xref: /XiangShan/src/main/scala/xiangshan/backend/rob/Rob.scala (revision 2234af84340669a4689771f774ed195b15ab6682)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.backend.rob
18
19import chipsalliance.rocketchip.config.Parameters
20import chisel3.ExcitingUtils._
21import chisel3._
22import chisel3.util._
23import xiangshan._
24import utils._
25import xiangshan.frontend.FtqPtr
26import difftest._
27
28class RobPtr(implicit p: Parameters) extends CircularQueuePtr[RobPtr](
29  p => p(XSCoreParamsKey).RobSize
30) with HasCircularQueuePtrHelper {
31
32  def needFlush(redirect: Valid[Redirect]): Bool = {
33    val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx
34    redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx))
35  }
36
37  override def cloneType = (new RobPtr).asInstanceOf[this.type]
38}
39
40object RobPtr {
41  def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = {
42    val ptr = Wire(new RobPtr)
43    ptr.flag := f
44    ptr.value := v
45    ptr
46  }
47}
48
49class RobCSRIO(implicit p: Parameters) extends XSBundle {
50  val intrBitSet = Input(Bool())
51  val trapTarget = Input(UInt(VAddrBits.W))
52  val isXRet = Input(Bool())
53
54  val fflags = Output(Valid(UInt(5.W)))
55  val dirty_fs = Output(Bool())
56  val perfinfo = new Bundle {
57    val retiredInstr = Output(UInt(3.W))
58  }
59}
60
61class RobLsqIO(implicit p: Parameters) extends XSBundle {
62  val lcommit = Output(UInt(log2Up(CommitWidth + 1).W))
63  val scommit = Output(UInt(log2Up(CommitWidth + 1).W))
64  val pendingld = Output(Bool())
65  val pendingst = Output(Bool())
66  val commit = Output(Bool())
67  val storeDataRobWb = Input(Vec(StorePipelineWidth, Valid(new RobPtr)))
68}
69
70class RobEnqIO(implicit p: Parameters) extends XSBundle {
71  val canAccept = Output(Bool())
72  val isEmpty = Output(Bool())
73  // valid vector, for robIdx gen and walk
74  val needAlloc = Vec(RenameWidth, Input(Bool()))
75  val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp)))
76  val resp = Vec(RenameWidth, Output(new RobPtr))
77}
78
79class RobDispatchData(implicit p: Parameters) extends RobCommitInfo
80
81class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
82  val io = IO(new Bundle {
83    // for commits/flush
84    val state = Input(UInt(2.W))
85    val deq_v = Vec(CommitWidth, Input(Bool()))
86    val deq_w = Vec(CommitWidth, Input(Bool()))
87    val exception_state = Flipped(ValidIO(new RobExceptionInfo))
88    // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth)
89    val intrBitSetReg = Input(Bool())
90    val hasNoSpecExec = Input(Bool())
91    val interrupt_safe = Input(Bool())
92    val misPredBlock = Input(Bool())
93    val isReplaying = Input(Bool())
94    // output: the CommitWidth deqPtr
95    val out = Vec(CommitWidth, Output(new RobPtr))
96    val next_out = Vec(CommitWidth, Output(new RobPtr))
97  })
98
99  val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr))))
100
101  // for exceptions (flushPipe included) and interrupts:
102  // only consider the first instruction
103  val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe
104  val exceptionEnable = io.deq_w(0) && io.exception_state.valid && !io.exception_state.bits.flushPipe && io.exception_state.bits.robIdx === deqPtrVec(0)
105  val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable)
106
107  // for normal commits: only to consider when there're no exceptions
108  // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions.
109  val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last)
110  val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i) && !io.misPredBlock && !io.isReplaying))
111  val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B)
112  // when io.intrBitSetReg or there're possible exceptions in these instructions,
113  // only one instruction is allowed to commit
114  val allowOnlyOne = commit_exception || io.intrBitSetReg
115  val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt)
116
117  val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt))
118  val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid, commitDeqPtrVec, deqPtrVec)
119
120  deqPtrVec := deqPtrVec_next
121
122  io.next_out := deqPtrVec_next
123  io.out      := deqPtrVec
124
125  when (io.state === 0.U) {
126    XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt)
127  }
128
129}
130
131class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
132  val io = IO(new Bundle {
133    // for input redirect
134    val redirect = Input(Valid(new Redirect))
135    // for enqueue
136    val allowEnqueue = Input(Bool())
137    val hasBlockBackward = Input(Bool())
138    val enq = Vec(RenameWidth, Input(Bool()))
139    val out = Output(new RobPtr)
140  })
141
142  val enqPtr = RegInit(0.U.asTypeOf(new RobPtr))
143
144  // enqueue
145  val canAccept = io.allowEnqueue && !io.hasBlockBackward
146  val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U)
147
148  when (io.redirect.valid) {
149    enqPtr := io.redirect.bits.robIdx + Mux(io.redirect.bits.flushItself(), 0.U, 1.U)
150  }.otherwise {
151    enqPtr := enqPtr + dispatchNum
152  }
153
154  io.out := enqPtr
155
156}
157
158class RobExceptionInfo(implicit p: Parameters) extends XSBundle {
159  // val valid = Bool()
160  val robIdx = new RobPtr
161  val exceptionVec = ExceptionVec()
162  val flushPipe = Bool()
163  val replayInst = Bool() // redirect to that inst itself
164  val singleStep = Bool()
165  val crossPageIPFFix = Bool()
166  val trigger = new TriggerCf
167
168  // make sure chains are fired at same timing
169  def trigger_vec_fix = VecInit(trigger.triggerHitVec.zipWithIndex.map{ case (hit, i) =>
170    def chain = trigger.triggerChainVec(i / 2)
171    if (i % 2 == 0)
172      Mux(chain, (trigger.triggerHitVec(i ) && trigger.triggerHitVec(i + 1)), trigger.triggerHitVec(i))
173    else
174      Mux(chain, (trigger.triggerHitVec(i ) && trigger.triggerHitVec(i - 1)), trigger.triggerHitVec(i))
175  })
176
177  def trigger_before = trigger_vec_fix.zip(trigger.triggerTiming).map{ case (hit, timing) => hit && !timing}.reduce(_ | _)
178  def trigger_after = trigger_vec_fix.zip(trigger.triggerTiming).map{ case (hit, timing) => hit && timing}.reduce(_ | _)
179
180  def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger_vec_fix.asUInt.orR
181  // only exceptions are allowed to writeback when enqueue
182  def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger_before
183}
184
185class ExceptionGen(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
186  val io = IO(new Bundle {
187    val redirect = Input(Valid(new Redirect))
188    val flush = Input(Bool())
189    val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo)))
190    val wb = Vec(5, Flipped(ValidIO(new RobExceptionInfo)))
