1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.rob 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 24import utility._ 25import utils._ 26import xiangshan._ 27import xiangshan.backend.BackendParams 28import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 29import xiangshan.backend.fu.{FuType, FuConfig} 30import xiangshan.frontend.FtqPtr 31import xiangshan.mem.{LqPtr, LsqEnqIO, SqPtr} 32import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 33import xiangshan.backend.ctrlblock.{DebugLSIO, DebugLsInfo, LsTopdownInfo} 34import xiangshan.backend.rename.SnapshotGenerator 35 36class RobPtr(entries: Int) extends CircularQueuePtr[RobPtr]( 37 entries 38) with HasCircularQueuePtrHelper { 39 40 def this()(implicit p: Parameters) = this(p(XSCoreParamsKey).RobSize) 41 42 def needFlush(redirect: Valid[Redirect]): Bool = { 43 val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx 44 redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx)) 45 } 46 47 def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR 48} 49 50object RobPtr { 51 def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = { 52 val ptr = Wire(new RobPtr) 53 ptr.flag := f 54 ptr.value := v 55 ptr 56 } 57} 58 59class RobCSRIO(implicit p: Parameters) extends XSBundle { 60 val intrBitSet = Input(Bool()) 61 val trapTarget = Input(UInt(VAddrBits.W)) 62 val isXRet = Input(Bool()) 63 val wfiEvent = Input(Bool()) 64 65 val fflags = Output(Valid(UInt(5.W))) 66 val vxsat = Output(Valid(Bool())) 67 val dirty_fs = Output(Bool()) 68 val perfinfo = new Bundle { 69 val retiredInstr = Output(UInt(3.W)) 70 } 71 72 val vcsrFlag = Output(Bool()) 73} 74 75class RobLsqIO(implicit p: Parameters) extends XSBundle { 76 val lcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 77 val scommit = Output(UInt(log2Up(CommitWidth + 1).W)) 78 val pendingld = Output(Bool()) 79 val pendingst = Output(Bool()) 80 val commit = Output(Bool()) 81 val pendingPtr = Output(new RobPtr) 82 83 val mmio = Input(Vec(LoadPipelineWidth, Bool())) 84 val uop = Input(Vec(LoadPipelineWidth, new DynInst)) 85} 86 87class RobEnqIO(implicit p: Parameters) extends XSBundle { 88 val canAccept = Output(Bool()) 89 val isEmpty = Output(Bool()) 90 // valid vector, for robIdx gen and walk 91 val needAlloc = Vec(RenameWidth, Input(Bool())) 92 val req = Vec(RenameWidth, Flipped(ValidIO(new DynInst))) 93 val resp = Vec(RenameWidth, Output(new RobPtr)) 94} 95 96class RobDispatchData(implicit p: Parameters) extends RobCommitInfo {} 97 98class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 99 val io = IO(new Bundle { 100 // for commits/flush 101 val state = Input(UInt(2.W)) 102 val deq_v = Vec(CommitWidth, Input(Bool())) 103 val deq_w = Vec(CommitWidth, Input(Bool())) 104 val exception_state = Flipped(ValidIO(new RobExceptionInfo)) 105 // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth) 106 val intrBitSetReg = Input(Bool()) 107 val hasNoSpecExec = Input(Bool()) 108 val interrupt_safe = Input(Bool()) 109 val blockCommit = Input(Bool()) 110 // output: the CommitWidth deqPtr 111 val out = Vec(CommitWidth, Output(new RobPtr)) 112 val next_out = Vec(CommitWidth, Output(new RobPtr)) 113 }) 114 115 val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr)))) 116 117 // for exceptions (flushPipe included) and interrupts: 118 // only consider the first instruction 119 val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe 120 val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0) 121 val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable) 122 123 // for normal commits: only to consider when there're no exceptions 124 // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions. 125 val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last) 126 val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i))) 127 val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B) 128 // when io.intrBitSetReg or there're possible exceptions in these instructions, 129 // only one instruction is allowed to commit 130 val allowOnlyOne = commit_exception || io.intrBitSetReg 131 val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt) 132 133 val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt)) 134 val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec) 135 136 deqPtrVec := deqPtrVec_next 137 138 io.next_out := deqPtrVec_next 139 io.out := deqPtrVec 140 141 when (io.state === 0.U) { 142 XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt) 143 } 144 145} 146 147class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 148 val io = IO(new Bundle { 149 // for input redirect 150 val redirect = Input(Valid(new Redirect)) 151 // for enqueue 152 val allowEnqueue = Input(Bool()) 153 val hasBlockBackward = Input(Bool()) 154 val enq = Vec(RenameWidth, Input(Bool())) 155 val out = Output(Vec(RenameWidth, new RobPtr)) 156 }) 157 158 val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr))) 159 160 // enqueue 161 val canAccept = io.allowEnqueue && !io.hasBlockBackward 162 val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U) 163 164 for ((ptr, i) <- enqPtrVec.zipWithIndex) { 165 when(io.redirect.valid) { 166 ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 167 }.otherwise { 168 ptr := ptr + dispatchNum 169 } 170 } 171 172 io.out := enqPtrVec 173 174} 175 176class RobExceptionInfo(implicit p: Parameters) extends XSBundle { 177 // val valid = Bool() 178 val robIdx = new RobPtr 179 val exceptionVec = ExceptionVec() 180 val flushPipe = Bool() 181 val isVset = Bool() 182 val replayInst = Bool() // redirect to that inst itself 183 val singleStep = Bool() // TODO add frontend hit beneath 184 val crossPageIPFFix = Bool() 185 val trigger = new TriggerCf 186 187// def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend 188// def trigger_after = trigger.getTimingBackend && trigger.getHitBackend 189 def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit 190 def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit 191 // only exceptions are allowed to writeback when enqueue 192 def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit 193} 194 195class ExceptionGen(params: BackendParams)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 196 val io = IO(new Bundle { 197 val redirect = Input(Valid(new Redirect)) 198 val flush = Input(Bool()) 199 val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo))) 200 // csr + load + store 201 val wb = Vec(params.numException, Flipped(ValidIO(new RobExceptionInfo))) 202 val out = ValidIO(new RobExceptionInfo) 203 val state = ValidIO(new RobExceptionInfo) 204 }) 205 206 val wbExuParams = params.allExuParams.filter(_.exceptionOut.nonEmpty) 207 208 def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): RobExceptionInfo = { 209 def getOldest_recursion(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = { 210 assert(valid.length == bits.length) 211 if (valid.length == 1) { 212 (valid, bits) 213 } else if (valid.length == 2) { 214 val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0))))) 215 for (i <- res.indices) { 216 res(i).valid := valid(i) 217 res(i).bits := bits(i) 218 } 219 val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1)) 220 (Seq(oldest.valid), Seq(oldest.bits)) 221 } else { 222 val left = getOldest_recursion(valid.take(valid.length / 2), bits.take(valid.length / 2)) 223 val right = getOldest_recursion(valid.drop(valid.length / 2), bits.drop(valid.length / 2)) 224 getOldest_recursion(left._1 ++ right._1, left._2 ++ right._2) 225 } 226 } 227 getOldest_recursion(valid, bits)._2.head 228 } 229 230 231 val currentValid = RegInit(false.B) 232 val current = Reg(new RobExceptionInfo) 233 234 // orR the exceptionVec 235 val lastCycleFlush = RegNext(io.flush) 236 val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush)) 237 238 // s0: compare wb in 4 groups 239 val csrvldu_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(t => t.isCsr || t.fuType == FuType.vldu).nonEmpty).map(_._1) 240 val load_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.ldu).nonEmpty).map(_._1) 241 val store_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(t => t.isSta || t.fuType == FuType.mou).nonEmpty).map(_._1) 242 val varith_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.isVecArith).nonEmpty).map(_._1) 243 // TODO: vsta_wb = ??? 