1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.rob 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3.ExcitingUtils._ 21import chisel3._ 22import chisel3.util._ 23import xiangshan._ 24import utils._ 25import xiangshan.frontend.FtqPtr 26import difftest._ 27 28class RobPtr(implicit p: Parameters) extends CircularQueuePtr[RobPtr]( 29 p => p(XSCoreParamsKey).RobSize 30) with HasCircularQueuePtrHelper { 31 32 def needFlush(redirect: Valid[Redirect]): Bool = { 33 val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx 34 redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx)) 35 } 36 37 override def cloneType = (new RobPtr).asInstanceOf[this.type] 38} 39 40object RobPtr { 41 def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = { 42 val ptr = Wire(new RobPtr) 43 ptr.flag := f 44 ptr.value := v 45 ptr 46 } 47} 48 49class RobCSRIO(implicit p: Parameters) extends XSBundle { 50 val intrBitSet = Input(Bool()) 51 val trapTarget = Input(UInt(VAddrBits.W)) 52 val isXRet = Input(Bool()) 53 54 val fflags = Output(Valid(UInt(5.W))) 55 val dirty_fs = Output(Bool()) 56 val perfinfo = new Bundle { 57 val retiredInstr = Output(UInt(3.W)) 58 } 59} 60 61class RobLsqIO(implicit p: Parameters) extends XSBundle { 62 val lcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 63 val scommit = Output(UInt(log2Up(CommitWidth + 1).W)) 64 val pendingld = Output(Bool()) 65 val pendingst = Output(Bool()) 66 val commit = Output(Bool()) 67 val storeDataRobWb = Input(Vec(StorePipelineWidth, Valid(new RobPtr))) 68} 69 70class RobEnqIO(implicit p: Parameters) extends XSBundle { 71 val canAccept = Output(Bool()) 72 val isEmpty = Output(Bool()) 73 // valid vector, for robIdx gen and walk 74 val needAlloc = Vec(RenameWidth, Input(Bool())) 75 val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp))) 76 val resp = Vec(RenameWidth, Output(new RobPtr)) 77} 78 79class RobDispatchData(implicit p: Parameters) extends RobCommitInfo 80 81class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 82 val io = IO(new Bundle { 83 // for commits/flush 84 val state = Input(UInt(2.W)) 85 val deq_v = Vec(CommitWidth, Input(Bool())) 86 val deq_w = Vec(CommitWidth, Input(Bool())) 87 val exception_state = Flipped(ValidIO(new RobExceptionInfo)) 88 // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth) 89 val intrBitSetReg = Input(Bool()) 90 val hasNoSpecExec = Input(Bool()) 91 val interrupt_safe = Input(Bool()) 92 val misPredBlock = Input(Bool()) 93 val isReplaying = Input(Bool()) 94 // output: the CommitWidth deqPtr 95 val out = Vec(CommitWidth, Output(new RobPtr)) 96 val next_out = Vec(CommitWidth, Output(new RobPtr)) 97 }) 98 99 val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr)))) 100 101 // for exceptions (flushPipe included) and interrupts: 102 // only consider the first instruction 103 val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe 104 val exceptionEnable = io.deq_w(0) && io.exception_state.valid && !io.exception_state.bits.flushPipe && io.exception_state.bits.robIdx === deqPtrVec(0) 105 val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable) 106 107 // for normal commits: only to consider when there're no exceptions 108 // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions. 109 val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last) 110 val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i) && !io.misPredBlock && !io.isReplaying)) 111 val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B) 112 // when io.intrBitSetReg or there're possible exceptions in these instructions, 113 // only one instruction is allowed to commit 114 val allowOnlyOne = commit_exception || io.intrBitSetReg 115 val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt) 116 117 val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt)) 118 val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid, commitDeqPtrVec, deqPtrVec) 119 120 deqPtrVec := deqPtrVec_next 121 122 io.next_out := deqPtrVec_next 123 io.out := deqPtrVec 124 125 when (io.state === 0.U) { 126 XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt) 127 } 128 129} 130 131class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 132 val io = IO(new Bundle { 133 // for input redirect 134 val redirect = Input(Valid(new Redirect)) 135 // for enqueue 136 val allowEnqueue = Input(Bool()) 137 val hasBlockBackward = Input(Bool()) 138 val enq = Vec(RenameWidth, Input(Bool())) 139 val out = Output(new RobPtr) 140 }) 141 142 val enqPtr = RegInit(0.U.asTypeOf(new RobPtr)) 143 144 // enqueue 145 val canAccept = io.allowEnqueue && !io.hasBlockBackward 146 val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U) 147 148 when (io.redirect.valid) { 149 enqPtr := io.redirect.bits.robIdx + Mux(io.redirect.bits.flushItself(), 0.U, 1.U) 150 }.otherwise { 151 enqPtr := enqPtr + dispatchNum 152 } 153 154 io.out := enqPtr 155 156} 157 158class RobExceptionInfo(implicit p: Parameters) extends XSBundle { 159 // val valid = Bool() 160 val robIdx = new RobPtr 161 val exceptionVec = ExceptionVec() 162 val flushPipe = Bool() 163 val replayInst = Bool() // redirect to that inst itself 164 val singleStep = Bool() 165 val crossPageIPFFix = Bool() 166 val trigger = new TriggerCf 167 168 // make sure chains are fired at same timing 169 def trigger_vec_fix = VecInit(trigger.triggerHitVec.zipWithIndex.map{ case (hit, i) => 170 def chain = trigger.triggerChainVec(i / 2) 171 if (i % 2 == 0) 172 Mux(chain, (trigger.triggerHitVec(i ) && trigger.triggerHitVec(i + 1)), trigger.triggerHitVec(i)) 173 else 174 Mux(chain, (trigger.triggerHitVec(i ) && trigger.triggerHitVec(i - 1)), trigger.triggerHitVec(i)) 175 }) 176 177 def trigger_before = trigger_vec_fix.zip(trigger.triggerTiming).map{ case (hit, timing) => hit && !timing}.reduce(_ | _) 178 def trigger_after = trigger_vec_fix.zip(trigger.triggerTiming).map{ case (hit, timing) => hit && timing}.reduce(_ | _) 179 180 def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger_vec_fix.asUInt.orR 181 // only exceptions are allowed to