xref: /XiangShan/src/main/scala/xiangshan/backend/rob/Rob.scala (revision 141a6449de9d8f61eb4f2f5e670af29782902672)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.backend.rob
18
19import chipsalliance.rocketchip.config.Parameters
20import chisel3._
21import chisel3.util._
22import difftest._
23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp}
24import utility._
25import utils._
26import xiangshan._
27import xiangshan.frontend.FtqPtr
28import xiangshan.mem.{LqPtr, SqPtr}
29import xiangshan.v2backend.Bundles.{DynInst, ExceptionInfo, ExuOutput}
30import xiangshan.v2backend.{BackendParams, FuType}
31
32class RobPtr(entries: Int) extends CircularQueuePtr[RobPtr](
33  entries
34) with HasCircularQueuePtrHelper {
35
36  def this()(implicit p: Parameters) = this(p(XSCoreParamsKey).RobSize)
37
38  def needFlush(redirect: Valid[Redirect]): Bool = {
39    val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx
40    redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx))
41  }
42
43  def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR
44}
45
46object RobPtr {
47  def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = {
48    val ptr = Wire(new RobPtr)
49    ptr.flag := f
50    ptr.value := v
51    ptr
52  }
53}
54
55class RobCSRIO(implicit p: Parameters) extends XSBundle {
56  val intrBitSet = Input(Bool())
57  val trapTarget = Input(UInt(VAddrBits.W))
58  val isXRet     = Input(Bool())
59  val wfiEvent   = Input(Bool())
60
61  val fflags     = Output(Valid(UInt(5.W)))
62  val dirty_fs   = Output(Bool())
63  val perfinfo   = new Bundle {
64    val retiredInstr = Output(UInt(3.W))
65  }
66
67  val vcsrFlag   = Output(Bool())
68}
69
70class RobLsqIO(implicit p: Parameters) extends XSBundle {
71  val lcommit = Output(UInt(log2Up(CommitWidth + 1).W))
72  val scommit = Output(UInt(log2Up(CommitWidth + 1).W))
73  val pendingld = Output(Bool())
74  val pendingst = Output(Bool())
75  val commit = Output(Bool())
76}
77
78class RobEnqIO(implicit p: Parameters) extends XSBundle {
79  val canAccept = Output(Bool())
80  val isEmpty = Output(Bool())
81  // valid vector, for robIdx gen and walk
82  val needAlloc = Vec(RenameWidth, Input(Bool()))
83  val req = Vec(RenameWidth, Flipped(ValidIO(new DynInst)))
84  val resp = Vec(RenameWidth, Output(new RobPtr))
85}
86
87class RobDispatchData(implicit p: Parameters) extends RobCommitInfo
88
89class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
90  val io = IO(new Bundle {
91    // for commits/flush
92    val state = Input(UInt(2.W))
93    val deq_v = Vec(CommitWidth, Input(Bool()))
94    val deq_w = Vec(CommitWidth, Input(Bool()))
95    val exception_state = Flipped(ValidIO(new RobExceptionInfo))
96    // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth)
97    val intrBitSetReg = Input(Bool())
98    val hasNoSpecExec = Input(Bool())
99    val interrupt_safe = Input(Bool())
100    val blockCommit = Input(Bool())
101    // output: the CommitWidth deqPtr
102    val out = Vec(CommitWidth, Output(new RobPtr))
103    val next_out = Vec(CommitWidth, Output(new RobPtr))
104  })
105
106  val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr))))
107
108  // for exceptions (flushPipe included) and interrupts:
109  // only consider the first instruction
110  val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe
111  val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0)
112  val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable)
113
114  // for normal commits: only to consider when there're no exceptions
115  // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions.
116  val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last)
117  val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i)))
118  val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B)
119  // when io.intrBitSetReg or there're possible exceptions in these instructions,
120  // only one instruction is allowed to commit
121  val allowOnlyOne = commit_exception || io.intrBitSetReg
122  val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt)
123
124  val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt))
125  val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec)
126
127  deqPtrVec := deqPtrVec_next
128
129  io.next_out := deqPtrVec_next
130  io.out      := deqPtrVec
131
132  when (io.state === 0.U) {
133    XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt)
134  }
135
136}
137
138class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
139  val io = IO(new Bundle {
140    // for input redirect
141    val redirect = Input(Valid(new Redirect))
142    // for enqueue
143    val allowEnqueue = Input(Bool())
144    val hasBlockBackward = Input(Bool())
145    val enq = Vec(RenameWidth, Input(Bool()))
146    val out = Output(Vec(RenameWidth, new RobPtr))
147  })
148
149  val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr)))
150
151  // enqueue
152  val canAccept = io.allowEnqueue && !io.hasBlockBackward
153  val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U)
154
155  for ((ptr, i) <- enqPtrVec.zipWithIndex) {
156    when(io.redirect.valid) {
157      ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
158    }.otherwise {
159      ptr := ptr + dispatchNum
160    }
161  }
162
163  io.out := enqPtrVec
164
165}
166
167class RobExceptionInfo(implicit p: Parameters) extends XSBundle {
168  // val valid = Bool()
169  val robIdx = new RobPtr
170  val exceptionVec = ExceptionVec()
171  val flushPipe = Bool()
172  val isVset = Bool()
173  val replayInst = Bool() // redirect to that inst itself
174  val singleStep = Bool() // TODO add frontend hit beneath
175  val crossPageIPFFix = Bool()
176  val trigger = new TriggerCf
177
178//  def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend
179//  def trigger_after = trigger.getTimingBackend && trigger.getHitBackend
180  def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit
181  def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit
182  // only exceptions are allowed to writeback when enqueue
183  def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit
184}
185
186class ExceptionGen(params: BackendParams)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
187  val io = IO(new Bundle {
188    val redirect = Input(Valid(new Redirect))
189    val flush = Input(Bool())
190    val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo)))
191    // csr + load + store
192    val wb = Vec(params.numException, Flipped(ValidIO(new RobExceptionInfo)))
193    val out = ValidIO(new RobExceptionInfo)
194    val state = ValidIO(new RobExceptionInfo)
195  })
196
197  def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = {
198    assert(valid.length == bits.length)
199    assert(isPow2(valid.length))
200    if (valid.length == 1) {
201      (valid, bits)
202    } else if (valid.length == 2) {
203      val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0)))))
204      for (i <- res.indices) {
205        res(i).valid := valid(i)
206        res(i).bits := bits(i)
207      }
208      val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1))