191    val out = ValidIO(new RobExceptionInfo)
192    val state = ValidIO(new RobExceptionInfo)
193  })
194
195  val current = Reg(Valid(new RobExceptionInfo))
196
197  // orR the exceptionVec
198  val lastCycleFlush = RegNext(io.flush)
199  val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush))
200  val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush)
201
202  // s0: compare wb(1),wb(2) and wb(3),wb(4)
203  val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }
204  val csr_wb_bits = io.wb(0).bits
205  val load_wb_bits = Mux(!in_wb_valid(2) || in_wb_valid(1) && isAfter(io.wb(2).bits.robIdx, io.wb(1).bits.robIdx), io.wb(1).bits, io.wb(2).bits)
206  val store_wb_bits = Mux(!in_wb_valid(4) || in_wb_valid(3) && isAfter(io.wb(4).bits.robIdx, io.wb(3).bits.robIdx), io.wb(3).bits, io.wb(4).bits)
207  val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid(1) || wb_valid(2), wb_valid(3) || wb_valid(4))))
208  val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits)))
209
210  // s1: compare last four and current flush
211  val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) })
212  val compare_01_valid = s0_out_valid(0) || s0_out_valid(1)
213  val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0))
214  val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2))
215  val s1_out_bits = RegNext(compare_bits)
216  val s1_out_valid = RegNext(s1_valid.asUInt.orR)
217
218  val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush)
219  val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits)))
220
221  // s2: compare the input exception with the current one
222  // priorities:
223  // (1) system reset
224  // (2) current is valid: flush, remain, merge, update
225  // (3) current is not valid: s1 or enq
226  val current_flush = current.bits.robIdx.needFlush(io.redirect) || io.flush
227  val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush
228  when (reset.asBool) {
229    current.valid := false.B
230  }.elsewhen (current.valid) {
231    when (current_flush) {
232      current.valid := Mux(s1_flush, false.B, s1_out_valid)
233    }
234    when (s1_out_valid && !s1_flush) {
235      when (isAfter(current.bits.robIdx, s1_out_bits.robIdx)) {
236        current.bits := s1_out_bits
237      }.elsewhen (current.bits.robIdx === s1_out_bits.robIdx) {
238        current.bits.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.bits.exceptionVec.asUInt).asTypeOf(ExceptionVec())
239        current.bits.flushPipe := s1_out_bits.flushPipe || current.bits.flushPipe
240        current.bits.replayInst := s1_out_bits.replayInst || current.bits.replayInst
241        current.bits.singleStep := s1_out_bits.singleStep || current.bits.singleStep
242//        current.bits.trigger := (s1_out_bits.trigger.asUInt | current.bits.trigger.asUInt).asTypeOf(new TriggerCf)
243      }
244    }
245  }.elsewhen (s1_out_valid && !s1_flush) {
246    current.valid := true.B
247    current.bits := s1_out_bits
248  }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) {
249    current.valid := true.B
250    current.bits := enq_bits
251  }
252
253  io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback
254  io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits)
255  io.state := current
256
257}
258
259class RobFlushInfo(implicit p: Parameters) extends XSBundle {
260  val ftqIdx = new FtqPtr
261  val robIdx = new RobPtr
262  val ftqOffset = UInt(log2Up(PredictWidth).W)
263  val replayInst = Bool()
264}
265
266class Rob(numWbPorts: Int)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
267  val io = IO(new Bundle() {
268    val hartId = Input(UInt(8.W))
269    val redirect = Input(Valid(new Redirect))
270    val enq = new RobEnqIO
271    val flushOut = ValidIO(new Redirect)
272    val exception = ValidIO(new ExceptionInfo)
273    // exu + brq
274    val exeWbResults = Vec(numWbPorts, Flipped(ValidIO(new ExuOutput)))
275    val commits = new RobCommitIO
276    val lsq = new RobLsqIO
277    val bcommit = Output(UInt(log2Up(CommitWidth + 1).W))
278    val robDeqPtr = Output(new RobPtr)
279    val csr = new RobCSRIO
280    val robFull = Output(Bool())
281  })
282
283  println("Rob: size:" + RobSize + " wbports:" + numWbPorts  + " commitwidth:" + CommitWidth)
284
285  // instvalid field
286  val valid = Mem(RobSize, Bool())
287  // writeback status
288  val writebacked = Mem(RobSize, Bool())
289  val store_data_writebacked = Mem(RobSize, Bool())
290  // data for redirect, exception, etc.
291  val flagBkup = Mem(RobSize, Bool())
292  // some instructions are not allowed to trigger interrupts
293  // They have side effects on the states of the processor before they write back
294  val interrupt_safe = Mem(RobSize, Bool())
295
296  // data for debug
297  // Warn: debug_* prefix should not exist in generated verilog.
298  val debug_microOp = Mem(RobSize, new MicroOp)
299  val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug
300  val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug
301
302  // pointers
303  // For enqueue ptr, we don't duplicate it since only enqueue needs it.
304  val enqPtr = Wire(new RobPtr)
305  val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr))
306
307  val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr))
308  val validCounter = RegInit(0.U(log2Ceil(RobSize + 1).W))
309  val allowEnqueue = RegInit(true.B)
310
311  val enqPtrVec = VecInit((0 until RenameWidth).map(i => enqPtr + PopCount(io.enq.needAlloc.take(i))))
312  val deqPtr = deqPtrVec(0)
313  val walkPtr = walkPtrVec(0)
314
315  val isEmpty = enqPtr === deqPtr
316  val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level)
317
318  /**
319    * states of Rob
320    */
321  val s_idle :: s_walk :: s_extrawalk :: Nil = Enum(3)
322  val state = RegInit(s_idle)
323
324  /**
325    * Data Modules
326    *
327    * CommitDataModule: data from dispatch
328    * (1) read: commits/walk/exception
329    * (2) write: enqueue
330    *
331    * WritebackData: data from writeback
332    * (1) read: commits/walk/exception
333    * (2) write: write back from exe units
334    */
335  val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth))
336  val dispatchDataRead = dispatchData.io.rdata
337
338  val exceptionGen = Module(new ExceptionGen)
339  val exceptionDataRead = exceptionGen.io.state
340  val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W)))
341
342  io.robDeqPtr := deqPtr
343
344  /**
345    * Enqueue (from dispatch)
346    */
347  // special cases
348  val hasBlockBackward = RegInit(false.B)
349  val hasNoSpecExec = RegInit(false.B)
350  val doingSvinval = RegInit(false.B)
351  // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B
352  // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty.