writeback when enqueue 182 def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger_before 183} 184 185class ExceptionGen(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 186 val io = IO(new Bundle { 187 val redirect = Input(Valid(new Redirect)) 188 val flush = Input(Bool()) 189 val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo))) 190 val wb = Vec(5, Flipped(ValidIO(new RobExceptionInfo))) 191 val out = ValidIO(new RobExceptionInfo) 192 val state = ValidIO(new RobExceptionInfo) 193 }) 194 195 val current = Reg(Valid(new RobExceptionInfo)) 196 197 // orR the exceptionVec 198 val lastCycleFlush = RegNext(io.flush) 199 val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush)) 200 val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush) 201 202 // s0: compare wb(1),wb(2) and wb(3),wb(4) 203 val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) } 204 val csr_wb_bits = io.wb(0).bits 205 val load_wb_bits = Mux(!in_wb_valid(2) || in_wb_valid(1) && isAfter(io.wb(2).bits.robIdx, io.wb(1).bits.robIdx), io.wb(1).bits, io.wb(2).bits) 206 val store_wb_bits = Mux(!in_wb_valid(4) || in_wb_valid(3) && isAfter(io.wb(4).bits.robIdx, io.wb(3).bits.robIdx), io.wb(3).bits, io.wb(4).bits) 207 val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid(1) || wb_valid(2), wb_valid(3) || wb_valid(4)))) 208 val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits))) 209 210 // s1: compare last four and current flush 211 val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) }) 212 val compare_01_valid = s0_out_valid(0) || s0_out_valid(1) 213 val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0)) 214 val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2)) 215 val s1_out_bits = RegNext(compare_bits) 216 val s1_out_valid = RegNext(s1_valid.asUInt.orR) 217 218 val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 219 val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits))) 220 221 // s2: compare the input exception with the current one 222 // priorities: 223 // (1) system reset 224 // (2) current is valid: flush, remain, merge, update 225 // (3) current is not valid: s1 or enq 226 val current_flush = current.bits.robIdx.needFlush(io.redirect) || io.flush 227 val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush 228 when (reset.asBool) { 229 current.valid := false.B 230 }.elsewhen (current.valid) { 231 when (current_flush) { 232 current.valid := Mux(s1_flush, false.B, s1_out_valid) 233 } 234 when (s1_out_valid && !s1_flush) { 235 when (isAfter(current.bits.robIdx, s1_out_bits.robIdx)) { 236 current.bits := s1_out_bits 237 }.elsewhen (current.bits.robIdx === s1_out_bits.robIdx) { 238 current.bits.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.bits.exceptionVec.asUInt).asTypeOf(ExceptionVec()) 239 current.bits.flushPipe := s1_out_bits.flushPipe || current.bits.flushPipe 240 current.bits.replayInst := s1_out_bits.replayInst || current.bits.replayInst 241 current.bits.singleStep := s1_out_bits.singleStep || current.bits.singleStep 242// current.bits.trigger := (s1_out_bits.trigger.asUInt | current.bits.trigger.asUInt).asTypeOf(new TriggerCf) 243 } 244 } 245 }.elsewhen (s1_out_valid && !s1_flush) { 246 current.valid := true.B 247 current.bits := s1_out_bits 248 }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) { 249 current.valid := true.B 250 current.bits := enq_bits 251 } 252 253 io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback 254 io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits) 255 io.state := current 256 257} 258 259class RobFlushInfo(implicit p: Parameters) extends XSBundle { 260 val ftqIdx = new FtqPtr 261 val robIdx = new RobPtr 262 val ftqOffset = UInt(log2Up(PredictWidth).W) 263 val replayInst = Bool() 264} 265 266class Rob(numWbPorts: Int)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 267 val io = IO(new Bundle() { 268 val hartId = Input(UInt(8.W)) 269 val redirect = Input(Valid(new Redirect)) 270 val enq = new RobEnqIO 271 val flushOut = ValidIO(new Redirect) 272 val exception = ValidIO(new ExceptionInfo) 273 // exu + brq 274 val exeWbResults = Vec(numWbPorts, Flipped(ValidIO(new ExuOutput))) 275 val commits = new RobCommitIO 276 val lsq = new RobLsqIO 277 val bcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 278 val robDeqPtr = Output(new RobPtr) 279 val csr = new RobCSRIO 280 val robFull = Output(Bool()) 281 }) 282 283 println("Rob: size:" + RobSize + " wbports:" + numWbPorts + " commitwidth:" + CommitWidth) 284 285 // instvalid field 286 val valid = Mem(RobSize, Bool()) 287 // writeback status 288 val writebacked = Mem(RobSize, Bool()) 289 val store_data_writebacked = Mem(RobSize, Bool()) 290 // data for redirect, exception, etc. 291 val flagBkup = Mem(RobSize, Bool()) 292 // some instructions are not allowed to trigger interrupts 293 // They have side effects on the states of the processor before they write back 294 val interrupt_safe = Mem(RobSize, Bool()) 295 296 // data for debug 297 // Warn: debug_* prefix should not exist in generated verilog. 298 val debug_microOp = Mem(RobSize, new MicroOp) 299 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug 300 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug 301 302 // pointers 303 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 304 val enqPtr = Wire(new RobPtr) 305 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 306 307 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 308 val validCounter = RegInit(0.U(log2Ceil(RobSize + 1).W)) 309 val allowEnqueue = RegInit(true.B) 310 311 val enqPtrVec = VecInit((0 until RenameWidth).map(i => enqPtr + PopCount(io.enq.needAlloc.take(i)))) 312 val deqPtr = deqPtrVec(0) 313 val walkPtr = walkPtrVec(0) 314 315 val isEmpty = enqPtr === deqPtr 316 val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level) 317 318 /** 319 * states of Rob 320 */ 321 val s_idle :: s_walk :: s_extrawalk :: Nil = Enum(3) 322 val state = RegInit(s_idle) 323 324 /** 325 * Data Modules 326 * 327 * CommitDataModule: data from dispatch 328 * (1) read: commits/walk/exception 329 * (2) write: enqueue 330 * 331 * WritebackData: data from writeback 332 * (1) read: commits/walk/exception 333 * (2) write: write back from exe units 334 */ 335 val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth)) 336 val dispatchDataRead = dispatchData.io.rdata 337 338 val exceptionGen = Module(new ExceptionGen) 339 val exceptionDataRead = exceptionGen.io.state 340 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 341 342 io.robDeqPtr := deqPtr 343 344 /** 345 * Enqueue (from dispatch) 346 */ 347 // special cases 348 val hasBlockBackward = RegInit(false.B) 349 val hasNoSpecExec = RegInit(false.B) 350 val doingSvinval = RegInit(false.B) 351 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 352 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 353 when (isEmpty) { hasBlockBackward:= false.B } 354 // When any instruction commits, hasNoSpecExec should be set to false.B 355 when (io.commits.valid.asUInt.orR && state =/= s_extrawalk) { hasNoSpecExec:= false.B } 356 357 io.enq.canAccept := allowEnqueue && !hasBlockBackward 358 io.enq.resp := enqPtrVec 359 val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept)) 360 val timer = GTimer() 361 for (i <- 0 until RenameWidth) { 362 // we don't check whether io.redirect is valid here since redirect has higher priority 363 when (canEnqueue(i)) { 364 // store uop in data module and debug_microOp Vec 365 debug_microOp(enqPtrVec(i).value) := io.enq.req(i).bits 366 debug_microOp(enqPtrVec(i).value).debugInfo.dispatchTime := timer 367 debug_microOp(enqPtrVec(i).value).debugInfo.enqRsTime := timer 368 debug_microOp(enqPtrVec(i).value).debugInfo.selectTime := timer 369 debug_microOp(enqPtrVec(i).value).debugInfo.issueTime := timer 370 debug_microOp(enqPtrVec(i).value).debugInfo.writebackTime := timer 371 when (io.enq.req(i).bits.ctrl.blockBackward) { 372 hasBlockBackward := true.B 373 } 374 when (io.enq.req(i).bits.ctrl.noSpecExec) { 375 hasNoSpecExec := true.B 376 } 377 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 378 when(!Cat(io.enq.req(i).bits.cf.exceptionVec).orR && FuType.isSvinvalBegin(io.enq.req(i).bits.ctrl.fuType,io.enq.req(i).bits.ctrl.fuOpType,io.enq.req(i).bits.ctrl.flushPipe)) 379 { 380 doingSvinval := true.B 381 } 382 // the end instruction of Svinval enqs so clear doingSvinval 383 when(!Cat(io.enq.req(i).bits.cf.exceptionVec).orR && FuType.isSvinvalEnd(io.enq.req(i).bits.ctrl.fuType,io.enq.req(i).bits.ctrl.fuOpType,io.enq.req(i).bits.ctrl.flushPipe)) 384 { 385 doingSvinval := false.B 386 } 387 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 388 assert( !doingSvinval || (FuType.isSvinval(io.enq.req(i).bits.ctrl.fuType,io.enq.req(i).bits.ctrl.fuOpType,io.enq.req(i).bits.ctrl.flushPipe) || FuType.isSvinvalEnd(io.enq.req(i).bits.ctrl.fuType,io.enq.req(i).bits.ctrl.fuOpType,io.enq.req(i).bits.ctrl.flushPipe))) 389 } 390 } 391 val dispatchNum = Mux(io.enq.canAccept, PopCount(Cat(io.enq.req.map(_.valid))), 0.U) 392 io.enq.isEmpty := RegNext(isEmpty && dispatchNum === 0.U) 393 394 // debug info for enqueue (dispatch) 395 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 396 XSInfo(dispatchNum =/= 0.U, p"dispatched $dispatchNum insts\n") 397 398 399 /** 400 * Writeback (from execution units) 401 */ 402 for (i <- 0 until numWbPorts) { 403 when (io.exeWbResults(i).valid) { 404 val wbIdx = io.exeWbResults(i).bits.uop.robIdx.value 405 debug_microOp(wbIdx).cf.exceptionVec := io.exeWbResults(i).bits.uop.cf.exceptionVec 406 debug_microOp(wbIdx).ctrl.flushPipe := io.exeWbResults(i).bits.uop.ctrl.flushPipe 407 debug_microOp(wbIdx).ctrl.replayInst := io.exeWbResults(i).bits.uop.ctrl.replayInst 408 debug_microOp(wbIdx).diffTestDebugLrScValid := io.exeWbResults(i).bits.uop.diffTestDebugLrScValid 409 debug_exuData(wbIdx) := io.exeWbResults(i).bits.data 410 debug_exuDebug(wbIdx) := io.exeWbResults(i).bits.debug 411 debug_microOp(wbIdx).debugInfo.enqRsTime := io.exeWbResults(i).bits.uop.debugInfo.enqRsTime 412 debug_microOp(wbIdx).debugInfo.selectTime := io.exeWbResults(i).bits.uop.debugInfo.selectTime 413 debug_microOp(wbIdx).debugInfo.issueTime := io.exeWbResults(i).bits.uop.debugInfo.issueTime 414 debug_microOp(wbIdx).debugInfo.writebackTime := io.exeWbResults(i).bits.uop.debugInfo.writebackTime 415 416 val debug_Uop = debug_microOp(wbIdx) 417 XSInfo(true.B, 418 p"writebacked pc 0x${Hexadecimal(debug_Uop.cf.pc)} wen ${debug_Uop.ctrl.rfWen} " + 419 p"data 0x${Hexadecimal(io.exeWbResults(i).bits.data)} ldst ${debug_Uop.ctrl.ldest} pdst ${debug_Uop.pdest} " + 420 p"skip ${io.exeWbResults(i).bits.debug.isMMIO} robIdx: ${io.exeWbResults(i).bits.uop.robIdx}\n" 421 ) 422 } 423 } 424 val writebackNum = PopCount(io.exeWbResults.map(_.valid)) 425 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 426 427 428 /** 429 * RedirectOut: Interrupt and Exceptions 430 */ 431 val deqDispatchData = dispatchDataRead(0) 432 val debug_deqUop = debug_microOp(deqPtr.value) 433 434 val intrBitSetReg = RegNext(io.csr.intrBitSet) 435 val intrEnable = intrBitSetReg && !hasNoSpecExec && interrupt_safe(deqPtr.value) 436 val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 437 val triggerBefore = deqHasExceptionOrFlush && exceptionDataRead.bits.trigger_before 438 val triggerAfter = deqHasExceptionOrFlush && exceptionDataRead.bits.trigger_after && !exceptionDataRead.bits.trigger_before 439 val deqHasException = deqHasExceptionOrFlush && exceptionDataRead.bits.exceptionVec.asUInt.orR 440 val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe 441 val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst 442 val exceptionEnable = writebacked(deqPtr.value) && deqHasException// && triggerBefore 443 444 val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst || triggerAfter) 445 446 // io.flushOut will trigger redirect at the next cycle. 447 // Block any redirect or commit at the next cycle. 