209      (Seq(oldest.valid), Seq(oldest.bits))
210    } else {
211      val left = getOldest(valid.take(valid.length / 2), bits.take(valid.length / 2))
212      val right = getOldest(valid.takeRight(valid.length / 2), bits.takeRight(valid.length / 2))
213      getOldest(left._1 ++ right._1, left._2 ++ right._2)
214    }
215  }
216
217  val currentValid = RegInit(false.B)
218  val current = Reg(new RobExceptionInfo)
219
220  // orR the exceptionVec
221  val lastCycleFlush = RegNext(io.flush)
222  val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush))
223  val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush)
224
225  // s0: compare wb(1)~wb(LoadPipelineWidth) and wb(1 + LoadPipelineWidth)~wb(LoadPipelineWidth + StorePipelineWidth)
226  val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }
227  val csr_wb_bits = io.wb(0).bits
228  val load_wb_bits = getOldest(in_wb_valid.slice(1, 1 + LoadPipelineWidth), io.wb.map(_.bits).slice(1, 1 + LoadPipelineWidth))._2(0)
229  val store_wb_bits = getOldest(in_wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth), io.wb.map(_.bits).slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth))._2(0)
230  val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid.slice(1, 1 + LoadPipelineWidth).reduce(_ || _), wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth).reduce(_ || _))))
231  val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits)))
232
233  // s1: compare last four and current flush
234  val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) })
235  val compare_01_valid = s0_out_valid(0) || s0_out_valid(1)
236  val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0))
237  val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2))
238  val s1_out_bits = RegNext(compare_bits)
239  val s1_out_valid = RegNext(s1_valid.asUInt.orR)
240
241  val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush)
242  val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits)))
243
244  // s2: compare the input exception with the current one
245  // priorities:
246  // (1) system reset
247  // (2) current is valid: flush, remain, merge, update
248  // (3) current is not valid: s1 or enq
249  val current_flush = current.robIdx.needFlush(io.redirect) || io.flush
250  val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush
251  when (currentValid) {
252    when (current_flush) {
253      currentValid := Mux(s1_flush, false.B, s1_out_valid)
254    }
255    when (s1_out_valid && !s1_flush) {
256      when (isAfter(current.robIdx, s1_out_bits.robIdx)) {
257        current := s1_out_bits
258      }.elsewhen (current.robIdx === s1_out_bits.robIdx) {
259        current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec())
260        current.flushPipe := s1_out_bits.flushPipe || current.flushPipe
261        current.replayInst := s1_out_bits.replayInst || current.replayInst
262        current.singleStep := s1_out_bits.singleStep || current.singleStep
263        current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf)
264      }
265    }
266  }.elsewhen (s1_out_valid && !s1_flush) {
267    currentValid := true.B
268    current := s1_out_bits
269  }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) {
270    currentValid := true.B
271    current := enq_bits
272  }
273
274  io.out.valid   := s1_out_valid || enq_valid && enq_bits.can_writeback
275  io.out.bits    := Mux(s1_out_valid, s1_out_bits, enq_bits)
276  io.state.valid := currentValid
277  io.state.bits  := current
278
279}
280
281class RobFlushInfo(implicit p: Parameters) extends XSBundle {
282  val ftqIdx = new FtqPtr
283  val robIdx = new RobPtr
284  val ftqOffset = UInt(log2Up(PredictWidth).W)
285  val replayInst = Bool()
286}
287
288class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter {
289
290  lazy val module = new RobImp(this)(p, params)
291  //
292  //  override def generateWritebackIO(
293  //    thisMod: Option[HasWritebackSource] = None,
294  //    thisModImp: Option[HasWritebackSourceImp] = None
295  //  ): Unit = {
296  //    val sources = writebackSinksImp(thisMod, thisModImp)
297  //    module.io.writeback.zip(sources).foreach(x => x._1 := x._2)
298  //  }
299  //}
300}
301
302class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper)
303  with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents {
304
305  val io = IO(new Bundle() {
306    val hartId = Input(UInt(8.W))
307    val redirect = Input(Valid(new Redirect))
308    val enq = new RobEnqIO
309    val flushOut = ValidIO(new Redirect)
310    val isVsetFlushPipe = Output(Bool())
311    val exception = ValidIO(new ExceptionInfo)
312    // exu + brq
313    val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles)
314    val commits = Output(new RobCommitIO)
315    val lsq = new RobLsqIO
316    val robDeqPtr = Output(new RobPtr)
317    val csr = new RobCSRIO
318    val robFull = Output(Bool())
319    val cpu_halt = Output(Bool())
320    val wfi_enable = Input(Bool())
321  })
322
323//  def selectWb(index: Int, func: Seq[ExuConfig] => Boolean): Seq[(Seq[ExuConfig], ValidIO[ExuOutput])] = {
324//    wbExuConfigs(index).zip(io.writeback(index)).filter(x => func(x._1))
325//  }
326
327  val exuWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(!_.bits.params.hasStdFu).toSeq
328  val stdWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(_.bits.params.hasStdFu).toSeq
329  val fflagsWBs = io.writeback.filter(x => x.bits.fflags.nonEmpty)
330  val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty)
331  val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty)
332
333  val exuWbPorts = io.writeback.filter(!_.bits.params.hasStdFu)
334  val stdWbPorts = io.writeback.filter(_.bits.params.hasStdFu)
335  val fflagsPorts = io.writeback.filter(x => x.bits.fflags.nonEmpty)
336  val exceptionPorts = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty)
337  val numExuWbPorts = exuWBs.length
338  val numStdWbPorts = stdWBs.length
339
340
341//  val exeWbSel = wrapper.selWritebackSinks(_.exuConfigs.length)
342//  val fflagsWbSel = wrapper.selWritebackSinks(_.exuConfigs.count(_.exists(_.writeFflags)))
343//  val fflagsPorts = selectWb(fflagsWbSel, _.exists(_.writeFflags))
344//  val exceptionWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.needExceptionGen)))
345//  val exceptionPorts = selectWb(fflagsWbSel, _.exists(_.needExceptionGen))
346//  val exuWbPorts = selectWb(exeWbSel, _.forall(_ != StdExeUnitCfg))
347//  val stdWbPorts = selectWb(exeWbSel, _.contains(StdExeUnitCfg))
348  println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth")
349//  println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}")
350//  println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}")
351//  println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}")
352
353
354  // instvalid field
355  val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
356  // writeback status
357  val writebacked = Mem(RobSize, Bool())
358  val store_data_writebacked = Mem(RobSize, Bool())
359  // data for redirect, exception, etc.
