value) 1327 val deqUopCommitType = debug_microOp(deqPtr.value).commitType 1328 1329 XSPerfAccumulate("waitAluCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.alu.U) 1330 XSPerfAccumulate("waitMulCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.mul.U) 1331 XSPerfAccumulate("waitDivCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.div.U) 1332 XSPerfAccumulate("waitBrhCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.brh.U) 1333 XSPerfAccumulate("waitJmpCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.jmp.U) 1334 XSPerfAccumulate("waitCsrCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.csr.U) 1335 XSPerfAccumulate("waitFenCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.fence.U) 1336 XSPerfAccumulate("waitBkuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.bku.U) 1337 XSPerfAccumulate("waitLduCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.ldu.U) 1338 XSPerfAccumulate("waitStuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1339 XSPerfAccumulate("waitStaCycle", deqUopNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1340 XSPerfAccumulate("waitStdCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1341 XSPerfAccumulate("waitAtmCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.mou.U) 1342 1343 XSPerfAccumulate("waitVfaluCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.vfalu.U) 1344 XSPerfAccumulate("waitVfmaCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.vfma.U) 1345 XSPerfAccumulate("waitVfdivCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.vfdiv.U) 1346 1347 val vfalufuop = Seq(VfaluType.vfadd, VfaluType.vfwadd, VfaluType.vfwadd_w, VfaluType.vfsub, VfaluType.vfwsub, VfaluType.vfwsub_w, VfaluType.vfmin, VfaluType.vfmax, 1348 VfaluType.vfmerge, VfaluType.vfmv, VfaluType.vfsgnj, VfaluType.vfsgnjn, VfaluType.vfsgnjx, VfaluType.vfeq, VfaluType.vfne, VfaluType.vflt, VfaluType.vfle, VfaluType.vfgt, 1349 VfaluType.vfge, VfaluType.vfclass, VfaluType.vfmv_f_s, VfaluType.vfmv_s_f, VfaluType.vfredusum, VfaluType.vfredmax, VfaluType.vfredmin, VfaluType.vfredosum, VfaluType.vfwredosum) 1350 1351 vfalufuop.zipWithIndex.map{ 1352 case(fuoptype,i) => XSPerfAccumulate(s"waitVfalu_${i}Cycle", deqStdNotWritebacked && deqHeadInfo.fuOpType === fuoptype && deqHeadInfo.fuType === FuType.vfalu.U) 1353 } 1354 1355 1356 1357 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 1358 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 1359 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 1360 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 1361 XSPerfAccumulate("robHeadPC", io.commits.info(0).debug_pc.getOrElse(0.U)) 1362 XSPerfAccumulate("commitCompressCntAll", PopCount(io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => io.commits.isCommit && valid && info.instrSize > 1.U })) 1363 (2 to RenameWidth).foreach(i => 1364 XSPerfAccumulate(s"commitCompressCnt${i}", PopCount(io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => io.commits.isCommit && valid && info.instrSize === i.U })) 1365 ) 1366 XSPerfAccumulate("compressSize", io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => Mux(io.commits.isCommit && valid && info.instrSize > 1.U, info.instrSize, 0.U) }.reduce(_ +& _)) 1367 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 1368 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 1369 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 1370 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 1371 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 1372 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 1373 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 1374 1375 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 1376 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 1377 } 1378 1379 for (fuType <- FuType.functionNameMap.keys) { 1380 val fuName = FuType.functionNameMap(fuType) 