244 245 val writebacks = Seq(csrvldu_wb, load_wb, store_wb, varith_wb) 246 val in_wb_valids = writebacks.map(_.map(w => w.valid && w.bits.has_exception && !lastCycleFlush)) 247 val wb_valid = in_wb_valids.zip(writebacks).map { case (valid, wb) => 248 valid.zip(wb.map(_.bits)).map { case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }.reduce(_ || _) 249 } 250 val wb_bits = in_wb_valids.zip(writebacks).map { case (valid, wb) => getOldest(valid, wb.map(_.bits))} 251 252 val s0_out_valid = wb_valid.map(x => RegNext(x)) 253 val s0_out_bits = wb_bits.map(x => RegNext(x)) 254 255 // s1: compare last four and current flush 256 val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) }) 257 val s1_out_bits = RegNext(getOldest(s0_out_valid, s0_out_bits)) 258 val s1_out_valid = RegNext(s1_valid.asUInt.orR) 259 260 val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 261 val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits))) 262 263 // s2: compare the input exception with the current one 264 // priorities: 265 // (1) system reset 266 // (2) current is valid: flush, remain, merge, update 267 // (3) current is not valid: s1 or enq 268 val current_flush = current.robIdx.needFlush(io.redirect) || io.flush 269 val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush 270 when (currentValid) { 271 when (current_flush) { 272 currentValid := Mux(s1_flush, false.B, s1_out_valid) 273 } 274 when (s1_out_valid && !s1_flush) { 275 when (isAfter(current.robIdx, s1_out_bits.robIdx)) { 276 current := s1_out_bits 277 }.elsewhen (current.robIdx === s1_out_bits.robIdx) { 278 current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec()) 279 current.flushPipe := s1_out_bits.flushPipe || current.flushPipe 280 current.replayInst := s1_out_bits.replayInst || current.replayInst 281 current.singleStep := s1_out_bits.singleStep || current.singleStep 282 current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf) 283 } 284 } 285 }.elsewhen (s1_out_valid && !s1_flush) { 286 currentValid := true.B 287 current := s1_out_bits 288 }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) { 289 currentValid := true.B 290 current := enq_bits 291 } 292 293 io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback 294 io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits) 295 io.state.valid := currentValid 296 io.state.bits := current 297 298} 299 300class RobFlushInfo(implicit p: Parameters) extends XSBundle { 301 val ftqIdx = new FtqPtr 302 val robIdx = new RobPtr 303 val ftqOffset = UInt(log2Up(PredictWidth).W) 304 val replayInst = Bool() 305} 306 307class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter { 308 309 lazy val module = new RobImp(this)(p, params) 310} 311 312class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper) 313 with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents { 314 315 private val LduCnt = params.LduCnt 316 private val StaCnt = params.StaCnt 317 318 val io = IO(new Bundle() { 319 val hartId = Input(UInt(8.W)) 320 val redirect = Input(Valid(new Redirect)) 321 val enq = new RobEnqIO 322 val flushOut = ValidIO(new Redirect) 323 val exception = ValidIO(new ExceptionInfo) 324 // exu + brq 325 val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles) 326 val commits = Output(new RobCommitIO) 327 val rabCommits = Output(new RobCommitIO) 328 val diffCommits = Output(new DiffCommitIO) 329 val isVsetFlushPipe = Output(Bool()) 330 val vconfigPdest = Output(UInt(PhyRegIdxWidth.W)) 331 val lsq = new RobLsqIO 332 val robDeqPtr = Output(new RobPtr) 333 val csr = new RobCSRIO 334 val snpt = Input(new SnapshotPort) 335 val robFull = Output(Bool()) 336 val headNotReady = Output(Bool()) 337 val cpu_halt = Output(Bool()) 338 val wfi_enable = Input(Bool()) 339 val debug_ls = Flipped(new DebugLSIO) 340 val debugRobHead = Output(new DynInst) 341 val debugEnqLsq = Input(new LsqEnqIO) 342 val debugHeadLsIssue = Input(Bool()) 343 val lsTopdownInfo = Vec(LduCnt, Input(new LsTopdownInfo)) 344 }) 345 346 val exuWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(!_.bits.params.hasStdFu) 347 val stdWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(_.bits.params.hasStdFu) 348 val fflagsWBs = io.writeback.filter(x => x.bits.fflags.nonEmpty) 349 val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty) 350 val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty) 351 352 val exuWbPorts = io.writeback.filter(!_.bits.params.hasStdFu) 353 val stdWbPorts = io.writeback.filter(_.bits.params.hasStdFu) 354 val fflagsPorts = io.writeback.filter(x => x.bits.fflags.nonEmpty) 355 val vxsatPorts = io.writeback.filter(x => x.bits.vxsat.nonEmpty) 356 val exceptionPorts = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty) 357 val numExuWbPorts = exuWBs.length 358 val numStdWbPorts = stdWBs.length 359 360 361 println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth") 362// println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}") 363// println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}") 364// println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}") 365 366 367 // instvalid field 368 val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 369 // writeback status 370 371 val stdWritebacked = Reg(Vec(RobSize, Bool())) 372 val uopNumVec = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W)))) 373 val realDestSize = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W)))) 374 val fflagsDataModule = RegInit(VecInit(Seq.fill(RobSize)(0.U(5.W)))) 375 val vxsatDataModule = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 376 377 def isWritebacked(ptr: UInt): Bool = { 378 !uopNumVec(ptr).orR && stdWritebacked(ptr) 379 } 380 381 def isUopWritebacked(ptr: UInt): Bool = { 382 !uopNumVec(ptr).orR 383 } 384 385 val mmio = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 386 387 // data for redirect, exception, etc. 388 val flagBkup = Mem(RobSize, Bool()) 389 // some instructions are not allowed to trigger interrupts 390 // They have side effects on the states of the processor before they write back 391 val interrupt_safe = Mem(RobSize, Bool()) 392 393 // data for debug 394 // Warn: debug_* prefix should not exist in generated verilog. 