xref: /XiangShan/src/main/scala/xiangshan/backend/rob/Rob.scala (revision 2451989835a019d3c4848f7879147f7649adb760)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.backend.rob
18
19import chipsalliance.rocketchip.config.Parameters
20import chisel3._
21import chisel3.util._
22import difftest._
23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp}
24import utility._
25import utils._
26import xiangshan._
27import xiangshan.backend.BackendParams
28import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput}
29import xiangshan.backend.fu.FuType
30import xiangshan.frontend.FtqPtr
31import xiangshan.mem.{LqPtr, SqPtr}
32import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput}
33
34class RobPtr(entries: Int) extends CircularQueuePtr[RobPtr](
35  entries
36) with HasCircularQueuePtrHelper {
37
38  def this()(implicit p: Parameters) = this(p(XSCoreParamsKey).RobSize)
39
40  def needFlush(redirect: Valid[Redirect]): Bool = {
41    val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx
42    redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx))
43  }
44
45  def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR
46}
47
48object RobPtr {
49  def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = {
50    val ptr = Wire(new RobPtr)
51    ptr.flag := f
52    ptr.value := v
53    ptr
54  }
55}
56
57class RobCSRIO(implicit p: Parameters) extends XSBundle {
58  val intrBitSet = Input(Bool())
59  val trapTarget = Input(UInt(VAddrBits.W))
60  val isXRet     = Input(Bool())
61  val wfiEvent   = Input(Bool())
62
63  val fflags     = Output(Valid(UInt(5.W)))
64  val vxsat      = Output(Valid(Bool()))
65  val dirty_fs   = Output(Bool())
66  val perfinfo   = new Bundle {
67    val retiredInstr = Output(UInt(3.W))
68  }
69
70  val vcsrFlag   = Output(Bool())
71}
72
73class RobLsqIO(implicit p: Parameters) extends XSBundle {
74  val lcommit = Output(UInt(log2Up(CommitWidth + 1).W))
75  val scommit = Output(UInt(log2Up(CommitWidth + 1).W))
76  val pendingld = Output(Bool())
77  val pendingst = Output(Bool())
78  val commit = Output(Bool())
79  val pendingPtr = Output(new RobPtr)
80
81  val mmio = Input(Vec(LoadPipelineWidth, Bool()))
82  val uop = Input(Vec(LoadPipelineWidth, new DynInst))
83}
84
85class RobEnqIO(implicit p: Parameters) extends XSBundle {
86  val canAccept = Output(Bool())
87  val isEmpty = Output(Bool())
88  // valid vector, for robIdx gen and walk
89  val needAlloc = Vec(RenameWidth, Input(Bool()))
90  val req = Vec(RenameWidth, Flipped(ValidIO(new DynInst)))
91  val resp = Vec(RenameWidth, Output(new RobPtr))
92}
93
94class RobDispatchData(implicit p: Parameters) extends RobCommitInfo
95
96class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
97  val io = IO(new Bundle {
98    // for commits/flush
99    val state = Input(UInt(2.W))
100    val deq_v = Vec(CommitWidth, Input(Bool()))
101    val deq_w = Vec(CommitWidth, Input(Bool()))
102    val exception_state = Flipped(ValidIO(new RobExceptionInfo))
103    // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth)
104    val intrBitSetReg = Input(Bool())
105    val hasNoSpecExec = Input(Bool())
106    val interrupt_safe = Input(Bool())
107    val blockCommit = Input(Bool())
108    // output: the CommitWidth deqPtr
109    val out = Vec(CommitWidth, Output(new RobPtr))
110    val next_out = Vec(CommitWidth, Output(new RobPtr))
111  })
112
113  val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr))))
114
115  // for exceptions (flushPipe included) and interrupts:
116  // only consider the first instruction
117  val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe
118  val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0)
119  val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable)
120
121  // for normal commits: only to consider when there're no exceptions
122  // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions.
123  val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last)
124  val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i)))
125  val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B)
126  // when io.intrBitSetReg or there're possible exceptions in these instructions,
127  // only one instruction is allowed to commit
128  val allowOnlyOne = commit_exception || io.intrBitSetReg
129  val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt)
130
131  val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt))
132  val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec)
133
134  deqPtrVec := deqPtrVec_next
135
136  io.next_out := deqPtrVec_next
137  io.out      := deqPtrVec
138
139  when (io.state === 0.U) {
140    XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt)
141  }
142
143}
144
145class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
146  val io = IO(new Bundle {
147    // for input redirect
148    val redirect = Input(Valid(new Redirect))
149    // for enqueue
150    val allowEnqueue = Input(Bool())
151    val hasBlockBackward = Input(Bool())
152    val enq = Vec(RenameWidth, Input(Bool()))
153    val out = Output(Vec(RenameWidth, new RobPtr))
154  })
155
156  val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr)))
157
158  // enqueue
159  val canAccept = io.allowEnqueue && !io.hasBlockBackward
160  val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U)
161
162  for ((ptr, i) <- enqPtrVec.zipWithIndex) {
163    when(io.redirect.valid) {
164      ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
165    }.otherwise {
166      ptr := ptr + dispatchNum
167    }
168  }
169
170  io.out := enqPtrVec
171
172}
173
174class RobExceptionInfo(implicit p: Parameters) extends XSBundle {
175  // val valid = Bool()
176  val robIdx = new RobPtr
177  val exceptionVec = ExceptionVec()
178  val flushPipe = Bool()
179  val isVset = Bool()
180  val replayInst = Bool() // redirect to that inst itself
181  val singleStep = Bool() // TODO add frontend hit beneath
182  val crossPageIPFFix = Bool()
183  val trigger = new TriggerCf
184
185//  def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend
186//  def trigger_after = trigger.getTimingBackend && trigger.getHitBackend
187  def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit
188  def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit
189  // only exceptions are allowed to writeback when enqueue
190  def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit
191}
192
193class ExceptionGen(params: BackendParams)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
194  val io = IO(new Bundle {
195    val redirect = Input(Valid(new Redirect))
196    val flush = Input(Bool())
197    val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo)))
198    // csr + load + store
199    val wb = Vec(params.numException, Flipped(ValidIO(new RobExceptionInfo)))
200    val out = ValidIO(new RobExceptionInfo)
201    val state = ValidIO(new RobExceptionInfo)
202  })
203
204  def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = {
205    assert(valid.length == bits.length)
206    assert(isPow2(valid.length))
207    if (valid.length == 1) {
208      (valid, bits)
209    } else if (valid.length == 2) {
210      val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0)))))
211      for (i <- res.indices) {
212        res(i).valid := valid(i)
213        res(i).bits := bits(i)
214      }
215      val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1))
216      (Seq(oldest.valid), Seq(oldest.bits))
217    } else {
218      val left = getOldest(valid.take(valid.length / 2), bits.take(valid.length / 2))
