1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.rob 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 24import utility._ 25import utils._ 26import xiangshan._ 27import xiangshan.frontend.FtqPtr 28import xiangshan.mem.{LqPtr, SqPtr} 29import xiangshan.v2backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 30import xiangshan.v2backend.{BackendParams, FuType} 31 32class RobPtr(entries: Int) extends CircularQueuePtr[RobPtr]( 33 entries 34) with HasCircularQueuePtrHelper { 35 36 def this()(implicit p: Parameters) = this(p(XSCoreParamsKey).RobSize) 37 38 def needFlush(redirect: Valid[Redirect]): Bool = { 39 val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx 40 redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx)) 41 } 42 43 def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR 44} 45 46object RobPtr { 47 def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = { 48 val ptr = Wire(new RobPtr) 49 ptr.flag := f 50 ptr.value := v 51 ptr 52 } 53} 54 55class RobCSRIO(implicit p: Parameters) extends XSBundle { 56 val intrBitSet = Input(Bool()) 57 val trapTarget = Input(UInt(VAddrBits.W)) 58 val isXRet = Input(Bool()) 59 val wfiEvent = Input(Bool()) 60 61 val fflags = Output(Valid(UInt(5.W))) 62 val dirty_fs = Output(Bool()) 63 val perfinfo = new Bundle { 64 val retiredInstr = Output(UInt(3.W)) 65 } 66 67 val vcsrFlag = Output(Bool()) 68} 69 70class RobLsqIO(implicit p: Parameters) extends XSBundle { 71 val lcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 72 val scommit = Output(UInt(log2Up(CommitWidth + 1).W)) 73 val pendingld = Output(Bool()) 74 val pendingst = Output(Bool()) 75 val commit = Output(Bool()) 76} 77 78class RobEnqIO(implicit p: Parameters) extends XSBundle { 79 val canAccept = Output(Bool()) 80 val isEmpty = Output(Bool()) 81 // valid vector, for robIdx gen and walk 82 val needAlloc = Vec(RenameWidth, Input(Bool())) 83 val req = Vec(RenameWidth, Flipped(ValidIO(new DynInst))) 84 val resp = Vec(RenameWidth, Output(new RobPtr)) 85} 86 87class RobDispatchData(implicit p: Parameters) extends RobCommitInfo 88 89class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 90 val io = IO(new Bundle { 91 // for commits/flush 92 val state = Input(UInt(2.W)) 93 val deq_v = Vec(CommitWidth, Input(Bool())) 94 val deq_w = Vec(CommitWidth, Input(Bool())) 95 val exception_state = Flipped(ValidIO(new RobExceptionInfo)) 96 // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth) 97 val intrBitSetReg = Input(Bool()) 98 val hasNoSpecExec = Input(Bool()) 99 val interrupt_safe = Input(Bool()) 100 val blockCommit = Input(Bool()) 101 // output: the CommitWidth deqPtr 102 val out = Vec(CommitWidth, Output(new RobPtr)) 103 val next_out = Vec(CommitWidth, Output(new RobPtr)) 104 }) 105 106 val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr)))) 107 108 // for exceptions (flushPipe included) and interrupts: 109 // only consider the first instruction 110 val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe 111 val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0) 112 val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable) 113 114 // for normal commits: only to consider when there're no exceptions 115 // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions. 116 val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last) 117 val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i))) 118 val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B) 119 // when io.intrBitSetReg or there're possible exceptions in these instructions, 120 // only one instruction is allowed to commit 121 val allowOnlyOne = commit_exception || io.intrBitSetReg 122 val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt) 123 124 val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt)) 125 val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec) 126 127 deqPtrVec := deqPtrVec_next 128 129 io.next_out := deqPtrVec_next 130 io.out := deqPtrVec 131 132 when (io.state === 0.U) { 133 XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt) 134 } 135 136} 137 138class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 139 val io = IO(new Bundle { 140 // for input redirect 141 val redirect = Input(Valid(new Redirect)) 142 // for enqueue 143 val allowEnqueue = Input(Bool()) 144 val hasBlockBackward = Input(Bool()) 145 val enq = Vec(RenameWidth, Input(Bool())) 146 val out = Output(Vec(RenameWidth, new RobPtr)) 147 }) 148 149 val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr))) 150 151 // enqueue 152 val canAccept = io.allowEnqueue && !io.hasBlockBackward 153 val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U) 154 155 for ((ptr, i) <- enqPtrVec.zipWithIndex) { 156 when(io.redirect.valid) { 157 ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 158 }.otherwise { 159 ptr := ptr + dispatchNum 160 } 161 } 162 163 io.out := enqPtrVec 164 165} 166 167class RobExceptionInfo(implicit p: Parameters) extends XSBundle { 168 // val valid = Bool() 169 val robIdx = new