360  val flagBkup = Mem(RobSize, Bool())
361  // some instructions are not allowed to trigger interrupts
362  // They have side effects on the states of the processor before they write back
363  val interrupt_safe = Mem(RobSize, Bool())
364
365  // data for debug
366  // Warn: debug_* prefix should not exist in generated verilog.
367  val debug_microOp = Mem(RobSize, new DynInst)
368  val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug
369  val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug
370
371  // pointers
372  // For enqueue ptr, we don't duplicate it since only enqueue needs it.
373  val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr))
374  val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr))
375
376  val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr))
377  val allowEnqueue = RegInit(true.B)
378
379  val enqPtr = enqPtrVec.head
380  val deqPtr = deqPtrVec(0)
381  val walkPtr = walkPtrVec(0)
382
383  val isEmpty = enqPtr === deqPtr
384  val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level)
385
386  /**
387    * states of Rob
388    */
389  val s_idle :: s_walk :: Nil = Enum(2)
390  val state = RegInit(s_idle)
391
392  /**
393    * Data Modules
394    *
395    * CommitDataModule: data from dispatch
396    * (1) read: commits/walk/exception
397    * (2) write: enqueue
398    *
399    * WritebackData: data from writeback
400    * (1) read: commits/walk/exception
401    * (2) write: write back from exe units
402    */
403  val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth))
404  val dispatchDataRead = dispatchData.io.rdata
405
406  val exceptionGen = Module(new ExceptionGen(params))
407  val exceptionDataRead = exceptionGen.io.state
408  val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W)))
409
410  io.robDeqPtr := deqPtr
411
412  /**
413    * Enqueue (from dispatch)
414    */
415  // special cases
416  val hasBlockBackward = RegInit(false.B)
417  val hasWaitForward = RegInit(false.B)
418  val doingSvinval = RegInit(false.B)
419  // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B
420  // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty.
421  when (isEmpty) { hasBlockBackward:= false.B }
422  // When any instruction commits, hasNoSpecExec should be set to false.B
423  when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasWaitForward:= false.B }
424
425  // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing.
426  // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle.
427  // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts.
428  val hasWFI = RegInit(false.B)
429  io.cpu_halt := hasWFI
430  // WFI Timeout: 2^20 = 1M cycles
431  val wfi_cycles = RegInit(0.U(20.W))
432  when (hasWFI) {
433    wfi_cycles := wfi_cycles + 1.U
434  }.elsewhen (!hasWFI && RegNext(hasWFI)) {
435    wfi_cycles := 0.U
436  }
437  val wfi_timeout = wfi_cycles.andR
438  when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) {
439    hasWFI := false.B
440  }
441
442  val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.needAlloc.take(i)))))
443  io.enq.canAccept := allowEnqueue && !hasBlockBackward
444  io.enq.resp      := allocatePtrVec
445  val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept))
446  val timer = GTimer()
447  for (i <- 0 until RenameWidth) {
448    // we don't check whether io.redirect is valid here since redirect has higher priority
449    when (canEnqueue(i)) {
450      val enqUop = io.enq.req(i).bits
451      val enqIndex = allocatePtrVec(i).value
452      // store uop in data module and debug_microOp Vec
453      debug_microOp(enqIndex) := enqUop
454      debug_microOp(enqIndex).debugInfo.dispatchTime := timer
455      debug_microOp(enqIndex).debugInfo.enqRsTime := timer
456      debug_microOp(enqIndex).debugInfo.selectTime := timer
457      debug_microOp(enqIndex).debugInfo.issueTime := timer
458      debug_microOp(enqIndex).debugInfo.writebackTime := timer
459      when (enqUop.blockBackward) {
460        hasBlockBackward := true.B
461      }
462      when (enqUop.waitForward) {
463        hasWaitForward := true.B
464      }
465      val enqHasTriggerHit = false.B // io.enq.req(i).bits.cf.trigger.getHitFrontend
466      val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR
467      // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process
468      when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe))
469      {
470        doingSvinval := true.B
471      }
472      // the end instruction of Svinval enqs so clear doingSvinval
473      when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe))
474      {
475        doingSvinval := false.B
476      }
477      // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear
478      assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe)))
479      when (enqUop.isWFI && !enqHasException && !enqHasTriggerHit) {
480        hasWFI := true.B
481      }
482    }
483  }
484  val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(_.valid)), 0.U)
485  io.enq.isEmpty   := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR)
486
487  when (!io.wfi_enable) {
488    hasWFI := false.B
489  }
490  // sel vsetvl's flush position
491  val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3)
492  val vsetvlState = RegInit(vs_idle)
493
494  val firstVInstrFtqPtr    = RegInit(0.U.asTypeOf(new FtqPtr))
495  val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W)))
496  val firstVInstrRobIdx    = RegInit(0.U.asTypeOf(new RobPtr))
497
498  val enq0            = io.enq.req(0)
499  val enq0IsVset      = FuType.isInt(enq0.bits.fuType) && ALUOpType.isVset(enq0.bits.fuOpType) && enq0.bits.uopIdx.andR && canEnqueue(0)
500  val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe
501  val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVpu(req.bits.fuType) && fire}
502  // for vs_idle
503  val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType)))
504  // for vs_waitVinstr
505  val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1)
506  val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req)
507  when(vsetvlState === vs_idle){
508    firstVInstrFtqPtr    := firstVInstrIdle.bits.ftqPtr
509    firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset
510    firstVInstrRobIdx    := firstVInstrIdle.bits.robIdx
511  }.elsewhen(vsetvlState === vs_waitVinstr){
512    firstVInstrFtqPtr    := firstVInstrWait.bits.ftqPtr
513    firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset
514    firstVInstrRobIdx    := firstVInstrWait.bits.robIdx
515  }
516
517  val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR
518  when(vsetvlState === vs_idle){
519    when(enq0IsVsetFlush){
520      vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr)
521    }
522  }.elsewhen(vsetvlState === vs_waitVinstr){
523    when(io.redirect.valid){
524      vsetvlState := vs_idle
525    }.elsewhen(Cat(enqIsVInstrOrVset).orR){
526      vsetvlState := vs_waitFlush
527    }
528  }.elsewhen(vsetvlState === vs_waitFlush){
529    when(io.redirect.valid){
530      vsetvlState := vs_idle
531    }
532  }
533
534  /**
535    * Writeback (from execution units)
536    */
537  for (wb <- exuWBs) {
538    when (wb.valid) {
539      val wbIdx = wb.bits.robIdx.value
540      debug_exuData(wbIdx) := wb.bits.data
541      debug_exuDebug(wbIdx) := wb.bits.debug
542      debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime
543      debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime
544      debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime
545      debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime
546
547      // debug for lqidx and sqidx
548      debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr))
549      debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr))
550
551      val debug_Uop = debug_microOp(wbIdx)
552      XSInfo(true.B,
553        p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " +
554        p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " +
555        p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.robIdx}\n"
556      )
557    }
558  }
559
560  val writebackNum = PopCount(exuWBs.map(_.valid))
561  XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum)
562
563
564  /**
565    * RedirectOut: Interrupt and Exceptions
566    */
567  val deqDispatchData = dispatchDataRead(0)
568  val debug_deqUop = debug_microOp(deqPtr.value)
569
570  val intrBitSetReg = RegNext(io.csr.intrBitSet)
571  val intrEnable = intrBitSetReg && !hasWaitForward && interrupt_safe(deqPtr.value)
572  val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr
573  val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR ||
574    exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit)
575  val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe
576  val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst
577  val exceptionEnable = writebacked(deqPtr.value) && deqHasException
578
579  XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n")
580  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n")
581  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n")
582
583  val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst)
584
585  val isVsetFlushPipe = writebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset
586  val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush)
587  io.isVsetFlushPipe := RegNext(isVsetFlushPipe)
588  // io.flushOut will trigger redirect at the next cycle.
589  // Block any redirect or commit at the next cycle.
590  val lastCycleFlush = RegNext(io.flushOut.valid)
591
592  io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush
593  io.flushOut.bits := DontCare
594  io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr)
595  io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx)
596  io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset)
597  io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next"
598  io.flushOut.bits.interrupt := true.B
599  XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable)
600  XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable)
601  XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe)
602  XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst)
603
604  val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush
605  io.exception.valid                := RegNext(exceptionHappen)
606  io.exception.bits.pc              := RegEnable(debug_deqUop.pc, exceptionHappen)
607  io.exception.bits.instr           := RegEnable(debug_deqUop.instr, exceptionHappen)
608  io.exception.bits.commitType      := RegEnable(deqDispatchData.commitType, exceptionHappen)
609  io.exception.bits.exceptionVec    := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen)
610  io.exception.bits.singleStep      := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen)
611  io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen)
612  io.exception.bits.isInterrupt     := RegEnable(intrEnable, exceptionHappen)
613//  io.exception.bits.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen)
614
615  XSDebug(io.flushOut.valid,
616    p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " +
617    p"excp $exceptionEnable flushPipe $isFlushPipe " +
618    p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n")
619
620
621  /**
622    * Commits (and walk)
623    * They share the same width.
624    */
625  val walkCounter = Reg(UInt(log2Up(RobSize + 1).W))
626  val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter))
627  val walkFinished = walkCounter <= CommitWidth.U
628
629  require(RenameWidth <= CommitWidth)
630
631  // wiring to csr
632  val (wflags, fpWen) = (0 until CommitWidth).map(i => {
633    val v = io.commits.commitValid(i)
634    val info = io.commits.info(i)
635    (v & info.wflags, v & info.fpWen)
636  }).unzip
637  val fflags = Wire(Valid(UInt(5.W)))
638  fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR
639  fflags.bits := wflags.zip(fflagsDataRead).map({
640    case (w, f) => Mux(w, f, 0.U)
641  }).reduce(_|_)
642  val dirty_fs = io.commits.isCommit && VecInit(fpWen).asUInt.orR
643
644  // when mispredict branches writeback, stop commit in the next 2 cycles
645  // TODO: don't check all exu write back
646  val misPredWb = Cat(VecInit(redirectWBs.map(wb =>
647    wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid
648  ))).orR
649  val misPredBlockCounter = Reg(UInt(3.W))
650  misPredBlockCounter := Mux(misPredWb,
651    "b111".U,
652    misPredBlockCounter >> 1.U
653  )
654  val misPredBlock = misPredBlockCounter(0)
655  val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI
656
657  io.commits.isWalk := state === s_walk
658  io.commits.isCommit := state === s_idle && !blockCommit
659  val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value)))
660  val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value)))
661  // store will be commited iff both sta & std have been writebacked
662  val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value)))
663  val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last)
664  val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i)))
665  val allowOnlyOneCommit = commit_exception || intrBitSetReg
666  // for instructions that may block others, we don't allow them to commit
667  for (i <- 0 until CommitWidth) {
668    // defaults: state === s_idle and instructions commit
669    // when intrBitSetReg, allow only one instruction to commit at each clock cycle
670    val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst
671    io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked
672    io.commits.info(i)  := dispatchDataRead(i)
673
674    when (state === s_walk) {
675      io.commits.walkValid(i) := shouldWalkVec(i)
676      when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) {
677        XSError(!walk_v(i), s"why not $i???\n")
678      }
679    }
680
681    XSInfo(io.commits.isCommit && io.commits.commitValid(i),
682      "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b\n",
683      debug_microOp(deqPtrVec(i).value).pc,
684      io.commits.info(i).rfWen,
685      io.commits.info(i).ldest,
686      io.commits.info(i).pdest,
687      io.commits.info(i).old_pdest,
688      debug_exuData(deqPtrVec(i).value),
689      fflagsDataRead(i)
690    )
691    XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n",
692      debug_microOp(walkPtrVec(i).value).pc,
693      io.commits.info(i).rfWen,
694      io.commits.info(i).ldest,
695      debug_exuData(walkPtrVec(i).value)
696    )
697  }
698  if (env.EnableDifftest) {
699    io.commits.info.map(info => dontTouch(info.pc))
700  }
701
702  // sync fflags/dirty_fs to csr
703  io.csr.fflags := RegNext(fflags)
704  io.csr.dirty_fs := RegNext(dirty_fs)
705
706  // sync v csr to csr
707//  io.csr.vcsrFlag := RegNext(isVsetFlushPipe)
708
709  // commit load/store to lsq
710  val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD))
711  val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE))
712  io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U))