448 val lastCycleFlush = RegNext(io.flushOut.valid) 449 450 io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush 451 io.flushOut.bits := DontCare 452 io.flushOut.bits.robIdx := deqPtr 453 io.flushOut.bits.ftqIdx := deqDispatchData.ftqIdx 454 io.flushOut.bits.ftqOffset := deqDispatchData.ftqOffset 455 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable, RedirectLevel.flush, RedirectLevel.flushAfter) 456 io.flushOut.bits.interrupt := true.B 457 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 458 XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable) 459 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 460 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 461 462 val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush 463 io.exception.valid := RegNext(exceptionHappen) 464 io.exception.bits.uop := RegEnable(debug_deqUop, exceptionHappen) 465 io.exception.bits.uop.ctrl.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 466 io.exception.bits.uop.cf.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 467 io.exception.bits.uop.ctrl.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 468 io.exception.bits.uop.cf.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 469 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 470 io.exception.bits.uop.cf.trigger.triggerHitVec := RegEnable(exceptionDataRead.bits.trigger_vec_fix, exceptionHappen) 471 472 XSDebug(io.flushOut.valid, 473 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.uop.cf.pc)} intr $intrEnable " + 474 p"excp $exceptionEnable flushPipe $isFlushPipe " + 475 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 476 477 478 /** 479 * Commits (and walk) 480 * They share the same width. 481 */ 482 val walkCounter = Reg(UInt(log2Up(RobSize + 1).W)) 483 val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter)) 484 val walkFinished = walkCounter <= CommitWidth.U 485 486 // extra space is used when rob has no enough space, but mispredict recovery needs such info to walk regmap 487 require(RenameWidth <= CommitWidth) 488 val extraSpaceForMPR = Reg(Vec(RenameWidth, new RobDispatchData)) 489 val usedSpaceForMPR = Reg(Vec(RenameWidth, Bool())) 490 when (io.enq.needAlloc.asUInt.orR && io.redirect.valid) { 491 usedSpaceForMPR := io.enq.needAlloc 492 extraSpaceForMPR := dispatchData.io.wdata 493 XSDebug("rob full, switched to s_extrawalk. needExtraSpaceForMPR: %b\n", io.enq.needAlloc.asUInt) 494 } 495 496 // wiring to csr 497 val (wflags, fpWen) = (0 until CommitWidth).map(i => { 498 val v = io.commits.valid(i) 499 val info = io.commits.info(i) 500 (v & info.wflags, v & info.fpWen) 501 }).unzip 502 val fflags = Wire(Valid(UInt(5.W))) 503 fflags.valid := Mux(io.commits.isWalk, false.B, Cat(wflags).orR()) 504 fflags.bits := wflags.zip(fflagsDataRead).map({ 505 case (w, f) => Mux(w, f, 0.U) 506 }).reduce(_|_) 507 val dirty_fs = Mux(io.commits.isWalk, false.B, Cat(fpWen).orR()) 508 509 // when mispredict branches writeback, stop commit in the next 2 cycles 510 // TODO: don't check all exu write back 511 val misPredWb = Cat(VecInit((0 until numWbPorts).map(i => 512 io.exeWbResults(i).bits.redirect.cfiUpdate.isMisPred && io.exeWbResults(i).bits.redirectValid 513 ))).orR() 514 val misPredBlockCounter = Reg(UInt(3.W)) 515 misPredBlockCounter := Mux(misPredWb, 516 "b111".U, 517 misPredBlockCounter >> 1.U 518 ) 519 val misPredBlock = misPredBlockCounter(0) 520 521 io.commits.isWalk := state =/= s_idle 522 val commit_v = Mux(state === s_idle, VecInit(deqPtrVec.map(ptr => valid(ptr.value))), VecInit(walkPtrVec.map(ptr => valid(ptr.value)))) 523 // store will be commited iff both sta & std have been writebacked 524 val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value))) 525 val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last) 526 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i))) 527 val allowOnlyOneCommit = commit_exception || intrBitSetReg 528 // for instructions that may block others, we don't allow them to commit 529 for (i <- 0 until CommitWidth) { 530 // defaults: state === s_idle and instructions commit 531 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 532 val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst 533 io.commits.valid(i) := commit_v(i) && commit_w(i) && !isBlocked && !misPredBlock && !isReplaying && !lastCycleFlush 534 io.commits.info(i) := dispatchDataRead(i) 535 536 when (state === s_walk) { 537 io.commits.valid(i) := commit_v(i) && shouldWalkVec(i) 538 }.elsewhen(state === s_extrawalk) { 539 io.commits.valid(i) := (if (i < RenameWidth) usedSpaceForMPR(RenameWidth-i-1) else false.B) 540 io.commits.info(i) := (if (i < RenameWidth) extraSpaceForMPR(RenameWidth-i-1) else DontCare) 541 } 542 543 XSInfo(state === s_idle && io.commits.valid(i), 544 "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b\n", 545 debug_microOp(deqPtrVec(i).value).cf.pc, 546 io.commits.info(i).rfWen, 547 io.commits.info(i).ldest, 548 io.commits.info(i).pdest, 549 io.commits.info(i).old_pdest, 550 debug_exuData(deqPtrVec(i).value), 551 fflagsDataRead(i) 552 ) 553 XSInfo(state === s_walk && io.commits.valid(i), "walked pc %x wen %d ldst %d data %x\n", 554 debug_microOp(walkPtrVec(i).value).cf.pc, 555 io.commits.info(i).rfWen, 556 io.commits.info(i).ldest, 557 debug_exuData(walkPtrVec(i).value) 558 ) 559 XSInfo(state === s_extrawalk && io.commits.valid(i), "use extra space walked wen %d ldst %d\n", 560 io.commits.info(i).rfWen, 561 io.commits.info(i).ldest 562 ) 563 } 564 if (env.EnableDifftest) { 565 io.commits.info.map(info => dontTouch(info.pc)) 566 } 567 568 // sync fflags/dirty_fs to csr 569 io.csr.fflags := fflags 570 io.csr.dirty_fs := dirty_fs 571 572 // commit branch to brq 573 val cfiCommitVec = VecInit(io.commits.valid.zip(io.commits.info.map(_.commitType)).map{case(v, t) => v && CommitType.isBranch(t)}) 574 io.bcommit := Mux(io.commits.isWalk, 0.U, PopCount(cfiCommitVec)) 575 576 // commit load/store to lsq 577 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 578 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.STORE)) 579 io.lsq.lcommit := RegNext(Mux(io.commits.isWalk, 0.U, PopCount(ldCommitVec))) 580 