353  when (isEmpty) { hasBlockBackward:= false.B }
354  // When any instruction commits, hasNoSpecExec should be set to false.B
355  when (io.commits.valid.asUInt.orR  && state =/= s_extrawalk) { hasNoSpecExec:= false.B }
356
357  io.enq.canAccept := allowEnqueue && !hasBlockBackward
358  io.enq.resp      := enqPtrVec
359  val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept))
360  val timer = GTimer()
361  for (i <- 0 until RenameWidth) {
362    // we don't check whether io.redirect is valid here since redirect has higher priority
363    when (canEnqueue(i)) {
364      // store uop in data module and debug_microOp Vec
365      debug_microOp(enqPtrVec(i).value) := io.enq.req(i).bits
366      debug_microOp(enqPtrVec(i).value).debugInfo.dispatchTime := timer
367      debug_microOp(enqPtrVec(i).value).debugInfo.enqRsTime := timer
368      debug_microOp(enqPtrVec(i).value).debugInfo.selectTime := timer
369      debug_microOp(enqPtrVec(i).value).debugInfo.issueTime := timer
370      debug_microOp(enqPtrVec(i).value).debugInfo.writebackTime := timer
371      when (io.enq.req(i).bits.ctrl.blockBackward) {
372        hasBlockBackward := true.B
373      }
374      when (io.enq.req(i).bits.ctrl.noSpecExec) {
375        hasNoSpecExec := true.B
376      }
377      // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process
378      when(!Cat(io.enq.req(i).bits.cf.exceptionVec).orR && FuType.isSvinvalBegin(io.enq.req(i).bits.ctrl.fuType,io.enq.req(i).bits.ctrl.fuOpType,io.enq.req(i).bits.ctrl.flushPipe))
379      {
380        doingSvinval := true.B
381      }
382      // the end instruction of Svinval enqs so clear doingSvinval
383      when(!Cat(io.enq.req(i).bits.cf.exceptionVec).orR && FuType.isSvinvalEnd(io.enq.req(i).bits.ctrl.fuType,io.enq.req(i).bits.ctrl.fuOpType,io.enq.req(i).bits.ctrl.flushPipe))
384      {
385        doingSvinval := false.B
386      }
387      // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear
388      assert( !doingSvinval || (FuType.isSvinval(io.enq.req(i).bits.ctrl.fuType,io.enq.req(i).bits.ctrl.fuOpType,io.enq.req(i).bits.ctrl.flushPipe) || FuType.isSvinvalEnd(io.enq.req(i).bits.ctrl.fuType,io.enq.req(i).bits.ctrl.fuOpType,io.enq.req(i).bits.ctrl.flushPipe)))
389    }
390  }
391  val dispatchNum = Mux(io.enq.canAccept, PopCount(Cat(io.enq.req.map(_.valid))), 0.U)
392  io.enq.isEmpty   := RegNext(isEmpty && dispatchNum === 0.U)
393
394  // debug info for enqueue (dispatch)
395  XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n")
396  XSInfo(dispatchNum =/= 0.U, p"dispatched $dispatchNum insts\n")
397
398
399  /**
400    * Writeback (from execution units)
401    */
402  for (i <- 0 until numWbPorts) {
403    when (io.exeWbResults(i).valid) {
404      val wbIdx = io.exeWbResults(i).bits.uop.robIdx.value
405      debug_microOp(wbIdx).cf.exceptionVec := io.exeWbResults(i).bits.uop.cf.exceptionVec
406      debug_microOp(wbIdx).ctrl.flushPipe := io.exeWbResults(i).bits.uop.ctrl.flushPipe
407      debug_microOp(wbIdx).ctrl.replayInst := io.exeWbResults(i).bits.uop.ctrl.replayInst
408      debug_microOp(wbIdx).diffTestDebugLrScValid := io.exeWbResults(i).bits.uop.diffTestDebugLrScValid
409      debug_exuData(wbIdx) := io.exeWbResults(i).bits.data
410      debug_exuDebug(wbIdx) := io.exeWbResults(i).bits.debug
411      debug_microOp(wbIdx).debugInfo.enqRsTime := io.exeWbResults(i).bits.uop.debugInfo.enqRsTime
412      debug_microOp(wbIdx).debugInfo.selectTime := io.exeWbResults(i).bits.uop.debugInfo.selectTime
413      debug_microOp(wbIdx).debugInfo.issueTime := io.exeWbResults(i).bits.uop.debugInfo.issueTime
414      debug_microOp(wbIdx).debugInfo.writebackTime := io.exeWbResults(i).bits.uop.debugInfo.writebackTime
415
416      val debug_Uop = debug_microOp(wbIdx)
417      XSInfo(true.B,
418        p"writebacked pc 0x${Hexadecimal(debug_Uop.cf.pc)} wen ${debug_Uop.ctrl.rfWen} " +
419        p"data 0x${Hexadecimal(io.exeWbResults(i).bits.data)} ldst ${debug_Uop.ctrl.ldest} pdst ${debug_Uop.pdest} " +
420        p"skip ${io.exeWbResults(i).bits.debug.isMMIO} robIdx: ${io.exeWbResults(i).bits.uop.robIdx}\n"
421      )
422    }
423  }
424  val writebackNum = PopCount(io.exeWbResults.map(_.valid))
425  XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum)
426
427
428  /**
429    * RedirectOut: Interrupt and Exceptions
430    */
431  val deqDispatchData = dispatchDataRead(0)
432  val debug_deqUop = debug_microOp(deqPtr.value)
433
434  val intrBitSetReg = RegNext(io.csr.intrBitSet)
435  val intrEnable = intrBitSetReg && !hasNoSpecExec && interrupt_safe(deqPtr.value)
436  val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr
437  val triggerBefore = deqHasExceptionOrFlush && exceptionDataRead.bits.trigger_before
438  val triggerAfter = deqHasExceptionOrFlush && exceptionDataRead.bits.trigger_after && !exceptionDataRead.bits.trigger_before
439  val deqHasException = deqHasExceptionOrFlush && exceptionDataRead.bits.exceptionVec.asUInt.orR
440  val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe
441  val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst
442  val exceptionEnable = writebacked(deqPtr.value) && deqHasException// && triggerBefore
443
444  val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst || triggerAfter)
445
446  // io.flushOut will trigger redirect at the next cycle.
447  // Block any redirect or commit at the next cycle.