713  io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U))
714  // indicate a pending load or store
715  io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value))
716  io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value))
717  io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0))
718
719  /**
720    * state changes
721    * (1) redirect: switch to s_walk
722    * (2) walk: when walking comes to the end, switch to s_idle
723    */
724  val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished, s_idle, state))
725  XSPerfAccumulate("s_idle_to_idle",            state === s_idle && state_next === s_idle)
726  XSPerfAccumulate("s_idle_to_walk",            state === s_idle && state_next === s_walk)
727  XSPerfAccumulate("s_walk_to_idle",            state === s_walk && state_next === s_idle)
728  XSPerfAccumulate("s_walk_to_walk",            state === s_walk && state_next === s_walk)
729  state := state_next
730
731  /**
732    * pointers and counters
733    */
734  val deqPtrGenModule = Module(new RobDeqPtrWrapper)
735  deqPtrGenModule.io.state := state
736  deqPtrGenModule.io.deq_v := commit_v
737  deqPtrGenModule.io.deq_w := commit_w
738  deqPtrGenModule.io.exception_state := exceptionDataRead
739  deqPtrGenModule.io.intrBitSetReg := intrBitSetReg
740  deqPtrGenModule.io.hasNoSpecExec := hasWaitForward
741  deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value)
742  deqPtrGenModule.io.blockCommit := blockCommit
743  deqPtrVec := deqPtrGenModule.io.out
744  val deqPtrVec_next = deqPtrGenModule.io.next_out
745
746  val enqPtrGenModule = Module(new RobEnqPtrWrapper)
747  enqPtrGenModule.io.redirect := io.redirect
748  enqPtrGenModule.io.allowEnqueue := allowEnqueue
749  enqPtrGenModule.io.hasBlockBackward := hasBlockBackward
750  enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid))
751  enqPtrVec := enqPtrGenModule.io.out
752
753  val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U)
754  // next walkPtrVec:
755  // (1) redirect occurs: update according to state
756  // (2) walk: move forwards
757  val walkPtrVec_next = Mux(io.redirect.valid,
758    deqPtrVec_next,
759    Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec)
760  )
761  walkPtrVec := walkPtrVec_next
762
763  val numValidEntries = distanceBetween(enqPtr, deqPtr)
764  val isLastUopVec = io.commits.info.map(_.uopIdx.andR)
765  val commitCnt = PopCount(io.commits.commitValid.zip(isLastUopVec).map{case(isCommitValid, isLastUop) => isCommitValid && isLastUop})
766
767  allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U
768
769  val currentWalkPtr = Mux(state === s_walk, walkPtr, deqPtrVec_next(0))
770  val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0))
771  when (io.redirect.valid) {
772    // full condition:
773    // +& is used here because:
774    // When rob is full and the tail instruction causes a misprediction,
775    // the redirect robIdx is the deqPtr - 1. In this case, redirectWalkDistance
776    // is RobSize - 1.
777    // Since misprediction does not flush the instruction itself, flushItSelf is false.B.
778    // Previously we use `+` to count the walk distance and it causes overflows
779    // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize.
780    // The width of walkCounter also needs to be changed.
781    // empty condition:
782    // When the last instruction in ROB commits and causes a flush, a redirect
783    // will be raised later. In such circumstances, the redirect robIdx is before
784    // the deqPtrVec_next(0) and will cause underflow.
785    walkCounter := Mux(isBefore(io.redirect.bits.robIdx, deqPtrVec_next(0)), 0.U,
786                       redirectWalkDistance +& !io.redirect.bits.flushItself())
787  }.elsewhen (state === s_walk) {
788    walkCounter := walkCounter - thisCycleWalkCount
789    XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n")
790  }
791
792
793  /**
794    * States
795    * We put all the stage bits changes here.
796
797    * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit);
798    * All states: (1) valid; (2) writebacked; (3) flagBkup
799    */
800  val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value)))
801
802  // redirect logic writes 6 valid
803  val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr))
804  val redirectTail = Reg(new RobPtr)
805  val redirectIdle :: redirectBusy :: Nil = Enum(2)
806  val redirectState = RegInit(redirectIdle)
807  val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail))
808  when(redirectState === redirectBusy) {
809    redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U)
810    redirectHeadVec zip invMask foreach {
811      case (redirectHead, inv) => when(inv) {
812        valid(redirectHead.value) := false.B
813      }
814    }
815    when(!invMask.last) {
816      redirectState := redirectIdle
817    }
818  }
819  when(io.redirect.valid) {
820    redirectState := redirectBusy
821    when(redirectState === redirectIdle) {
822      redirectTail := enqPtr
823    }
824    redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) =>
825      redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
826    }
827  }
828  // enqueue logic writes 6 valid
829  for (i <- 0 until RenameWidth) {
830    when (canEnqueue(i) && !io.redirect.valid) {
831      valid(allocatePtrVec(i).value) := true.B
832    }
833  }
834  // dequeue logic writes 6 valid
835  for (i <- 0 until CommitWidth) {
836    val commitValid = io.commits.isCommit && io.commits.commitValid(i)
837    when (commitValid) {
838      valid(commitReadAddr(i)) := false.B
839    }
840  }
841
842  // status field: writebacked
843  // enqueue logic set 6 writebacked to false
844  for (i <- 0 until RenameWidth) {
845    when (canEnqueue(i)) {
846      val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec).asUInt.orR
847      val enqHasTriggerHit = io.enq.req(i).bits.trigger.getHitFrontend
848      val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove
849      writebacked(allocatePtrVec(i).value) := enqIsWritebacked && !enqHasException && !enqHasTriggerHit
850      val isStu = io.enq.req(i).bits.fuType === FuType.stu.U
851      store_data_writebacked(allocatePtrVec(i).value) := !isStu
852    }
853  }
854  when (exceptionGen.io.out.valid) {
855    val wbIdx = exceptionGen.io.out.bits.robIdx.value
856    writebacked(wbIdx) := true.B
857    store_data_writebacked(wbIdx) := true.B
858  }
859  // writeback logic set numWbPorts writebacked to true
860  for (wb <- exuWBs) {
861    when (wb.valid) {
862      val wbIdx = wb.bits.robIdx.value
863      val wbHasException = wb.bits.exceptionVec.getOrElse(0.U).asUInt.orR
864      val wbHasTriggerHit = false.B //Todo: wb.bits.trigger.getHitBackend
865      val wbHasFlushPipe = wb.bits.flushPipe.getOrElse(false.B)
866      val wbHasReplayInst = wb.bits.replay.getOrElse(false.B) //Todo: && wb.bits.replayInst
867      val block_wb = wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit
868      writebacked(wbIdx) := !block_wb
869    }
870  }
871  // store data writeback logic mark store as data_writebacked
872  for (wb <- stdWBs) {
873    when(RegNext(wb.valid)) {
874      store_data_writebacked(RegNext(wb.bits.robIdx.value)) := true.B
875    }
876  }
877
878  // flagBkup
879  // enqueue logic set 6 flagBkup at most
880  for (i <- 0 until RenameWidth) {
881    when (canEnqueue(i)) {
882      flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag
883    }
884  }
885
886  // interrupt_safe
887  for (i <- 0 until RenameWidth) {
888    // We RegNext the updates for better timing.