io.lsq.scommit := RegNext(Mux(io.commits.isWalk, 0.U, PopCount(stCommitVec))) 581 io.lsq.pendingld := RegNext(!io.commits.isWalk && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value)) 582 io.lsq.pendingst := RegNext(!io.commits.isWalk && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value)) 583 io.lsq.commit := RegNext(!io.commits.isWalk && io.commits.valid(0)) 584 585 /** 586 * state changes 587 * (1) exceptions: when exception occurs, cancels all and switch to s_idle 588 * (2) redirect: switch to s_walk or s_extrawalk (depends on whether there're pending instructions in dispatch1) 589 * (3) walk: when walking comes to the end, switch to s_walk 590 * (4) s_extrawalk to s_walk 591 */ 592 val state_next = Mux(io.redirect.valid, 593 Mux(io.enq.needAlloc.asUInt.orR, s_extrawalk, s_walk), 594 Mux(state === s_walk && walkFinished, 595 s_idle, 596 Mux(state === s_extrawalk, s_walk, state) 597 ) 598 ) 599 state := state_next 600 601 /** 602 * pointers and counters 603 */ 604 val deqPtrGenModule = Module(new RobDeqPtrWrapper) 605 deqPtrGenModule.io.state := state 606 deqPtrGenModule.io.deq_v := commit_v 607 deqPtrGenModule.io.deq_w := commit_w 608 deqPtrGenModule.io.exception_state := exceptionDataRead 609 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 610 deqPtrGenModule.io.hasNoSpecExec := hasNoSpecExec 611 deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value) 612 613 deqPtrGenModule.io.misPredBlock := misPredBlock 614 deqPtrGenModule.io.isReplaying := isReplaying 615 deqPtrVec := deqPtrGenModule.io.out 616 val deqPtrVec_next = deqPtrGenModule.io.next_out 617 618 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 619 enqPtrGenModule.io.redirect := io.redirect 620 enqPtrGenModule.io.allowEnqueue := allowEnqueue 621 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 622 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid)) 623 enqPtr := enqPtrGenModule.io.out 624 625 val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U) 626 // next walkPtrVec: 627 // (1) redirect occurs: update according to state 628 // (2) walk: move backwards 629 val walkPtrVec_next = Mux(io.redirect.valid && state =/= s_extrawalk, 630 Mux(state === s_walk, 631 VecInit(walkPtrVec.map(_ - thisCycleWalkCount)), 632 VecInit((0 until CommitWidth).map(i => enqPtr - (i+1).U)) 633 ), 634 Mux(state === s_walk, VecInit(walkPtrVec.map(_ - CommitWidth.U)), walkPtrVec) 635 ) 636 walkPtrVec := walkPtrVec_next 637 638 val lastCycleRedirect = RegNext(io.redirect.valid) 639 val trueValidCounter = Mux(lastCycleRedirect, distanceBetween(enqPtr, deqPtr), validCounter) 640 val commitCnt = PopCount(io.commits.valid) 641 validCounter := Mux(state === s_idle, 642 (validCounter - commitCnt) + dispatchNum, 643 trueValidCounter 644 ) 645 646 allowEnqueue := Mux(state === s_idle, 647 validCounter + dispatchNum <= (RobSize - RenameWidth).U, 648 trueValidCounter <= (RobSize - RenameWidth).U 649 ) 650 651 val currentWalkPtr = Mux(state === s_walk || state === s_extrawalk, walkPtr, enqPtr - 1.U) 652 val redirectWalkDistance = distanceBetween(currentWalkPtr, io.redirect.bits.robIdx) 653 when (io.redirect.valid) { 654 walkCounter := Mux(state === s_walk, 655 // NOTE: +& is used here because: 656 // When rob is full and the head instruction causes an exception, 657 // the redirect robIdx is the deqPtr. In this case, currentWalkPtr is 658 // enqPtr - 1.U and redirectWalkDistance is RobSize - 1. 659 // Since exceptions flush the instruction itself, flushItSelf is true.B. 660 // Previously we use `+` to count the walk distance and it causes overflows 661 // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize. 662 // The width of walkCounter also needs to be changed. 663 redirectWalkDistance +& io.redirect.bits.flushItself() - commitCnt, 664 redirectWalkDistance +& io.redirect.bits.flushItself() 665 ) 666 }.elsewhen (state === s_walk) { 667 walkCounter := walkCounter - commitCnt 668 XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n") 669 } 670 671 672 /** 673 * States 674 * We put all the stage bits changes here. 675 676 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 677 * All states: (1) valid; (2) writebacked; (3) flagBkup 678 */ 679 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 680 681 // enqueue logic writes 6 valid 682 for (i <- 0 until RenameWidth) { 683 when (canEnqueue(i) && !io.redirect.valid) { 684 valid(enqPtrVec(i).value) := true.B 685 } 686 } 687 // dequeue/walk logic writes 6 valid, dequeue and walk will not happen at the same time 688 for (i <- 0 until CommitWidth) { 689 when (io.commits.valid(i) && state =/= s_extrawalk) { 690 valid(commitReadAddr(i)) := false.B 691 } 692 } 693 // reset: when exception, reset all valid to false 694 when (reset.asBool) { 695 for (i <- 0 until RobSize) { 696 valid(i) := false.B 697 } 698 } 699 700 // status field: writebacked 701 // enqueue logic set 6 writebacked to false 702 for (i <- 0 until RenameWidth) { 703 when (canEnqueue(i)) { 704 writebacked(enqPtrVec(i).value) := io.enq.req(i).bits.eliminatedMove && !io.enq.req(i).bits.cf.exceptionVec.asUInt.orR 705 val isStu = io.enq.req(i).bits.ctrl.fuType === FuType.stu 706 store_data_writebacked(enqPtrVec(i).value) := !isStu 707 } 708 } 709 when (exceptionGen.io.out.valid) { 710 val wbIdx = exceptionGen.io.out.bits.robIdx.value 711 writebacked(wbIdx) := true.B 712 store_data_writebacked(wbIdx) := true.B 713 } 714 // writeback logic set numWbPorts writebacked to true 715 for (i <- 0 until numWbPorts) { 716 when (io.exeWbResults(i).valid) { 717 val wbIdx = io.exeWbResults(i).bits.uop.robIdx.value 718 val block_wb = 719 selectAll(io.exeWbResults(i).bits.uop.cf.exceptionVec, false, true).asUInt.orR || 720 io.exeWbResults(i).bits.uop.ctrl.flushPipe || 721 io.exeWbResults(i).bits.uop.ctrl.replayInst 722 writebacked(wbIdx) := !block_wb 723 } 724 } 725 // store data writeback logic mark store as data_writebacked 726 for (i <- 0 until StorePipelineWidth) { 727 when(RegNext(io.lsq.storeDataRobWb(i).valid)) { 728 store_data_writebacked(RegNext(io.lsq.storeDataRobWb(i).bits.value)) := true.B 729 } 730 } 731 732 // flagBkup 733 // enqueue logic set 6 flagBkup at most 734 for (i <- 0 until RenameWidth) { 735 when (canEnqueue(i)) { 736 flagBkup(enqPtrVec(i).value) := enqPtrVec(i).flag 737 } 738 } 739 740 // interrupt_safe 741 for (i <- 0 until RenameWidth) { 742 // We RegNext the updates for better timing. 