448  val lastCycleFlush = RegNext(io.flushOut.valid)
449
450  io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush
451  io.flushOut.bits := DontCare
452  io.flushOut.bits.robIdx := deqPtr
453  io.flushOut.bits.ftqIdx := deqDispatchData.ftqIdx
454  io.flushOut.bits.ftqOffset := deqDispatchData.ftqOffset
455  io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable, RedirectLevel.flush, RedirectLevel.flushAfter)
456  io.flushOut.bits.interrupt := true.B
457  XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable)
458  XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable)
459  XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe)
460  XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst)
461
462  val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush
463  io.exception.valid := RegNext(exceptionHappen)
464  io.exception.bits.uop := RegEnable(debug_deqUop, exceptionHappen)
465  io.exception.bits.uop.ctrl.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen)
466  io.exception.bits.uop.cf.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen)
467  io.exception.bits.uop.ctrl.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen)
468  io.exception.bits.uop.cf.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen)
469  io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen)
470  io.exception.bits.uop.cf.trigger.triggerHitVec := RegEnable(exceptionDataRead.bits.trigger_vec_fix, exceptionHappen)
471
472  XSDebug(io.flushOut.valid,
473    p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.uop.cf.pc)} intr $intrEnable " +
474    p"excp $exceptionEnable flushPipe $isFlushPipe " +
475    p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n")
476
477
478  /**
479    * Commits (and walk)
480    * They share the same width.
481    */
482  val walkCounter = Reg(UInt(log2Up(RobSize + 1).W))
483  val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter))
484  val walkFinished = walkCounter <= CommitWidth.U
485
486  // extra space is used when rob has no enough space, but mispredict recovery needs such info to walk regmap
487  require(RenameWidth <= CommitWidth)
488  val extraSpaceForMPR = Reg(Vec(RenameWidth, new RobDispatchData))
489  val usedSpaceForMPR = Reg(Vec(RenameWidth, Bool()))
490  when (io.enq.needAlloc.asUInt.orR && io.redirect.valid) {
491    usedSpaceForMPR := io.enq.needAlloc
492    extraSpaceForMPR := dispatchData.io.wdata
493    XSDebug("rob full, switched to s_extrawalk. needExtraSpaceForMPR: %b\n", io.enq.needAlloc.asUInt)
494  }
495
496  // wiring to csr
497  val (wflags, fpWen) = (0 until CommitWidth).map(i => {
498    val v = io.commits.valid(i)
499    val info = io.commits.info(i)
500    (v & info.wflags, v & info.fpWen)
501  }).unzip
502  val fflags = Wire(Valid(UInt(5.W)))
503  fflags.valid := Mux(io.commits.isWalk, false.B, Cat(wflags).orR())
504  fflags.bits := wflags.zip(fflagsDataRead).map({
505    case (w, f) => Mux(w, f, 0.U)
506  }).reduce(_|_)
507  val dirty_fs = Mux(io.commits.isWalk, false.B, Cat(fpWen).orR())
508
509  // when mispredict branches writeback, stop commit in the next 2 cycles
510  // TODO: don't check all exu write back
511  val misPredWb = Cat(VecInit((0 until numWbPorts).map(i =>
512    io.exeWbResults(i).bits.redirect.cfiUpdate.isMisPred && io.exeWbResults(i).bits.redirectValid
513  ))).orR()
514  val misPredBlockCounter = Reg(UInt(3.W))
515  misPredBlockCounter := Mux(misPredWb,
516    "b111".U,
517    misPredBlockCounter >> 1.U
518  )
519  val misPredBlock = misPredBlockCounter(0)
520
521  io.commits.isWalk := state =/= s_idle
522  val commit_v = Mux(state === s_idle, VecInit(deqPtrVec.map(ptr => valid(ptr.value))), VecInit(walkPtrVec.map(ptr => valid(ptr.value))))
523  // store will be commited iff both sta & std have been writebacked
524  val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value)))
525  val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last)
526  val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i)))
527  val allowOnlyOneCommit = commit_exception || intrBitSetReg
528  // for instructions that may block others, we don't allow them to commit
529  for (i <- 0 until CommitWidth) {
530    // defaults: state === s_idle and instructions commit
531    // when intrBitSetReg, allow only one instruction to commit at each clock cycle
532    val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst
533    io.commits.valid(i) := commit_v(i) && commit_w(i) && !isBlocked && !misPredBlock && !isReplaying && !lastCycleFlush
534    io.commits.info(i)  := dispatchDataRead(i)
535
536    when (state === s_walk) {
537      io.commits.valid(i) := commit_v(i) && shouldWalkVec(i)
538    }.elsewhen(state === s_extrawalk) {
539      io.commits.valid(i) := (if (i < RenameWidth) usedSpaceForMPR(RenameWidth-i-1) else false.B)
540      io.commits.info(i)  := (if (i < RenameWidth) extraSpaceForMPR(RenameWidth-i-1) else DontCare)
541    }
542
543    XSInfo(state === s_idle && io.commits.valid(i),
544      "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b\n",
545      debug_microOp(deqPtrVec(i).value).cf.pc,
546      io.commits.info(i).rfWen,
547      io.commits.info(i).ldest,
548      io.commits.info(i).pdest,
549      io.commits.info(i).old_pdest,
550      debug_exuData(deqPtrVec(i).value),
551      fflagsDataRead(i)
552    )
553    XSInfo(state === s_walk && io.commits.valid(i), "walked pc %x wen %d ldst %d data %x\n",
554      debug_microOp(walkPtrVec(i).value).cf.pc,
555      io.commits.info(i).rfWen,
556      io.commits.info(i).ldest,
557      debug_exuData(walkPtrVec(i).value)
558    )
559    XSInfo(state === s_extrawalk && io.commits.valid(i), "use extra space walked wen %d ldst %d\n",
560      io.commits.info(i).rfWen,
561      io.commits.info(i).ldest
562    )
563  }
564  if (env.EnableDifftest) {
565    io.commits.info.map(info => dontTouch(info.pc))
566  }
567
568  // sync fflags/dirty_fs to csr
569  io.csr.fflags := fflags
570  io.csr.dirty_fs := dirty_fs
571
572  // commit branch to brq
573  val cfiCommitVec = VecInit(io.commits.valid.zip(io.commits.info.map(_.commitType)).map{case(v, t) => v && CommitType.isBranch(t)})
574  io.bcommit := Mux(io.commits.isWalk, 0.U, PopCount(cfiCommitVec))
575
576  // commit load/store to lsq
577  val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.LOAD))
578  val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.STORE))
579  io.lsq.lcommit := RegNext(Mux(io.commits.isWalk, 0.U, PopCount(ldCommitVec)))
580  io.lsq.scommit := RegNext(Mux(io.commits.isWalk, 0.U, PopCount(stCommitVec)))
581  io.lsq.pendingld := RegNext(!io.commits.isWalk && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value))