RobPtr 170 val exceptionVec = ExceptionVec() 171 val flushPipe = Bool() 172 val isVset = Bool() 173 val replayInst = Bool() // redirect to that inst itself 174 val singleStep = Bool() // TODO add frontend hit beneath 175 val crossPageIPFFix = Bool() 176 val trigger = new TriggerCf 177 178// def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend 179// def trigger_after = trigger.getTimingBackend && trigger.getHitBackend 180 def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit 181 def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit 182 // only exceptions are allowed to writeback when enqueue 183 def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit 184} 185 186class ExceptionGen(params: BackendParams)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 187 val io = IO(new Bundle { 188 val redirect = Input(Valid(new Redirect)) 189 val flush = Input(Bool()) 190 val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo))) 191 // csr + load + store 192 val wb = Vec(params.numException, Flipped(ValidIO(new RobExceptionInfo))) 193 val out = ValidIO(new RobExceptionInfo) 194 val state = ValidIO(new RobExceptionInfo) 195 }) 196 197 def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = { 198 assert(valid.length == bits.length) 199 assert(isPow2(valid.length)) 200 if (valid.length == 1) { 201 (valid, bits) 202 } else if (valid.length == 2) { 203 val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0))))) 204 for (i <- res.indices) { 205 res(i).valid := valid(i) 206 res(i).bits := bits(i) 207 } 208 val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1)) 209 (Seq(oldest.valid), Seq(oldest.bits)) 210 } else { 211 val left = getOldest(valid.take(valid.length / 2), bits.take(valid.length / 2)) 212 val right = getOldest(valid.takeRight(valid.length / 2), bits.takeRight(valid.length / 2)) 213 getOldest(left._1 ++ right._1, left._2 ++ right._2) 214 } 215 } 216 217 val currentValid = RegInit(false.B) 218 val current = Reg(new RobExceptionInfo) 219 220 // orR the exceptionVec 221 val lastCycleFlush = RegNext(io.flush) 222 val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush)) 223 val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush) 224 225 // s0: compare wb(1)~wb(LoadPipelineWidth) and wb(1 + LoadPipelineWidth)~wb(LoadPipelineWidth + StorePipelineWidth) 226 val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) } 227 val csr_wb_bits = io.wb(0).bits 228 val load_wb_bits = getOldest(in_wb_valid.slice(1, 1 + LoadPipelineWidth), io.wb.map(_.bits).slice(1, 1 + LoadPipelineWidth))._2(0) 229 val store_wb_bits = getOldest(in_wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth), io.wb.map(_.bits).slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth))._2(0) 230 val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid.slice(1, 1 + LoadPipelineWidth).reduce(_ || _), wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth).reduce(_ || _)))) 231 val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits))) 232 233 // s1: compare last four and current flush 234 val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) }) 235 val compare_01_valid = s0_out_valid(0) || s0_out_valid(1) 236 val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0)) 237 val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2)) 238 val s1_out_bits = RegNext(compare_bits) 239 val s1_out_valid = RegNext(s1_valid.asUInt.orR) 240 241 val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 242 val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits))) 243 244 // s2: compare the input exception with the current one 245 // priorities: 246 // (1) system reset 247 // (2) current is valid: flush, remain, merge, update 248 // (3) current is not valid: s1 or enq 249 val current_flush = current.robIdx.needFlush(io.redirect) || io.flush 250 val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush 251 when (currentValid) { 252 when (current_flush) { 253 currentValid := Mux(s1_flush, false.B, s1_out_valid) 254 } 255 when (s1_out_valid && !s1_flush) { 256 when (isAfter(current.robIdx, s1_out_bits.robIdx)) { 257 current := s1_out_bits 258 }.elsewhen (current.robIdx === s1_out_bits.robIdx) { 259 current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec()) 260 current.flushPipe := s1_out_bits.flushPipe || current.flushPipe 261 current.replayInst := s1_out_bits.replayInst || current.replayInst 262 current.singleStep := s1_out_bits.singleStep || current.singleStep 263 current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf) 264 } 265 } 266 }.elsewhen (s1_out_valid && !s1_flush) { 267 currentValid := true.B 268 current := s1_out_bits 269 }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) { 270 currentValid := true.B 271 current := enq_bits 272 } 273 274 io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback 275 io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits) 276 io.state.valid := currentValid 277 io.state.bits := current 278 279} 280 281class RobFlushInfo(implicit