219      val right = getOldest(valid.takeRight(valid.length / 2), bits.takeRight(valid.length / 2))
220      getOldest(left._1 ++ right._1, left._2 ++ right._2)
221    }
222  }
223
224  val currentValid = RegInit(false.B)
225  val current = Reg(new RobExceptionInfo)
226
227  // orR the exceptionVec
228  val lastCycleFlush = RegNext(io.flush)
229  val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush))
230  val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush)
231
232  // s0: compare wb(1)~wb(LoadPipelineWidth) and wb(1 + LoadPipelineWidth)~wb(LoadPipelineWidth + StorePipelineWidth)
233  val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }
234  val csr_wb_bits = io.wb(0).bits
235  val load_wb_bits = getOldest(in_wb_valid.slice(1, 1 + LoadPipelineWidth), io.wb.map(_.bits).slice(1, 1 + LoadPipelineWidth))._2(0)
236  val store_wb_bits = getOldest(in_wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth), io.wb.map(_.bits).slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth))._2(0)
237  val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid.slice(1, 1 + LoadPipelineWidth).reduce(_ || _), wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth).reduce(_ || _))))
238  val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits)))
239
240  // s1: compare last four and current flush
241  val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) })
242  val compare_01_valid = s0_out_valid(0) || s0_out_valid(1)
243  val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0))
244  val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2))
245  val s1_out_bits = RegNext(compare_bits)
246  val s1_out_valid = RegNext(s1_valid.asUInt.orR)
247
248  val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush)
249  val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits)))
250
251  // s2: compare the input exception with the current one
252  // priorities:
253  // (1) system reset
254  // (2) current is valid: flush, remain, merge, update
255  // (3) current is not valid: s1 or enq
256  val current_flush = current.robIdx.needFlush(io.redirect) || io.flush
257  val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush
258  when (currentValid) {
259    when (current_flush) {
260      currentValid := Mux(s1_flush, false.B, s1_out_valid)
261    }
262    when (s1_out_valid && !s1_flush) {
263      when (isAfter(current.robIdx, s1_out_bits.robIdx)) {
264        current := s1_out_bits
265      }.elsewhen (current.robIdx === s1_out_bits.robIdx) {
266        current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec())
267        current.flushPipe := s1_out_bits.flushPipe || current.flushPipe
268        current.replayInst := s1_out_bits.replayInst || current.replayInst
269        current.singleStep := s1_out_bits.singleStep || current.singleStep
270        current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf)
271      }
272    }
273  }.elsewhen (s1_out_valid && !s1_flush) {
274    currentValid := true.B
275    current := s1_out_bits
276  }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) {
277    currentValid := true.B
278    current := enq_bits
279  }
280
281  io.out.valid   := s1_out_valid || enq_valid && enq_bits.can_writeback
282  io.out.bits    := Mux(s1_out_valid, s1_out_bits, enq_bits)
283  io.state.valid := currentValid
284  io.state.bits  := current
285
286}
287
288class RobFlushInfo(implicit p: Parameters) extends XSBundle {
289  val ftqIdx = new FtqPtr
290  val robIdx = new RobPtr
291  val ftqOffset = UInt(log2Up(PredictWidth).W)
292  val replayInst = Bool()
293}
294
295class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter {
296
297  lazy val module = new RobImp(this)(p, params)
298  //
299  //  override def generateWritebackIO(
300  //    thisMod: Option[HasWritebackSource] = None,
301  //    thisModImp: Option[HasWritebackSourceImp] = None
302  //  ): Unit = {
303  //    val sources = writebackSinksImp(thisMod, thisModImp)
304  //    module.io.writeback.zip(sources).foreach(x => x._1 := x._2)
305  //  }
306  //}
307}
308
309class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper)
310  with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents {
311
312  val io = IO(new Bundle() {
313    val hartId = Input(UInt(8.W))
314    val redirect = Input(Valid(new Redirect))
315    val enq = new RobEnqIO
316    val flushOut = ValidIO(new Redirect)
317    val exception = ValidIO(new ExceptionInfo)
318    // exu + brq
319    val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles)
320    val commits = Output(new RobCommitIO)
321    val rabCommits = Output(new RobCommitIO)
322    val diffCommits = Output(new DiffCommitIO)
323    val isVsetFlushPipe = Output(Bool())
324    val vconfigPdest = Output(UInt(PhyRegIdxWidth.W))
325    val lsq = new RobLsqIO
326    val robDeqPtr = Output(new RobPtr)
327    val csr = new RobCSRIO
328    val robFull = Output(Bool())
329    val cpu_halt = Output(Bool())
330    val wfi_enable = Input(Bool())
331  })
332
333  val exuWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(!_.bits.params.hasStdFu)
334  val stdWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(_.bits.params.hasStdFu)
335  val fflagsWBs = io.writeback.filter(x => x.bits.fflags.nonEmpty)
336  val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty)
337  val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty)
338
339  val exuWbPorts = io.writeback.filter(!_.bits.params.hasStdFu)
340  val stdWbPorts = io.writeback.filter(_.bits.params.hasStdFu)
341  val fflagsPorts = io.writeback.filter(x => x.bits.fflags.nonEmpty)
342  val vxsatPorts = io.writeback.filter(x => x.bits.vxsat.nonEmpty)
343  val exceptionPorts = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty)
344  val numExuWbPorts = exuWBs.length
345  val numStdWbPorts = stdWBs.length
346
347
348  println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth")
349//  println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}")
350//  println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}")
351//  println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}")
352
353
354  // instvalid field
355  val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
356  // writeback status
357
358  val stdWritebacked = Reg(Vec(RobSize, Bool()))
359  val uopNumVec          = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W))))
360  val realDestSize       = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W))))
361  val fflagsDataModule   = RegInit(VecInit(Seq.fill(RobSize)(0.U(5.W))))
362  val vxsatDataModule    = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
363
364  def isWritebacked(ptr: UInt): Bool = {
365    !uopNumVec(ptr).orR && stdWritebacked(ptr)
366  }
367
368  val mmio = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
369
370  // data for redirect, exception, etc.
371  val flagBkup = Mem(RobSize, Bool())
372  // some instructions are not allowed to trigger interrupts
373  // They have side effects on the states of the processor before they write back
374  val interrupt_safe = Mem(RobSize, Bool())
375
376  // data for debug
377  // Warn: debug_* prefix should not exist in generated verilog.
378  val debug_microOp = Mem(RobSize, new DynInst)
379  val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug
380  val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug
381
382  // pointers
383  // For enqueue ptr, we don't duplicate it since only enqueue needs it.