582  io.lsq.pendingst := RegNext(!io.commits.isWalk && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value))
583  io.lsq.commit := RegNext(!io.commits.isWalk && io.commits.valid(0))
584
585  /**
586    * state changes
587    * (1) exceptions: when exception occurs, cancels all and switch to s_idle
588    * (2) redirect: switch to s_walk or s_extrawalk (depends on whether there're pending instructions in dispatch1)
589    * (3) walk: when walking comes to the end, switch to s_walk
590    * (4) s_extrawalk to s_walk
591    */
592  val state_next = Mux(io.redirect.valid,
593    Mux(io.enq.needAlloc.asUInt.orR, s_extrawalk, s_walk),
594    Mux(state === s_walk && walkFinished,
595      s_idle,
596      Mux(state === s_extrawalk, s_walk, state)
597    )
598  )
599  state := state_next
600
601  /**
602    * pointers and counters
603    */
604  val deqPtrGenModule = Module(new RobDeqPtrWrapper)
605  deqPtrGenModule.io.state := state
606  deqPtrGenModule.io.deq_v := commit_v
607  deqPtrGenModule.io.deq_w := commit_w
608  deqPtrGenModule.io.exception_state := exceptionDataRead
609  deqPtrGenModule.io.intrBitSetReg := intrBitSetReg
610  deqPtrGenModule.io.hasNoSpecExec := hasNoSpecExec
611  deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value)
612
613  deqPtrGenModule.io.misPredBlock := misPredBlock
614  deqPtrGenModule.io.isReplaying := isReplaying
615  deqPtrVec := deqPtrGenModule.io.out
616  val deqPtrVec_next = deqPtrGenModule.io.next_out
617
618  val enqPtrGenModule = Module(new RobEnqPtrWrapper)
619  enqPtrGenModule.io.redirect := io.redirect
620  enqPtrGenModule.io.allowEnqueue := allowEnqueue
621  enqPtrGenModule.io.hasBlockBackward := hasBlockBackward
622  enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid))
623  enqPtr := enqPtrGenModule.io.out
624
625  val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U)
626  // next walkPtrVec:
627  // (1) redirect occurs: update according to state
628  // (2) walk: move backwards
629  val walkPtrVec_next = Mux(io.redirect.valid && state =/= s_extrawalk,
630    Mux(state === s_walk,
631      VecInit(walkPtrVec.map(_ - thisCycleWalkCount)),
632      VecInit((0 until CommitWidth).map(i => enqPtr - (i+1).U))
633    ),
634    Mux(state === s_walk, VecInit(walkPtrVec.map(_ - CommitWidth.U)), walkPtrVec)
635  )
636  walkPtrVec := walkPtrVec_next
637
638  val lastCycleRedirect = RegNext(io.redirect.valid)
639  val trueValidCounter = Mux(lastCycleRedirect, distanceBetween(enqPtr, deqPtr), validCounter)
640  val commitCnt = PopCount(io.commits.valid)
641  validCounter := Mux(state === s_idle,
642    (validCounter - commitCnt) + dispatchNum,
643    trueValidCounter
644  )
645
646  allowEnqueue := Mux(state === s_idle,
647    validCounter + dispatchNum <= (RobSize - RenameWidth).U,
648    trueValidCounter <= (RobSize - RenameWidth).U
649  )
650
651  val currentWalkPtr = Mux(state === s_walk || state === s_extrawalk, walkPtr, enqPtr - 1.U)
652  val redirectWalkDistance = distanceBetween(currentWalkPtr, io.redirect.bits.robIdx)
653  when (io.redirect.valid) {
654    walkCounter := Mux(state === s_walk,
655      // NOTE: +& is used here because:
656      // When rob is full and the head instruction causes an exception,
657      // the redirect robIdx is the deqPtr. In this case, currentWalkPtr is
658      // enqPtr - 1.U and redirectWalkDistance is RobSize - 1.
659      // Since exceptions flush the instruction itself, flushItSelf is true.B.
660      // Previously we use `+` to count the walk distance and it causes overflows
661      // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize.
662      // The width of walkCounter also needs to be changed.
663      redirectWalkDistance +& io.redirect.bits.flushItself() - commitCnt,
664      redirectWalkDistance +& io.redirect.bits.flushItself()
665    )
666  }.elsewhen (state === s_walk) {
667    walkCounter := walkCounter - commitCnt
668    XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n")
669  }
670
671
672  /**
673    * States
674    * We put all the stage bits changes here.
675
676    * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit);
677    * All states: (1) valid; (2) writebacked; (3) flagBkup
678    */
679  val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value)))
680
681  // enqueue logic writes 6 valid
682  for (i <- 0 until RenameWidth) {
683    when (canEnqueue(i) && !io.redirect.valid) {
684      valid(enqPtrVec(i).value) := true.B
685    }
686  }
687  // dequeue/walk logic writes 6 valid, dequeue and walk will not happen at the same time
688  for (i <- 0 until CommitWidth) {
689    when (io.commits.valid(i) && state =/= s_extrawalk) {
690      valid(commitReadAddr(i)) := false.B
691    }
692  }
693  // reset: when exception, reset all valid to false
694  when (reset.asBool) {
695    for (i <- 0 until RobSize) {
696      valid(i) := false.B
697    }
698  }
699
700  // status field: writebacked
701  // enqueue logic set 6 writebacked to false
702  for (i <- 0 until RenameWidth) {
703    when (canEnqueue(i)) {
704      writebacked(enqPtrVec(i).value) := io.enq.req(i).bits.eliminatedMove && !io.enq.req(i).bits.cf.exceptionVec.asUInt.orR
705      val isStu = io.enq.req(i).bits.ctrl.fuType === FuType.stu
706      store_data_writebacked(enqPtrVec(i).value) := !isStu
707    }
708  }
709  when (exceptionGen.io.out.valid) {
710    val wbIdx = exceptionGen.io.out.bits.robIdx.value
711    writebacked(wbIdx) := true.B
712    store_data_writebacked(wbIdx) := true.B
713  }
714  // writeback logic set numWbPorts writebacked to true
715  for (i <- 0 until numWbPorts) {
716    when (io.exeWbResults(i).valid) {
717      val wbIdx = io.exeWbResults(i).bits.uop.robIdx.value
718      val block_wb =
719        selectAll(io.exeWbResults(i).bits.uop.cf.exceptionVec, false, true).asUInt.orR ||
720        io.exeWbResults(i).bits.uop.ctrl.flushPipe ||
721        io.exeWbResults(i).bits.uop.ctrl.replayInst
722      writebacked(wbIdx) := !block_wb
723    }
724  }
725  // store data writeback logic mark store as data_writebacked
726  for (i <- 0 until StorePipelineWidth) {
727    when(RegNext(io.lsq.storeDataRobWb(i).valid)) {
728      store_data_writebacked(RegNext(io.lsq.storeDataRobWb(i).bits.value)) := true.B
729    }
730  }
731
732  // flagBkup
733  // enqueue logic set 6 flagBkup at most
734  for (i <- 0 until RenameWidth) {
735    when (canEnqueue(i)) {
736      flagBkup(enqPtrVec(i).value) := enqPtrVec(i).flag
737    }
738  }
739
740  // interrupt_safe
741  for (i <- 0 until RenameWidth) {
742    // We RegNext the updates for better timing.