p: Parameters) extends XSBundle { 282 val ftqIdx = new FtqPtr 283 val robIdx = new RobPtr 284 val ftqOffset = UInt(log2Up(PredictWidth).W) 285 val replayInst = Bool() 286} 287 288class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter { 289 290 lazy val module = new RobImp(this)(p, params) 291 // 292 // override def generateWritebackIO( 293 // thisMod: Option[HasWritebackSource] = None, 294 // thisModImp: Option[HasWritebackSourceImp] = None 295 // ): Unit = { 296 // val sources = writebackSinksImp(thisMod, thisModImp) 297 // module.io.writeback.zip(sources).foreach(x => x._1 := x._2) 298 // } 299 //} 300} 301 302class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper) 303 with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents { 304 305 val io = IO(new Bundle() { 306 val hartId = Input(UInt(8.W)) 307 val redirect = Input(Valid(new Redirect)) 308 val enq = new RobEnqIO 309 val flushOut = ValidIO(new Redirect) 310 val isVsetFlushPipe = Output(Bool()) 311 val exception = ValidIO(new ExceptionInfo) 312 // exu + brq 313 val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles) 314 val commits = Output(new RobCommitIO) 315 val lsq = new RobLsqIO 316 val robDeqPtr = Output(new RobPtr) 317 val csr = new RobCSRIO 318 val robFull = Output(Bool()) 319 val cpu_halt = Output(Bool()) 320 val wfi_enable = Input(Bool()) 321 }) 322 323 val exuWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(!_.bits.params.hasStdFu) 324 val stdWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(_.bits.params.hasStdFu) 325 val fflagsWBs = io.writeback.filter(x => x.bits.fflags.nonEmpty) 326 val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty) 327 val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty) 328 329 val exuWbPorts = io.writeback.filter(!_.bits.params.hasStdFu) 330 val stdWbPorts = io.writeback.filter(_.bits.params.hasStdFu) 331 val fflagsPorts = io.writeback.filter(x => x.bits.fflags.nonEmpty) 332 val exceptionPorts = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty) 333 val numExuWbPorts = exuWBs.length 334 val numStdWbPorts = stdWBs.length 335 336 337 println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth") 338// println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}") 339// println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}") 340// println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}") 341 342 343 // instvalid field 344 val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 345 // writeback status 346 val writebacked = Mem(RobSize, Bool()) 347 val store_data_writebacked = Mem(RobSize, Bool()) 348 // data for redirect, exception, etc. 349 val flagBkup = Mem(RobSize, Bool()) 350 // some instructions are not allowed to trigger interrupts 351 // They have side effects on the states of the processor before they write back 352 val interrupt_safe = Mem(RobSize, Bool()) 353 354 // data for debug 355 // Warn: debug_* prefix should not exist in generated verilog. 356 val debug_microOp = Mem(RobSize, new DynInst) 357 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug 358 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug 359 360 // pointers 361 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 362 val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr)) 363 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 364 365 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 366 val allowEnqueue = RegInit(true.B) 367 368 val enqPtr = enqPtrVec.head 369 val deqPtr = deqPtrVec(0) 370 val walkPtr = walkPtrVec(0) 371 372 val isEmpty = enqPtr === deqPtr 373 val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level) 374 375 /** 376 * states of Rob 377 */ 378 val s_idle :: s_walk :: Nil = Enum(2) 379 val state = RegInit(s_idle) 380 381 /** 382 * Data Modules 383 * 384 * CommitDataModule: data from dispatch 385 * (1) read: commits/walk/exception 386 * (2) write: enqueue 387 * 388 * WritebackData: data from writeback 389 * (1) read: commits/walk/exception 390 * (2) write: write back from exe units 391 */ 392 val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth)) 393 val dispatchDataRead = dispatchData.io.rdata 394 395 val exceptionGen = Module(new ExceptionGen(params)) 396 val exceptionDataRead = exceptionGen.io.state 397 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 398 399 io.robDeqPtr := deqPtr 400 401 /** 402 * Enqueue (from dispatch) 403 */ 404 // special cases 405 val hasBlockBackward = RegInit(false.B) 406 val hasWaitForward = RegInit(false.B) 407 val doingSvinval = RegInit(false.B) 408 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 409 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 410 when (isEmpty) { hasBlockBackward:= false.B } 411 // When any instruction commits, hasNoSpecExec should be set to false.B 412 when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasWaitForward:= false.B } 413 414 // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing. 415 // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle. 