889    // Note that instructions won't change the system's states in this cycle.
890    when (RegNext(canEnqueue(i))) {
891      // For now, we allow non-load-store instructions to trigger interrupts
892      // For MMIO instructions, they should not trigger interrupts since they may
893      // be sent to lower level before it writes back.
894      // However, we cannot determine whether a load/store instruction is MMIO.
895      // Thus, we don't allow load/store instructions to trigger an interrupt.
896      // TODO: support non-MMIO load-store instructions to trigger interrupts
897      val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType)
898      interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts)
899    }
900  }
901
902  /**
903    * read and write of data modules
904    */
905  val commitReadAddr_next = Mux(state_next === s_idle,
906    VecInit(deqPtrVec_next.map(_.value)),
907    VecInit(walkPtrVec_next.map(_.value))
908  )
909  dispatchData.io.wen := canEnqueue
910  dispatchData.io.waddr := allocatePtrVec.map(_.value)
911  dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) =>
912    wdata.ldest := req.ldest
913    wdata.rfWen := req.rfWen
914    wdata.fpWen := req.fpWen
915    wdata.vecWen := req.vecWen
916    wdata.wflags := req.fpu.wflags
917    wdata.commitType := req.commitType
918    wdata.pdest := req.pdest
919    wdata.old_pdest := req.oldPdest
920    wdata.ftqIdx := req.ftqPtr
921    wdata.ftqOffset := req.ftqOffset
922    wdata.isMove := req.eliminatedMove
923    wdata.pc := req.pc
924    wdata.uopIdx := req.uopIdx
925//    wdata.vconfig := req.vconfig
926  }
927  dispatchData.io.raddr := commitReadAddr_next
928
929  exceptionGen.io.redirect <> io.redirect
930  exceptionGen.io.flush := io.flushOut.valid
931  for (i <- 0 until RenameWidth) {
932    exceptionGen.io.enq(i).valid := canEnqueue(i)
933    exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx
934    exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec)
935    exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe
936    exceptionGen.io.enq(i).bits.isVset := FuType.isInt(io.enq.req(i).bits.fuType) && ALUOpType.isVset(io.enq.req(i).bits.fuOpType)
937    exceptionGen.io.enq(i).bits.replayInst := false.B
938    XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst")
939    exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep
940    exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix
941    exceptionGen.io.enq(i).bits.trigger.clear()
942    exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.trigger.frontendHit
943  }
944
945  println(s"ExceptionGen:")
946  println(s"num of exceptions: ${params.numException}")
947  require(exceptionWBs.length == exceptionGen.io.wb.length,
948    f"exceptionWBs.length: ${exceptionWBs.length}, " +
949      f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}")
950  for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) {
951    exc_wb.valid                := wb.valid
952    exc_wb.bits.robIdx          := wb.bits.robIdx
953    exc_wb.bits.exceptionVec    := wb.bits.exceptionVec.get
954    exc_wb.bits.flushPipe       := wb.bits.flushPipe.getOrElse(false.B)
955    exc_wb.bits.isVset          := false.B
956    exc_wb.bits.replayInst      := wb.bits.replay.getOrElse(false.B)
957    exc_wb.bits.singleStep      := false.B
958    exc_wb.bits.crossPageIPFFix := false.B
959    exc_wb.bits.trigger         := 0.U.asTypeOf(exc_wb.bits.trigger) // Todo
960//    println(s"  [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " +
961//      s"flushPipe ${configs.exists(_.flushPipe)}, " +
962//      s"replayInst ${configs.exists(_.replayInst)}")
963  }
964
965  val fflagsDataModule = Module(new SyncDataModuleTemplate(
966    UInt(5.W), RobSize, CommitWidth, fflagsWBs.size)
967  )
968  require(fflagsWBs.length == fflagsDataModule.io.wen.length)
969  for(i <- fflagsWBs.indices){
970    fflagsDataModule.io.wen  (i) := fflagsWBs(i).valid
971    fflagsDataModule.io.waddr(i) := fflagsWBs(i).bits.robIdx.value
972    fflagsDataModule.io.wdata(i) := fflagsWBs(i).bits.fflags.get
973  }
974  fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value))
975  fflagsDataRead := fflagsDataModule.io.rdata
976
977
978  val instrCntReg = RegInit(0.U(64.W))
979  val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) })
980  val trueCommitCnt = RegNext(commitCnt) +& fuseCommitCnt
981  val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U)
982  val instrCnt = instrCntReg + retireCounter
983  instrCntReg := instrCnt
984  io.csr.perfinfo.retiredInstr := retireCounter
985  io.robFull := !allowEnqueue
986
987  /**
988    * debug info
989    */
990  XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n")
991  XSDebug("")
992  XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n")
993  for(i <- 0 until RobSize){
994    XSDebug(false, !valid(i), "-")
995    XSDebug(false, valid(i) && writebacked(i), "w")
996    XSDebug(false, valid(i) && !writebacked(i), "v")
997  }
998  XSDebug(false, true.B, "\n")
999
1000  for(i <- 0 until RobSize) {
1001    if(i % 4 == 0) XSDebug("")
1002    XSDebug(false, true.B, "%x ", debug_microOp(i).pc)
1003    XSDebug(false, !valid(i), "- ")
1004    XSDebug(false, valid(i) && writebacked(i), "w ")
1005    XSDebug(false, valid(i) && !writebacked(i), "v ")
1006    if(i % 4 == 3) XSDebug(false, true.B, "\n")
1007  }
1008
1009  def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U)
1010  def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U)
1011
1012  val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_))
1013  XSPerfAccumulate("clock_cycle", 1.U)
1014  QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue)
1015  XSPerfAccumulate("commitUop", ifCommit(commitCnt))
1016  XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt))
1017  val commitIsMove = commitDebugUop.map(_.isMove)
1018  XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })))
1019  val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove)
1020  XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e })))
1021  XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt))
1022  val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD)