384  val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr))
385  val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr))
386
387  val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr))
388  val allowEnqueue = RegInit(true.B)
389
390  val enqPtr = enqPtrVec.head
391  val deqPtr = deqPtrVec(0)
392  val walkPtr = walkPtrVec(0)
393
394  val isEmpty = enqPtr === deqPtr
395  val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level)
396
397  /**
398    * states of Rob
399    */
400  val s_idle :: s_walk :: Nil = Enum(2)
401  val state = RegInit(s_idle)
402
403  /**
404    * Data Modules
405    *
406    * CommitDataModule: data from dispatch
407    * (1) read: commits/walk/exception
408    * (2) write: enqueue
409    *
410    * WritebackData: data from writeback
411    * (1) read: commits/walk/exception
412    * (2) write: write back from exe units
413    */
414  val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth))
415  val dispatchDataRead = dispatchData.io.rdata
416
417  val exceptionGen = Module(new ExceptionGen(params))
418  val exceptionDataRead = exceptionGen.io.state
419  val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W)))
420  val vxsatDataRead = Wire(Vec(CommitWidth, Bool()))
421
422  io.robDeqPtr := deqPtr
423
424  val rab = Module(new RenameBuffer(RabSize))
425  rab.io.redirectValid := io.redirect.valid
426  rab.io.req.zip(io.enq.req).map { case (dest, src) =>
427    dest.bits := src.bits
428    dest.valid := src.valid && io.enq.canAccept
429  }
430
431  val realDestSizeCandidates = (0 until CommitWidth).map(i => realDestSize(Mux(state === s_idle, deqPtrVec(i).value, walkPtrVec(i).value)))
432  val wbSizeSeq = io.commits.commitValid.zip(io.commits.walkValid).zip(realDestSizeCandidates).map { case ((commitValid, walkValid), realDestSize) =>
433    Mux(io.commits.isCommit, Mux(commitValid, realDestSize, 0.U), Mux(walkValid, realDestSize, 0.U))
434  }
435  val wbSizeSum = wbSizeSeq.reduce(_ + _)
436  rab.io.commitSize := wbSizeSum
437  rab.io.walkSize := wbSizeSum
438
439  io.rabCommits := rab.io.commits
440  io.diffCommits := rab.io.diffCommits
441
442  /**
443    * Enqueue (from dispatch)
444    */
445  // special cases
446  val hasBlockBackward = RegInit(false.B)
447  val hasWaitForward = RegInit(false.B)
448  val doingSvinval = RegInit(false.B)
449  // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B
450  // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty.
451  when (isEmpty) { hasBlockBackward:= false.B }
452  // When any instruction commits, hasNoSpecExec should be set to false.B
453  when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasWaitForward:= false.B }
454
455  // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing.
456  // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle.
457  // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts.
458  val hasWFI = RegInit(false.B)
459  io.cpu_halt := hasWFI
460  // WFI Timeout: 2^20 = 1M cycles
461  val wfi_cycles = RegInit(0.U(20.W))
462  when (hasWFI) {
463    wfi_cycles := wfi_cycles + 1.U
464  }.elsewhen (!hasWFI && RegNext(hasWFI)) {
465    wfi_cycles := 0.U
466  }
467  val wfi_timeout = wfi_cycles.andR
468  when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) {
469    hasWFI := false.B
470  }
471
472  val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.req.take(i).map(req => req.valid && req.bits.firstUop)))))
473  io.enq.canAccept := allowEnqueue && !hasBlockBackward && rab.io.canEnq
474  io.enq.resp      := allocatePtrVec
475  val canEnqueue = VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop && io.enq.canAccept))
476  val timer = GTimer()
477  for (i <- 0 until RenameWidth) {
478    // we don't check whether io.redirect is valid here since redirect has higher priority
479    when (canEnqueue(i)) {
480      val enqUop = io.enq.req(i).bits
481      val enqIndex = allocatePtrVec(i).value
482      // store uop in data module and debug_microOp Vec
483      debug_microOp(enqIndex) := enqUop
484      debug_microOp(enqIndex).debugInfo.dispatchTime := timer
485      debug_microOp(enqIndex).debugInfo.enqRsTime := timer
486      debug_microOp(enqIndex).debugInfo.selectTime := timer
487      debug_microOp(enqIndex).debugInfo.issueTime := timer
488      debug_microOp(enqIndex).debugInfo.writebackTime := timer
489      when (enqUop.blockBackward) {
490        hasBlockBackward := true.B
491      }
492      when (enqUop.waitForward) {
493        hasWaitForward := true.B
494      }
495      val enqHasTriggerHit = false.B // io.enq.req(i).bits.cf.trigger.getHitFrontend
496      val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR
497      // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process
498      when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe))
499      {
500        doingSvinval := true.B
501      }
502      // the end instruction of Svinval enqs so clear doingSvinval
503      when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe))
504      {
505        doingSvinval := false.B
506      }
507      // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear
508      assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe)))
509      when (enqUop.isWFI && !enqHasException && !enqHasTriggerHit) {
510        hasWFI := true.B
511      }
512
513      mmio(enqIndex) := false.B
514    }
515  }
516  val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(req => req.valid && req.bits.firstUop)), 0.U)
517  io.enq.isEmpty   := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR)
518
519  when (!io.wfi_enable) {
520    hasWFI := false.B
521  }
522  // sel vsetvl's flush position
523  val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3)
524  val vsetvlState = RegInit(vs_idle)
525
526  val firstVInstrFtqPtr    = RegInit(0.U.asTypeOf(new FtqPtr))
527  val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W)))
528  val firstVInstrRobIdx    = RegInit(0.U.asTypeOf(new RobPtr))
529
530  val enq0            = io.enq.req(0)
531  val enq0IsVset      = enq0.bits.isVset && enq0.bits.lastUop && canEnqueue(0)
532  val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe
533  val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVpu(req.bits.fuType) && fire}
534  // for vs_idle
535  val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType)))
536  // for vs_waitVinstr
537  val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1)
538  val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req)
539  when(vsetvlState === vs_idle){
540    firstVInstrFtqPtr    := firstVInstrIdle.bits.ftqPtr
541    firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset
542    firstVInstrRobIdx    := firstVInstrIdle.bits.robIdx
543  }.elsewhen(vsetvlState === vs_waitVinstr){
544    when(Cat(enqIsVInstrOrVset).orR){
545      firstVInstrFtqPtr := firstVInstrWait.bits.ftqPtr
546      firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset
547      firstVInstrRobIdx := firstVInstrWait.bits.robIdx
548    }
549  }
550
551  val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR
552  when(vsetvlState === vs_idle && !io.redirect.valid){
553    when(enq0IsVsetFlush){
554      vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr)
555    }
556  }.elsewhen(vsetvlState === vs_waitVinstr){
557    when(io.redirect.valid){
558      vsetvlState := vs_idle
559    }.elsewhen(Cat(enqIsVInstrOrVset).orR){
560      vsetvlState := vs_waitFlush
561    }
562  }.elsewhen(vsetvlState === vs_waitFlush){
563    when(io.redirect.valid){
564      vsetvlState := vs_idle
565    }
566  }
567
568  /**
569    * Writeback (from execution units)
570    */
571  for (wb <- exuWBs) {
572    when (wb.valid) {
573      val wbIdx = wb.bits.robIdx.value
574      debug_exuData(wbIdx) := wb.bits.data
575      debug_exuDebug(wbIdx) := wb.bits.debug
576      debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime
577      debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime
578      debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime
579      debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime
580
581      // debug for lqidx and sqidx
582      debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr))
583      debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr))
584
585      val debug_Uop = debug_microOp(wbIdx)
586      XSInfo(true.B,
587        p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " +
588        p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " +
589        p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.robIdx}\n"
590      )
591    }
592  }
593
594  val writebackNum = PopCount(exuWBs.map(_.valid))
595  XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum)
596
597  for (i <- 0 until LoadPipelineWidth) {
598    when (RegNext(io.lsq.mmio(i))) {
599      mmio(RegNext(io.lsq.uop(i).robIdx).value) := true.B
600    }
601  }
602
603  /**
604    * RedirectOut: Interrupt and Exceptions
605    */
606  val deqDispatchData = dispatchDataRead(0)
607  val debug_deqUop = debug_microOp(deqPtr.value)
608
609  val intrBitSetReg = RegNext(io.csr.intrBitSet)
610  val intrEnable = intrBitSetReg && !hasWaitForward && interrupt_safe(deqPtr.value)
611  val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr
612  val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR ||
613    exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit)
614  val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe
615  val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst
616  val exceptionEnable = isWritebacked(deqPtr.value) && deqHasException
617
618  XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n")
619  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n")
620  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n")
621
622  val isFlushPipe = isWritebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst)
623
624  val isVsetFlushPipe = isWritebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset
625//  val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush)
626  val needModifyFtqIdxOffset = false.B
627  io.isVsetFlushPipe := isVsetFlushPipe
628  io.vconfigPdest := rab.io.vconfigPdest
629  // io.flushOut will trigger redirect at the next cycle.