416 // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts. 417 val hasWFI = RegInit(false.B) 418 io.cpu_halt := hasWFI 419 // WFI Timeout: 2^20 = 1M cycles 420 val wfi_cycles = RegInit(0.U(20.W)) 421 when (hasWFI) { 422 wfi_cycles := wfi_cycles + 1.U 423 }.elsewhen (!hasWFI && RegNext(hasWFI)) { 424 wfi_cycles := 0.U 425 } 426 val wfi_timeout = wfi_cycles.andR 427 when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) { 428 hasWFI := false.B 429 } 430 431 val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.needAlloc.take(i))))) 432 io.enq.canAccept := allowEnqueue && !hasBlockBackward 433 io.enq.resp := allocatePtrVec 434 val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept)) 435 val timer = GTimer() 436 for (i <- 0 until RenameWidth) { 437 // we don't check whether io.redirect is valid here since redirect has higher priority 438 when (canEnqueue(i)) { 439 val enqUop = io.enq.req(i).bits 440 val enqIndex = allocatePtrVec(i).value 441 // store uop in data module and debug_microOp Vec 442 debug_microOp(enqIndex) := enqUop 443 debug_microOp(enqIndex).debugInfo.dispatchTime := timer 444 debug_microOp(enqIndex).debugInfo.enqRsTime := timer 445 debug_microOp(enqIndex).debugInfo.selectTime := timer 446 debug_microOp(enqIndex).debugInfo.issueTime := timer 447 debug_microOp(enqIndex).debugInfo.writebackTime := timer 448 when (enqUop.blockBackward) { 449 hasBlockBackward := true.B 450 } 451 when (enqUop.waitForward) { 452 hasWaitForward := true.B 453 } 454 val enqHasTriggerHit = false.B // io.enq.req(i).bits.cf.trigger.getHitFrontend 455 val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR 456 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 457 when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe)) 458 { 459 doingSvinval := true.B 460 } 461 // the end instruction of Svinval enqs so clear doingSvinval 462 when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe)) 463 { 464 doingSvinval := false.B 465 } 466 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 467 assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe))) 468 when (enqUop.isWFI && !enqHasException && !enqHasTriggerHit) { 469 hasWFI := true.B 470 } 471 } 472 } 473 val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(_.valid)), 0.U) 474 io.enq.isEmpty := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR) 475 476 when (!io.wfi_enable) { 477 hasWFI := false.B 478 } 479 // sel vsetvl's flush position 480 val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3) 481 val vsetvlState = RegInit(vs_idle) 482 483 val firstVInstrFtqPtr = RegInit(0.U.asTypeOf(new FtqPtr)) 484 val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W))) 485 val firstVInstrRobIdx = RegInit(0.U.asTypeOf(new RobPtr)) 486 487 val enq0 = io.enq.req(0) 488 val enq0IsVset = FuType.isInt(enq0.bits.fuType) && ALUOpType.isVset(enq0.bits.fuOpType) && enq0.bits.uopIdx.andR && canEnqueue(0) 489 val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe 490 val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVpu(req.bits.fuType) && fire} 491 // for vs_idle 492 val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType))) 493 // for vs_waitVinstr 494 val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1) 495 val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req) 496 when(vsetvlState === vs_idle){ 497 firstVInstrFtqPtr := firstVInstrIdle.bits.ftqPtr 498 firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset 499 firstVInstrRobIdx := firstVInstrIdle.bits.robIdx 500 }.elsewhen(vsetvlState === vs_waitVinstr){ 501 firstVInstrFtqPtr := firstVInstrWait.bits.ftqPtr 502 firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset 503 firstVInstrRobIdx := firstVInstrWait.bits.robIdx 504 } 505 506 val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR 507 when(vsetvlState === vs_idle){ 508 when(enq0IsVsetFlush){ 509 vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr) 510 } 511 }.elsewhen(vsetvlState === vs_waitVinstr){ 512 when(io.redirect.valid){ 513 vsetvlState := vs_idle 514 }.elsewhen(Cat(enqIsVInstrOrVset).orR){ 515 vsetvlState := vs_waitFlush 516 } 517 }.elsewhen(vsetvlState === vs_waitFlush){ 518 when(io.redirect.valid){ 519 vsetvlState := vs_idle 520 } 521 } 522 523 /** 524 * Writeback (from execution units) 525 */ 526 for (wb <- exuWBs) { 527 when (wb.valid) { 528 val wbIdx = wb.bits.robIdx.value 529 debug_exuData(wbIdx) := wb.bits.data 530 debug_exuDebug(wbIdx) := wb.bits.debug 531 debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime 532 debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime 533 debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime 534 debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime 535 536 // debug for lqidx and sqidx 537 debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr)) 538 debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr)) 539 540 val debug_Uop = debug_microOp(wbIdx) 541 XSInfo(true.B, 542 