1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.rob 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 24import utility._ 25import utils._ 26import xiangshan._ 27import xiangshan.backend.BackendParams 28import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 29import xiangshan.backend.fu.FuType 30import xiangshan.frontend.FtqPtr 31import xiangshan.mem.{LqPtr, SqPtr} 32import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 33 34class RobPtr(entries: Int) extends CircularQueuePtr[RobPtr]( 35 entries 36) with HasCircularQueuePtrHelper { 37 38 def this()(implicit p: Parameters) = this(p(XSCoreParamsKey).RobSize) 39 40 def needFlush(redirect: Valid[Redirect]): Bool = { 41 val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx 42 redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx)) 43 } 44 45 def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR 46} 47 48object RobPtr { 49 def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = { 50 val ptr = Wire(new RobPtr) 51 ptr.flag := f 52 ptr.value := v 53 ptr 54 } 55} 56 57class RobCSRIO(implicit p: Parameters) extends XSBundle { 58 val intrBitSet = Input(Bool()) 59 val trapTarget = Input(UInt(VAddrBits.W)) 60 val isXRet = Input(Bool()) 61 val wfiEvent = Input(Bool()) 62 63 val fflags = Output(Valid(UInt(5.W))) 64 val vxsat = Output(Valid(Bool())) 65 val dirty_fs = Output(Bool()) 66 val perfinfo = new Bundle { 67 val retiredInstr = Output(UInt(3.W)) 68 } 69 70 val vcsrFlag = Output(Bool()) 71} 72 73class RobLsqIO(implicit p: Parameters) extends XSBundle { 74 val lcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 75 val scommit = Output(UInt(log2Up(CommitWidth + 1).W)) 76 val pendingld = Output(Bool()) 77 val pendingst = Output(Bool()) 78 val commit = Output(Bool()) 79 val pendingPtr = Output(new RobPtr) 80 81 val mmio = Input(Vec(LoadPipelineWidth, Bool())) 82 val uop = Input(Vec(LoadPipelineWidth, new DynInst)) 83} 84 85class RobEnqIO(implicit p: Parameters) extends XSBundle { 86 val canAccept = Output(Bool()) 87 val isEmpty = Output(Bool()) 88 // valid vector, for robIdx gen and walk 89 val needAlloc = Vec(RenameWidth, Input(Bool())) 90 val req = Vec(RenameWidth, Flipped(ValidIO(new DynInst))) 91 val resp = Vec(RenameWidth, Output(new RobPtr)) 92} 93 94class RobDispatchData(implicit p: Parameters) extends RobCommitInfo 95 96class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 97 val io = IO(new Bundle { 98 // for commits/flush 99 val state = Input(UInt(2.W)) 100 val deq_v = Vec(CommitWidth, Input(Bool())) 101 val deq_w = Vec(CommitWidth, Input(Bool())) 102 val exception_state = Flipped(ValidIO(new RobExceptionInfo)) 103 // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth) 104 val intrBitSetReg = Input(Bool()) 105 val hasNoSpecExec = Input(Bool()) 106 val interrupt_safe = Input(Bool()) 107 val blockCommit = Input(Bool()) 108 // output: the CommitWidth deqPtr 109 val out = Vec(CommitWidth, Output(new RobPtr)) 110 val next_out = Vec(CommitWidth, Output(new RobPtr)) 111 }) 112 113 val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr)))) 114 115 // for exceptions (flushPipe included) and interrupts: 116 // only consider the first instruction 117 val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe 118 val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0) 119 val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable) 120 121 // for normal commits: only to consider when there're no exceptions 122 // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions. 123 val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last) 124 val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i))) 125 val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B) 126 // when io.intrBitSetReg or there're possible exceptions in these instructions, 127 // only one instruction is allowed to commit 128 val allowOnlyOne = commit_exception || io.intrBitSetReg 129 val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt) 130 131 val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt)) 132 val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec) 133 134 deqPtrVec := deqPtrVec_next 135 136 io.next_out := deqPtrVec_next 137 io.out := deqPtrVec 138 139 when (io.state === 0.U) { 140 XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt) 141 } 142 143} 144 145class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 146 val io = IO(new Bundle { 147 // for input redirect 148 val redirect = Input(Valid(new Redirect)) 149 // for enqueue 150 val allowEnqueue = Input(Bool()) 151 val hasBlockBackward = Input(Bool()) 152 val enq = Vec(RenameWidth, Input(Bool())) 153 val out = Output(Vec(RenameWidth, new RobPtr)) 154 }) 155 156 val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr))) 157 158 // enqueue 159 val canAccept = io.allowEnqueue && !io.hasBlockBackward 160 val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U) 161 162 for ((ptr, i) <- enqPtrVec.zipWithIndex) { 163 when(io.redirect.valid) { 164 ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 165 }.otherwise { 166 ptr := ptr + dispatchNum 167 } 168 } 169 170 io.out := enqPtrVec 171 172} 173 174class RobExceptionInfo(implicit p: Parameters) extends XSBundle { 175 // val valid = Bool() 176 val robIdx = new RobPtr 177 val exceptionVec = ExceptionVec() 178 val flushPipe = Bool() 179 val isVset = Bool() 180 val replayInst = Bool() // redirect to that inst itself 181 val singleStep = Bool() // TODO add frontend hit beneath 182 val crossPageIPFFix = Bool() 183 val trigger = new TriggerCf 184 185// def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend 186// def trigger_after = trigger.getTimingBackend && trigger.getHitBackend 187 def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit 188 def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit 189 // only exceptions are allowed to writeback when enqueue 190 def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit 191} 192 193class ExceptionGen(params: BackendParams)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 194 val io = IO(new Bundle { 195 val redirect = Input(Valid(new Redirect)) 196 val flush = Input(Bool()) 197 val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo))) 198 // csr + load + store 199 val wb = Vec(params.numException, Flipped(ValidIO(new RobExceptionInfo))) 200 val out = ValidIO(new RobExceptionInfo) 201 val state = ValidIO(new RobExceptionInfo) 202 }) 203 204 def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = { 205 assert(valid.length == bits.length) 206 assert(isPow2(valid.length)) 207 if (valid.length == 1) { 208 (valid, bits) 209 } else if (valid.length == 2) { 210 val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0))))) 211 for (i <- res.indices) { 212 res(i).valid := valid(i) 213 res(i).bits := bits(i) 214 } 215 val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1)) 216 (Seq(oldest.valid), Seq(oldest.bits)) 217 } else { 218 val left = getOldest(valid.take(valid.length / 