630  // Block any redirect or commit at the next cycle.
631  val lastCycleFlush = RegNext(io.flushOut.valid)
632
633  io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush
634  io.flushOut.bits := DontCare
635  io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr)
636  io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx)
637  io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset)
638  io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next"
639  io.flushOut.bits.interrupt := true.B
640  XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable)
641  XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable)
642  XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe)
643  XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst)
644
645  val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush
646  io.exception.valid                := RegNext(exceptionHappen)
647  io.exception.bits.pc              := RegEnable(debug_deqUop.pc, exceptionHappen)
648  io.exception.bits.instr           := RegEnable(debug_deqUop.instr, exceptionHappen)
649  io.exception.bits.commitType      := RegEnable(deqDispatchData.commitType, exceptionHappen)
650  io.exception.bits.exceptionVec    := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen)
651  io.exception.bits.singleStep      := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen)
652  io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen)
653  io.exception.bits.isInterrupt     := RegEnable(intrEnable, exceptionHappen)
654//  io.exception.bits.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen)
655
656  XSDebug(io.flushOut.valid,
657    p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " +
658    p"excp $exceptionEnable flushPipe $isFlushPipe " +
659    p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n")
660
661
662  /**
663    * Commits (and walk)
664    * They share the same width.
665    */
666  val walkCounter = Reg(UInt(log2Up(RobSize + 1).W))
667  val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter))
668  val walkFinished = walkCounter <= CommitWidth.U
669  rab.io.robWalkEnd := state === s_walk && walkFinished
670
671  require(RenameWidth <= CommitWidth)
672
673  // wiring to csr
674  val (wflags, fpWen) = (0 until CommitWidth).map(i => {
675    val v = io.commits.commitValid(i)
676    val info = io.commits.info(i)
677    (v & info.wflags, v & info.fpWen)
678  }).unzip
679  val fflags = Wire(Valid(UInt(5.W)))
680  fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR
681  fflags.bits := wflags.zip(fflagsDataRead).map({
682    case (w, f) => Mux(w, f, 0.U)
683  }).reduce(_|_)
684  val dirty_fs = io.commits.isCommit && VecInit(fpWen).asUInt.orR
685
686  val vxsat = Wire(Valid(Bool()))
687  vxsat.valid := io.commits.isCommit && vxsat.bits
688  vxsat.bits := io.commits.commitValid.zip(vxsatDataRead).map {
689    case (valid, vxsat) => valid & vxsat
690  }.reduce(_ | _)
691
692  // when mispredict branches writeback, stop commit in the next 2 cycles
693  // TODO: don't check all exu write back
694  val misPredWb = Cat(VecInit(redirectWBs.map(wb =>
695    wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid
696  ))).orR
697  val misPredBlockCounter = Reg(UInt(3.W))
698  misPredBlockCounter := Mux(misPredWb,
699    "b111".U,
700    misPredBlockCounter >> 1.U
701  )
702  val misPredBlock = misPredBlockCounter(0)
703  val blockCommit = misPredBlock && !io.flushOut.valid || isReplaying || lastCycleFlush || hasWFI
704
705  io.commits.isWalk := state === s_walk
706  io.commits.isCommit := state === s_idle && !blockCommit
707  val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value)))
708  val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value)))
709  // store will be commited iff both sta & std have been writebacked
710  val commit_w = VecInit(deqPtrVec.map(ptr => isWritebacked(ptr.value)))
711  val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last)
712  val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i)))
713  val allowOnlyOneCommit = commit_exception || intrBitSetReg
714  // for instructions that may block others, we don't allow them to commit
715  for (i <- 0 until CommitWidth) {
716    // defaults: state === s_idle and instructions commit
717    // when intrBitSetReg, allow only one instruction to commit at each clock cycle
718    val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst
719    io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked
720    io.commits.info(i)  := dispatchDataRead(i)
721
722    when (state === s_walk) {
723      io.commits.walkValid(i) := shouldWalkVec(i)
724      when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) {
725        XSError(!walk_v(i), s"why not $i???\n")
726      }
727    }
728
729    XSInfo(io.commits.isCommit && io.commits.commitValid(i),
730      "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b vxsat: %b\n",
731      debug_microOp(deqPtrVec(i).value).pc,
732      io.commits.info(i).rfWen,
733      io.commits.info(i).ldest,
734      io.commits.info(i).pdest,
735      io.commits.info(i).old_pdest,
736      debug_exuData(deqPtrVec(i).value),
737      fflagsDataRead(i),
738      vxsatDataRead(i)
739    )
740    XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n",
741      debug_microOp(walkPtrVec(i).value).pc,
742      io.commits.info(i).rfWen,
743      io.commits.info(i).ldest,
744      debug_exuData(walkPtrVec(i).value)
745    )
746  }
747  if (env.EnableDifftest) {
748    io.commits.info.map(info => dontTouch(info.pc))
749  }
750
751  // sync fflags/dirty_fs/vxsat to csr
752  io.csr.fflags := RegNext(fflags)
753  io.csr.dirty_fs := RegNext(dirty_fs)
754  io.csr.vxsat := RegNext(vxsat)
755
756  // sync v csr to csr
757  // for difftest
758  if(env.AlwaysBasicDiff || env.EnableDifftest) {
759    val isDiffWriteVconfigVec = io.diffCommits.commitValid.zip(io.diffCommits.info).map { case (valid, info) => valid && info.ldest === VCONFIG_IDX.U && info.vecWen }.reverse
760    io.csr.vcsrFlag := RegNext(io.diffCommits.isCommit && Cat(isDiffWriteVconfigVec).orR)
761  }
762  else{
763    io.csr.vcsrFlag := false.B
764  }
765
766  // commit load/store to lsq
767  val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD))
768  val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE))
769  io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U))
770  io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U))
771  // indicate a pending load or store
772  io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value) && mmio(deqPtr.value))
773  io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value))
774  io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0))
775  io.lsq.pendingPtr := RegNext(deqPtr)
776
777  /**
778    * state changes
779    * (1) redirect: switch to s_walk
780    * (2) walk: when walking comes to the end, switch to s_idle
781    */
782  val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished && rab.io.rabWalkEnd, s_idle, state))
783  XSPerfAccumulate("s_idle_to_idle",            state === s_idle && state_next === s_idle)
784  XSPerfAccumulate("s_idle_to_walk",            state === s_idle && state_next === s_walk)