743 // Note that instructions won't change the system's states in this cycle. 744 when (RegNext(canEnqueue(i))) { 745 // For now, we allow non-load-store instructions to trigger interrupts 746 // For MMIO instructions, they should not trigger interrupts since they may 747 // be sent to lower level before it writes back. 748 // However, we cannot determine whether a load/store instruction is MMIO. 749 // Thus, we don't allow load/store instructions to trigger an interrupt. 750 // TODO: support non-MMIO load-store instructions to trigger interrupts 751 val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.ctrl.commitType) 752 interrupt_safe(RegNext(enqPtrVec(i).value)) := RegNext(allow_interrupts) 753 } 754 } 755 756 /** 757 * read and write of data modules 758 */ 759 val commitReadAddr_next = Mux(state_next === s_idle, 760 VecInit(deqPtrVec_next.map(_.value)), 761 VecInit(walkPtrVec_next.map(_.value)) 762 ) 763 dispatchData.io.wen := canEnqueue 764 dispatchData.io.waddr := enqPtrVec.map(_.value) 765 dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) => 766 wdata.ldest := req.ctrl.ldest 767 wdata.rfWen := req.ctrl.rfWen 768 wdata.fpWen := req.ctrl.fpWen 769 wdata.wflags := req.ctrl.fpu.wflags 770 wdata.commitType := req.ctrl.commitType 771 wdata.pdest := req.pdest 772 wdata.old_pdest := req.old_pdest 773 wdata.ftqIdx := req.cf.ftqPtr 774 wdata.ftqOffset := req.cf.ftqOffset 775 wdata.pc := req.cf.pc 776 } 777 dispatchData.io.raddr := commitReadAddr_next 778 779 exceptionGen.io.redirect <> io.redirect 780 exceptionGen.io.flush := io.flushOut.valid 781 for (i <- 0 until RenameWidth) { 782 exceptionGen.io.enq(i).valid := canEnqueue(i) 783 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 784 exceptionGen.io.enq(i).bits.exceptionVec := selectFrontend(io.enq.req(i).bits.cf.exceptionVec, false, true) 785 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.ctrl.flushPipe 786 exceptionGen.io.enq(i).bits.replayInst := io.enq.req(i).bits.ctrl.replayInst 787 assert(exceptionGen.io.enq(i).bits.replayInst === false.B) 788 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.ctrl.singleStep 789 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.cf.crossPageIPFFix 790 exceptionGen.io.enq(i).bits.trigger := io.enq.req(i).bits.cf.trigger 791 } 792 793 // TODO: don't hard code these idxes 794 val numIntWbPorts = exuParameters.AluCnt + exuParameters.LduCnt + exuParameters.MduCnt 795 // CSR is after Alu and Load 796 def csr_wb_idx = exuParameters.AluCnt + exuParameters.LduCnt 797 def atomic_wb_idx = exuParameters.AluCnt // first port for load 798 def load_wb_idxes = Seq(exuParameters.AluCnt + 1) // second port for load 799 def store_wb_idxes = io.exeWbResults.indices.takeRight(2) 800 val all_exception_possibilities = Seq(csr_wb_idx, atomic_wb_idx) ++ load_wb_idxes ++ store_wb_idxes 801 all_exception_possibilities.zipWithIndex.foreach{ case (p, i) => connect_exception(i, p) } 802 def connect_exception(index: Int, wb_index: Int) = { 803 exceptionGen.io.wb(index).valid := io.exeWbResults(wb_index).valid 804 exceptionGen.io.wb(index).bits.robIdx := io.exeWbResults(wb_index).bits.uop.robIdx 805 val selectFunc = if (wb_index == csr_wb_idx) selectCSR _ 806 else if (wb_index == atomic_wb_idx) selectAtomics _ 807 else if (load_wb_idxes.contains(wb_index)) selectLoad _ 808 else { 809 assert(store_wb_idxes.contains(wb_index)) 810 selectStore _ 811 } 812 exceptionGen.io.wb(index).bits.exceptionVec := selectFunc(io.exeWbResults(wb_index).bits.uop.cf.exceptionVec, false, true) 813 exceptionGen.io.wb(index).bits.flushPipe := io.exeWbResults(wb_index).bits.uop.ctrl.flushPipe 814 exceptionGen.io.wb(index).bits.replayInst := io.exeWbResults(wb_index).bits.uop.ctrl.replayInst 815 exceptionGen.io.wb(index).bits.singleStep := false.B 816 exceptionGen.io.wb(index).bits.crossPageIPFFix := false.B 817 exceptionGen.io.wb(index).bits.trigger := io.exeWbResults(wb_index).bits.uop.cf.trigger 818 } 819 820 // 4 fmac + 2 fmisc + 1 i2f 821 val fmacWb = (0 until exuParameters.FmacCnt).map(_ + numIntWbPorts) 822 val fmiscWb = (0 until exuParameters.FmiscCnt).map(_ + numIntWbPorts + exuParameters.FmacCnt) 823 val i2fWb = Seq(numIntWbPorts - 1) // last port in int 824 val fflags_wb = io.exeWbResults.zipWithIndex.filter(w => { 825 (fmacWb ++ fmiscWb ++ i2fWb).contains(w._2) 826 }).map(_._1) 827 val fflagsDataModule = Module(new SyncDataModuleTemplate( 828 UInt(5.W), RobSize, CommitWidth, fflags_wb.size) 829 ) 830 for(i <- fflags_wb.indices){ 831 fflagsDataModule.io.wen (i) := fflags_wb(i).valid 832 fflagsDataModule.io.waddr(i) := fflags_wb(i).bits.uop.robIdx.value 833 fflagsDataModule.io.wdata(i) := fflags_wb(i).bits.fflags 834 } 835 fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value)) 836 fflagsDataRead := fflagsDataModule.io.rdata 837 838 839 val instrCnt = RegInit(0.U(64.W)) 840 val fuseCommitCnt = PopCount(io.commits.valid.zip(io.commits.info).map{ case (v, i) => v && CommitType.isFused(i.commitType) }) 841 val trueCommitCnt = commitCnt +& fuseCommitCnt 842 val retireCounter = Mux(state === s_idle, trueCommitCnt, 0.U) 843 instrCnt := instrCnt + retireCounter 844 io.csr.perfinfo.retiredInstr := RegNext(retireCounter) 845 io.robFull := !allowEnqueue 846 847 /** 848 * debug info 849 */ 850 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 851 XSDebug("") 852 for(i <- 0 until RobSize){ 853 XSDebug(false, !valid(i), "-") 854 XSDebug(false, valid(i) && writebacked(i), "w") 855 XSDebug(false, valid(i) && !writebacked(i), "v") 856 } 857 XSDebug(false, true.B, "\n") 858 859 for(i <- 0 until RobSize) { 860 if(i % 4 == 0) XSDebug("") 861 XSDebug(false, true.B, "%x ", debug_microOp(i).cf.pc) 862 XSDebug(false, !valid(i), "- ") 863 XSDebug(false, valid(i) && writebacked(i), "w ") 864 XSDebug(false, valid(i) && !writebacked(i), "v ") 865 if(i % 4 == 3) XSDebug(false, true.B, "\n") 866 } 867 868 def ifCommit(counter: UInt): UInt = Mux(io.commits.isWalk, 0.U, counter) 869 870 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 871 XSPerfAccumulate("clock_cycle", 1.U) 872 QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue) 873 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 874 XSPerfAccumulate("commitInstr", ifCommit(trueCommitCnt)) 875 val commitIsMove = commitDebugUop.map(_.ctrl.isMove) 876 XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.valid.zip(commitIsMove).map{ case (v, m) => v && m }))) 877 val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) 878 XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.valid zip commitMoveElim map { case (v, e) => v && e }))) 879 XSPerfAccumulate("commitInstrFused", ifCommit(fuseCommitCnt)) 880 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 881 val commitLoadValid = io.commits.valid.zip(commitIsLoad).map{ case (v, t) => v && t } 882 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 883 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 884 val commitBranchValid = io.commits.valid.zip(commitIsBranch).map{ case (v, t) => v && t } 885 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 886 val commitLoadWaitBit = commitDebugUop.map(_.cf.loadWaitBit) 887 XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))) 888 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 889 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.valid.zip(commitIsStore).map{ case (v, t) => v && t }))) 890 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i)))) 891 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire()))) 892 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 893 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.valid), 0.U)) 894 XSPerfAccumulate("walkCycle", state === s_walk || state === s_extrawalk) 895 val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value) 896 val deqUopCommitType = io.commits.info(0).commitType 897 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 898 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 899 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 900 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 901 XSPerfAccumulate("robHeadPC", io.commits.info(0).pc) 902 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 903 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 904 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 905 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 906 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 907 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 908 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 909 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 910 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 911 } 912 for (fuType <- FuType.functionNameMap.keys) { 913 val fuName = FuType.functionNameMap(fuType) 914 val commitIsFuType = io.commits.valid.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fuType === fuType.U ) 915 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 916 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 917 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 918 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 919 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 920 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 921 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 922 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 923 if (fuType == FuType.fmac.litValue()) { 924 val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fpu.ren3 ) 925 XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma))) 926 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency))) 927 XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency))) 928 } 929 } 930 931 //difftest signals 932 val firstValidCommit = (deqPtr + PriorityMux(io.commits.valid, VecInit(List.tabulate(CommitWidth)(_.U)))).value 933 934 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 935 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 936 937 for(i <- 0 until CommitWidth) { 938 val idx = deqPtrVec(i).value 939 wdata(i) := debug_exuData(idx) 940 wpc(i) := SignExt(commitDebugUop(i).cf.pc, XLEN) 941 } 942 val retireCounterFix = Mux(io.exception.valid, 1.U, retireCounter) 943 val retirePCFix = SignExt(Mux(io.exception.valid, io.exception.bits.uop.cf.pc, debug_microOp(firstValidCommit).cf.pc), XLEN) 944 val retireInstFix = Mux(io.exception.valid, io.exception.bits.uop.cf.instr, debug_microOp(firstValidCommit).cf.instr) 945 946 if (env.EnableDifftest) { 947 for (i <- 0 until CommitWidth) { 948 val difftest = Module(new DifftestInstrCommit) 949 difftest.io.clock := clock 950 difftest.io.coreid := io.hartId 951 difftest.io.index := i.U 952 953 val ptr = deqPtrVec(i).value 954 val uop = commitDebugUop(i) 955 val exuOut = debug_exuDebug(ptr) 956 val exuData = debug_exuData(ptr) 957 difftest.io.valid := RegNext(io.commits.valid(i) && !io.commits.isWalk) 958 difftest.io.pc := RegNext(SignExt(uop.cf.pc, XLEN)) 959 difftest.io.instr := RegNext(uop.cf.instr) 960 difftest.io.special := RegNext(CommitType.isFused(io.commits.info(i).commitType)) 961 // when committing an eliminated move instruction, 962 // we must make sure that skip is properly set to false (output from EXU is random value) 963 difftest.io.skip := RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)) 964 difftest.io.isRVC := RegNext(uop.cf.pd.isRVC) 965 difftest.io.scFailed := RegNext(!uop.diffTestDebugLrScValid && 966 uop.ctrl.fuType === FuType.mou && 967 (uop.ctrl.fuOpType === LSUOpType.sc_d || uop.ctrl.fuOpType === LSUOpType.sc_w)) 968 difftest.io.wen := RegNext(io.commits.valid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U) 969 difftest.io.wpdest := RegNext(io.commits.info(i).pdest) 970 difftest.io.wdest := RegNext(io.commits.info(i).ldest) 971 972 // runahead commit hint 973 val runahead_commit = Module(new DifftestRunaheadCommitEvent) 974 runahead_commit.io.clock := clock 975 runahead_commit.io.coreid := io.hartId 976 runahead_commit.io.index := i.U 977 runahead_commit.io.valid := difftest.io.valid && 978 (commitBranchValid(i) || commitIsStore(i)) 979 // TODO: is branch or store 980 runahead_commit.io.pc := difftest.io.pc 981 } 982 } 983 else if (env.AlwaysBasicDiff) { 984 // These are the structures used by difftest only and should be optimized after synthesis. 