395 val debug_microOp = Mem(RobSize, new DynInst) 396 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug 397 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug 398 val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init))) 399 val debug_lsTopdownInfo = RegInit(VecInit(Seq.fill(RobSize)(LsTopdownInfo.init))) 400 val debug_lqIdxValid = RegInit(VecInit.fill(RobSize)(false.B)) 401 val debug_lsIssued = RegInit(VecInit.fill(RobSize)(false.B)) 402 403 // pointers 404 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 405 val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr)) 406 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 407 408 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 409 val lastWalkPtr = Reg(new RobPtr) 410 val allowEnqueue = RegInit(true.B) 411 412 val enqPtr = enqPtrVec.head 413 val deqPtr = deqPtrVec(0) 414 val walkPtr = walkPtrVec(0) 415 416 val isEmpty = enqPtr === deqPtr 417 val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level) 418 419 val snptEnq = io.enq.canAccept && io.enq.req.head.valid && io.enq.req.head.bits.snapshot 420 val snapshots = SnapshotGenerator(enqPtrVec, snptEnq, io.snpt.snptDeq, io.redirect.valid) 421 val debug_lsIssue = WireDefault(debug_lsIssued) 422 debug_lsIssue(deqPtr.value) := io.debugHeadLsIssue 423 424 /** 425 * states of Rob 426 */ 427 val s_idle :: s_walk :: Nil = Enum(2) 428 val state = RegInit(s_idle) 429 430 /** 431 * Data Modules 432 * 433 * CommitDataModule: data from dispatch 434 * (1) read: commits/walk/exception 435 * (2) write: enqueue 436 * 437 * WritebackData: data from writeback 438 * (1) read: commits/walk/exception 439 * (2) write: write back from exe units 440 */ 441 val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth)) 442 val dispatchDataRead = dispatchData.io.rdata 443 444 val exceptionGen = Module(new ExceptionGen(params)) 445 val exceptionDataRead = exceptionGen.io.state 446 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 447 val vxsatDataRead = Wire(Vec(CommitWidth, Bool())) 448 449 io.robDeqPtr := deqPtr 450 io.debugRobHead := debug_microOp(deqPtr.value) 451 452 val rab = Module(new RenameBuffer(RabSize)) 453 454 rab.io.redirect.valid := io.redirect.valid 455 456 rab.io.req.zip(io.enq.req).map { case (dest, src) => 457 dest.bits := src.bits 458 dest.valid := src.valid && io.enq.canAccept 459 } 460 461 val commitDestSizeSeq = (0 until CommitWidth).map(i => realDestSize(deqPtrVec(i).value)) 462 val walkDestSizeSeq = (0 until CommitWidth).map(i => realDestSize(walkPtrVec(i).value)) 463 464 val commitSizeSum = io.commits.commitValid.zip(commitDestSizeSeq).map { case (commitValid, destSize) => 465 Mux(io.commits.isCommit && commitValid, destSize, 0.U) 466 }.reduce(_ +& _) 467 val walkSizeSum = io.commits.walkValid.zip(walkDestSizeSeq).map { case (walkValid, destSize) => 468 Mux(io.commits.isWalk && walkValid, destSize, 0.U) 469 }.reduce(_ +& _) 470 471 rab.io.fromRob.commitSize := commitSizeSum 472 rab.io.fromRob.walkSize := walkSizeSum 473 rab.io.snpt.snptEnq := false.B 474 rab.io.snpt.snptDeq := io.snpt.snptDeq 475 rab.io.snpt.snptSelect := io.snpt.snptSelect 476 rab.io.snpt.useSnpt := io.snpt.useSnpt 477 478 io.rabCommits := rab.io.commits 479 io.diffCommits := rab.io.diffCommits 480 481 /** 482 * Enqueue (from dispatch) 483 */ 484 // special cases 485 val hasBlockBackward = RegInit(false.B) 486 val hasWaitForward = RegInit(false.B) 487 val doingSvinval = RegInit(false.B) 488 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 489 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 490 when (isEmpty) { hasBlockBackward:= false.B } 491 // When any instruction commits, hasNoSpecExec should be set to false.B 492 when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasWaitForward:= false.B } 493 494 // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing. 495 // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle. 496 // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts. 497 val hasWFI = RegInit(false.B) 498 io.cpu_halt := hasWFI 499 // WFI Timeout: 2^20 = 1M cycles 500 val wfi_cycles = RegInit(0.U(20.W)) 501 when (hasWFI) { 502 wfi_cycles := wfi_cycles + 1.U 503 }.elsewhen (!hasWFI && RegNext(hasWFI)) { 504 wfi_cycles := 0.U 505 } 506 val wfi_timeout = wfi_cycles.andR 507 when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) { 508 hasWFI := false.B 509 } 510 511 val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.req.take(i).map(req => req.valid && req.bits.firstUop))))) 512 io.enq.canAccept := allowEnqueue && !hasBlockBackward && rab.io.canEnq 513 io.enq.resp := allocatePtrVec 514 val canEnqueue = VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop && io.enq.canAccept)) 515 val timer = GTimer() 516 for (i <- 0 until RenameWidth) { 517 // we don't check whether io.redirect is valid here since redirect has higher priority 518 when (canEnqueue(i)) { 519 val enqUop = io.enq.req(i).bits 520 val enqIndex = allocatePtrVec(i).value 521 // store uop in data module and debug_microOp Vec 522 debug_microOp(enqIndex) := enqUop 523 debug_microOp(enqIndex).debugInfo.dispatchTime := timer 524 debug_microOp(enqIndex).debugInfo.enqRsTime := timer 525 debug_microOp(enqIndex).debugInfo.selectTime := timer 526 debug_microOp(enqIndex).debugInfo.issueTime := timer 527 debug_microOp(enqIndex).debugInfo.writebackTime := timer 528 debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer 529 debug_microOp(enqIndex).debugInfo.tlbRespTime := timer 530 debug_lsInfo(enqIndex) := DebugLsInfo.init 531 debug_lsTopdownInfo(enqIndex) := LsTopdownInfo.init 532 debug_lqIdxValid(enqIndex) := false.B 533 debug_lsIssued(enqIndex) := false.B 534 535 when (enqUop.blockBackward) { 536 hasBlockBackward := true.B 537 } 538 when (enqUop.waitForward) { 539 hasWaitForward := true.B 540 } 541 val enqHasTriggerHit = false.B // io.enq.req(i).bits.cf.trigger.getHitFrontend 542 val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR 543 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 544 when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe)) 545 { 546 doingSvinval := true.B 547 } 548 // the end instruction of Svinval enqs so clear doingSvinval 549 when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe)) 550 { 551 doingSvinval := false.B 552 } 553 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 554 assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe))) 555 when (enqUop.isWFI && !enqHasException && !enqHasTriggerHit) { 556 hasWFI := true.B 557 } 558 559 mmio(enqIndex) := false.B 560 } 561 } 562 val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(req => req.valid && req.bits.firstUop)), 0.U) 563 io.enq.isEmpty := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR) 564 565 when (!io.wfi_enable) { 566 hasWFI := false.B 567 } 568 // sel vsetvl's flush position 569 val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3) 570 val vsetvlState = RegInit(vs_idle) 571 572 val firstVInstrFtqPtr = RegInit(0.U.asTypeOf(new FtqPtr)) 573 val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W))) 574 val firstVInstrRobIdx = RegInit(0.U.asTypeOf(new RobPtr)) 575 576 val enq0 = io.enq.req(0) 577 val enq0IsVset = enq0.bits.isVset && enq0.bits.lastUop && canEnqueue(0) 578 val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe 579 val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVArith(req.bits.fuType) && fire} 580 // for vs_idle 581 val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType))) 582 // for vs_waitVinstr 583 val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1) 584 val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req) 585 when(vsetvlState === vs_idle){ 586 firstVInstrFtqPtr := firstVInstrIdle.bits.ftqPtr 587 firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset 588 firstVInstrRobIdx := firstVInstrIdle.bits.robIdx 589 }.elsewhen(vsetvlState === vs_waitVinstr){ 590 when(Cat(enqIsVInstrOrVset).orR){ 591 firstVInstrFtqPtr := firstVInstrWait.bits.ftqPtr 592 firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset 593 firstVInstrRobIdx := firstVInstrWait.bits.robIdx 594 } 595 } 596 597 val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR 598 when(vsetvlState === vs_idle && !io.redirect.valid){ 599 when(enq0IsVsetFlush){ 600 vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr) 601 } 602 }.elsewhen(vsetvlState === vs_waitVinstr){ 603 when(io.redirect.valid){ 604 vsetvlState := vs_idle 605 }.elsewhen(Cat(enqIsVInstrOrVset).orR){ 606 vsetvlState := vs_waitFlush 607 } 608 }.elsewhen(vsetvlState === vs_waitFlush){ 609 when(io.redirect.valid){ 610 vsetvlState := vs_idle 611 } 612 } 613 614 // lqEnq 615 io.debugEnqLsq.needAlloc.map(_(0)).zip(io.debugEnqLsq.req).foreach { case (alloc, req) => 616 when(io.debugEnqLsq.canAccept && alloc && req.valid) { 617 debug_microOp(req.bits.robIdx.value).lqIdx := req.bits.lqIdx 618 debug_lqIdxValid(req.bits.robIdx.value) := true.B 619 } 620 } 621 622 // lsIssue 623 when(io.debugHeadLsIssue) { 624 debug_lsIssued(deqPtr.value) := true.B 625 } 626 627 /** 628 * Writeback (from execution units) 629 */ 630 for (wb <- exuWBs) { 631 when (wb.valid) { 632 val wbIdx = wb.bits.robIdx.value 633 debug_exuData(wbIdx) := wb.bits.data 634 debug_exuDebug(wbIdx) := wb.bits.debug 635 debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime 636 debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime 637 debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime 638 debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime 639 640 // debug for lqidx and sqidx 641 debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr)) 642 debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr)) 643 644 val debug_Uop = debug_microOp(wbIdx) 645 XSInfo(true.B, 646 p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " + 647 p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " + 648 p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.robIdx}\n" 649 ) 650 } 651 } 652 653 val writebackNum = PopCount(exuWBs.map(_.valid)) 654 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 655 656 for (i <- 0 until LoadPipelineWidth) { 657 when (RegNext(io.lsq.mmio(i))) { 658 mmio(RegNext(io.lsq.uop(i).robIdx).value) := true.B 659 } 660 } 661 662 /** 663 * RedirectOut: Interrupt and Exceptions 664 */ 665 val deqDispatchData = dispatchDataRead(0) 666 val debug_deqUop = debug_microOp(deqPtr.value) 667 668 val intrBitSetReg = RegNext(io.csr.intrBitSet) 669 val intrEnable = intrBitSetReg && !hasWaitForward && interrupt_safe(deqPtr.value) 670 val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 671 val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR || 672 exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit) 673 val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe 674 val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst 675 val exceptionEnable = isWritebacked(deqPtr.value) && deqHasException 676 677 XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n") 678 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n") 679 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n") 680 681 val isFlushPipe = isWritebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst) 682 683 val isVsetFlushPipe = isWritebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset 684// val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush) 685 val needModifyFtqIdxOffset = false.B 686 io.isVsetFlushPipe := isVsetFlushPipe 687 io.vconfigPdest := rab.io.vconfigPdest 688 // io.flushOut will trigger redirect at the next cycle. 689 // Block any redirect or commit at the next cycle. 690 val lastCycleFlush = RegNext(io.flushOut.valid) 691 692 io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush 693 io.flushOut.bits := DontCare 694 io.flushOut.bits.isRVC := deqDispatchData.isRVC 695 io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr) 696 io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx) 697 io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset) 698 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next" 699 io.flushOut.bits.interrupt := true.B 700 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 701 XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable) 702 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 703 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 704 705 val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush 706 io.exception.valid := RegNext(exceptionHappen) 707 io.exception.bits.pc := RegEnable(debug_deqUop.pc, exceptionHappen) 708 io.exception.bits.instr := RegEnable(debug_deqUop.instr, exceptionHappen) 709 io.exception.bits.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 710 io.exception.bits.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 711 io.exception.bits.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 712 io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 713 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 714// io.exception.bits.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen) 715 716 XSDebug(io.flushOut.valid, 717 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " + 718 p"excp $exceptionEnable flushPipe $isFlushPipe " + 719 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 720 721 722 /** 723 * Commits (and walk) 724 * They share the same width. 725 */ 726 val shouldWalkVec = VecInit(walkPtrVec.map(_ <= lastWalkPtr)) 727 val walkFinished = VecInit(walkPtrVec.map(_ >= lastWalkPtr)).asUInt.orR 728 rab.io.fromRob.walkEnd := state === s_walk && walkFinished 729 730 require(RenameWidth <= CommitWidth) 731 732 // wiring to csr 733 val (wflags, fpWen) = (0 until CommitWidth).map(i => { 734 val v = io.commits.commitValid(i) 735 val info = io.commits.info(i) 736 (v & info.wflags, v & info.fpWen) 737 }).unzip 738 val fflags = Wire(Valid(UInt(5.W))) 739 fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR 740 fflags.bits := wflags.zip(fflagsDataRead).map({ 741 case (w, f) => Mux(w, f, 0.U) 742 }).reduce(_|_) 743 val dirty_fs = io.commits.isCommit && VecInit(fpWen).asUInt.orR 744 745 val vxsat = Wire(Valid(Bool())) 746 vxsat.valid := io.commits.isCommit && vxsat.bits 747 vxsat.bits := io.commits.commitValid.zip(vxsatDataRead).map { 748 case (valid, vxsat) => valid & vxsat 749 }.reduce(_ | _) 750 751 // when mispredict branches writeback, stop commit in the next 2 cycles 752 // TODO: don't check all exu write back 753 val misPredWb = Cat(VecInit(redirectWBs.map(wb => 754 wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid 755 ))).orR 756 val misPredBlockCounter = Reg(UInt(3.W)) 757 misPredBlockCounter := Mux(misPredWb, 758 "b111".U, 759 misPredBlockCounter >> 1.U 760 ) 761 val misPredBlock = misPredBlockCounter(0) 762 val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI 763 764 io.commits.isWalk := state === s_walk 765 io.commits.isCommit := state === s_idle && !blockCommit 766 val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value))) 767 val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value))) 768 // store will be commited iff both sta & std have been writebacked 769 val commit_w = VecInit(deqPtrVec.map(ptr => isWritebacked(ptr.value))) 770 val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last) 771 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i))) 772 val allowOnlyOneCommit = commit_exception || intrBitSetReg 773 // for instructions that may block others, we don't allow them to commit 774 for (i <- 0 until CommitWidth) { 775 // defaults: state === s_idle and instructions commit 776 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 777 val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst 778 io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked 779 io.commits.info(i) := dispatchDataRead(i) 780 io.commits.robIdx(i) := deqPtrVec(i) 781 782 when (state === s_walk) { 783 io.commits.walkValid(i) := shouldWalkVec(i) 784 when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) { 785 XSError(!walk_v(i), s"The walking entry($i) should be valid\n") 786 } 787 } 788 789 XSInfo(io.commits.isCommit && io.commits.commitValid(i), 790 "retired pc %x wen %d ldest %d pdest %x data %x fflags: %b vxsat: %b\n", 791 debug_microOp(deqPtrVec(i).value).pc, 792 io.commits.info(i).rfWen, 793 io.commits.info(i).ldest, 794 io.commits.info(i).pdest, 795 debug_exuData(deqPtrVec(i).value), 796 fflagsDataRead(i), 797 vxsatDataRead(i) 798 ) 799 XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n", 