2), bits.take(valid.length / 2)) 219 val right = getOldest(valid.takeRight(valid.length / 2), bits.takeRight(valid.length / 2)) 220 getOldest(left._1 ++ right._1, left._2 ++ right._2) 221 } 222 } 223 224 val currentValid = RegInit(false.B) 225 val current = Reg(new RobExceptionInfo) 226 227 // orR the exceptionVec 228 val lastCycleFlush = RegNext(io.flush) 229 val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush)) 230 val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush) 231 232 // s0: compare wb(1)~wb(LoadPipelineWidth) and wb(1 + LoadPipelineWidth)~wb(LoadPipelineWidth + StorePipelineWidth) 233 val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) } 234 val csr_wb_bits = io.wb(0).bits 235 val load_wb_bits = getOldest(in_wb_valid.slice(1, 1 + LoadPipelineWidth), io.wb.map(_.bits).slice(1, 1 + LoadPipelineWidth))._2(0) 236 val store_wb_bits = getOldest(in_wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth), io.wb.map(_.bits).slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth))._2(0) 237 val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid.slice(1, 1 + LoadPipelineWidth).reduce(_ || _), wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth).reduce(_ || _)))) 238 val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits))) 239 240 // s1: compare last four and current flush 241 val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) }) 242 val compare_01_valid = s0_out_valid(0) || s0_out_valid(1) 243 val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0)) 244 val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2)) 245 val s1_out_bits = RegNext(compare_bits) 246 val s1_out_valid = RegNext(s1_valid.asUInt.orR) 247 248 val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 249 val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits))) 250 251 // s2: compare the input exception with the current one 252 // priorities: 253 // (1) system reset 254 // (2) current is valid: flush, remain, merge, update 255 // (3) current is not valid: s1 or enq 256 val current_flush = current.robIdx.needFlush(io.redirect) || io.flush 257 val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush 258 when (currentValid) { 259 when (current_flush) { 260 currentValid := Mux(s1_flush, false.B, s1_out_valid) 261 } 262 when (s1_out_valid && !s1_flush) { 263 when (isAfter(current.robIdx, s1_out_bits.robIdx)) { 264 current := s1_out_bits 265 }.elsewhen (current.robIdx === s1_out_bits.robIdx) { 266 current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec()) 267 current.flushPipe := s1_out_bits.flushPipe || current.flushPipe 268 current.replayInst := s1_out_bits.replayInst || current.replayInst 269 current.singleStep := s1_out_bits.singleStep || current.singleStep 270 current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf) 271 } 272 } 273 }.elsewhen (s1_out_valid && !s1_flush) { 274 currentValid := true.B 275 current := s1_out_bits 276 }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) { 277 currentValid := true.B 278 current := enq_bits 279 } 280 281 io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback 282 io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits) 283 io.state.valid := currentValid 284 io.state.bits := current 285 286} 287 288class RobFlushInfo(implicit p: Parameters) extends XSBundle { 289 val ftqIdx = new FtqPtr 290 val robIdx = new RobPtr 291 val ftqOffset = UInt(log2Up(PredictWidth).W) 292 val replayInst = Bool() 293} 294 295class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter { 296 297 lazy val module = new RobImp(this)(p, params) 298 // 299 // override def generateWritebackIO( 300 // thisMod: Option[HasWritebackSource] = None, 301 // thisModImp: Option[HasWritebackSourceImp] = None 302 // ): Unit = { 303 // val sources = writebackSinksImp(thisMod, thisModImp) 304 // module.io.writeback.zip(sources).foreach(x => x._1 := x._2) 305 // } 306 //} 307} 308 309class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper) 310 with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents { 311 312 val io = IO(new Bundle() { 313 val hartId = Input(UInt(8.W)) 314 val redirect = Input(Valid(new Redirect)) 315 val enq = new RobEnqIO 316 val flushOut = ValidIO(new Redirect) 317 val exception = ValidIO(new ExceptionInfo) 318 // exu + brq 319 val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles) 320 val commits = Output(new RobCommitIO) 321 val rabCommits = Output(new RobCommitIO) 322 val diffCommits = Output(new DiffCommitIO) 323 val isVsetFlushPipe = Output(Bool()) 324 val vconfigPdest = Output(UInt(PhyRegIdxWidth.W)) 325 val lsq = new RobLsqIO 326 val robDeqPtr = Output(new RobPtr) 327 val csr = new RobCSRIO 328 val robFull = Output(Bool()) 329 val cpu_halt = Output(Bool()) 330 val wfi_enable = Input(Bool()) 331 }) 332 333 val exuWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(!_.bits.params.hasStdFu) 334 val stdWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(_.bits.params.hasStdFu) 335 val fflagsWBs = io.writeback.filter(x => x.bits.fflags.nonEmpty) 336 val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty) 337 val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty) 338 339 val exuWbPorts = io.writeback.filter(!_.bits.params.hasStdFu) 340 val stdWbPorts = io.writeback.filter(_.bits.params.hasStdFu) 341 val fflagsPorts = io.writeback.filter(x => x.bits.fflags.nonEmpty) 342 val vxsatPorts = io.writeback.filter(x => x.bits.vxsat.nonEmpty) 343 val exceptionPorts = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty) 344 val numExuWbPorts = exuWBs.length 345 val numStdWbPorts = stdWBs.length 346 347 348 println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth") 349// println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}") 350// println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}") 351// println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}") 352 353 354 // instvalid field 355 val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 356 // writeback status 357 358 val stdWritebacked = Reg(Vec(RobSize, Bool())) 359 val uopNumVec = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W)))) 360 val realDestSize = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W)))) 361 val fflagsDataModule = RegInit(VecInit(Seq.fill(RobSize)(0.U(5.W)))) 362 val vxsatDataModule = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 363 364 def isWritebacked(ptr: UInt): Bool = { 365 !uopNumVec(ptr).orR && stdWritebacked(ptr) 366 } 367 368 val mmio = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 369 370 // data for redirect, exception, etc. 371 val flagBkup = Mem(RobSize, Bool()) 372 // some instructions are not allowed to trigger interrupts 373 // They have side effects on the states of the processor before they write back 374 val interrupt_safe = Mem(RobSize, Bool()) 375 376 // data for debug 377 // Warn: debug_* prefix should not exist in generated verilog. 