p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " + 543 p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " + 544 p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.robIdx}\n" 545 ) 546 } 547 } 548 549 val writebackNum = PopCount(exuWBs.map(_.valid)) 550 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 551 552 553 /** 554 * RedirectOut: Interrupt and Exceptions 555 */ 556 val deqDispatchData = dispatchDataRead(0) 557 val debug_deqUop = debug_microOp(deqPtr.value) 558 559 val intrBitSetReg = RegNext(io.csr.intrBitSet) 560 val intrEnable = intrBitSetReg && !hasWaitForward && interrupt_safe(deqPtr.value) 561 val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 562 val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR || 563 exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit) 564 val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe 565 val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst 566 val exceptionEnable = writebacked(deqPtr.value) && deqHasException 567 568 XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n") 569 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n") 570 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n") 571 572 val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst) 573 574 val isVsetFlushPipe = writebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset 575 val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush) 576 io.isVsetFlushPipe := RegNext(isVsetFlushPipe) 577 // io.flushOut will trigger redirect at the next cycle. 578 // Block any redirect or commit at the next cycle. 579 val lastCycleFlush = RegNext(io.flushOut.valid) 580 581 io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush 582 io.flushOut.bits := DontCare 583 io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr) 584 io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx) 585 io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset) 586 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next" 587 io.flushOut.bits.interrupt := true.B 588 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 589 XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable) 590 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 591 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 592 593 val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush 594 io.exception.valid := RegNext(exceptionHappen) 595 io.exception.bits.pc := RegEnable(debug_deqUop.pc, exceptionHappen) 596 io.exception.bits.instr := RegEnable(debug_deqUop.instr, exceptionHappen) 597 io.exception.bits.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 598 io.exception.bits.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 599 io.exception.bits.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 600 io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 601 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 602// io.exception.bits.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen) 603 604 XSDebug(io.flushOut.valid, 605 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " + 606 p"excp $exceptionEnable flushPipe $isFlushPipe " + 607 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 608 609 610 /** 611 * Commits (and walk) 612 * They share the same width. 613 */ 614 val walkCounter = Reg(UInt(log2Up(RobSize + 1).W)) 615 val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter)) 616 val walkFinished = walkCounter <= CommitWidth.U 617 618 require(RenameWidth <= CommitWidth) 619 620 // wiring to csr 621 val (wflags, fpWen) = (0 until CommitWidth).map(i => { 622 val v = io.commits.commitValid(i) 623 val info = io.commits.info(i) 624 (v & info.wflags, v & info.fpWen) 625 }).unzip 626 val fflags = Wire(Valid(UInt(5.W))) 627 fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR 628 fflags.bits := wflags.zip(fflagsDataRead).map({ 629 case (w, f) => Mux(w, f, 0.U) 630 }).reduce(_|_) 631 val dirty_fs = io.commits.isCommit && VecInit(fpWen).asUInt.orR 632 633 // when mispredict branches writeback, stop commit in the next 2 cycles 634 // TODO: don't check all exu write back 635 val misPredWb = Cat(VecInit(redirectWBs.map(wb => 636 wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid 637 ))).orR 638 val misPredBlockCounter = Reg(UInt(3.W)) 639 misPredBlockCounter := Mux(misPredWb, 640 "b111".U, 641 misPredBlockCounter >> 1.U 642 ) 643 val misPredBlock = misPredBlockCounter(0) 644 val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI 645 646 io.commits.isWalk := state === s_walk 647 io.commits.isCommit := state === s_idle && !blockCommit 648 val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value))) 649 val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value))) 650 // store will be commited iff both sta & std have been writebacked 651 val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value))) 652 val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last) 653 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i))) 654 val allowOnlyOneCommit = commit_exception || intrBitSetReg 655 // for instructions that may block others, we don't allow them to commit 656 for (i <- 0 until CommitWidth) { 657 // defaults: state === s_idle and instructions commit 658 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 659 val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst 660 io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked 661 io.commits.info(i) := dispatchDataRead(i) 662 663 when (state === s_walk) { 664 io.commits.walkValid(i) := shouldWalkVec(i) 665 when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) { 666 XSError(!walk_v(i), s"why not $i???