785  XSPerfAccumulate("s_walk_to_idle",            state === s_walk && state_next === s_idle)
786  XSPerfAccumulate("s_walk_to_walk",            state === s_walk && state_next === s_walk)
787  state := state_next
788
789  /**
790    * pointers and counters
791    */
792  val deqPtrGenModule = Module(new RobDeqPtrWrapper)
793  deqPtrGenModule.io.state := state
794  deqPtrGenModule.io.deq_v := commit_v
795  deqPtrGenModule.io.deq_w := commit_w
796  deqPtrGenModule.io.exception_state := exceptionDataRead
797  deqPtrGenModule.io.intrBitSetReg := intrBitSetReg
798  deqPtrGenModule.io.hasNoSpecExec := hasWaitForward
799  deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value)
800  deqPtrGenModule.io.blockCommit := blockCommit
801  deqPtrVec := deqPtrGenModule.io.out
802  val deqPtrVec_next = deqPtrGenModule.io.next_out
803
804  val enqPtrGenModule = Module(new RobEnqPtrWrapper)
805  enqPtrGenModule.io.redirect := io.redirect
806  enqPtrGenModule.io.allowEnqueue := allowEnqueue
807  enqPtrGenModule.io.hasBlockBackward := hasBlockBackward
808  enqPtrGenModule.io.enq := VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop))
809  enqPtrVec := enqPtrGenModule.io.out
810
811  val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U)
812  // next walkPtrVec:
813  // (1) redirect occurs: update according to state
814  // (2) walk: move forwards
815  val walkPtrVec_next = Mux(io.redirect.valid,
816    deqPtrVec_next,
817    Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec)
818  )
819  walkPtrVec := walkPtrVec_next
820
821  val numValidEntries = distanceBetween(enqPtr, deqPtr)
822  val commitCnt = PopCount(io.commits.commitValid)
823
824  allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U
825
826  val currentWalkPtr = Mux(state === s_walk, walkPtr, deqPtrVec_next(0))
827  val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0))
828  when (io.redirect.valid) {
829    // full condition:
830    // +& is used here because:
831    // When rob is full and the tail instruction causes a misprediction,
832    // the redirect robIdx is the deqPtr - 1. In this case, redirectWalkDistance
833    // is RobSize - 1.
834    // Since misprediction does not flush the instruction itself, flushItSelf is false.B.
835    // Previously we use `+` to count the walk distance and it causes overflows
836    // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize.
837    // The width of walkCounter also needs to be changed.
838    // empty condition:
839    // When the last instruction in ROB commits and causes a flush, a redirect
840    // will be raised later. In such circumstances, the redirect robIdx is before
841    // the deqPtrVec_next(0) and will cause underflow.
842    walkCounter := Mux(isBefore(io.redirect.bits.robIdx, deqPtrVec_next(0)), 0.U,
843                       redirectWalkDistance +& !io.redirect.bits.flushItself())
844  }.elsewhen (state === s_walk) {
845    walkCounter := walkCounter - thisCycleWalkCount
846    XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n")
847  }
848
849
850  /**
851    * States
852    * We put all the stage bits changes here.
853
854    * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit);
855    * All states: (1) valid; (2) writebacked; (3) flagBkup
856    */
857  val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value)))
858
859  // redirect logic writes 6 valid
860  val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr))
861  val redirectTail = Reg(new RobPtr)
862  val redirectIdle :: redirectBusy :: Nil = Enum(2)
863  val redirectState = RegInit(redirectIdle)
864  val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail))
865  when(redirectState === redirectBusy) {
866    redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U)
867    redirectHeadVec zip invMask foreach {
868      case (redirectHead, inv) => when(inv) {
869        valid(redirectHead.value) := false.B
870      }
871    }
872    when(!invMask.last) {
873      redirectState := redirectIdle
874    }
875  }
876  when(io.redirect.valid) {
877    redirectState := redirectBusy
878    when(redirectState === redirectIdle) {
879      redirectTail := enqPtr
880    }
881    redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) =>
882      redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
883    }
884  }
885  // enqueue logic writes 6 valid
886  for (i <- 0 until RenameWidth) {
887    when (canEnqueue(i) && !io.redirect.valid) {
888      valid(allocatePtrVec(i).value) := true.B
889    }
890  }
891  // dequeue logic writes 6 valid
892  for (i <- 0 until CommitWidth) {
893    val commitValid = io.commits.isCommit && io.commits.commitValid(i)
894    when (commitValid) {
895      valid(commitReadAddr(i)) := false.B
896    }
897  }
898
899  // writeback logic set numWbPorts writebacked to true
900  val blockWbSeq = Wire(Vec(exuWBs.length, Bool()))
901  blockWbSeq.map(_ := false.B)
902  for ((wb, blockWb) <- exuWBs.zip(blockWbSeq)) {
903    when(wb.valid) {
904      val wbHasException = wb.bits.exceptionVec.getOrElse(0.U).asUInt.orR
905      val wbHasTriggerHit = false.B //Todo: wb.bits.trigger.getHitBackend
906      val wbHasFlushPipe = wb.bits.flushPipe.getOrElse(false.B)
907      val wbHasReplayInst = wb.bits.replay.getOrElse(false.B) //Todo: && wb.bits.replayInst
908      blockWb := wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit
909    }
910  }
911
912  // if the first uop of an instruction is valid , write writebackedCounter
913  val uopEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid)
914  val instEnqValidSeq = io.enq.req.map (req => io.enq.canAccept && req.valid && req.bits.firstUop)
915  val enqNeedWriteRFSeq = io.enq.req.map(_.bits.needWriteRf)
916  val enqRobIdxSeq = io.enq.req.map(req => req.bits.robIdx.value)
917  val enqUopNumVec = VecInit(io.enq.req.map(req => req.bits.numUops))
918  val enqEliminatedMoveVec = VecInit(io.enq.req.map(req => req.bits.eliminatedMove))
919
920  private val enqWriteStdVec: Vec[Bool] = VecInit(io.enq.req.map {
921    req => FuType.isAMO(req.bits.fuType) || FuType.isStore(req.bits.fuType)
922  })
923  val enqWbSizeSeq = io.enq.req.map { req =>
924    val enqHasException = ExceptionNO.selectFrontend(req.bits.exceptionVec).asUInt.orR
925    val enqHasTriggerHit = req.bits.trigger.getHitFrontend
926    Mux(req.bits.eliminatedMove, Mux(enqHasException || enqHasTriggerHit, 1.U, 0.U),
927      Mux(FuType.isAMO(req.bits.fuType) || FuType.isStore(req.bits.fuType), 2.U, 1.U))
928  }
929  val enqWbSizeSumSeq = enqRobIdxSeq.zipWithIndex.map { case (robIdx, idx) =>
930    val addend = enqRobIdxSeq.zip(enqWbSizeSeq).take(idx + 1).map { case (uopRobIdx, uopWbSize) => Mux(robIdx === uopRobIdx, uopWbSize, 0.U) }
931    addend.reduce(_ +& _)
932  }
933  val fflags_wb = fflagsPorts
934  val vxsat_wb = vxsatPorts
935  for(i <- 0 until RobSize){
936
937    val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === i.U)
938    val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch }
939    val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch }
940    val instCanEnqFlag = Cat(instCanEnqSeq).orR
941