1023  val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t }
1024  XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid)))
1025  val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH)
1026  val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t }
1027  XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid)))
1028  val commitLoadWaitBit = commitDebugUop.map(_.loadWaitBit)
1029  XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })))
1030  val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE)
1031  XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })))
1032  XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i))))
1033  // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire)))
1034  // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready)))
1035  XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U))
1036  XSPerfAccumulate("walkCycle", state === s_walk)
1037  val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value)
1038  val deqUopCommitType = io.commits.info(0).commitType
1039  XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL)
1040  XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH)
1041  XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD)
1042  XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE)
1043  XSPerfAccumulate("robHeadPC", io.commits.info(0).pc)
1044  val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime)
1045  val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime)
1046  val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime)
1047  val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime)
1048  val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime)
1049  val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime)
1050  val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime)
1051  def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = {
1052    cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _)
1053  }
1054  for (fuType <- FuType.functionNameMap.keys) {
1055    val fuName = FuType.functionNameMap(fuType)
1056    val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U )
1057    XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType)))
1058    XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency)))
1059    XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency)))
1060    XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency)))
1061    XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency)))
1062    XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency)))
1063    XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency)))
1064    XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency)))
1065    if (fuType == FuType.fmac) {
1066      val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.fpu.ren3 )
1067      XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma)))
1068      XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency)))
1069      XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency)))
1070    }
1071  }
1072
1073  //difftest signals
1074  val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value
1075
1076  val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1077  val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1078
1079  for(i <- 0 until CommitWidth) {
1080    val idx = deqPtrVec(i).value
1081    wdata(i) := debug_exuData(idx)
1082    wpc(i) := SignExt(commitDebugUop(i).pc, XLEN)
1083  }
1084
1085  if (env.EnableDifftest) {
1086    for (i <- 0 until CommitWidth) {
1087      val difftest = Module(new DifftestInstrCommit)
1088      // assgin default value
1089      difftest.io := DontCare
1090
1091      difftest.io.clock    := clock
1092      difftest.io.coreid   := io.hartId
1093      difftest.io.index    := i.U
1094
1095      val ptr = deqPtrVec(i).value
1096      val uop = commitDebugUop(i)
1097      val exuOut = debug_exuDebug(ptr)
1098      val exuData = debug_exuData(ptr)
1099      difftest.io.valid    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1100      difftest.io.pc       := RegNext(RegNext(RegNext(SignExt(uop.pc, XLEN))))
1101      difftest.io.instr    := RegNext(RegNext(RegNext(uop.instr)))
1102      difftest.io.robIdx   := RegNext(RegNext(RegNext(ZeroExt(ptr, 10))))
1103      difftest.io.lqIdx    := RegNext(RegNext(RegNext(ZeroExt(uop.lqIdx.value, 7))))
1104      difftest.io.sqIdx    := RegNext(RegNext(RegNext(ZeroExt(uop.sqIdx.value, 7))))
1105      difftest.io.isLoad   := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.LOAD)))
1106      difftest.io.isStore  := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.STORE)))
1107      difftest.io.special  := RegNext(RegNext(RegNext(CommitType.isFused(io.commits.info(i).commitType))))
1108      // when committing an eliminated move instruction,
1109      // we must make sure that skip is properly set to false (output from EXU is random value)
1110      difftest.io.skip     := RegNext(RegNext(RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))))
1111      difftest.io.isRVC    := RegNext(RegNext(RegNext(uop.preDecodeInfo.isRVC)))
1112      difftest.io.rfwen    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U)))
1113      difftest.io.fpwen    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).fpWen)))
1114      difftest.io.wpdest   := RegNext(RegNext(RegNext(io.commits.info(i).pdest)))
1115      difftest.io.wdest    := RegNext(RegNext(RegNext(io.commits.info(i).ldest)))
1116
1117      difftest.io.isVsetFirst := RegNext(RegNext(RegNext(io.commits.commitValid(i) && !io.commits.info(i).uopIdx.orR)))
1118      // // runahead commit hint
1119      // val runahead_commit = Module(new DifftestRunaheadCommitEvent)
1120      // runahead_commit.io.clock := clock
1121      // runahead_commit.io.coreid := io.hartId
1122      // runahead_commit.io.index := i.U
1123      // runahead_commit.io.valid := difftest.io.valid &&
1124      //   (commitBranchValid(i) || commitIsStore(i))
1125      // // TODO: is branch or store
1126      // runahead_commit.io.pc    := difftest.io.pc
1127    }
1128  }
1129  else if (env.AlwaysBasicDiff) {
1130    // These are the structures used by difftest only and should be optimized after synthesis.