378 val debug_microOp = Mem(RobSize, new DynInst) 379 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug 380 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug 381 382 // pointers 383 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 384 val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr)) 385 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 386 387 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 388 val allowEnqueue = RegInit(true.B) 389 390 val enqPtr = enqPtrVec.head 391 val deqPtr = deqPtrVec(0) 392 val walkPtr = walkPtrVec(0) 393 394 val isEmpty = enqPtr === deqPtr 395 val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level) 396 397 /** 398 * states of Rob 399 */ 400 val s_idle :: s_walk :: Nil = Enum(2) 401 val state = RegInit(s_idle) 402 403 /** 404 * Data Modules 405 * 406 * CommitDataModule: data from dispatch 407 * (1) read: commits/walk/exception 408 * (2) write: enqueue 409 * 410 * WritebackData: data from writeback 411 * (1) read: commits/walk/exception 412 * (2) write: write back from exe units 413 */ 414 val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth)) 415 val dispatchDataRead = dispatchData.io.rdata 416 417 val exceptionGen = Module(new ExceptionGen(params)) 418 val exceptionDataRead = exceptionGen.io.state 419 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 420 val vxsatDataRead = Wire(Vec(CommitWidth, Bool())) 421 422 io.robDeqPtr := deqPtr 423 424 val rab = Module(new RenameBuffer(RabSize)) 425 rab.io.redirectValid := io.redirect.valid 426 rab.io.req.zip(io.enq.req).map { case (dest, src) => 427 dest.bits := src.bits 428 dest.valid := src.valid && io.enq.canAccept 429 } 430 431 val realDestSizeCandidates = (0 until CommitWidth).map(i => realDestSize(Mux(state === s_idle, deqPtrVec(i).value, walkPtrVec(i).value))) 432 val wbSizeSeq = io.commits.commitValid.zip(io.commits.walkValid).zip(realDestSizeCandidates).map { case ((commitValid, walkValid), realDestSize) => 433 Mux(io.commits.isCommit, Mux(commitValid, realDestSize, 0.U), Mux(walkValid, realDestSize, 0.U)) 434 } 435 val wbSizeSum = wbSizeSeq.reduce(_ + _) 436 rab.io.commitSize := wbSizeSum 437 rab.io.walkSize := wbSizeSum 438 439 io.rabCommits := rab.io.commits 440 io.diffCommits := rab.io.diffCommits 441 442 /** 443 * Enqueue (from dispatch) 444 */ 445 // special cases 446 val hasBlockBackward = RegInit(false.B) 447 val hasWaitForward = RegInit(false.B) 448 val doingSvinval = RegInit(false.B) 449 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 450 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 451 when (isEmpty) { hasBlockBackward:= false.B } 452 // When any instruction commits, hasNoSpecExec should be set to false.B 453 when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasWaitForward:= false.B } 454 455 // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing. 456 // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle. 457 // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts. 458 val hasWFI = RegInit(false.B) 459 io.cpu_halt := hasWFI 460 // WFI Timeout: 2^20 = 1M cycles 461 val wfi_cycles = RegInit(0.U(20.W)) 462 when (hasWFI) { 463 wfi_cycles := wfi_cycles + 1.U 464 }.elsewhen (!hasWFI && RegNext(hasWFI)) { 465 wfi_cycles := 0.U 466 } 467 val wfi_timeout = wfi_cycles.andR 468 when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) { 469 hasWFI := false.B 470 } 471 472 val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.req.take(i).map(req => req.valid && req.bits.firstUop))))) 473 io.enq.canAccept := allowEnqueue && !hasBlockBackward && rab.io.canEnq 474 io.enq.resp := allocatePtrVec 475 val canEnqueue = VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop && io.enq.canAccept)) 476 val timer = GTimer() 477 for (i <- 0 until RenameWidth) { 478 // we don't check whether io.redirect is valid here since redirect has higher priority 479 when (canEnqueue(i)) { 480 val enqUop = io.enq.req(i).bits 481 val enqIndex = allocatePtrVec(i).value 482 // store uop in data module and debug_microOp Vec 483 debug_microOp(enqIndex) := enqUop 484 debug_microOp(enqIndex).debugInfo.dispatchTime := timer 485 debug_microOp(enqIndex).debugInfo.enqRsTime := timer 486 debug_microOp(enqIndex).debugInfo.selectTime := timer 487 debug_microOp(enqIndex).debugInfo.issueTime := timer 488 debug_microOp(enqIndex).debugInfo.writebackTime := timer 489 when (enqUop.blockBackward) { 490 hasBlockBackward := true.B 491 } 492 when (enqUop.waitForward) { 493 hasWaitForward := true.B 494 } 495 val enqHasTriggerHit = false.B // io.enq.req(i).bits.cf.trigger.getHitFrontend 496 val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR 497 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 498 when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe)) 499 { 500 doingSvinval := true.B 501 } 502 // the end instruction of Svinval enqs so clear doingSvinval 503 when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe)) 504 { 505 doingSvinval := false.B 506 } 507 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 508 assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe))) 509 when (enqUop.isWFI && !enqHasException && !enqHasTriggerHit) { 510 hasWFI := true.B 511 } 512 513 mmio(enqIndex) := false.B 514 } 515 } 516 val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(req => req.valid && req.bits.firstUop)), 0.U) 517 io.enq.isEmpty := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR) 518 519 when (!io.wfi_enable) { 520 hasWFI := false.B 521 } 522 // sel vsetvl's flush position 523 val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3) 524 val vsetvlState = RegInit(vs_idle) 525 526 val firstVInstrFtqPtr = RegInit(0.U.asTypeOf(new FtqPtr)) 527 val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W))) 528 val firstVInstrRobIdx = RegInit(0.U.asTypeOf(new RobPtr)) 529 530 val enq0 = io.enq.req(0) 531 val enq0IsVset = enq0.bits.isVset && enq0.bits.lastUop && canEnqueue(0) 532 val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe 533 val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVpu(req.bits.fuType) && fire} 534 // for vs_idle 535 val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType))) 536 // for vs_waitVinstr 537 val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1) 538 val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req) 539 when(vsetvlState === vs_idle){ 540 firstVInstrFtqPtr := firstVInstrIdle.bits.ftqPtr 541 firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset 542 firstVInstrRobIdx := firstVInstrIdle.bits.robIdx 543 }.elsewhen(vsetvlState === vs_waitVinstr){ 544 when(Cat(enqIsVInstrOrVset).orR){ 545 firstVInstrFtqPtr := firstVInstrWait.bits.ftqPtr 546 firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset 547 firstVInstrRobIdx := firstVInstrWait.bits.robIdx 548 } 549 } 550 551 val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR 552 when(vsetvlState === vs_idle && !io.redirect.valid){ 553 when(enq0IsVsetFlush){ 554 vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr) 555 } 556 }.elsewhen(vsetvlState === vs_waitVinstr){ 557 when(io.redirect.valid){ 558 vsetvlState := vs_idle 559 }.elsewhen(Cat(enqIsVInstrOrVset).orR){ 560 vsetvlState := vs_waitFlush 561 } 562 }.elsewhen(vsetvlState === vs_waitFlush){ 563 when(io.redirect.valid){ 564 vsetvlState := vs_idle 565 } 566 } 567 568 /** 569 * Writeback (from execution units) 570 */ 571 for (wb <- exuWBs) { 572 when (wb.valid) { 573 val wbIdx = wb.bits.robIdx.value 574 debug_exuData(wbIdx) := wb.bits.data 575 debug_exuDebug(wbIdx) := wb.bits.debug 576 debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime 577 debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime 578 debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime 579 debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime 580 581 // debug for lqidx and sqidx 582 debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr)) 583 debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr)) 584 585 val debug_Uop = debug_microOp(wbIdx) 586 XSInfo(true.B, 587 p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " + 588 p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " + 589 p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.robIdx}\n" 590 ) 591 } 592 } 593 594 val writebackNum = PopCount(exuWBs.map(_.valid)) 595 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 596 597 for (i <- 0 until LoadPipelineWidth) { 598 when (RegNext(io.lsq.mmio(i))) { 599 mmio(RegNext(io.lsq.uop(i).robIdx).value) := true.B 600 } 601 } 602 603 /** 604 * RedirectOut: Interrupt and Exceptions 605 */ 606 val deqDispatchData = dispatchDataRead(0) 607 val debug_deqUop = debug_microOp(deqPtr.value) 608 609 val intrBitSetReg = RegNext(io.csr.intrBitSet) 610 val intrEnable = intrBitSetReg && !hasWaitForward && interrupt_safe(deqPtr.value) 611 val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 612 val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR || 613 exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit) 614 val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe 615 val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst 616 val exceptionEnable = isWritebacked(deqPtr.value) && deqHasException 617 618 XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n") 619 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n") 620 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n") 621 622 val isFlushPipe = isWritebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst) 623 624 val isVsetFlushPipe = isWritebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset 625// val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush) 626 val needModifyFtqIdxOffset = false.B 627 io.isVsetFlushPipe := isVsetFlushPipe 628 io.vconfigPdest := rab.io.vconfigPdest 629 // io.flushOut will trigger redirect at the next cycle. 630 // Block any redirect or commit at the next cycle. 631 val lastCycleFlush = RegNext(io.flushOut.valid) 632 633 io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush 634 io.flushOut.bits := DontCare 635 io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr) 636 io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx) 637 io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset) 638 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next" 639 io.flushOut.bits.interrupt := true.B 640 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 641 XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable) 642 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 643 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 644 645 val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush 646 io.exception.valid := RegNext(exceptionHappen) 647 io.exception.bits.pc := RegEnable(debug_deqUop.pc, exceptionHappen) 648 io.exception.bits.instr := RegEnable(debug_deqUop.instr, exceptionHappen) 649 io.exception.bits.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 650 io.exception.bits.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 651 io.exception.bits.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 652 io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 653 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 654// io.exception.bits.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen) 655 656 XSDebug(io.flushOut.valid, 657 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " + 658 p"excp $exceptionEnable flushPipe $isFlushPipe " + 659 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 660 661 662 /** 663 * Commits (and walk) 664 * They share the same width. 665 */ 666 val walkCounter = Reg(UInt(log2Up(RobSize + 1).W)) 667 val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter)) 668 val walkFinished = walkCounter <= CommitWidth.U 669 rab.io.robWalkEnd := state === s_walk && walkFinished 670 671 require(RenameWidth <= CommitWidth) 672 673 // wiring to csr 674 val (wflags, fpWen) = (0 until CommitWidth).map(i => { 675 val v = io.commits.commitValid(i) 676 val info = io.commits.info(i) 677 (v & info.wflags, v & info.fpWen) 678 }).unzip 679 val fflags = Wire(Valid(UInt(5.W))) 680 fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR 681 fflags.bits := wflags.zip(fflagsDataRead).map({ 682 case (w, f) => Mux(w, f, 0.U) 683 }).reduce(_|_) 684 val dirty_fs = io.commits.isCommit && VecInit(fpWen).asUInt.orR 685 686 val vxsat = Wire(Valid(Bool())) 687 vxsat.valid := io.commits.isCommit && vxsat.bits 688 vxsat.bits := io.commits.commitValid.zip(vxsatDataRead).map { 689 case (valid, vxsat) => valid & vxsat 690 }.reduce(_ | _) 691 692 // when mispredict branches writeback, stop commit in the next 2 cycles 693 // TODO: don't check all exu write back 694 val misPredWb = Cat(VecInit(redirectWBs.map(wb => 695 wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid 696 ))).orR 697 val misPredBlockCounter = Reg(UInt(3.W)) 698 misPredBlockCounter := Mux(misPredWb, 699 "b111".U, 700 misPredBlockCounter >> 1.U 701 ) 702 val misPredBlock = misPredBlockCounter(0) 703 val blockCommit = misPredBlock && !io.flushOut.valid || isReplaying || lastCycleFlush || hasWFI 704 705 io.commits.isWalk := state === s_walk 706 io.commits.isCommit := state === s_idle && !blockCommit 707 val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value))) 708 val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value))) 709 // store will be commited iff both sta & std have been writebacked 710 val commit_w = VecInit(deqPtrVec.map(ptr => isWritebacked(ptr.value))) 711 val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last) 712 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i))) 713 val allowOnlyOneCommit = commit_exception || intrBitSetReg 714 // for instructions that may block others, we don't allow them to commit 715 for (i <- 0 until CommitWidth) { 716 // defaults: state === s_idle and instructions commit 717 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 718 val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst 719 io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked 720 io.commits.info(i) := dispatchDataRead(i) 721 722 when (state === s_walk) { 723 io.commits.walkValid(i) := shouldWalkVec(i) 724 when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) { 725 XSError(!walk_v(i), s"why not $i???