942    realDestSize(i) := Mux(!valid(i) && instCanEnqFlag || valid(i), realDestSize(i) + PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map{ case(writeFlag, valid) => writeFlag && valid }), 0.U)
943
944    val enqUopNum = PriorityMux(instCanEnqSeq, enqUopNumVec)
945    val enqEliminatedMove = PriorityMux(instCanEnqSeq, enqEliminatedMoveVec)
946    val enqWriteStd = PriorityMux(instCanEnqSeq, enqWriteStdVec)
947
948    val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)
949    val canWbNoBlockSeq = canWbSeq.zip(blockWbSeq).map{ case(canWb, blockWb) => canWb && !blockWb }
950    val canStdWbSeq = VecInit(stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U))
951    val wbCnt = PopCount(canWbNoBlockSeq)
952    when (exceptionGen.io.out.valid && exceptionGen.io.out.bits.robIdx.value === i.U) {
953      // exception flush
954      uopNumVec(i) := 0.U
955      stdWritebacked(i) := true.B
956    }.elsewhen(!valid(i) && instCanEnqFlag) {
957      // enq set num of uops
958      uopNumVec(i) := Mux(enqEliminatedMove, 0.U, enqUopNum)
959      stdWritebacked(i) := Mux(enqWriteStd, false.B, true.B)
960    }.elsewhen(valid(i)) {
961      // update by writing back
962      uopNumVec(i) := uopNumVec(i) - wbCnt
963      when (canStdWbSeq.asUInt.orR) {
964        stdWritebacked(i) := true.B
965      }
966    }.otherwise {
967      uopNumVec(i) := 0.U
968    }
969
970    val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)
971    val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.fold(false.B)(_ | _)
972    fflagsDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, fflagsDataModule(i) | fflagsRes)
973
974    val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)
975    val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.fold(false.B)(_ | _)
976    vxsatDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, vxsatDataModule(i) | vxsatRes)
977  }
978
979  // flagBkup
980  // enqueue logic set 6 flagBkup at most
981  for (i <- 0 until RenameWidth) {
982    when (canEnqueue(i)) {
983      flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag
984    }
985  }
986
987  // interrupt_safe
988  for (i <- 0 until RenameWidth) {
989    // We RegNext the updates for better timing.
990    // Note that instructions won't change the system's states in this cycle.
991    when (RegNext(canEnqueue(i))) {
992      // For now, we allow non-load-store instructions to trigger interrupts
993      // For MMIO instructions, they should not trigger interrupts since they may
994      // be sent to lower level before it writes back.
995      // However, we cannot determine whether a load/store instruction is MMIO.
996      // Thus, we don't allow load/store instructions to trigger an interrupt.
997      // TODO: support non-MMIO load-store instructions to trigger interrupts
998      val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType)
999      interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts)
1000    }
1001  }
1002
1003  /**
1004    * read and write of data modules
1005    */
1006  val commitReadAddr_next = Mux(state_next === s_idle,
1007    VecInit(deqPtrVec_next.map(_.value)),
1008    VecInit(walkPtrVec_next.map(_.value))
1009  )
1010  dispatchData.io.wen := canEnqueue
1011  dispatchData.io.waddr := allocatePtrVec.map(_.value)
1012  dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) =>
1013    wdata.ldest := req.ldest
1014    wdata.rfWen := req.rfWen
1015    wdata.fpWen := req.fpWen
1016    wdata.vecWen := req.vecWen
1017    wdata.wflags := req.fpu.wflags
1018    wdata.commitType := req.commitType
1019    wdata.pdest := req.pdest
1020    wdata.old_pdest := req.oldPdest
1021    wdata.ftqIdx := req.ftqPtr
1022    wdata.ftqOffset := req.ftqOffset
1023    wdata.isMove := req.eliminatedMove
1024    wdata.pc := req.pc
1025    wdata.vtype := req.vpu.vtype
1026    wdata.isVset := req.isVset
1027  }
1028  dispatchData.io.raddr := commitReadAddr_next
1029
1030  exceptionGen.io.redirect <> io.redirect
1031  exceptionGen.io.flush := io.flushOut.valid
1032
1033  val canEnqueueEG = VecInit(io.enq.req.map(req => req.valid && io.enq.canAccept))
1034  for (i <- 0 until RenameWidth) {
1035    exceptionGen.io.enq(i).valid := canEnqueueEG(i)
1036    exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx
1037    exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec)
1038    exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe
1039    exceptionGen.io.enq(i).bits.isVset := io.enq.req(i).bits.isVset
1040    exceptionGen.io.enq(i).bits.replayInst := false.B
1041    XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst")
1042    exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep
1043    exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix
1044    exceptionGen.io.enq(i).bits.trigger.clear()
1045    exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.trigger.frontendHit
1046  }
1047
1048  println(s"ExceptionGen:")
1049  println(s"num of exceptions: ${params.numException}")
1050  require(exceptionWBs.length == exceptionGen.io.wb.length,
1051    f"exceptionWBs.length: ${exceptionWBs.length}, " +
1052      f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}")
1053  for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) {
1054    exc_wb.valid                := wb.valid
1055    exc_wb.bits.robIdx          := wb.bits.robIdx
1056    exc_wb.bits.exceptionVec    := wb.bits.exceptionVec.get
1057    exc_wb.bits.flushPipe       := wb.bits.flushPipe.getOrElse(false.B)
1058    exc_wb.bits.isVset          := false.B
1059    exc_wb.bits.replayInst      := wb.bits.replay.getOrElse(false.B)
1060    exc_wb.bits.singleStep      := false.B
1061    exc_wb.bits.crossPageIPFFix := false.B
1062    exc_wb.bits.trigger         := 0.U.asTypeOf(exc_wb.bits.trigger) // Todo
1063//    println(s"  [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " +
1064//      s"flushPipe ${configs.exists(_.flushPipe)}, " +
1065//      s"replayInst ${configs.exists(_.replayInst)}")
1066  }
1067
1068  fflagsDataRead := (0 until CommitWidth).map(i => fflagsDataModule(deqPtrVec(i).value))
1069  vxsatDataRead := (0 until CommitWidth).map(i => vxsatDataModule(deqPtrVec(i).value))
1070
1071  val instrCntReg = RegInit(0.U(64.W))
1072  val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) })
1073  val trueCommitCnt = RegNext(commitCnt) +& fuseCommitCnt
1074  val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U)
1075  val instrCnt = instrCntReg + retireCounter
1076  instrCntReg := instrCnt
1077  io.csr.perfinfo.retiredInstr := retireCounter
1078  io.robFull := !allowEnqueue
1079
1080  /**
1081    * debug info
1082    */
1083  XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n")
1084  XSDebug("")
1085  XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n")
1086  for(i <- 0 until RobSize){
1087    XSDebug(false, !valid(i), "-")
1088    XSDebug(false, valid(i) && isWritebacked(i.U), "w")
1089    XSDebug(false, valid(i) && !isWritebacked(i.U), "v")
1090  }
1091  XSDebug(false, true.B, "\n")
1092
1093  for(i <- 0 until RobSize) {
1094    if(i % 4 == 0) XSDebug("")
1095    XSDebug(false, true.B, "%x ", debug_microOp(i).pc)