1381 val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U) 1382 XSPerfRolling(s"ipc_futype_${fuName}", ifCommit(PopCount(commitIsFuType)), 1000, clock, reset) 1383 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 1384 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 1385 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 1386 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 1387 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 1388 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 1389 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 1390 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 1391 } 1392 XSPerfAccumulate(s"redirect_use_snapshot", io.redirect.valid && io.snpt.useSnpt) 1393 1394 // top-down info 1395 io.debugTopDown.toCore.robHeadVaddr.valid := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_valid 1396 io.debugTopDown.toCore.robHeadVaddr.bits := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_bits 1397 io.debugTopDown.toCore.robHeadPaddr.valid := debug_lsTopdownInfo(deqPtr.value).s2.paddr_valid 1398 io.debugTopDown.toCore.robHeadPaddr.bits := debug_lsTopdownInfo(deqPtr.value).s2.paddr_bits 1399 io.debugTopDown.toDispatch.robTrueCommit := ifCommitReg(trueCommitCnt) 1400 io.debugTopDown.toDispatch.robHeadLsIssue := debug_lsIssue(deqPtr.value) 1401 io.debugTopDown.robHeadLqIdx.valid := debug_lqIdxValid(deqPtr.value) 1402 io.debugTopDown.robHeadLqIdx.bits := debug_microOp(deqPtr.value).lqIdx 1403 1404 // rolling 1405 io.debugRolling.robTrueCommit := ifCommitReg(trueCommitCnt) 1406 1407 /** 1408 * DataBase info: 1409 * log trigger is at writeback valid 1410 * */ 1411 if (!env.FPGAPlatform) { 1412 val instTableName = "InstTable" + p(XSCoreParamsKey).HartId.toString 1413 val instSiteName = "Rob" + p(XSCoreParamsKey).HartId.toString 1414 val debug_instTable = ChiselDB.createTable(instTableName, new InstInfoEntry) 1415 for (wb <- exuWBs) { 1416 when(wb.valid) { 1417 val debug_instData = Wire(new InstInfoEntry) 1418 val idx = wb.bits.robIdx.value 1419 debug_instData.robIdx := idx 1420 debug_instData.dvaddr := wb.bits.debug.vaddr 1421 debug_instData.dpaddr := wb.bits.debug.paddr 1422 debug_instData.issueTime := wb.bits.debugInfo.issueTime 1423 debug_instData.writebackTime := wb.bits.debugInfo.writebackTime 1424 debug_instData.dispatchLatency := wb.bits.debugInfo.dispatchTime - wb.bits.debugInfo.renameTime 1425 debug_instData.enqRsLatency := wb.bits.debugInfo.enqRsTime - wb.bits.debugInfo.dispatchTime 1426 debug_instData.selectLatency := wb.bits.debugInfo.selectTime - wb.bits.debugInfo.enqRsTime 1427 debug_instData.issueLatency := wb.bits.debugInfo.issueTime - wb.bits.debugInfo.selectTime 1428 debug_instData.executeLatency := wb.bits.debugInfo.writebackTime - wb.bits.debugInfo.issueTime 1429 debug_instData.rsFuLatency := wb.bits.debugInfo.writebackTime - wb.bits.debugInfo.enqRsTime 1430 debug_instData.tlbLatency := wb.bits.debugInfo.tlbRespTime - wb.bits.debugInfo.tlbFirstReqTime 1431 debug_instData.exceptType := Cat(wb.bits.exceptionVec.getOrElse(ExceptionVec(false.B))) 1432 debug_instData.lsInfo := debug_lsInfo(idx) 1433 // debug_instData.globalID := wb.bits.uop.ctrl.debug_globalID 1434 // debug_instData.instType := wb.bits.uop.ctrl.fuType 1435 // debug_instData.ivaddr := wb.bits.uop.cf.pc 1436 // debug_instData.mdpInfo.ssid := wb.bits.uop.cf.ssid 1437 // debug_instData.mdpInfo.waitAllStore := wb.bits.uop.cf.loadWaitStrict && wb.bits.uop.cf.loadWaitBit 1438 debug_instTable.log( 1439 data = debug_instData, 1440 en = wb.valid, 1441 site = instSiteName, 1442 clock = clock, 1443 reset = reset 1444 ) 1445 } 1446 } 1447 } 1448 1449 1450 //difftest signals 1451 val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value 1452 1453 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1454 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1455 1456 for (i <- 0 until CommitWidth) { 1457 val idx = deqPtrVec(i).value 1458 wdata(i) := debug_exuData(idx) 1459 wpc(i) := SignExt(commitDebugUop(i).pc, XLEN) 1460 } 1461 1462 if (env.EnableDifftest || env.AlwaysBasicDiff) { 1463 // These are the structures used by difftest only and should be optimized after synthesis. 