\n") 726 } 727 } 728 729 XSInfo(io.commits.isCommit && io.commits.commitValid(i), 730 "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b vxsat: %b\n", 731 debug_microOp(deqPtrVec(i).value).pc, 732 io.commits.info(i).rfWen, 733 io.commits.info(i).ldest, 734 io.commits.info(i).pdest, 735 io.commits.info(i).old_pdest, 736 debug_exuData(deqPtrVec(i).value), 737 fflagsDataRead(i), 738 vxsatDataRead(i) 739 ) 740 XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n", 741 debug_microOp(walkPtrVec(i).value).pc, 742 io.commits.info(i).rfWen, 743 io.commits.info(i).ldest, 744 debug_exuData(walkPtrVec(i).value) 745 ) 746 } 747 if (env.EnableDifftest) { 748 io.commits.info.map(info => dontTouch(info.pc)) 749 } 750 751 // sync fflags/dirty_fs/vxsat to csr 752 io.csr.fflags := RegNext(fflags) 753 io.csr.dirty_fs := RegNext(dirty_fs) 754 io.csr.vxsat := RegNext(vxsat) 755 756 // sync v csr to csr 757 // for difftest 758 if(env.AlwaysBasicDiff || env.EnableDifftest) { 759 val isDiffWriteVconfigVec = io.diffCommits.commitValid.zip(io.diffCommits.info).map { case (valid, info) => valid && info.ldest === VCONFIG_IDX.U && info.vecWen }.reverse 760 io.csr.vcsrFlag := RegNext(io.diffCommits.isCommit && Cat(isDiffWriteVconfigVec).orR) 761 } 762 else{ 763 io.csr.vcsrFlag := false.B 764 } 765 766 // commit load/store to lsq 767 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 768 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE)) 769 io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U)) 770 io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U)) 771 // indicate a pending load or store 772 io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value) && mmio(deqPtr.value)) 773 io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value)) 774 io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0)) 775 io.lsq.pendingPtr := RegNext(deqPtr) 776 777 /** 778 * state changes 779 * (1) redirect: switch to s_walk 780 * (2) walk: when walking comes to the end, switch to s_idle 781 */ 782 val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished && rab.io.rabWalkEnd, s_idle, state)) 783 XSPerfAccumulate("s_idle_to_idle", state === s_idle && state_next === s_idle) 784 XSPerfAccumulate("s_idle_to_walk", state === s_idle && state_next === s_walk) 785 XSPerfAccumulate("s_walk_to_idle", state === s_walk && state_next === s_idle) 786 XSPerfAccumulate("s_walk_to_walk", state === s_walk && state_next === s_walk) 787 state := state_next 788 789 /** 790 * pointers and counters 791 */ 792 val deqPtrGenModule = Module(new RobDeqPtrWrapper) 793 deqPtrGenModule.io.state := state 794 deqPtrGenModule.io.deq_v := commit_v 795 deqPtrGenModule.io.deq_w := commit_w 796 deqPtrGenModule.io.exception_state := exceptionDataRead 797 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 798 deqPtrGenModule.io.hasNoSpecExec := hasWaitForward 799 deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value) 800 deqPtrGenModule.io.blockCommit := blockCommit 801 deqPtrVec := deqPtrGenModule.io.out 802 val deqPtrVec_next = deqPtrGenModule.io.next_out 803 804 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 805 enqPtrGenModule.io.redirect := io.redirect 806 enqPtrGenModule.io.allowEnqueue := allowEnqueue 807 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 808 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop)) 809 enqPtrVec := enqPtrGenModule.io.out 810 811 val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U) 812 // next walkPtrVec: 813 // (1) redirect occurs: update according to state 814 // (2) walk: move forwards 815 val walkPtrVec_next = Mux(io.redirect.valid, 816 deqPtrVec_next, 817 Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec) 818 ) 819 walkPtrVec := walkPtrVec_next 820 821 val numValidEntries = distanceBetween(enqPtr, deqPtr) 822 val commitCnt = PopCount(io.commits.commitValid) 823 824 allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U 825 826 val currentWalkPtr = Mux(state === s_walk, walkPtr, deqPtrVec_next(0)) 827 val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0)) 828 when (io.redirect.valid) { 829 // full condition: 830 // +& is used here because: 831 // When rob is full and the tail instruction causes a misprediction, 832 // the redirect robIdx is the deqPtr - 1. In this case, redirectWalkDistance 833 // is RobSize - 1. 834 // Since misprediction does not flush the instruction itself, flushItSelf is false.B. 835 // Previously we use `+` to count the walk distance and it causes overflows 836 // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize. 837 // The width of walkCounter also needs to be changed. 838 // empty condition: 839 // When the last instruction in ROB commits and causes a flush, a redirect 840 // will be raised later. In such circumstances, the redirect robIdx is before 841 // the deqPtrVec_next(0) and will cause underflow. 842 walkCounter := Mux(isBefore(io.redirect.bits.robIdx, deqPtrVec_next(0)), 0.U, 843 redirectWalkDistance +& !io.redirect.bits.flushItself()) 844 }.elsewhen (state === s_walk) { 845 walkCounter := walkCounter - thisCycleWalkCount 846 XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n") 847 } 848 849 850 /** 851 * States 852 * We put all the stage bits changes here. 853 854 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 855 * All states: (1) valid; (2) writebacked; (3) flagBkup 856 */ 857 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 858 859 // redirect logic writes 6 valid 860 val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr)) 861 val redirectTail = Reg(new RobPtr) 862 val redirectIdle :: redirectBusy :: Nil = Enum(2) 863 val redirectState = RegInit(redirectIdle) 864 val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail)) 865 when(redirectState === redirectBusy) { 866 redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U) 867 redirectHeadVec zip invMask foreach { 868 case (redirectHead, inv) => when(inv) { 869 valid(redirectHead.value) := false.B 870 } 871 } 872 when(!invMask.last) { 873 redirectState := redirectIdle 874 } 875 } 876 when(io.redirect.valid) { 877 redirectState := redirectBusy 878 when(redirectState === redirectIdle) { 879 redirectTail := enqPtr 880 } 881 redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) => 882 redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 883 } 884 } 885 // enqueue logic writes 6 valid 886 for (i <- 0 until RenameWidth) { 887 when (canEnqueue(i) && !io.redirect.valid) { 888 valid(allocatePtrVec(i).value) := true.B 889 } 890 } 891 // dequeue logic writes 6 valid 892 for (i <- 0 until CommitWidth) { 893 val commitValid = io.commits.isCommit && io.commits.commitValid(i) 894 when (commitValid) { 895 valid(commitReadAddr(i)) := false.B 896 } 897 } 898 899 // writeback logic set numWbPorts writebacked to true 900 val blockWbSeq = Wire(Vec(exuWBs.length, Bool())) 901 blockWbSeq.map(_ := false.B) 902 for ((wb, blockWb) <- exuWBs.zip(blockWbSeq)) { 903 when(wb.valid) { 904 val wbHasException = wb.bits.exceptionVec.getOrElse(0.U).asUInt.orR 905 val wbHasTriggerHit = false.B //Todo: wb.bits.trigger.getHitBackend 906 val wbHasFlushPipe = wb.bits.flushPipe.getOrElse(false.B) 907 val wbHasReplayInst = wb.bits.replay.getOrElse(false.B) //Todo: && wb.bits.replayInst 908 blockWb := wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit 909 } 910 } 911 912 // if the first uop of an instruction is valid , write writebackedCounter 913 val uopEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid) 914 val instEnqValidSeq = io.enq.req.map (req => io.enq.canAccept && req.valid && req.bits.firstUop) 915 val enqNeedWriteRFSeq = io.enq.req.map(_.bits.needWriteRf) 916 val enqRobIdxSeq = io.enq.req.map(req => req.bits.robIdx.value) 917 val enqUopNumVec = VecInit(io.enq.req.map(req => req.bits.numUops)) 918 val enqEliminatedMoveVec = VecInit(io.enq.req.map(req => req.bits.eliminatedMove)) 919 920 private val enqWriteStdVec: Vec[Bool] = VecInit(io.enq.req.map { 921 req => FuType.isAMO(req.bits.fuType) || FuType.isStore(req.bits.fuType) 922 }) 923 val enqWbSizeSeq = io.enq.req.map { req => 924 val enqHasException = ExceptionNO.selectFrontend(req.bits.exceptionVec).asUInt.orR 925 val enqHasTriggerHit = req.bits.trigger.getHitFrontend 926 Mux(req.bits.eliminatedMove, Mux(enqHasException || enqHasTriggerHit, 1.U, 0.U), 927 Mux(FuType.isAMO(req.bits.fuType) || FuType.isStore(req.bits.fuType), 2.U, 1.U)) 928 } 929 val enqWbSizeSumSeq = enqRobIdxSeq.zipWithIndex.map { case (robIdx, idx) => 930 val addend = enqRobIdxSeq.zip(enqWbSizeSeq).take(idx + 1).map { case (uopRobIdx, uopWbSize) => Mux(robIdx === uopRobIdx, uopWbSize, 0.U) } 931 addend.reduce(_ +& _) 932 } 933 val fflags_wb = fflagsPorts 934 val vxsat_wb = vxsatPorts 935 for(i <- 0 until RobSize){ 936 937 val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === i.U) 938 val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch } 939 val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch } 940 val instCanEnqFlag = Cat(instCanEnqSeq).orR 941 942 realDestSize(i) := Mux(!valid(i) && instCanEnqFlag || valid(i), realDestSize(i) + PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map{ case(writeFlag, valid) => writeFlag && valid }), 0.U) 943 944 val enqUopNum = PriorityMux(instCanEnqSeq, enqUopNumVec) 945 val enqEliminatedMove = PriorityMux(instCanEnqSeq, enqEliminatedMoveVec) 946 val enqWriteStd = PriorityMux(instCanEnqSeq, enqWriteStdVec) 947 948 val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 949 val canWbNoBlockSeq = canWbSeq.zip(blockWbSeq).map{ case(canWb, blockWb) => canWb && !blockWb } 950 val canStdWbSeq = VecInit(stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)) 951 val wbCnt = PopCount(canWbNoBlockSeq) 952 when (exceptionGen.io.out.valid && exceptionGen.io.out.bits.robIdx.value === i.U) { 953 // exception flush 954 uopNumVec(i) := 0.U 955 stdWritebacked(i) := true.B 956 }.elsewhen(!valid(i) && instCanEnqFlag) { 957 // enq set num of uops 958 uopNumVec(i) := Mux(enqEliminatedMove, 0.U, enqUopNum) 959 stdWritebacked(i) := Mux(enqWriteStd, false.B, true.B) 960 }.elsewhen(valid(i)) { 961 // update by writing back 962 uopNumVec(i) := uopNumVec(i) - wbCnt 963 when (canStdWbSeq.asUInt.orR) { 964 stdWritebacked(i) := true.B 965 } 966 }.otherwise { 967 uopNumVec(i) := 0.U 968 } 969 970 val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 971 val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.fold(false.B)(_ | _) 972 fflagsDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, fflagsDataModule(i) | fflagsRes) 973 974 val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 975 val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.fold(false.B)(_ | _) 976 vxsatDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, vxsatDataModule(i) | vxsatRes) 977 } 978 979 // flagBkup 980 // enqueue logic set 6 flagBkup at most 981 for (i <- 0 until RenameWidth) { 982 when (canEnqueue(i)) { 983 flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag 984 } 985 } 986 987 // interrupt_safe 988 for (i <- 0 until RenameWidth) { 989 // We RegNext the updates for better timing. 990 // Note that instructions won't change the system's states in this cycle. 991 when (RegNext(canEnqueue(i))) { 992 // For now, we allow non-load-store instructions to trigger interrupts 993 // For MMIO instructions, they should not trigger interrupts since they may 994 // be sent to lower level before it writes back. 995 // However, we cannot determine whether a load/store instruction is MMIO. 996 // Thus, we don't allow load/store instructions to trigger an interrupt. 997 // TODO: support non-MMIO load-store instructions to trigger interrupts 998 val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType) 999 interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts) 1000 } 1001 } 1002 1003 /** 1004 * read and write of data modules 1005 */ 1006 val commitReadAddr_next = Mux(state_next === s_idle, 1007 VecInit(deqPtrVec_next.map(_.value)), 1008 VecInit(walkPtrVec_next.map(_.value)) 1009 ) 1010 dispatchData.io.wen := canEnqueue 1011 dispatchData.io.waddr := allocatePtrVec.map(_.value) 1012 dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) => 1013 wdata.ldest := req.ldest 1014 wdata.rfWen := req.rfWen 1015 wdata.fpWen := req.fpWen 1016 wdata.vecWen := req.vecWen 1017 wdata.wflags := req.fpu.wflags 1018 wdata.commitType := req.commitType 1019 wdata.pdest := req.pdest 1020 wdata.old_pdest := req.oldPdest 1021 wdata.ftqIdx := req.ftqPtr 1022 wdata.ftqOffset := req.ftqOffset 1023 wdata.isMove := req.eliminatedMove 1024 wdata.pc := req.pc 1025 wdata.vtype := req.vpu.vtype 1026 wdata.isVset := req.isVset 1027 } 1028 dispatchData.io.raddr := commitReadAddr_next 1029 1030 exceptionGen.io.redirect <> io.redirect 1031 exceptionGen.io.flush := io.flushOut.valid 1032 1033 val canEnqueueEG = VecInit(io.enq.req.map(req => req.valid && io.enq.canAccept)) 1034 for (i <- 0 until RenameWidth) { 1035 exceptionGen.io.enq(i).valid := canEnqueueEG(i) 1036 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 1037 exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec) 1038 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe 1039 exceptionGen.io.enq(i).bits.isVset := io.enq.req(i).bits.isVset 1040 exceptionGen.io.enq(i).bits.replayInst := false.B 1041 XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst") 1042 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep 1043 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix 1044 exceptionGen.io.enq(i).bits.trigger.clear() 1045 exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.trigger.frontendHit 1046 } 1047 1048 println(s"ExceptionGen:") 1049 println(s"num of exceptions: ${params.numException}") 