1096    XSDebug(false, !valid(i), "- ")
1097    XSDebug(false, valid(i) && isWritebacked(i.U), "w ")
1098    XSDebug(false, valid(i) && !isWritebacked(i.U), "v ")
1099    if(i % 4 == 3) XSDebug(false, true.B, "\n")
1100  }
1101
1102  def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U)
1103  def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U)
1104
1105  val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_))
1106  XSPerfAccumulate("clock_cycle", 1.U)
1107  QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue)
1108  XSPerfAccumulate("commitUop", ifCommit(commitCnt))
1109  XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt))
1110  val commitIsMove = commitDebugUop.map(_.isMove)
1111  XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })))
1112  val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove)
1113  XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e })))
1114  XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt))
1115  val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD)
1116  val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t }
1117  XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid)))
1118  val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH)
1119  val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t }
1120  XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid)))
1121  val commitLoadWaitBit = commitDebugUop.map(_.loadWaitBit)
1122  XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })))
1123  val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE)
1124  XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })))
1125  XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && isWritebacked(i.U))))
1126  // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire)))
1127  // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready)))
1128  XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U))
1129  XSPerfAccumulate("walkCycle", state === s_walk)
1130  val deqNotWritebacked = valid(deqPtr.value) && !isWritebacked(deqPtr.value)
1131  val deqUopCommitType = io.commits.info(0).commitType
1132  XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL)
1133  XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH)
1134  XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD)
1135  XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE)
1136  XSPerfAccumulate("robHeadPC", io.commits.info(0).pc)
1137  val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime)
1138  val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime)
1139  val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime)
1140  val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime)
1141  val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime)
1142  val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime)
1143  val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime)
1144  def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = {
1145    cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _)
1146  }
1147  for (fuType <- FuType.functionNameMap.keys) {
1148    val fuName = FuType.functionNameMap(fuType)
1149    val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U )
1150    XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType)))
1151    XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency)))
1152    XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency)))
1153    XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency)))
1154    XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency)))
1155    XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency)))
1156    XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency)))
1157    XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency)))
1158    if (fuType == FuType.fmac) {
1159      val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.fpu.ren3 )
1160      XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma)))
1161      XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency)))
1162      XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency)))
1163    }
1164  }
1165
1166  //difftest signals
1167  val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value
1168
1169  val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1170  val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1171
1172  for(i <- 0 until CommitWidth) {
1173    val idx = deqPtrVec(i).value
1174    wdata(i) := debug_exuData(idx)
1175    wpc(i) := SignExt(commitDebugUop(i).pc, XLEN)
1176  }
1177
1178  if (env.EnableDifftest) {
1179    for (i <- 0 until CommitWidth) {
1180      val difftest = Module(new DifftestInstrCommit)
1181      // assgin default value
1182      difftest.io := DontCare
1183
1184      difftest.io.clock    := clock
1185      difftest.io.coreid   := io.hartId
1186      difftest.io.index    := i.U
1187
1188      val ptr = deqPtrVec(i).value
1189      val uop = commitDebugUop(i)
1190      val exuOut = debug_exuDebug(ptr)
1191      val exuData = debug_exuData(ptr)
1192      difftest.io.valid    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1193      difftest.io.pc       := RegNext(RegNext(RegNext(SignExt(uop.pc, XLEN))))
1194      difftest.io.instr    := RegNext(RegNext(RegNext(uop.instr)))
1195      difftest.io.robIdx   := RegNext(RegNext(RegNext(ZeroExt(ptr, 10))))
1196      difftest.io.lqIdx    := RegNext(RegNext(RegNext(ZeroExt(uop.lqIdx.value, 7))))
1197      difftest.io.sqIdx    := RegNext(RegNext(RegNext(ZeroExt(uop.sqIdx.value, 7))))
1198      difftest.io.isLoad   := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.LOAD)))
1199      difftest.io.isStore  := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.STORE)))
1200      difftest.io.special  := RegNext(RegNext(RegNext(CommitType.isFused(io.commits.info(i).commitType))))
1201      // when committing an eliminated move instruction,
1202      // we must make sure that skip is properly set to false (output from EXU is random value)
1203      difftest.io.skip     := RegNext(RegNext(RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))))
1204      difftest.io.isRVC    := RegNext(RegNext(RegNext(uop.preDecodeInfo.isRVC)))
1205      difftest.io.rfwen    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U)))
1206      difftest.io.fpwen    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).fpWen)))
1207      difftest.io.wpdest   := RegNext(RegNext(RegNext(io.commits.info(i).pdest)))
1208      difftest.io.wdest    := RegNext(RegNext(RegNext(io.commits.info(i).ldest)))
1209      // // runahead commit hint
1210      // val runahead_commit = Module(new DifftestRunaheadCommitEvent)
1211      // runahead_commit.io.clock := clock
1212      // runahead_commit.io.coreid := io.hartId
1213      // runahead_commit.io.index := i.U
1214      // runahead_commit.io.valid := difftest.io.valid &&
1215      //   (commitBranchValid(i) || commitIsStore(i))
1216      // // TODO: is branch or store
1217      // runahead_commit.io.pc    := difftest.io.pc
1218    }
1219  }
1220  else if (env.AlwaysBasicDiff) {
1221    // These are the structures used by difftest only and should be optimized after synthesis.