743    // Note that instructions won't change the system's states in this cycle.
744    when (RegNext(canEnqueue(i))) {
745      // For now, we allow non-load-store instructions to trigger interrupts
746      // For MMIO instructions, they should not trigger interrupts since they may
747      // be sent to lower level before it writes back.
748      // However, we cannot determine whether a load/store instruction is MMIO.
749      // Thus, we don't allow load/store instructions to trigger an interrupt.
750      // TODO: support non-MMIO load-store instructions to trigger interrupts
751      val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.ctrl.commitType)
752      interrupt_safe(RegNext(enqPtrVec(i).value)) := RegNext(allow_interrupts)
753    }
754  }
755
756  /**
757    * read and write of data modules
758    */
759  val commitReadAddr_next = Mux(state_next === s_idle,
760    VecInit(deqPtrVec_next.map(_.value)),
761    VecInit(walkPtrVec_next.map(_.value))
762  )
763  dispatchData.io.wen := canEnqueue
764  dispatchData.io.waddr := enqPtrVec.map(_.value)
765  dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) =>
766    wdata.ldest := req.ctrl.ldest
767    wdata.rfWen := req.ctrl.rfWen
768    wdata.fpWen := req.ctrl.fpWen
769    wdata.wflags := req.ctrl.fpu.wflags
770    wdata.commitType := req.ctrl.commitType
771    wdata.pdest := req.pdest
772    wdata.old_pdest := req.old_pdest
773    wdata.ftqIdx := req.cf.ftqPtr
774    wdata.ftqOffset := req.cf.ftqOffset
775    wdata.pc := req.cf.pc
776  }
777  dispatchData.io.raddr := commitReadAddr_next
778
779  exceptionGen.io.redirect <> io.redirect
780  exceptionGen.io.flush := io.flushOut.valid
781  for (i <- 0 until RenameWidth) {
782    exceptionGen.io.enq(i).valid := canEnqueue(i)
783    exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx
784    exceptionGen.io.enq(i).bits.exceptionVec := selectFrontend(io.enq.req(i).bits.cf.exceptionVec, false, true)
785    exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.ctrl.flushPipe
786    exceptionGen.io.enq(i).bits.replayInst := io.enq.req(i).bits.ctrl.replayInst
787    assert(exceptionGen.io.enq(i).bits.replayInst === false.B)
788    exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.ctrl.singleStep
789    exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.cf.crossPageIPFFix
790    exceptionGen.io.enq(i).bits.trigger := io.enq.req(i).bits.cf.trigger
791  }
792
793  // TODO: don't hard code these idxes
794  val numIntWbPorts = exuParameters.AluCnt + exuParameters.LduCnt + exuParameters.MduCnt
795  // CSR is after Alu and Load
796  def csr_wb_idx = exuParameters.AluCnt + exuParameters.LduCnt
797  def atomic_wb_idx = exuParameters.AluCnt // first port for load
798  def load_wb_idxes = Seq(exuParameters.AluCnt + 1) // second port for load
799  def store_wb_idxes = io.exeWbResults.indices.takeRight(2)
800  val all_exception_possibilities = Seq(csr_wb_idx, atomic_wb_idx) ++ load_wb_idxes ++ store_wb_idxes
801  all_exception_possibilities.zipWithIndex.foreach{ case (p, i) => connect_exception(i, p) }
802  def connect_exception(index: Int, wb_index: Int) = {
803    exceptionGen.io.wb(index).valid             := io.exeWbResults(wb_index).valid
804    exceptionGen.io.wb(index).bits.robIdx       := io.exeWbResults(wb_index).bits.uop.robIdx
805    val selectFunc = if (wb_index == csr_wb_idx) selectCSR _
806    else if (wb_index == atomic_wb_idx) selectAtomics _
807    else if (load_wb_idxes.contains(wb_index)) selectLoad _
808    else {
809      assert(store_wb_idxes.contains(wb_index))
810      selectStore _
811    }
812    exceptionGen.io.wb(index).bits.exceptionVec    := selectFunc(io.exeWbResults(wb_index).bits.uop.cf.exceptionVec, false, true)
813    exceptionGen.io.wb(index).bits.flushPipe       := io.exeWbResults(wb_index).bits.uop.ctrl.flushPipe
814    exceptionGen.io.wb(index).bits.replayInst      := io.exeWbResults(wb_index).bits.uop.ctrl.replayInst
815    exceptionGen.io.wb(index).bits.singleStep      := false.B
816    exceptionGen.io.wb(index).bits.crossPageIPFFix := false.B
817    exceptionGen.io.wb(index).bits.trigger := io.exeWbResults(wb_index).bits.uop.cf.trigger
818  }
819
820  // 4 fmac + 2 fmisc + 1 i2f
821  val fmacWb = (0 until exuParameters.FmacCnt).map(_ + numIntWbPorts)
822  val fmiscWb = (0 until exuParameters.FmiscCnt).map(_ + numIntWbPorts + exuParameters.FmacCnt)
823  val i2fWb = Seq(numIntWbPorts - 1) // last port in int
824  val fflags_wb = io.exeWbResults.zipWithIndex.filter(w => {
825    (fmacWb ++ fmiscWb ++ i2fWb).contains(w._2)
826  }).map(_._1)
827  val fflagsDataModule = Module(new SyncDataModuleTemplate(
828    UInt(5.W), RobSize, CommitWidth, fflags_wb.size)
829  )
830  for(i <- fflags_wb.indices){
831    fflagsDataModule.io.wen  (i) := fflags_wb(i).valid
832    fflagsDataModule.io.waddr(i) := fflags_wb(i).bits.uop.robIdx.value
833    fflagsDataModule.io.wdata(i) := fflags_wb(i).bits.fflags
834  }
835  fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value))
836  fflagsDataRead := fflagsDataModule.io.rdata
837
838
839  val instrCnt = RegInit(0.U(64.W))
840  val fuseCommitCnt = PopCount(io.commits.valid.zip(io.commits.info).map{ case (v, i) => v && CommitType.isFused(i.commitType) })
841  val trueCommitCnt = commitCnt +& fuseCommitCnt
842  val retireCounter = Mux(state === s_idle, trueCommitCnt, 0.U)
843  instrCnt := instrCnt + retireCounter
844  io.csr.perfinfo.retiredInstr := RegNext(retireCounter)
845  io.robFull := !allowEnqueue
846
847  /**
848    * debug info
849    */
850  XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n")
851  XSDebug("")
852  for(i <- 0 until RobSize){
853    XSDebug(false, !valid(i), "-")
854    XSDebug(false, valid(i) && writebacked(i), "w")
855    XSDebug(false, valid(i) && !writebacked(i), "v")
856  }
857  XSDebug(false, true.B, "\n")
858
859  for(i <- 0 until RobSize) {
860    if(i % 4 == 0) XSDebug("")
861    XSDebug(false, true.B, "%x ", debug_microOp(i).cf.pc)
862    XSDebug(false, !valid(i), "- ")
863    XSDebug(false, valid(i) && writebacked(i), "w ")
864    XSDebug(false, valid(i) && !writebacked(i), "v ")
865    if(i % 4 == 3) XSDebug(false, true.B, "\n")
866  }
867
868  def ifCommit(counter: UInt): UInt = Mux(io.commits.isWalk, 0.U, counter)
869
870  val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_))
871  XSPerfAccumulate("clock_cycle", 1.U)
872  QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue)
873  XSPerfAccumulate("commitUop", ifCommit(commitCnt))
874  XSPerfAccumulate("commitInstr", ifCommit(trueCommitCnt))
875  val commitIsMove = commitDebugUop.map(_.ctrl.isMove)
876  XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.valid.zip(commitIsMove).map{ case (v, m) => v && m })))
877  val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove)
878  XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.valid zip commitMoveElim map { case (v, e) => v && e })))