1050 require(exceptionWBs.length == exceptionGen.io.wb.length, 1051 f"exceptionWBs.length: ${exceptionWBs.length}, " + 1052 f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}") 1053 for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) { 1054 exc_wb.valid := wb.valid 1055 exc_wb.bits.robIdx := wb.bits.robIdx 1056 exc_wb.bits.exceptionVec := wb.bits.exceptionVec.get 1057 exc_wb.bits.flushPipe := wb.bits.flushPipe.getOrElse(false.B) 1058 exc_wb.bits.isVset := false.B 1059 exc_wb.bits.replayInst := wb.bits.replay.getOrElse(false.B) 1060 exc_wb.bits.singleStep := false.B 1061 exc_wb.bits.crossPageIPFFix := false.B 1062 exc_wb.bits.trigger := 0.U.asTypeOf(exc_wb.bits.trigger) // Todo 1063// println(s" [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " + 1064// s"flushPipe ${configs.exists(_.flushPipe)}, " + 1065// s"replayInst ${configs.exists(_.replayInst)}") 1066 } 1067 1068 fflagsDataRead := (0 until CommitWidth).map(i => fflagsDataModule(deqPtrVec(i).value)) 1069 vxsatDataRead := (0 until CommitWidth).map(i => vxsatDataModule(deqPtrVec(i).value)) 1070 1071 val instrCntReg = RegInit(0.U(64.W)) 1072 val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) }) 1073 val trueCommitCnt = RegNext(commitCnt) +& fuseCommitCnt 1074 val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U) 1075 val instrCnt = instrCntReg + retireCounter 1076 instrCntReg := instrCnt 1077 io.csr.perfinfo.retiredInstr := retireCounter 1078 io.robFull := !allowEnqueue 1079 1080 /** 1081 * debug info 1082 */ 1083 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 1084 XSDebug("") 1085 XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n") 1086 for(i <- 0 until RobSize){ 1087 XSDebug(false, !valid(i), "-") 1088 XSDebug(false, valid(i) && isWritebacked(i.U), "w") 1089 XSDebug(false, valid(i) && !isWritebacked(i.U), "v") 1090 } 1091 XSDebug(false, true.B, "\n") 1092 1093 for(i <- 0 until RobSize) { 1094 if(i % 4 == 0) XSDebug("") 1095 XSDebug(false, true.B, "%x ", debug_microOp(i).pc) 1096 XSDebug(false, !valid(i), "- ") 1097 XSDebug(false, valid(i) && isWritebacked(i.U), "w ") 1098 XSDebug(false, valid(i) && !isWritebacked(i.U), "v ") 1099 if(i % 4 == 3) XSDebug(false, true.B, "\n") 1100 } 1101 1102 def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U) 1103 def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U) 1104 1105 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 1106 XSPerfAccumulate("clock_cycle", 1.U) 1107 QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue) 1108 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 1109 XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt)) 1110 val commitIsMove = commitDebugUop.map(_.isMove) 1111 XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }))) 1112 val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) 1113 XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e }))) 1114 XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt)) 1115 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 1116 val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t } 1117 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 1118 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 1119 val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t } 1120 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 1121 val commitLoadWaitBit = commitDebugUop.map(_.loadWaitBit) 1122 XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))) 1123 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 1124 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }))) 1125 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && isWritebacked(i.U)))) 1126 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire))) 1127 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 1128 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)) 1129 XSPerfAccumulate("walkCycle", state === s_walk) 1130 val deqNotWritebacked = valid(deqPtr.value) && !isWritebacked(deqPtr.value) 1131 val deqUopCommitType = io.commits.info(0).commitType 1132 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 1133 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 1134 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 1135 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 1136 XSPerfAccumulate("robHeadPC", io.commits.info(0).pc) 1137 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 1138 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 1139 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 1140 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 1141 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 1142 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 1143 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 1144 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 1145 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 1146 } 1147 for (fuType <- FuType.functionNameMap.keys) { 1148 val fuName = FuType.functionNameMap(fuType) 1149 val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U ) 1150 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 1151 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 1152 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 1153 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 1154 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 1155 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 1156 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 1157 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 1158 if (fuType == FuType.fmac) { 1159 val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.fpu.ren3 ) 1160 XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma))) 1161 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency))) 1162 XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency))) 1163 } 1164 } 1165 1166 //difftest signals 1167 val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value 1168 1169 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1170 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1171 1172 for(i <- 0 until CommitWidth) { 1173 val idx = deqPtrVec(i).value 1174 wdata(i) := debug_exuData(idx) 1175 wpc(i) := SignExt(commitDebugUop(i).pc, XLEN) 1176 } 1177 1178 if (env.EnableDifftest) { 1179 for (i <- 0 until CommitWidth) { 1180 val difftest = Module(new DifftestInstrCommit) 1181 // assgin default value 1182 difftest.io := DontCare 1183 1184 difftest.io.clock := clock 1185 difftest.io.coreid := io.hartId 1186 difftest.io.index := i.U 1187 1188 val ptr = deqPtrVec(i).value 1189 val uop = commitDebugUop(i) 1190 val exuOut = debug_exuDebug(ptr) 1191 val exuData = debug_exuData(ptr) 1192 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1193 difftest.io.pc := RegNext(RegNext(RegNext(SignExt(uop.pc, XLEN)))) 1194 difftest.io.instr := RegNext(RegNext(RegNext(uop.instr))) 1195 difftest.io.robIdx := RegNext(RegNext(RegNext(ZeroExt(ptr, 10)))) 1196 difftest.io.lqIdx := RegNext(RegNext(RegNext(ZeroExt(uop.lqIdx.value, 