\n") 667 } 668 } 669 670 XSInfo(io.commits.isCommit && io.commits.commitValid(i), 671 "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b\n", 672 debug_microOp(deqPtrVec(i).value).pc, 673 io.commits.info(i).rfWen, 674 io.commits.info(i).ldest, 675 io.commits.info(i).pdest, 676 io.commits.info(i).old_pdest, 677 debug_exuData(deqPtrVec(i).value), 678 fflagsDataRead(i) 679 ) 680 XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n", 681 debug_microOp(walkPtrVec(i).value).pc, 682 io.commits.info(i).rfWen, 683 io.commits.info(i).ldest, 684 debug_exuData(walkPtrVec(i).value) 685 ) 686 } 687 if (env.EnableDifftest) { 688 io.commits.info.map(info => dontTouch(info.pc)) 689 } 690 691 // sync fflags/dirty_fs to csr 692 io.csr.fflags := RegNext(fflags) 693 io.csr.dirty_fs := RegNext(dirty_fs) 694 695 // sync v csr to csr 696// io.csr.vcsrFlag := RegNext(isVsetFlushPipe) 697 698 // commit load/store to lsq 699 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 700 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE)) 701 io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U)) 702 io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U)) 703 // indicate a pending load or store 704 io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value)) 705 io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value)) 706 io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0)) 707 708 /** 709 * state changes 710 * (1) redirect: switch to s_walk 711 * (2) walk: when walking comes to the end, switch to s_idle 712 */ 713 val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished, s_idle, state)) 714 XSPerfAccumulate("s_idle_to_idle", state === s_idle && state_next === s_idle) 715 XSPerfAccumulate("s_idle_to_walk", state === s_idle && state_next === s_walk) 716 XSPerfAccumulate("s_walk_to_idle", state === s_walk && state_next === s_idle) 717 XSPerfAccumulate("s_walk_to_walk", state === s_walk && state_next === s_walk) 718 state := state_next 719 720 /** 721 * pointers and counters 722 */ 723 val deqPtrGenModule = Module(new RobDeqPtrWrapper) 724 deqPtrGenModule.io.state := state 725 deqPtrGenModule.io.deq_v := commit_v 726 deqPtrGenModule.io.deq_w := commit_w 727 deqPtrGenModule.io.exception_state := exceptionDataRead 728 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 729 deqPtrGenModule.io.hasNoSpecExec := hasWaitForward 730 deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value) 731 deqPtrGenModule.io.blockCommit := blockCommit 732 deqPtrVec := deqPtrGenModule.io.out 733 val deqPtrVec_next = deqPtrGenModule.io.next_out 734 735 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 736 enqPtrGenModule.io.redirect := io.redirect 737 enqPtrGenModule.io.allowEnqueue := allowEnqueue 738 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 739 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid)) 740 enqPtrVec := enqPtrGenModule.io.out 741 742 val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U) 743 // next walkPtrVec: 744 // (1) redirect occurs: update according to state 745 // (2) walk: move forwards 746 val walkPtrVec_next = Mux(io.redirect.valid, 747 deqPtrVec_next, 748 Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec) 749 ) 750 walkPtrVec := walkPtrVec_next 751 752 val numValidEntries = distanceBetween(enqPtr, deqPtr) 753 val isLastUopVec = io.commits.info.map(_.uopIdx.andR) 754 val commitCnt = PopCount(io.commits.commitValid.zip(isLastUopVec).map{case(isCommitValid, isLastUop) => isCommitValid && isLastUop}) 755 756 allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U 757 758 val currentWalkPtr = Mux(state === s_walk, walkPtr, deqPtrVec_next(0)) 759 val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0)) 760 when (io.redirect.valid) { 761 // full condition: 762 // +& is used here because: 763 // When rob is full and the tail instruction causes a misprediction, 764 // the redirect robIdx is the deqPtr - 1. In this case, redirectWalkDistance 765 // is RobSize - 1. 766 // Since misprediction does not flush the instruction itself, flushItSelf is false.B. 767 // Previously we use `+` to count the walk distance and it causes overflows 768 // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize. 769 // The width of walkCounter also needs to be changed. 