879  XSPerfAccumulate("commitInstrFused", ifCommit(fuseCommitCnt))
880  val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD)
881  val commitLoadValid = io.commits.valid.zip(commitIsLoad).map{ case (v, t) => v && t }
882  XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid)))
883  val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH)
884  val commitBranchValid = io.commits.valid.zip(commitIsBranch).map{ case (v, t) => v && t }
885  XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid)))
886  val commitLoadWaitBit = commitDebugUop.map(_.cf.loadWaitBit)
887  XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })))
888  val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE)
889  XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.valid.zip(commitIsStore).map{ case (v, t) => v && t })))
890  XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i))))
891  // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire())))
892  // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready)))
893  XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.valid), 0.U))
894  XSPerfAccumulate("walkCycle", state === s_walk || state === s_extrawalk)
895  val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value)
896  val deqUopCommitType = io.commits.info(0).commitType
897  XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL)
898  XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH)
899  XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD)
900  XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE)
901  XSPerfAccumulate("robHeadPC", io.commits.info(0).pc)
902  val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime)
903  val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime)
904  val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime)
905  val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime)
906  val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime)
907  val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime)
908  val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime)
909  def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = {
910    cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _)
911  }
912  for (fuType <- FuType.functionNameMap.keys) {
913    val fuName = FuType.functionNameMap(fuType)
914    val commitIsFuType = io.commits.valid.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fuType === fuType.U )
915    XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType)))
916    XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency)))
917    XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency)))
918    XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency)))
919    XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency)))
920    XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency)))
921    XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency)))
922    XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency)))
923    if (fuType == FuType.fmac.litValue()) {
924      val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fpu.ren3 )
925      XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma)))
926      XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency)))
927      XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency)))
928    }
929  }
930
931  //difftest signals
932  val firstValidCommit = (deqPtr + PriorityMux(io.commits.valid, VecInit(List.tabulate(CommitWidth)(_.U)))).value
933
934  val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W)))
935  val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W)))
936
937  for(i <- 0 until CommitWidth) {
938    val idx = deqPtrVec(i).value
939    wdata(i) := debug_exuData(idx)
940    wpc(i) := SignExt(commitDebugUop(i).cf.pc, XLEN)
941  }
942  val retireCounterFix = Mux(io.exception.valid, 1.U, retireCounter)
943  val retirePCFix = SignExt(Mux(io.exception.valid, io.exception.bits.uop.cf.pc, debug_microOp(firstValidCommit).cf.pc), XLEN)
944  val retireInstFix = Mux(io.exception.valid, io.exception.bits.uop.cf.instr, debug_microOp(firstValidCommit).cf.instr)
945
946  if (env.EnableDifftest) {
947    for (i <- 0 until CommitWidth) {
948      val difftest = Module(new DifftestInstrCommit)
949      difftest.io.clock    := clock
950      difftest.io.coreid   := io.hartId
951      difftest.io.index    := i.U
952
953      val ptr = deqPtrVec(i).value
954      val uop = commitDebugUop(i)
955      val exuOut = debug_exuDebug(ptr)
956      val exuData = debug_exuData(ptr)
957      difftest.io.valid    := RegNext(io.commits.valid(i) && !io.commits.isWalk)
958      difftest.io.pc       := RegNext(SignExt(uop.cf.pc, XLEN))
959      difftest.io.instr    := RegNext(uop.cf.instr)
960      difftest.io.special  := RegNext(CommitType.isFused(io.commits.info(i).commitType))
961      // when committing an eliminated move instruction,
962      // we must make sure that skip is properly set to false (output from EXU is random value)
963      difftest.io.skip     := RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))
964      difftest.io.isRVC    := RegNext(uop.cf.pd.isRVC)
965      difftest.io.scFailed := RegNext(!uop.diffTestDebugLrScValid &&
966        uop.ctrl.fuType === FuType.mou &&
967        (uop.ctrl.fuOpType === LSUOpType.sc_d || uop.ctrl.fuOpType === LSUOpType.sc_w))
968      difftest.io.wen      := RegNext(io.commits.valid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U)
969      difftest.io.wpdest   := RegNext(io.commits.info(i).pdest)
970      difftest.io.wdest    := RegNext(io.commits.info(i).ldest)
971
972      // runahead commit hint
973      val runahead_commit = Module(new DifftestRunaheadCommitEvent)
974      runahead_commit.io.clock := clock
975      runahead_commit.io.coreid := io.hartId
976      runahead_commit.io.index := i.U
977      runahead_commit.io.valid := difftest.io.valid &&
978        (commitBranchValid(i) || commitIsStore(i))
979      // TODO: is branch or store
980      runahead_commit.io.pc    := difftest.io.pc
981    }
982  }
983  else if (env.AlwaysBasicDiff) {
984    // These are the structures used by difftest only and should be optimized after synthesis.
985    val dt_eliminatedMove = Mem(RobSize, Bool())
986    val dt_isRVC = Mem(RobSize, Bool())
987    val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle))
988    for (i <- 0 until RenameWidth) {
989      when (canEnqueue(i)) {
990        dt_eliminatedMove(enqPtrVec(i).value) := io.enq.req(i).bits.eliminatedMove
991        dt_isRVC(enqPtrVec(i).value) := io.enq.req(i).bits.cf.pd.isRVC
992      }
993    }
994    for (i <- 0 until numWbPorts) {
995      when (io.exeWbResults(i).valid) {
996        val wbIdx = io.exeWbResults(i).bits.uop.robIdx.value
997        dt_exuDebug(wbIdx) := io.exeWbResults(i).bits.debug
998      }
999    }
1000    // Always instantiate basic difftest modules.