800 debug_microOp(walkPtrVec(i).value).pc, 801 io.commits.info(i).rfWen, 802 io.commits.info(i).ldest, 803 debug_exuData(walkPtrVec(i).value) 804 ) 805 } 806 if (env.EnableDifftest) { 807 io.commits.info.map(info => dontTouch(info.pc)) 808 } 809 810 // sync fflags/dirty_fs/vxsat to csr 811 io.csr.fflags := RegNext(fflags) 812 io.csr.dirty_fs := RegNext(dirty_fs) 813 io.csr.vxsat := RegNext(vxsat) 814 815 // sync v csr to csr 816 // for difftest 817 if(env.AlwaysBasicDiff || env.EnableDifftest) { 818 val isDiffWriteVconfigVec = io.diffCommits.commitValid.zip(io.diffCommits.info).map { case (valid, info) => valid && info.ldest === VCONFIG_IDX.U && info.vecWen }.reverse 819 io.csr.vcsrFlag := RegNext(io.diffCommits.isCommit && Cat(isDiffWriteVconfigVec).orR) 820 } 821 else{ 822 io.csr.vcsrFlag := false.B 823 } 824 825 // commit load/store to lsq 826 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 827 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE)) 828 io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U)) 829 io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U)) 830 // indicate a pending load or store 831 io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value) && mmio(deqPtr.value)) 832 io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value)) 833 io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0)) 834 io.lsq.pendingPtr := RegNext(deqPtr) 835 836 /** 837 * state changes 838 * (1) redirect: switch to s_walk 839 * (2) walk: when walking comes to the end, switch to s_idle 840 */ 841 val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished && rab.io.status.walkEnd, s_idle, state)) 842 XSPerfAccumulate("s_idle_to_idle", state === s_idle && state_next === s_idle) 843 XSPerfAccumulate("s_idle_to_walk", state === s_idle && state_next === s_walk) 844 XSPerfAccumulate("s_walk_to_idle", state === s_walk && state_next === s_idle) 845 XSPerfAccumulate("s_walk_to_walk", state === s_walk && state_next === s_walk) 846 state := state_next 847 848 /** 849 * pointers and counters 850 */ 851 val deqPtrGenModule = Module(new RobDeqPtrWrapper) 852 deqPtrGenModule.io.state := state 853 deqPtrGenModule.io.deq_v := commit_v 854 deqPtrGenModule.io.deq_w := commit_w 855 deqPtrGenModule.io.exception_state := exceptionDataRead 856 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 857 deqPtrGenModule.io.hasNoSpecExec := hasWaitForward 858 deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value) 859 deqPtrGenModule.io.blockCommit := blockCommit 860 deqPtrVec := deqPtrGenModule.io.out 861 val deqPtrVec_next = deqPtrGenModule.io.next_out 862 863 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 864 enqPtrGenModule.io.redirect := io.redirect 865 enqPtrGenModule.io.allowEnqueue := allowEnqueue && rab.io.canEnq 866 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 867 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop)) 868 enqPtrVec := enqPtrGenModule.io.out 869 870 // next walkPtrVec: 871 // (1) redirect occurs: update according to state 872 // (2) walk: move forwards 873 val walkPtrVec_next = Mux(io.redirect.valid, 874 Mux(io.snpt.useSnpt, snapshots(io.snpt.snptSelect), deqPtrVec_next), 875 Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec) 876 ) 877 walkPtrVec := walkPtrVec_next 878 879 val numValidEntries = distanceBetween(enqPtr, deqPtr) 880 val commitCnt = PopCount(io.commits.commitValid) 881 882 allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U 883 884 val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0)) 885 when (io.redirect.valid) { 886 lastWalkPtr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx - 1.U, io.redirect.bits.robIdx) 887 } 888 889 890 /** 891 * States 892 * We put all the stage bits changes here. 893 894 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 895 * All states: (1) valid; (2) writebacked; (3) flagBkup 896 */ 897 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 898 899 // redirect logic writes 6 valid 900 val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr)) 901 val redirectTail = Reg(new RobPtr) 902 val redirectIdle :: redirectBusy :: Nil = Enum(2) 903 val redirectState = RegInit(redirectIdle) 904 val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail)) 905 when(redirectState === redirectBusy) { 906 redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U) 907 redirectHeadVec zip invMask foreach { 908 case (redirectHead, inv) => when(inv) { 909 valid(redirectHead.value) := false.B 910 } 911 } 912 when(!invMask.last) { 913 redirectState := redirectIdle 914 } 915 } 916 when(io.redirect.valid) { 917 redirectState := redirectBusy 918 when(redirectState === redirectIdle) { 919 redirectTail := enqPtr 920 } 921 redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) => 922 redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 923 } 924 } 925 // enqueue logic writes 6 valid 926 for (i <- 0 until RenameWidth) { 927 when (canEnqueue(i) && !io.redirect.valid) { 928 valid(allocatePtrVec(i).value) := true.B 929 } 930 } 931 // dequeue logic writes 6 valid 932 for (i <- 0 until CommitWidth) { 933 val commitValid = io.commits.isCommit && io.commits.commitValid(i) 934 when (commitValid) { 935 valid(commitReadAddr(i)) := false.B 936 } 937 } 938 939 // debug_inst update 940 for(i <- 0 until (LduCnt + StaCnt)) { 941 debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i)) 942 debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i)) 943 } 944 for (i <- 0 until LduCnt) { 945 debug_lsTopdownInfo(io.lsTopdownInfo(i).s1.robIdx).s1SignalEnable(io.lsTopdownInfo(i)) 946 debug_lsTopdownInfo(io.lsTopdownInfo(i).s2.robIdx).s2SignalEnable(io.lsTopdownInfo(i)) 947 } 948 949 // writeback logic set numWbPorts writebacked to true 950 val blockWbSeq = Wire(Vec(exuWBs.length, Bool())) 951 blockWbSeq.map(_ := false.B) 952 for ((wb, blockWb) <- exuWBs.zip(blockWbSeq)) { 953 when(wb.valid) { 954 val wbHasException = wb.bits.exceptionVec.getOrElse(0.U).asUInt.orR 955 val wbHasTriggerHit = false.B //Todo: wb.bits.trigger.getHitBackend 956 val wbHasFlushPipe = wb.bits.flushPipe.getOrElse(false.B) 957 val wbHasReplayInst = wb.bits.replay.getOrElse(false.B) //Todo: && wb.bits.replayInst 958 blockWb := wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit 959 } 960 } 961 962 // if the first uop of an instruction is valid , write writebackedCounter 963 val uopEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid) 964 val instEnqValidSeq = io.enq.req.map (req => io.enq.canAccept && req.valid && req.bits.firstUop) 965 val enqNeedWriteRFSeq = io.enq.req.map(_.bits.needWriteRf) 966 val enqRobIdxSeq = io.enq.req.map(req => req.bits.robIdx.value) 967 val enqUopNumVec = VecInit(io.enq.req.map(req => req.bits.numUops)) 968 val enqEliminatedMoveVec = VecInit(io.enq.req.map(req => req.bits.eliminatedMove)) 969 970 private val enqWriteStdVec: Vec[Bool] = VecInit(io.enq.req.map { 971 req => FuType.isAMO(req.bits.fuType) || FuType.isStore(req.bits.fuType) 972 }) 973 val fflags_wb = fflagsPorts 974 val vxsat_wb = vxsatPorts 975 for(i <- 0 until RobSize){ 976 977 val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === i.U) 978 val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch } 979 val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch } 980 val instCanEnqFlag = Cat(instCanEnqSeq).orR 981 982 realDestSize(i) := Mux(!valid(i) && instCanEnqFlag || valid(i), realDestSize(i) + PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map{ case(writeFlag, valid) => writeFlag && valid }), 0.U) 983 984 val enqUopNum = PriorityMux(instCanEnqSeq, enqUopNumVec) 985 val enqEliminatedMove = PriorityMux(instCanEnqSeq, enqEliminatedMoveVec) 986 val enqWriteStd = PriorityMux(instCanEnqSeq, enqWriteStdVec) 