985 val dt_eliminatedMove = Mem(RobSize, Bool()) 986 val dt_isRVC = Mem(RobSize, Bool()) 987 val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) 988 for (i <- 0 until RenameWidth) { 989 when (canEnqueue(i)) { 990 dt_eliminatedMove(enqPtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 991 dt_isRVC(enqPtrVec(i).value) := io.enq.req(i).bits.cf.pd.isRVC 992 } 993 } 994 for (i <- 0 until numWbPorts) { 995 when (io.exeWbResults(i).valid) { 996 val wbIdx = io.exeWbResults(i).bits.uop.robIdx.value 997 dt_exuDebug(wbIdx) := io.exeWbResults(i).bits.debug 998 } 999 } 1000 // Always instantiate basic difftest modules. 1001 for (i <- 0 until CommitWidth) { 1002 val commitInfo = io.commits.info(i) 1003 val ptr = deqPtrVec(i).value 1004 val exuOut = dt_exuDebug(ptr) 1005 val eliminatedMove = dt_eliminatedMove(ptr) 1006 val isRVC = dt_isRVC(ptr) 1007 1008 val difftest = Module(new DifftestBasicInstrCommit) 1009 difftest.io.clock := clock 1010 difftest.io.coreid := io.hartId 1011 difftest.io.index := i.U 1012 difftest.io.valid := RegNext(io.commits.valid(i) && !io.commits.isWalk) 1013 difftest.io.special := RegNext(CommitType.isFused(commitInfo.commitType)) 1014 difftest.io.skip := RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)) 1015 difftest.io.isRVC := RegNext(isRVC) 1016 difftest.io.wen := RegNext(io.commits.valid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U) 1017 difftest.io.wpdest := RegNext(commitInfo.pdest) 1018 difftest.io.wdest := RegNext(commitInfo.ldest) 1019 } 1020 } 1021 1022 if (env.EnableDifftest) { 1023 for (i <- 0 until CommitWidth) { 1024 val difftest = Module(new DifftestLoadEvent) 1025 difftest.io.clock := clock 1026 difftest.io.coreid := io.hartId 1027 difftest.io.index := i.U 1028 1029 val ptr = deqPtrVec(i).value 1030 val uop = commitDebugUop(i) 1031 val exuOut = debug_exuDebug(ptr) 1032 difftest.io.valid := RegNext(io.commits.valid(i) && !io.commits.isWalk) 1033 difftest.io.paddr := RegNext(exuOut.paddr) 1034 difftest.io.opType := RegNext(uop.ctrl.fuOpType) 1035 difftest.io.fuType := RegNext(uop.ctrl.fuType) 1036 } 1037 } 1038 1039 // Always instantiate basic difftest modules. 1040 if (env.EnableDifftest) { 1041 val dt_isXSTrap = Mem(RobSize, Bool()) 1042 for (i <- 0 until RenameWidth) { 1043 when (canEnqueue(i)) { 1044 dt_isXSTrap(enqPtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap 1045 } 1046 } 1047 val trapVec = io.commits.valid.zip(deqPtrVec).map{ case (v, d) => state === s_idle && v && dt_isXSTrap(d.value) } 1048 val hitTrap = trapVec.reduce(_||_) 1049 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 1050 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN) 1051 val difftest = Module(new DifftestTrapEvent) 1052 difftest.io.clock := clock 1053 difftest.io.coreid := io.hartId 1054 difftest.io.valid := hitTrap 1055 difftest.io.code := trapCode 1056 difftest.io.pc := trapPC 1057 difftest.io.cycleCnt := timer 1058 difftest.io.instrCnt := instrCnt 1059 } 1060 else if (env.AlwaysBasicDiff) { 1061 val dt_isXSTrap = Mem(RobSize, Bool()) 1062 for (i <- 0 until RenameWidth) { 1063 when (canEnqueue(i)) { 1064 dt_isXSTrap(enqPtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap 1065 } 1066 } 1067 val trapVec = io.commits.valid.zip(deqPtrVec).map{ case (v, d) => state === s_idle && v && dt_isXSTrap(d.value) } 1068 val hitTrap = trapVec.reduce(_||_) 1069 val difftest = Module(new DifftestBasicTrapEvent) 1070 difftest.io.clock := clock 1071 difftest.io.coreid := io.hartId 1072 difftest.io.valid := hitTrap 1073 difftest.io.cycleCnt := timer 1074 difftest.io.instrCnt := instrCnt 1075 } 1076 1077 val perfinfo = IO(new Bundle(){ 1078 val perfEvents = Output(new PerfEventsBundle(18)) 1079 }) 1080 val perfEvents = Seq( 1081 ("rob_interrupt_num ", io.flushOut.valid && intrEnable ), 1082 ("rob_exception_num ", io.flushOut.valid && exceptionEnable ), 1083 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe ), 1084 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst ), 1085 ("rob_commitUop ", ifCommit(commitCnt) ), 1086 ("rob_commitInstr ", ifCommit(trueCommitCnt) ), 1087 ("rob_commitInstrMove ", ifCommit(PopCount(io.commits.valid.zip(commitIsMove).map{ case (v, m) => v && m })) ), 1088 ("rob_commitInstrFused ", ifCommit(fuseCommitCnt) ), 1089 ("rob_commitInstrLoad ", ifCommit(PopCount(commitLoadValid)) ), 1090 ("rob_commitInstrLoad ", ifCommit(PopCount(commitBranchValid)) ), 1091 ("rob_commitInstrLoadWait ", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })) ), 1092 ("rob_commitInstrStore ", ifCommit(PopCount(io.commits.valid.zip(commitIsStore).map{ case (v, t) => v && t })) ), 1093 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.valid), 0.U) ), 1094 ("rob_walkCycle ", (state === s_walk || state === s_extrawalk) ), 1095 ("rob_1/4_valid ", (PopCount((0 until RobSize).map(valid(_))) < (RobSize.U/4.U)) ), 1096 ("rob_2/4_valid ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U/4.U)) & (PopCount((0 until RobSize).map(valid(_))) <= (RobSize.U/2.U)) ), 1097 ("rob_3/4_valid ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U/2.U)) & (PopCount((0 until RobSize).map(valid(_))) <= (RobSize.U*3.U/4.U))), 1098 ("rob_4/4_valid ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U*3.U/4.U)) ), 1099 ) 1100 1101 for (((perf_out,(perf_name,perf)),i) <- perfinfo.perfEvents.perf_events.zip(perfEvents).zipWithIndex) { 1102 perf_out.incr_step := RegNext(perf) 1103 } 1104} 1105