1222    val dt_eliminatedMove = Mem(RobSize, Bool())
1223    val dt_isRVC = Mem(RobSize, Bool())
1224    val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle))
1225    for (i <- 0 until RenameWidth) {
1226      when (canEnqueue(i)) {
1227        dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove
1228        dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC
1229      }
1230    }
1231    for (wb <- exuWBs) {
1232      when (wb.valid) {
1233        val wbIdx = wb.bits.robIdx.value
1234        dt_exuDebug(wbIdx) := wb.bits.debug
1235      }
1236    }
1237    // Always instantiate basic difftest modules.
1238    for (i <- 0 until CommitWidth) {
1239      val commitInfo = io.commits.info(i)
1240      val ptr = deqPtrVec(i).value
1241      val exuOut = dt_exuDebug(ptr)
1242      val eliminatedMove = dt_eliminatedMove(ptr)
1243      val isRVC = dt_isRVC(ptr)
1244
1245      val difftest = Module(new DifftestBasicInstrCommit)
1246      difftest.io.clock   := clock
1247      difftest.io.coreid  := io.hartId
1248      difftest.io.index   := i.U
1249      difftest.io.valid   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1250      difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(commitInfo.commitType))))
1251      difftest.io.skip    := RegNext(RegNext(RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))))
1252      difftest.io.isRVC   := RegNext(RegNext(RegNext(isRVC)))
1253      difftest.io.rfwen   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U)))
1254      difftest.io.fpwen   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.fpWen)))
1255      difftest.io.wpdest  := RegNext(RegNext(RegNext(commitInfo.pdest)))
1256      difftest.io.wdest   := RegNext(RegNext(RegNext(commitInfo.ldest)))
1257    }
1258  }
1259
1260  if (env.EnableDifftest) {
1261    for (i <- 0 until CommitWidth) {
1262      val difftest = Module(new DifftestLoadEvent)
1263      difftest.io.clock  := clock
1264      difftest.io.coreid := io.hartId
1265      difftest.io.index  := i.U
1266
1267      val ptr = deqPtrVec(i).value
1268      val uop = commitDebugUop(i)
1269      val exuOut = debug_exuDebug(ptr)
1270      difftest.io.valid  := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1271      difftest.io.paddr  := RegNext(RegNext(RegNext(exuOut.paddr)))
1272      difftest.io.opType := RegNext(RegNext(RegNext(uop.fuOpType)))
1273      difftest.io.fuType := RegNext(RegNext(RegNext(uop.fuType)))
1274    }
1275  }
1276
1277  // Always instantiate basic difftest modules.
1278  if (env.EnableDifftest) {
1279    val dt_isXSTrap = Mem(RobSize, Bool())
1280    for (i <- 0 until RenameWidth) {
1281      when (canEnqueue(i)) {
1282        dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap
1283      }
1284    }
1285    val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) }
1286    val hitTrap = trapVec.reduce(_||_)
1287    val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1))
1288    val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN)
1289    val difftest = Module(new DifftestTrapEvent)
1290    difftest.io.clock    := clock
1291    difftest.io.coreid   := io.hartId
1292    difftest.io.valid    := hitTrap
1293    difftest.io.code     := trapCode
1294    difftest.io.pc       := trapPC
1295    difftest.io.cycleCnt := timer
1296    difftest.io.instrCnt := instrCnt
1297    difftest.io.hasWFI   := hasWFI
1298  }
1299  else if (env.AlwaysBasicDiff) {
1300    val dt_isXSTrap = Mem(RobSize, Bool())
1301    for (i <- 0 until RenameWidth) {
1302      when (canEnqueue(i)) {
1303        dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap
1304      }
1305    }
1306    val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) }
1307    val hitTrap = trapVec.reduce(_||_)
1308    val difftest = Module(new DifftestBasicTrapEvent)
1309    difftest.io.clock    := clock
1310    difftest.io.coreid   := io.hartId
1311    difftest.io.valid    := hitTrap
1312    difftest.io.cycleCnt := timer
1313    difftest.io.instrCnt := instrCnt
1314  }
1315
1316  val validEntriesBanks = (0 until (RobSize + 63) / 64).map(i => RegNext(PopCount(valid.drop(i * 64).take(64))))
1317  val validEntries = RegNext(ParallelOperation(validEntriesBanks, (a: UInt, b: UInt) => a +& b))
1318  val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })
1319  val commitLoadVec = VecInit(commitLoadValid)
1320  val commitBranchVec = VecInit(commitBranchValid)
1321  val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })
1322  val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })
1323  val perfEvents = Seq(
1324    ("rob_interrupt_num      ", io.flushOut.valid && intrEnable                                       ),
1325    ("rob_exception_num      ", io.flushOut.valid && exceptionEnable                                  ),
1326    ("rob_flush_pipe_num     ", io.flushOut.valid && isFlushPipe                                      ),
1327    ("rob_replay_inst_num    ", io.flushOut.valid && isFlushPipe && deqHasReplayInst                  ),
1328    ("rob_commitUop          ", ifCommit(commitCnt)                                                   ),
1329    ("rob_commitInstr        ", ifCommitReg(trueCommitCnt)                                            ),
1330    ("rob_commitInstrMove    ", ifCommitReg(PopCount(RegNext(commitMoveVec)))                         ),
1331    ("rob_commitInstrFused   ", ifCommitReg(fuseCommitCnt)                                            ),
1332    ("rob_commitInstrLoad    ", ifCommitReg(PopCount(RegNext(commitLoadVec)))                         ),
1333    ("rob_commitInstrBranch  ", ifCommitReg(PopCount(RegNext(commitBranchVec)))                       ),
1334    ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec)))                     ),
1335    ("rob_commitInstrStore   ", ifCommitReg(PopCount(RegNext(commitStoreVec)))                        ),
1336    ("rob_walkInstr          ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)           ),
1337    ("rob_walkCycle          ", (state === s_walk)                                                    ),
1338    ("rob_1_4_valid          ", validEntries <= (RobSize / 4).U                                       ),
1339    ("rob_2_4_valid          ", validEntries >  (RobSize / 4).U && validEntries <= (RobSize / 2).U    ),
1340    ("rob_3_4_valid          ", validEntries >  (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U),
1341    ("rob_4_4_valid          ", validEntries >  (RobSize * 3 / 4).U                                   ),
1342  )
1343  generatePerfEvent()
1344}
1345