770 // empty condition: 771 // When the last instruction in ROB commits and causes a flush, a redirect 772 // will be raised later. In such circumstances, the redirect robIdx is before 773 // the deqPtrVec_next(0) and will cause underflow. 774 walkCounter := Mux(isBefore(io.redirect.bits.robIdx, deqPtrVec_next(0)), 0.U, 775 redirectWalkDistance +& !io.redirect.bits.flushItself()) 776 }.elsewhen (state === s_walk) { 777 walkCounter := walkCounter - thisCycleWalkCount 778 XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n") 779 } 780 781 782 /** 783 * States 784 * We put all the stage bits changes here. 785 786 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 787 * All states: (1) valid; (2) writebacked; (3) flagBkup 788 */ 789 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 790 791 // redirect logic writes 6 valid 792 val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr)) 793 val redirectTail = Reg(new RobPtr) 794 val redirectIdle :: redirectBusy :: Nil = Enum(2) 795 val redirectState = RegInit(redirectIdle) 796 val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail)) 797 when(redirectState === redirectBusy) { 798 redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U) 799 redirectHeadVec zip invMask foreach { 800 case (redirectHead, inv) => when(inv) { 801 valid(redirectHead.value) := false.B 802 } 803 } 804 when(!invMask.last) { 805 redirectState := redirectIdle 806 } 807 } 808 when(io.redirect.valid) { 809 redirectState := redirectBusy 810 when(redirectState === redirectIdle) { 811 redirectTail := enqPtr 812 } 813 redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) => 814 redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 815 } 816 } 817 // enqueue logic writes 6 valid 818 for (i <- 0 until RenameWidth) { 819 when (canEnqueue(i) && !io.redirect.valid) { 820 valid(allocatePtrVec(i).value) := true.B 821 } 822 } 823 // dequeue logic writes 6 valid 824 for (i <- 0 until CommitWidth) { 825 val commitValid = io.commits.isCommit && io.commits.commitValid(i) 826 when (commitValid) { 827 valid(commitReadAddr(i)) := false.B 828 } 829 } 830 831 // status field: writebacked 832 // enqueue logic set 6 writebacked to false 833 for (i <- 0 until RenameWidth) { 834 when (canEnqueue(i)) { 835 val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec).asUInt.orR 836 val enqHasTriggerHit = io.enq.req(i).bits.trigger.getHitFrontend 837 val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove 838 writebacked(allocatePtrVec(i).value) := enqIsWritebacked && !enqHasException && !enqHasTriggerHit 839 val isStu = io.enq.req(i).bits.fuType === FuType.stu.U 840 store_data_writebacked(allocatePtrVec(i).value) := !isStu 841 } 842 } 843 when (exceptionGen.io.out.valid) { 844 val wbIdx = exceptionGen.io.out.bits.robIdx.value 845 writebacked(wbIdx) := true.B 846 store_data_writebacked(wbIdx) := true.B 847 } 848 // writeback logic set numWbPorts writebacked to true 849 for (wb <- exuWBs) { 850 when (wb.valid) { 851 val wbIdx = wb.bits.robIdx.value 852 val wbHasException = wb.bits.exceptionVec.getOrElse(0.U).asUInt.orR 853 val wbHasTriggerHit = false.B //Todo: wb.bits.trigger.getHitBackend 854 val wbHasFlushPipe = wb.bits.flushPipe.getOrElse(false.B) 855 val wbHasReplayInst = wb.bits.replay.getOrElse(false.B) //Todo: && wb.bits.replayInst 856 val block_wb = wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit 857 writebacked(wbIdx) := !block_wb 858 } 859 } 860 // store data writeback logic mark store as data_writebacked 861 for (wb <- stdWBs) { 862 when(RegNext(wb.valid)) { 863 store_data_writebacked(RegNext(wb.bits.robIdx.value)) := true.B 864 } 865 } 866 867 // flagBkup 868 // enqueue logic set 6 flagBkup at most 869 for (i <- 0 until RenameWidth) { 870 when (canEnqueue(i)) { 871 flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag 872 } 873 } 874 875 // interrupt_safe 876 for (i <- 0 until RenameWidth) { 877 // We RegNext the updates for better timing. 878 // Note that instructions won't change the system's states in this cycle. 879 when (RegNext(canEnqueue(i))) { 880 // For now, we allow non-load-store instructions to trigger interrupts 881 // For MMIO instructions, they should not trigger interrupts since they may 882 // be sent to lower level before it writes back. 883 // However, we cannot determine whether a load/store instruction is MMIO. 884 // Thus, we don't allow load/store instructions to trigger an interrupt. 