7)))) 1197 difftest.io.sqIdx := RegNext(RegNext(RegNext(ZeroExt(uop.sqIdx.value, 7)))) 1198 difftest.io.isLoad := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.LOAD))) 1199 difftest.io.isStore := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.STORE))) 1200 difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(io.commits.info(i).commitType)))) 1201 // when committing an eliminated move instruction, 1202 // we must make sure that skip is properly set to false (output from EXU is random value) 1203 difftest.io.skip := RegNext(RegNext(RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)))) 1204 difftest.io.isRVC := RegNext(RegNext(RegNext(uop.preDecodeInfo.isRVC))) 1205 difftest.io.rfwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U))) 1206 difftest.io.fpwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).fpWen))) 1207 difftest.io.wpdest := RegNext(RegNext(RegNext(io.commits.info(i).pdest))) 1208 difftest.io.wdest := RegNext(RegNext(RegNext(io.commits.info(i).ldest))) 1209 // // runahead commit hint 1210 // val runahead_commit = Module(new DifftestRunaheadCommitEvent) 1211 // runahead_commit.io.clock := clock 1212 // runahead_commit.io.coreid := io.hartId 1213 // runahead_commit.io.index := i.U 1214 // runahead_commit.io.valid := difftest.io.valid && 1215 // (commitBranchValid(i) || commitIsStore(i)) 1216 // // TODO: is branch or store 1217 // runahead_commit.io.pc := difftest.io.pc 1218 } 1219 } 1220 else if (env.AlwaysBasicDiff) { 1221 // These are the structures used by difftest only and should be optimized after synthesis. 1222 val dt_eliminatedMove = Mem(RobSize, Bool()) 1223 val dt_isRVC = Mem(RobSize, Bool()) 1224 val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) 1225 for (i <- 0 until RenameWidth) { 1226 when (canEnqueue(i)) { 1227 dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 1228 dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC 1229 } 1230 } 1231 for (wb <- exuWBs) { 1232 when (wb.valid) { 1233 val wbIdx = wb.bits.robIdx.value 1234 dt_exuDebug(wbIdx) := wb.bits.debug 1235 } 1236 } 1237 // Always instantiate basic difftest modules. 1238 for (i <- 0 until CommitWidth) { 1239 val commitInfo = io.commits.info(i) 1240 val ptr = deqPtrVec(i).value 1241 val exuOut = dt_exuDebug(ptr) 1242 val eliminatedMove = dt_eliminatedMove(ptr) 1243 val isRVC = dt_isRVC(ptr) 1244 1245 val difftest = Module(new DifftestBasicInstrCommit) 1246 difftest.io.clock := clock 1247 difftest.io.coreid := io.hartId 1248 difftest.io.index := i.U 1249 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1250 difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(commitInfo.commitType)))) 1251 difftest.io.skip := RegNext(RegNext(RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)))) 1252 difftest.io.isRVC := RegNext(RegNext(RegNext(isRVC))) 1253 difftest.io.rfwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U))) 1254 difftest.io.fpwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.fpWen))) 1255 difftest.io.wpdest := RegNext(RegNext(RegNext(commitInfo.pdest))) 1256 difftest.io.wdest := RegNext(RegNext(RegNext(commitInfo.ldest))) 1257 } 1258 } 1259 1260 if (env.EnableDifftest) { 1261 for (i <- 0 until CommitWidth) { 1262 val difftest = Module(new DifftestLoadEvent) 1263 difftest.io.clock := clock 1264 difftest.io.coreid := io.hartId 1265 difftest.io.index := i.U 1266 1267 val ptr = deqPtrVec(i).value 1268 val uop = commitDebugUop(i) 1269 val exuOut = debug_exuDebug(ptr) 1270 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1271 difftest.io.paddr := RegNext(RegNext(RegNext(exuOut.paddr))) 1272 difftest.io.opType := RegNext(RegNext(RegNext(uop.fuOpType))) 1273 difftest.io.fuType := RegNext(RegNext(RegNext(uop.fuType))) 1274 } 1275 } 1276 1277 // Always instantiate basic difftest modules. 1278 if (env.EnableDifftest) { 1279 val dt_isXSTrap = Mem(RobSize, Bool()) 1280 for (i <- 0 until RenameWidth) { 1281 when (canEnqueue(i)) { 1282 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap 1283 } 1284 } 1285 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) } 1286 val hitTrap = trapVec.reduce(_||_) 1287 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 1288 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN) 1289 val difftest = Module(new DifftestTrapEvent) 1290 difftest.io.clock := clock 1291 difftest.io.coreid := io.hartId 1292 difftest.io.valid := hitTrap 1293 difftest.io.code := trapCode 1294 difftest.io.pc := trapPC 1295 difftest.io.cycleCnt := timer 1296 difftest.io.instrCnt := instrCnt 1297 difftest.io.hasWFI := hasWFI 1298 } 1299 else if (env.AlwaysBasicDiff) { 1300 val dt_isXSTrap = Mem(RobSize, Bool()) 1301 for (i <- 0 until RenameWidth) { 1302 when (canEnqueue(i)) { 1303 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap 1304 } 1305 } 1306 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) } 1307 val hitTrap = trapVec.reduce(_||_) 1308 val difftest = Module(new DifftestBasicTrapEvent) 1309 difftest.io.clock := clock 1310 difftest.io.coreid := io.hartId 1311 difftest.io.valid := hitTrap 1312 difftest.io.cycleCnt := timer 1313 difftest.io.instrCnt := instrCnt 1314 } 1315 1316 val validEntriesBanks = (0 until (RobSize + 63) / 64).map(i => RegNext(PopCount(valid.drop(i * 64).take(64)))) 1317 val validEntries = RegNext(ParallelOperation(validEntriesBanks, (a: UInt, b: UInt) => a +& b)) 1318 val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }) 1319 val commitLoadVec = VecInit(commitLoadValid) 1320 val commitBranchVec = VecInit(commitBranchValid) 1321 val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }) 1322 val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }) 1323 val perfEvents = Seq( 1324 ("rob_interrupt_num ", io.flushOut.valid && intrEnable ), 1325 ("rob_exception_num ", io.flushOut.valid && exceptionEnable ), 1326 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe ), 1327 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst ), 1328 ("rob_commitUop ", ifCommit(commitCnt) ), 1329 ("rob_commitInstr ", ifCommitReg(trueCommitCnt) ), 1330 ("rob_commitInstrMove ", ifCommitReg(PopCount(RegNext(commitMoveVec))) ), 1331 ("rob_commitInstrFused ", ifCommitReg(fuseCommitCnt) ), 1332 ("rob_commitInstrLoad ", ifCommitReg(PopCount(RegNext(commitLoadVec))) ), 1333 ("rob_commitInstrBranch ", ifCommitReg(PopCount(RegNext(commitBranchVec))) ), 1334 ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec))) ), 1335 ("rob_commitInstrStore ", ifCommitReg(PopCount(RegNext(commitStoreVec))) ), 1336 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U) ), 1337 ("rob_walkCycle ", (state === s_walk) ), 1338 ("rob_1_4_valid ", validEntries <= (RobSize / 4).U ), 1339 ("rob_2_4_valid ", validEntries > (RobSize / 4).U && validEntries <= (RobSize / 2).U ), 1340 ("rob_3_4_valid ", validEntries > (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U), 1341 ("rob_4_4_valid ", validEntries > (RobSize * 3 / 4).U ), 1342 ) 1343 generatePerfEvent() 1344} 1345