987 988 val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 989 val canWbNoBlockSeq = canWbSeq.zip(blockWbSeq).map{ case(canWb, blockWb) => canWb && !blockWb } 990 val canStdWbSeq = VecInit(stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)) 991 val wbCnt = PopCount(canWbNoBlockSeq) 992 993 val exceptionHas = RegInit(false.B) 994 val exceptionHasWire = Wire(Bool()) 995 exceptionHasWire := MuxCase(exceptionHas, Seq( 996 (valid(i) && exceptionGen.io.out.valid && exceptionGen.io.out.bits.robIdx.value === i.U) -> true.B, 997 !valid(i) -> false.B 998 )) 999 exceptionHas := exceptionHasWire 1000 1001 when (exceptionHas || exceptionHasWire) { 1002 // exception flush 1003 uopNumVec(i) := 0.U 1004 stdWritebacked(i) := true.B 1005 }.elsewhen(!valid(i) && instCanEnqFlag) { 1006 // enq set num of uops 1007 uopNumVec(i) := enqUopNum 1008 stdWritebacked(i) := Mux(enqWriteStd, false.B, true.B) 1009 }.elsewhen(valid(i)) { 1010 // update by writing back 1011 uopNumVec(i) := uopNumVec(i) - wbCnt 1012 when (canStdWbSeq.asUInt.orR) { 1013 stdWritebacked(i) := true.B 1014 } 1015 }.otherwise { 1016 uopNumVec(i) := 0.U 1017 } 1018 1019 val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U && writeback.bits.wflags.getOrElse(false.B)) 1020 val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.fold(false.B)(_ | _) 1021 fflagsDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, fflagsDataModule(i) | fflagsRes) 1022 1023 val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 1024 val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.fold(false.B)(_ | _) 1025 vxsatDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, vxsatDataModule(i) | vxsatRes) 1026 } 1027 1028 // flagBkup 1029 // enqueue logic set 6 flagBkup at most 1030 for (i <- 0 until RenameWidth) { 1031 when (canEnqueue(i)) { 1032 flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag 1033 } 1034 } 1035 1036 // interrupt_safe 1037 for (i <- 0 until RenameWidth) { 1038 // We RegNext the updates for better timing. 1039 // Note that instructions won't change the system's states in this cycle. 1040 when (RegNext(canEnqueue(i))) { 1041 // For now, we allow non-load-store instructions to trigger interrupts 1042 // For MMIO instructions, they should not trigger interrupts since they may 1043 // be sent to lower level before it writes back. 1044 // However, we cannot determine whether a load/store instruction is MMIO. 1045 // Thus, we don't allow load/store instructions to trigger an interrupt. 1046 // TODO: support non-MMIO load-store instructions to trigger interrupts 1047 val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType) 1048 interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts) 1049 } 1050 } 1051 1052 /** 1053 * read and write of data modules 1054 */ 1055 val commitReadAddr_next = Mux(state_next === s_idle, 1056 VecInit(deqPtrVec_next.map(_.value)), 1057 VecInit(walkPtrVec_next.map(_.value)) 1058 ) 1059 dispatchData.io.wen := canEnqueue 1060 dispatchData.io.waddr := allocatePtrVec.map(_.value) 1061 dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).zipWithIndex.foreach { case ((wdata, req), portIdx) => 1062 wdata.ldest := req.ldest 1063 wdata.rfWen := req.rfWen 1064 wdata.fpWen := req.fpWen 1065 wdata.vecWen := req.vecWen 1066 wdata.wflags := req.wfflags 1067 wdata.commitType := req.commitType 1068 wdata.pdest := req.pdest 1069 wdata.ftqIdx := req.ftqPtr 1070 wdata.ftqOffset := req.ftqOffset 1071 wdata.isMove := req.eliminatedMove 1072 wdata.isRVC := req.preDecodeInfo.isRVC 1073 wdata.pc := req.pc 1074 wdata.vtype := req.vpu.vtype 1075 wdata.isVset := req.isVset 1076 wdata.instrSize := req.instrSize 1077 } 1078 dispatchData.io.raddr := commitReadAddr_next 1079 1080 exceptionGen.io.redirect <> io.redirect 1081 exceptionGen.io.flush := io.flushOut.valid 1082 1083 val canEnqueueEG = VecInit(io.enq.req.map(req => req.valid && io.enq.canAccept)) 1084 for (i <- 0 until RenameWidth) { 1085 exceptionGen.io.enq(i).valid := canEnqueueEG(i) 1086 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 1087 exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec) 1088 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe 1089 exceptionGen.io.enq(i).bits.isVset := io.enq.req(i).bits.isVset 1090 exceptionGen.io.enq(i).bits.replayInst := false.B 1091 XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst") 1092 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep 1093 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix 1094 exceptionGen.io.enq(i).bits.trigger.clear() 1095 exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.trigger.frontendHit 1096 } 1097 1098 println(s"ExceptionGen:") 1099 println(s"num of exceptions: ${params.numException}") 1100 require(exceptionWBs.length == exceptionGen.io.wb.length, 1101 f"exceptionWBs.length: ${exceptionWBs.length}, " + 1102 f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}") 1103 for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) { 1104 exc_wb.valid := wb.valid 1105 exc_wb.bits.robIdx := wb.bits.robIdx 1106 exc_wb.bits.exceptionVec := wb.bits.exceptionVec.get 1107 exc_wb.bits.flushPipe := wb.bits.flushPipe.getOrElse(false.B) 1108 exc_wb.bits.isVset := false.B 1109 exc_wb.bits.replayInst := wb.bits.replay.getOrElse(false.B) 1110 exc_wb.bits.singleStep := false.B 1111 exc_wb.bits.crossPageIPFFix := false.B 1112 exc_wb.bits.trigger := 0.U.asTypeOf(exc_wb.bits.trigger) // Todo 1113// println(s" [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " + 1114// s"flushPipe ${configs.exists(_.flushPipe)}, " + 1115// s"replayInst ${configs.exists(_.replayInst)}") 1116 } 1117 1118 fflagsDataRead := (0 until CommitWidth).map(i => fflagsDataModule(deqPtrVec(i).value)) 1119 vxsatDataRead := (0 until CommitWidth).map(i => vxsatDataModule(deqPtrVec(i).value)) 1120 1121 val instrCntReg = RegInit(0.U(64.W)) 1122 val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) }) 1123 val trueCommitCnt = RegNext(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => Mux(v, i.instrSize, 0.U) }.reduce(_ +& _)) +& fuseCommitCnt 1124 val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U) 1125 val instrCnt = instrCntReg + retireCounter 1126 instrCntReg := instrCnt 1127 io.csr.perfinfo.retiredInstr := retireCounter 1128 io.robFull := !allowEnqueue 1129 io.headNotReady := commit_v.head && !commit_w.head 1130 1131 /** 1132 * debug info 1133 */ 1134 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 1135 XSDebug("") 1136 XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n") 1137 for(i <- 0 until RobSize) { 1138 XSDebug(false, !valid(i), "-") 1139 XSDebug(false, valid(i) && isWritebacked(i.U), "w") 1140 XSDebug(false, valid(i) && !isWritebacked(i.U), "v") 1141 } 1142 XSDebug(false, true.B, "\n") 1143 1144 for(i <- 0 until RobSize) { 1145 if (i % 4 == 0) XSDebug("") 1146 XSDebug(false, true.B, "%x ", debug_microOp(i).pc) 1147 XSDebug(false, !valid(i), "- ") 1148 XSDebug(false, valid(i) && isWritebacked(i.U), "w ") 1149 XSDebug(false, valid(i) && !isWritebacked(i.U), "v ") 1150 if (i % 4 == 3) XSDebug(false, true.B, "\n") 1151 } 1152 1153 def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U) 1154 def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U) 1155 1156 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 1157 XSPerfAccumulate("clock_cycle", 1.U) 1158 QueuePerf(RobSize, numValidEntries, numValidEntries === RobSize.U) 1159 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 1160 XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt)) 1161 val commitIsMove = commitDebugUop.map(_.isMove) 1162 XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }))) 1163 val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) 1164 XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e }))) 1165 XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt)) 1166 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 1167 val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t } 1168 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 1169 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 1170 val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t } 1171 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 1172 val commitLoadWaitBit = commitDebugUop.map(_.loadWaitBit) 1173 XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))) 1174 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 1175 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }))) 1176 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && isWritebacked(i.U)))) 1177 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire))) 1178 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 1179 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)) 1180 XSPerfAccumulate("walkCycleTotal", state === s_walk) 1181 XSPerfAccumulate("waitRabWalkEnd", state === s_walk && walkFinished && !rab.io.status.walkEnd) 1182 private val walkCycle = RegInit(0.U(8.W)) 1183 private val waitRabWalkCycle = RegInit(0.U(8.W)) 1184 walkCycle := Mux(io.redirect.valid, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U)) 1185 waitRabWalkCycle := Mux(state === s_walk && walkFinished, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U)) 1186 1187 XSPerfHistogram("walkRobCycleHist", walkCycle, state === s_walk && walkFinished, 0, 32) 1188 XSPerfHistogram("walkRabExtraCycleHist", waitRabWalkCycle, state === s_walk && walkFinished && rab.io.status.walkEnd, 0, 32) 1189 XSPerfHistogram("walkTotalCycleHist", walkCycle, state === s_walk && state_next === s_idle, 0, 32) 1190 1191 private val deqNotWritebacked = valid(deqPtr.value) && !isWritebacked(deqPtr.value) 1192 private val deqStdNotWritebacked = valid(deqPtr.value) && !stdWritebacked(deqPtr.value) 1193 private val deqUopNotWritebacked = valid(deqPtr.value) && !isUopWritebacked(deqPtr.value) 1194 private val deqHeadInfo = debug_microOp(deqPtr.value) 1195 val deqUopCommitType = io.commits.info(0).commitType 1196 1197 XSPerfAccumulate("waitAluCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.alu.U) 1198 XSPerfAccumulate("waitMulCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.mul.U) 1199 XSPerfAccumulate("waitDivCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.div.U) 1200 XSPerfAccumulate("waitBrhCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.brh.U) 1201 XSPerfAccumulate("waitJmpCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.jmp.U) 1202 XSPerfAccumulate("waitCsrCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.csr.U) 1203 XSPerfAccumulate("waitFenCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.fence.U) 1204 XSPerfAccumulate("waitBkuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.bku.U) 1205 XSPerfAccumulate("waitLduCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.ldu.U) 1206 XSPerfAccumulate("waitStuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1207 XSPerfAccumulate("waitStaCycle", deqUopNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1208 XSPerfAccumulate("waitStdCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) 1209 XSPerfAccumulate("waitAtmCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.mou.U) 1210 1211 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 1212 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 1213 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 1214 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 1215 XSPerfAccumulate("robHeadPC", io.commits.info(0).pc) 1216 XSPerfAccumulate("commitCompressCntAll", PopCount(io.commits.commitValid.zip(io.commits.info).map{case(valid, info) => io.commits.isCommit && valid && info.instrSize > 1.U})) 1217 (2 to RenameWidth).foreach(i => 1218 XSPerfAccumulate(s"commitCompressCnt${i}", PopCount(io.commits.commitValid.zip(io.commits.info).map{case(valid, info) => io.commits.isCommit && valid && info.instrSize === i.U})) 1219 ) 1220 XSPerfAccumulate("compressSize", io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => Mux(io.commits.isCommit && valid && info.instrSize > 1.U, info.instrSize, 0.U) }.reduce(_ +& _)) 1221 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 1222 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 1223 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 1224 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 1225 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 1226 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 1227 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 1228 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 1229 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 1230 } 1231 for (fuType <- FuType.functionNameMap.keys) { 1232 val fuName = FuType.functionNameMap(fuType) 1233 val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U ) 1234 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 1235 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 1236 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 1237 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 1238 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 1239 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 1240 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 1241 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 1242 } 1243 1244 val sourceVaddr = Wire(Valid(UInt(VAddrBits.W))) 1245 sourceVaddr.valid := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_valid 1246 sourceVaddr.bits := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_bits 1247 val sourcePaddr = Wire(Valid(UInt(PAddrBits.W))) 1248 sourcePaddr.valid := debug_lsTopdownInfo(deqPtr.value).s2.paddr_valid 1249 sourcePaddr.bits := debug_lsTopdownInfo(deqPtr.value).s2.paddr_bits 1250 val sourceLqIdx = Wire(Valid(new LqPtr)) 1251 sourceLqIdx.valid := debug_lqIdxValid(deqPtr.value) 1252 sourceLqIdx.bits := debug_microOp(deqPtr.value).lqIdx 1253 val sourceHeadLsIssue = WireDefault(debug_lsIssue(deqPtr.value)) 1254 ExcitingUtils.addSource(sourceVaddr, s"rob_head_vaddr_${coreParams.HartId}", ExcitingUtils.Perf, true) 1255 ExcitingUtils.addSource(sourcePaddr, s"rob_head_paddr_${coreParams.HartId}", ExcitingUtils.Perf, true) 1256 ExcitingUtils.addSource(sourceLqIdx, s"rob_head_lqIdx_${coreParams.HartId}", ExcitingUtils.Perf, true) 1257 ExcitingUtils.addSource(sourceHeadLsIssue, s"rob_head_ls_issue_${coreParams.HartId}", ExcitingUtils.Perf, true) 1258 // dummy sink 1259 ExcitingUtils.addSink(WireDefault(sourceLqIdx), s"rob_head_lqIdx_${coreParams.HartId}", ExcitingUtils.Perf) 1260 ExcitingUtils.addSink(WireDefault(sourcePaddr), name=s"rob_head_paddr_${coreParams.HartId}", ExcitingUtils.Perf) 1261 ExcitingUtils.addSink(WireDefault(sourceVaddr), name=s"rob_head_vaddr_${coreParams.HartId}", ExcitingUtils.Perf) 1262 ExcitingUtils.addSink(WireDefault(sourceHeadLsIssue), name=s"rob_head_ls_issue_${coreParams.HartId}", ExcitingUtils.Perf) 1263 1264 /** 1265 * DataBase info: 1266 * log trigger is at writeback valid 1267 * */ 1268 1269 /** 1270 * @todo add InstInfoEntry back 1271 * @author Maxpicca-Li 1272 */ 1273 1274 //difftest signals 1275 val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value 1276 1277 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1278 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1279 1280 for(i <- 0 until CommitWidth) { 1281 val idx = deqPtrVec(i).value 1282 wdata(i) := debug_exuData(idx) 1283 wpc(i) := SignExt(commitDebugUop(i).pc, XLEN) 1284 } 1285 1286 if (env.EnableDifftest) { 1287 for (i <- 0 until CommitWidth) { 