1001    for (i <- 0 until CommitWidth) {
1002      val commitInfo = io.commits.info(i)
1003      val ptr = deqPtrVec(i).value
1004      val exuOut = dt_exuDebug(ptr)
1005      val eliminatedMove = dt_eliminatedMove(ptr)
1006      val isRVC = dt_isRVC(ptr)
1007
1008      val difftest = Module(new DifftestBasicInstrCommit)
1009      difftest.io.clock   := clock
1010      difftest.io.coreid  := io.hartId
1011      difftest.io.index   := i.U
1012      difftest.io.valid   := RegNext(io.commits.valid(i) && !io.commits.isWalk)
1013      difftest.io.special := RegNext(CommitType.isFused(commitInfo.commitType))
1014      difftest.io.skip    := RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))
1015      difftest.io.isRVC   := RegNext(isRVC)
1016      difftest.io.wen     := RegNext(io.commits.valid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U)
1017      difftest.io.wpdest  := RegNext(commitInfo.pdest)
1018      difftest.io.wdest   := RegNext(commitInfo.ldest)
1019    }
1020  }
1021
1022  if (env.EnableDifftest) {
1023    for (i <- 0 until CommitWidth) {
1024      val difftest = Module(new DifftestLoadEvent)
1025      difftest.io.clock  := clock
1026      difftest.io.coreid := io.hartId
1027      difftest.io.index  := i.U
1028
1029      val ptr = deqPtrVec(i).value
1030      val uop = commitDebugUop(i)
1031      val exuOut = debug_exuDebug(ptr)
1032      difftest.io.valid  := RegNext(io.commits.valid(i) && !io.commits.isWalk)
1033      difftest.io.paddr  := RegNext(exuOut.paddr)
1034      difftest.io.opType := RegNext(uop.ctrl.fuOpType)
1035      difftest.io.fuType := RegNext(uop.ctrl.fuType)
1036    }
1037  }
1038
1039  // Always instantiate basic difftest modules.
1040  if (env.EnableDifftest) {
1041    val dt_isXSTrap = Mem(RobSize, Bool())
1042    for (i <- 0 until RenameWidth) {
1043      when (canEnqueue(i)) {
1044        dt_isXSTrap(enqPtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap
1045      }
1046    }
1047    val trapVec = io.commits.valid.zip(deqPtrVec).map{ case (v, d) => state === s_idle && v && dt_isXSTrap(d.value) }
1048    val hitTrap = trapVec.reduce(_||_)
1049    val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1))
1050    val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN)
1051    val difftest = Module(new DifftestTrapEvent)
1052    difftest.io.clock    := clock
1053    difftest.io.coreid   := io.hartId
1054    difftest.io.valid    := hitTrap
1055    difftest.io.code     := trapCode
1056    difftest.io.pc       := trapPC
1057    difftest.io.cycleCnt := timer
1058    difftest.io.instrCnt := instrCnt
1059  }
1060  else if (env.AlwaysBasicDiff) {
1061    val dt_isXSTrap = Mem(RobSize, Bool())
1062    for (i <- 0 until RenameWidth) {
1063      when (canEnqueue(i)) {
1064        dt_isXSTrap(enqPtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap
1065      }
1066    }
1067    val trapVec = io.commits.valid.zip(deqPtrVec).map{ case (v, d) => state === s_idle && v && dt_isXSTrap(d.value) }
1068    val hitTrap = trapVec.reduce(_||_)
1069    val difftest = Module(new DifftestBasicTrapEvent)
1070    difftest.io.clock    := clock
1071    difftest.io.coreid   := io.hartId
1072    difftest.io.valid    := hitTrap
1073    difftest.io.cycleCnt := timer
1074    difftest.io.instrCnt := instrCnt
1075  }
1076
1077  val perfinfo = IO(new Bundle(){
1078    val perfEvents = Output(new PerfEventsBundle(18))
1079  })
1080  val perfEvents = Seq(
1081    ("rob_interrupt_num       ", io.flushOut.valid && intrEnable                                                                                                   ),
1082    ("rob_exception_num       ", io.flushOut.valid && exceptionEnable                                                                                              ),
1083    ("rob_flush_pipe_num      ", io.flushOut.valid && isFlushPipe                                                                                                  ),
1084    ("rob_replay_inst_num     ", io.flushOut.valid && isFlushPipe && deqHasReplayInst                                                                              ),
1085    ("rob_commitUop           ", ifCommit(commitCnt)                                                                                                               ),
1086    ("rob_commitInstr         ", ifCommit(trueCommitCnt)                                                                                                           ),
1087    ("rob_commitInstrMove     ", ifCommit(PopCount(io.commits.valid.zip(commitIsMove).map{ case (v, m) => v && m }))                                               ),
1088    ("rob_commitInstrFused    ", ifCommit(fuseCommitCnt)                                                                                                           ),
1089    ("rob_commitInstrLoad     ", ifCommit(PopCount(commitLoadValid))                                                                                               ),
1090    ("rob_commitInstrLoad     ", ifCommit(PopCount(commitBranchValid))                                                                                               ),
1091    ("rob_commitInstrLoadWait ", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))                                           ),
1092    ("rob_commitInstrStore    ", ifCommit(PopCount(io.commits.valid.zip(commitIsStore).map{ case (v, t) => v && t }))                                              ),
1093    ("rob_walkInstr           ", Mux(io.commits.isWalk, PopCount(io.commits.valid), 0.U)                                                                           ),
1094    ("rob_walkCycle           ", (state === s_walk || state === s_extrawalk)                                                                                       ),
1095    ("rob_1/4_valid           ", (PopCount((0 until RobSize).map(valid(_))) < (RobSize.U/4.U))                                                                     ),
1096    ("rob_2/4_valid           ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U/4.U)) & (PopCount((0 until RobSize).map(valid(_))) <= (RobSize.U/2.U))    ),
1097    ("rob_3/4_valid           ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U/2.U)) & (PopCount((0 until RobSize).map(valid(_))) <= (RobSize.U*3.U/4.U))),
1098    ("rob_4/4_valid           ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U*3.U/4.U))                                                                 ),
1099  )
1100
1101  for (((perf_out,(perf_name,perf)),i) <- perfinfo.perfEvents.perf_events.zip(perfEvents).zipWithIndex) {
1102    perf_out.incr_step := RegNext(perf)
1103  }
1104}
1105