1464 val dt_eliminatedMove = Mem(RobSize, Bool()) 1465 val dt_isRVC = Mem(RobSize, Bool()) 1466 val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) 1467 for (i <- 0 until RenameWidth) { 1468 when(canEnqueue(i)) { 1469 dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 1470 dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC 1471 } 1472 } 1473 for (wb <- exuWBs) { 1474 when(wb.valid) { 1475 val wbIdx = wb.bits.robIdx.value 1476 dt_exuDebug(wbIdx) := wb.bits.debug 1477 } 1478 } 1479 // Always instantiate basic difftest modules. 1480 for (i <- 0 until CommitWidth) { 1481 val uop = commitDebugUop(i) 1482 val commitInfo = io.commits.info(i) 1483 val ptr = deqPtrVec(i).value 1484 val exuOut = dt_exuDebug(ptr) 1485 val eliminatedMove = dt_eliminatedMove(ptr) 1486 val isRVC = dt_isRVC(ptr) 1487 1488 val difftest = DifftestModule(new DiffInstrCommit(MaxPhyRegs), delay = 3, dontCare = true) 1489 val dt_skip = Mux(eliminatedMove, false.B, exuOut.isSkipDiff) 1490 difftest.coreid := io.hartId 1491 difftest.index := i.U 1492 difftest.valid := io.commits.commitValid(i) && io.commits.isCommit 1493 difftest.skip := dt_skip 1494 difftest.isRVC := isRVC 1495 difftest.rfwen := io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.debug_ldest.get =/= 0.U 1496 difftest.fpwen := io.commits.commitValid(i) && uop.fpWen 1497 difftest.wpdest := commitInfo.debug_pdest.get 1498 difftest.wdest := commitInfo.debug_ldest.get 1499 difftest.nFused := CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize - 1.U 1500 when(difftest.valid) { 1501 assert(CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize >= 1.U) 1502 } 1503 if (env.EnableDifftest) { 1504 val uop = commitDebugUop(i) 1505 difftest.pc := SignExt(uop.pc, XLEN) 1506 difftest.instr := uop.instr 1507 difftest.robIdx := ZeroExt(ptr, 10) 1508 difftest.lqIdx := ZeroExt(uop.lqIdx.value, 7) 1509 difftest.sqIdx := ZeroExt(uop.sqIdx.value, 7) 1510 difftest.isLoad := io.commits.info(i).commitType === CommitType.LOAD 1511 difftest.isStore := io.commits.info(i).commitType === CommitType.STORE 1512 // Check LoadEvent only when isAmo or isLoad and skip MMIO 1513 val difftestLoadEvent = DifftestModule(new DiffLoadEvent, delay = 3) 1514 difftestLoadEvent.coreid := io.hartId 1515 difftestLoadEvent.index := i.U 1516 val loadCheck = (FuType.isAMO(uop.fuType) || FuType.isLoad(uop.fuType)) && !dt_skip 1517 difftestLoadEvent.valid := io.commits.commitValid(i) && io.commits.isCommit && loadCheck 1518 difftestLoadEvent.paddr := exuOut.paddr 1519 difftestLoadEvent.opType := uop.fuOpType 1520 difftestLoadEvent.isAtomic := FuType.isAMO(uop.fuType) 1521 difftestLoadEvent.isLoad := FuType.isLoad(uop.fuType) 1522 } 1523 } 1524 } 1525 1526 if (env.EnableDifftest || env.AlwaysBasicDiff) { 1527 val dt_isXSTrap = Mem(RobSize, Bool()) 1528 for (i <- 0 until RenameWidth) { 1529 when(canEnqueue(i)) { 1530 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap 1531 } 1532 } 1533 val trapVec = io.commits.commitValid.zip(deqPtrVec).map { case (v, d) => 1534 io.commits.isCommit && v && dt_isXSTrap(d.value) 1535 } 1536 val hitTrap = trapVec.reduce(_ || _) 1537 val difftest = DifftestModule(new DiffTrapEvent, dontCare = true) 1538 difftest.coreid := io.hartId 1539 difftest.hasTrap := hitTrap 1540 difftest.cycleCnt := timer 1541 difftest.instrCnt := instrCnt 1542 difftest.hasWFI := hasWFI 1543 1544 if (env.EnableDifftest) { 1545 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 1546 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 -> x._1)), XLEN) 1547 difftest.code := trapCode 1548 difftest.pc := trapPC 1549 } 1550 } 1551 1552 //store evetn difftest information 1553 io.storeDebugInfo := DontCare 1554 if (env.EnableDifftest) { 1555 io.storeDebugInfo.map{port => 1556 port.pc := debug_microOp(port.robidx.value).pc 1557 } 1558 } 1559 1560 val commitLoadVec = VecInit(commitLoadValid) 1561 val commitBranchVec = VecInit(commitBranchValid) 1562 val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map { case (v, t) => v && t }) 1563 val perfEvents = Seq( 1564 ("rob_interrupt_num ", io.flushOut.valid && intrEnable), 1565 ("rob_exception_num ", io.flushOut.valid && deqHasException), 1566 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe), 1567 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst), 1568 ("rob_commitUop ", ifCommit(commitCnt)), 1569 ("rob_commitInstr ", ifCommitReg(trueCommitCnt)), 1570 ("rob_commitInstrFused ", ifCommitReg(fuseCommitCnt)), 1571 ("rob_commitInstrLoad ", ifCommitReg(PopCount(RegEnable(commitLoadVec, isCommit)))), 1572 ("rob_commitInstrBranch ", ifCommitReg(PopCount(RegEnable(commitBranchVec, isCommit)))), 1573 ("rob_commitInstrStore ", ifCommitReg(PopCount(RegEnable(commitStoreVec, isCommit)))), 1574 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)), 1575 ("rob_walkCycle ", (state === s_walk)), 1576 ("rob_1_4_valid ", numValidEntries <= (RobSize / 4).U), 1577 ("rob_2_4_valid ", numValidEntries > (RobSize / 4).U && numValidEntries <= (RobSize / 2).U), 1578 ("rob_3_4_valid ", numValidEntries > (RobSize / 2).U && numValidEntries <= (RobSize * 3 / 4).U), 1579 ("rob_4_4_valid ", numValidEntries > (RobSize * 3 / 4).U), 1580 ) 1581 generatePerfEvent() 1582 1583 // max commit-stuck cycle 1584 val deqismmio = Mux(robEntries(deqPtr.value).valid, robEntries(deqPtr.value).mmio, false.B) 1585 val commitStuck = (!io.commits.commitValid.reduce(_ || _) || !io.commits.isCommit) && !deqismmio 1586 val commitStuckCycle = RegInit(0.U(log2Up(maxCommitStuck).W)) 1587 when(commitStuck) { 1588 commitStuckCycle := commitStuckCycle + 1.U 1589 }.elsewhen(!commitStuck && RegNext(commitStuck)) { 1590 commitStuckCycle := 0.U 1591 } 1592 // check if stuck > 2^maxCommitStuckCycle 1593 val commitStuck_overflow = commitStuckCycle.andR 1594 val criticalErrors = Seq( 1595 ("rob_commit_stuck ", commitStuck_overflow), 1596 ) 1597 generateCriticalErrors() 1598 1599 1600 // dontTouch for debug 1601 if (backendParams.debugEn) { 1602 dontTouch(enqPtrVec) 1603 dontTouch(deqPtrVec) 1604 dontTouch(robEntries) 1605 dontTouch(robDeqGroup) 1606 dontTouch(robBanks) 1607 dontTouch(robBanksRaddrThisLine) 1608 dontTouch(robBanksRaddrNextLine) 1609 dontTouch(robBanksRdataThisLine) 1610 dontTouch(robBanksRdataNextLine) 1611 dontTouch(robBanksRdataThisLineUpdate) 1612 dontTouch(robBanksRdataNextLineUpdate) 1613 dontTouch(needUpdate) 1614 val exceptionWBsVec = MixedVecInit(exceptionWBs) 1615 dontTouch(exceptionWBsVec) 1616 dontTouch(commit_wDeqGroup) 1617 dontTouch(commit_vDeqGroup) 1618 dontTouch(commitSizeSumSeq) 1619 dontTouch(walkSizeSumSeq) 1620 dontTouch(commitSizeSumCond) 1621 dontTouch(walkSizeSumCond) 1622 dontTouch(commitSizeSum) 1623 dontTouch(walkSizeSum) 1624 dontTouch(realDestSizeSeq) 1625 dontTouch(walkDestSizeSeq) 1626 dontTouch(io.commits) 1627 dontTouch(commitIsVTypeVec) 1628 dontTouch(walkIsVTypeVec) 1629 dontTouch(commitValidThisLine) 1630 dontTouch(commitReadAddr_next) 1631 dontTouch(donotNeedWalk) 1632 dontTouch(walkPtrVec_next) 1633 dontTouch(walkPtrVec) 1634 dontTouch(deqPtrVec_next) 1635 dontTouch(deqPtrVecForWalk) 1636 dontTouch(snapPtrReadBank) 1637 dontTouch(snapPtrVecForWalk) 1638 dontTouch(shouldWalkVec) 1639 dontTouch(walkFinished) 1640 dontTouch(changeBankAddrToDeqPtr) 1641 } 1642 if (env.EnableDifftest) { 1643 io.commits.info.map(info => dontTouch(info.debug_pc.get)) 1644 } 1645} 1646