1131    val dt_eliminatedMove = Mem(RobSize, Bool())
1132    val dt_isRVC = Mem(RobSize, Bool())
1133    val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle))
1134    for (i <- 0 until RenameWidth) {
1135      when (canEnqueue(i)) {
1136        dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove
1137        dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC
1138      }
1139    }
1140    for (wb <- exuWBs) {
1141      when (wb.valid) {
1142        val wbIdx = wb.bits.robIdx.value
1143        dt_exuDebug(wbIdx) := wb.bits.debug
1144      }
1145    }
1146    // Always instantiate basic difftest modules.
1147    for (i <- 0 until CommitWidth) {
1148      val commitInfo = io.commits.info(i)
1149      val ptr = deqPtrVec(i).value
1150      val exuOut = dt_exuDebug(ptr)
1151      val eliminatedMove = dt_eliminatedMove(ptr)
1152      val isRVC = dt_isRVC(ptr)
1153
1154      val difftest = Module(new DifftestBasicInstrCommit)
1155      difftest.io.clock   := clock
1156      difftest.io.coreid  := io.hartId
1157      difftest.io.index   := i.U
1158      difftest.io.valid   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1159      difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(commitInfo.commitType))))
1160      difftest.io.skip    := RegNext(RegNext(RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))))
1161      difftest.io.isRVC   := RegNext(RegNext(RegNext(isRVC)))
1162      difftest.io.rfwen   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U)))
1163      difftest.io.fpwen   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.fpWen)))
1164      difftest.io.wpdest  := RegNext(RegNext(RegNext(commitInfo.pdest)))
1165      difftest.io.wdest   := RegNext(RegNext(RegNext(commitInfo.ldest)))
1166    }
1167  }
1168
1169  if (env.EnableDifftest) {
1170    for (i <- 0 until CommitWidth) {
1171      val difftest = Module(new DifftestLoadEvent)
1172      difftest.io.clock  := clock
1173      difftest.io.coreid := io.hartId
1174      difftest.io.index  := i.U
1175
1176      val ptr = deqPtrVec(i).value
1177      val uop = commitDebugUop(i)
1178      val exuOut = debug_exuDebug(ptr)
1179      difftest.io.valid  := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1180      difftest.io.paddr  := RegNext(RegNext(RegNext(exuOut.paddr)))
1181      difftest.io.opType := RegNext(RegNext(RegNext(uop.fuOpType)))
1182      difftest.io.fuType := RegNext(RegNext(RegNext(uop.fuType)))
1183    }
1184  }
1185
1186  // Always instantiate basic difftest modules.
1187  if (env.EnableDifftest) {
1188    val dt_isXSTrap = Mem(RobSize, Bool())
1189    for (i <- 0 until RenameWidth) {
1190      when (canEnqueue(i)) {
1191        dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap
1192      }
1193    }
1194    val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) }
1195    val hitTrap = trapVec.reduce(_||_)
1196    val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1))
1197    val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN)
1198    val difftest = Module(new DifftestTrapEvent)
1199    difftest.io.clock    := clock
1200    difftest.io.coreid   := io.hartId
1201    difftest.io.valid    := hitTrap
1202    difftest.io.code     := trapCode
1203    difftest.io.pc       := trapPC
1204    difftest.io.cycleCnt := timer
1205    difftest.io.instrCnt := instrCnt
1206    difftest.io.hasWFI   := hasWFI
1207  }
1208  else if (env.AlwaysBasicDiff) {
1209    val dt_isXSTrap = Mem(RobSize, Bool())
1210    for (i <- 0 until RenameWidth) {
1211      when (canEnqueue(i)) {
1212        dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap
1213      }
1214    }
1215    val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) }
1216    val hitTrap = trapVec.reduce(_||_)
1217    val difftest = Module(new DifftestBasicTrapEvent)
1218    difftest.io.clock    := clock
1219    difftest.io.coreid   := io.hartId
1220    difftest.io.valid    := hitTrap
1221    difftest.io.cycleCnt := timer
1222    difftest.io.instrCnt := instrCnt
1223  }
1224
1225  val validEntriesBanks = (0 until (RobSize + 63) / 64).map(i => RegNext(PopCount(valid.drop(i * 64).take(64))))
1226  val validEntries = RegNext(ParallelOperation(validEntriesBanks, (a: UInt, b: UInt) => a +& b))
1227  val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })
1228  val commitLoadVec = VecInit(commitLoadValid)
1229  val commitBranchVec = VecInit(commitBranchValid)
1230  val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })
1231  val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })
1232  val perfEvents = Seq(
1233    ("rob_interrupt_num      ", io.flushOut.valid && intrEnable                                       ),
1234    ("rob_exception_num      ", io.flushOut.valid && exceptionEnable                                  ),
1235    ("rob_flush_pipe_num     ", io.flushOut.valid && isFlushPipe                                      ),
1236    ("rob_replay_inst_num    ", io.flushOut.valid && isFlushPipe && deqHasReplayInst                  ),
1237    ("rob_commitUop          ", ifCommit(commitCnt)                                                   ),
1238    ("rob_commitInstr        ", ifCommitReg(trueCommitCnt)                                            ),
1239    ("rob_commitInstrMove    ", ifCommitReg(PopCount(RegNext(commitMoveVec)))                         ),
1240    ("rob_commitInstrFused   ", ifCommitReg(fuseCommitCnt)                                            ),
1241    ("rob_commitInstrLoad    ", ifCommitReg(PopCount(RegNext(commitLoadVec)))                         ),
1242    ("rob_commitInstrBranch  ", ifCommitReg(PopCount(RegNext(commitBranchVec)))                       ),
1243    ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec)))                     ),
1244    ("rob_commitInstrStore   ", ifCommitReg(PopCount(RegNext(commitStoreVec)))                        ),
1245    ("rob_walkInstr          ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)           ),
1246    ("rob_walkCycle          ", (state === s_walk)                                                    ),
1247    ("rob_1_4_valid          ", validEntries <= (RobSize / 4).U                                       ),
1248    ("rob_2_4_valid          ", validEntries >  (RobSize / 4).U && validEntries <= (RobSize / 2).U    ),
1249    ("rob_3_4_valid          ", validEntries >  (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U),
1250    ("rob_4_4_valid          ", validEntries >  (RobSize * 3 / 4).U                                   ),
1251  )
1252  generatePerfEvent()
1253}
1254