1288 val difftest = Module(new DifftestInstrCommit) 1289 // assgin default value 1290 difftest.io := DontCare 1291 1292 difftest.io.clock := clock 1293 difftest.io.coreid := io.hartId 1294 difftest.io.index := i.U 1295 1296 val ptr = deqPtrVec(i).value 1297 val uop = commitDebugUop(i) 1298 val exuOut = debug_exuDebug(ptr) 1299 val exuData = debug_exuData(ptr) 1300 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1301 difftest.io.pc := RegNext(RegNext(RegNext(SignExt(uop.pc, XLEN)))) 1302 difftest.io.instr := RegNext(RegNext(RegNext(uop.instr))) 1303 difftest.io.robIdx := RegNext(RegNext(RegNext(ZeroExt(ptr, 10)))) 1304 difftest.io.lqIdx := RegNext(RegNext(RegNext(ZeroExt(uop.lqIdx.value, 7)))) 1305 difftest.io.sqIdx := RegNext(RegNext(RegNext(ZeroExt(uop.sqIdx.value, 7)))) 1306 difftest.io.isLoad := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.LOAD))) 1307 difftest.io.isStore := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.STORE))) 1308 difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(io.commits.info(i).commitType)))) 1309 // when committing an eliminated move instruction, 1310 // we must make sure that skip is properly set to false (output from EXU is random value) 1311 difftest.io.skip := RegNext(RegNext(RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)))) 1312 difftest.io.isRVC := RegNext(RegNext(RegNext(uop.preDecodeInfo.isRVC))) 1313 difftest.io.rfwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U))) 1314 difftest.io.fpwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).fpWen))) 1315 difftest.io.wpdest := RegNext(RegNext(RegNext(io.commits.info(i).pdest))) 1316 difftest.io.wdest := RegNext(RegNext(RegNext(io.commits.info(i).ldest))) 1317 difftest.io.instrSize:= RegNext(RegNext(RegNext(io.commits.info(i).instrSize))) 1318 // // runahead commit hint 1319 // val runahead_commit = Module(new DifftestRunaheadCommitEvent) 1320 // runahead_commit.io.clock := clock 1321 // runahead_commit.io.coreid := io.hartId 1322 // runahead_commit.io.index := i.U 1323 // runahead_commit.io.valid := difftest.io.valid && 1324 // (commitBranchValid(i) || commitIsStore(i)) 1325 // // TODO: is branch or store 1326 // runahead_commit.io.pc := difftest.io.pc 1327 } 1328 } 1329 else if (env.AlwaysBasicDiff) { 1330 // These are the structures used by difftest only and should be optimized after synthesis. 1331 val dt_eliminatedMove = Mem(RobSize, Bool()) 1332 val dt_isRVC = Mem(RobSize, Bool()) 1333 val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) 1334 for (i <- 0 until RenameWidth) { 1335 when (canEnqueue(i)) { 1336 dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 1337 dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC 1338 } 1339 } 1340 for (wb <- exuWBs) { 1341 when (wb.valid) { 1342 val wbIdx = wb.bits.robIdx.value 1343 dt_exuDebug(wbIdx) := wb.bits.debug 1344 } 1345 } 1346 // Always instantiate basic difftest modules. 1347 for (i <- 0 until CommitWidth) { 1348 val commitInfo = io.commits.info(i) 1349 val ptr = deqPtrVec(i).value 1350 val exuOut = dt_exuDebug(ptr) 1351 val eliminatedMove = dt_eliminatedMove(ptr) 1352 val isRVC = dt_isRVC(ptr) 1353 1354 val difftest = Module(new DifftestBasicInstrCommit) 1355 difftest.io.clock := clock 1356 difftest.io.coreid := io.hartId 1357 difftest.io.index := i.U 1358 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1359 difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(commitInfo.commitType)))) 1360 difftest.io.skip := RegNext(RegNext(RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)))) 1361 difftest.io.isRVC := RegNext(RegNext(RegNext(isRVC))) 1362 difftest.io.rfwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U))) 1363 difftest.io.fpwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.fpWen))) 1364 difftest.io.wpdest := RegNext(RegNext(RegNext(commitInfo.pdest))) 1365 difftest.io.wdest := RegNext(RegNext(RegNext(commitInfo.ldest))) 1366 } 1367 } 1368 1369 if (env.EnableDifftest) { 1370 for (i <- 0 until CommitWidth) { 1371 val difftest = Module(new DifftestLoadEvent) 1372 difftest.io.clock := clock 1373 difftest.io.coreid := io.hartId 1374 difftest.io.index := i.U 1375 1376 val ptr = deqPtrVec(i).value 1377 val uop = commitDebugUop(i) 1378 val exuOut = debug_exuDebug(ptr) 1379 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1380 difftest.io.paddr := RegNext(RegNext(RegNext(exuOut.paddr))) 1381 difftest.io.opType := RegNext(RegNext(RegNext(uop.fuOpType))) 1382 difftest.io.fuType := RegNext(RegNext(RegNext(uop.fuType))) 1383 } 1384 } 1385 1386 // Always instantiate basic difftest modules. 1387 if (env.EnableDifftest) { 1388 val dt_isXSTrap = Mem(RobSize, Bool()) 1389 for (i <- 0 until RenameWidth) { 1390 when (canEnqueue(i)) { 1391 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap 1392 } 1393 } 1394 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) } 1395 val hitTrap = trapVec.reduce(_||_) 1396 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 1397 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN) 1398 val difftest = Module(new DifftestTrapEvent) 1399 difftest.io.clock := clock 1400 difftest.io.coreid := io.hartId 1401 difftest.io.valid := hitTrap 1402 difftest.io.code := trapCode 1403 difftest.io.pc := trapPC 1404 difftest.io.cycleCnt := timer 1405 difftest.io.instrCnt := instrCnt 1406 difftest.io.hasWFI := hasWFI 1407 } 1408 else if (env.AlwaysBasicDiff) { 1409 val dt_isXSTrap = Mem(RobSize, Bool()) 1410 for (i <- 0 until RenameWidth) { 1411 when (canEnqueue(i)) { 1412 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap 1413 } 1414 } 1415 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) } 1416 val hitTrap = trapVec.reduce(_||_) 1417 val difftest = Module(new DifftestBasicTrapEvent) 1418 difftest.io.clock := clock 1419 difftest.io.coreid := io.hartId 1420 difftest.io.valid := hitTrap 1421 difftest.io.cycleCnt := timer 1422 difftest.io.instrCnt := instrCnt 1423 } 1424 1425 val validEntriesBanks = (0 until (RobSize + 31) / 32).map(i => RegNext(PopCount(valid.drop(i * 32).take(32)))) 1426 val validEntries = RegNext(VecInit(validEntriesBanks).reduceTree(_ +& _)) 1427 val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }) 1428 val commitLoadVec = VecInit(commitLoadValid) 1429 val commitBranchVec = VecInit(commitBranchValid) 1430 val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }) 1431 val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }) 1432 val perfEvents = Seq( 1433 ("rob_interrupt_num ", io.flushOut.valid && intrEnable ), 1434 ("rob_exception_num ", io.flushOut.valid && exceptionEnable ), 1435 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe ), 1436 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst ), 1437 ("rob_commitUop ", ifCommit(commitCnt) ), 1438 ("rob_commitInstr ", ifCommitReg(trueCommitCnt) ), 1439 ("rob_commitInstrMove ", ifCommitReg(PopCount(RegNext(commitMoveVec))) ), 1440 ("rob_commitInstrFused ", ifCommitReg(fuseCommitCnt) ), 1441 ("rob_commitInstrLoad ", ifCommitReg(PopCount(RegNext(commitLoadVec))) ), 1442 ("rob_commitInstrBranch ", ifCommitReg(PopCount(RegNext(commitBranchVec))) ), 1443 ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec))) ), 1444 ("rob_commitInstrStore ", ifCommitReg(PopCount(RegNext(commitStoreVec))) ), 1445 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U) ), 1446 ("rob_walkCycle ", (state === s_walk) ), 1447 ("rob_1_4_valid ", validEntries <= (RobSize / 4).U ), 1448 ("rob_2_4_valid ", validEntries > (RobSize / 4).U && validEntries <= (RobSize / 2).U ), 1449 ("rob_3_4_valid ", validEntries > (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U), 1450 ("rob_4_4_valid ", validEntries > (RobSize * 3 / 4).U ), 1451 ) 1452 generatePerfEvent() 1453} 1454