885 // TODO: support non-MMIO load-store instructions to trigger interrupts 886 val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType) 887 interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts) 888 } 889 } 890 891 /** 892 * read and write of data modules 893 */ 894 val commitReadAddr_next = Mux(state_next === s_idle, 895 VecInit(deqPtrVec_next.map(_.value)), 896 VecInit(walkPtrVec_next.map(_.value)) 897 ) 898 dispatchData.io.wen := canEnqueue 899 dispatchData.io.waddr := allocatePtrVec.map(_.value) 900 dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) => 901 wdata.ldest := req.ldest 902 wdata.rfWen := req.rfWen 903 wdata.fpWen := req.fpWen 904 wdata.vecWen := req.vecWen 905 wdata.wflags := req.fpu.wflags 906 wdata.commitType := req.commitType 907 wdata.pdest := req.pdest 908 wdata.old_pdest := req.oldPdest 909 wdata.ftqIdx := req.ftqPtr 910 wdata.ftqOffset := req.ftqOffset 911 wdata.isMove := req.eliminatedMove 912 wdata.pc := req.pc 913 wdata.uopIdx := req.uopIdx 914// wdata.vconfig := req.vconfig 915 } 916 dispatchData.io.raddr := commitReadAddr_next 917 918 exceptionGen.io.redirect <> io.redirect 919 exceptionGen.io.flush := io.flushOut.valid 920 for (i <- 0 until RenameWidth) { 921 exceptionGen.io.enq(i).valid := canEnqueue(i) 922 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 923 exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec) 924 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe 925 exceptionGen.io.enq(i).bits.isVset := FuType.isInt(io.enq.req(i).bits.fuType) && ALUOpType.isVset(io.enq.req(i).bits.fuOpType) 926 exceptionGen.io.enq(i).bits.replayInst := false.B 927 XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst") 928 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep 929 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix 930 exceptionGen.io.enq(i).bits.trigger.clear() 931 exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.trigger.frontendHit 932 } 933 934 println(s"ExceptionGen:") 935 println(s"num of exceptions: ${params.numException}") 936 require(exceptionWBs.length == exceptionGen.io.wb.length, 937 f"exceptionWBs.length: ${exceptionWBs.length}, " + 938 f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}") 939 for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) { 940 exc_wb.valid := wb.valid 941 exc_wb.bits.robIdx := wb.bits.robIdx 942 exc_wb.bits.exceptionVec := wb.bits.exceptionVec.get 943 exc_wb.bits.flushPipe := wb.bits.flushPipe.getOrElse(false.B) 944 exc_wb.bits.isVset := false.B 945 exc_wb.bits.replayInst := wb.bits.replay.getOrElse(false.B) 946 exc_wb.bits.singleStep := false.B 947 exc_wb.bits.crossPageIPFFix := false.B 948 exc_wb.bits.trigger := 0.U.asTypeOf(exc_wb.bits.trigger) // Todo 949// println(s" [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " + 950// s"flushPipe ${configs.exists(_.flushPipe)}, " + 951// s"replayInst ${configs.exists(_.replayInst)}") 952 } 953 954 val fflagsDataModule = Module(new SyncDataModuleTemplate( 955 UInt(5.W), RobSize, CommitWidth, fflagsWBs.size) 956 ) 957 require(fflagsWBs.length == fflagsDataModule.io.wen.length) 958 for(i <- fflagsWBs.indices){ 959 fflagsDataModule.io.wen (i) := fflagsWBs(i).valid 960 fflagsDataModule.io.waddr(i) := fflagsWBs(i).bits.robIdx.value 961 fflagsDataModule.io.wdata(i) := fflagsWBs(i).bits.fflags.get 962 } 963 fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value)) 964 fflagsDataRead := fflagsDataModule.io.rdata 965 966 967 val instrCntReg = RegInit(0.U(64.W)) 968 val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) }) 969 val trueCommitCnt = RegNext(commitCnt) +& fuseCommitCnt 970 val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U) 971 val instrCnt = instrCntReg + retireCounter 972 instrCntReg := instrCnt 973 io.csr.perfinfo.retiredInstr := retireCounter 974 io.robFull := !allowEnqueue 975 976 /** 977 * debug info 978 */ 979 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 980 XSDebug("") 981 XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n") 982 for(i <- 0 until RobSize){ 983 XSDebug(false, !valid(i), "-") 984 XSDebug(false, valid(i) && writebacked(i), "w") 985 XSDebug(false, valid(i) && !writebacked(i), "v") 986 } 987 XSDebug(false, true.B, "\n") 988 989 for(i <- 0 until RobSize) { 990 if(i % 4 == 0) XSDebug("") 991 XSDebug(false, true.B, "%x ", debug_microOp(i).pc) 992 XSDebug(false, !valid(i), "- ") 993 XSDebug(false, valid(i) && writebacked(i), "w ") 994 XSDebug(false, valid(i) && !writebacked(i), "v ") 995 if(i % 4 == 3) XSDebug(false, true.B, "\n") 996 } 997 998 def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U) 999 def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U) 1000 1001 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 1002 XSPerfAccumulate("clock_cycle", 1.U) 1003 QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue) 1004 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 1005 XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt)) 1006 val commitIsMove = commitDebugUop.map(_.isMove) 1007 XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }))) 1008 val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) 1009 XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e }))) 1010 XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt)) 1011 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 1012 val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t } 1013 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 1014 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 1015 val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t } 1016 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 1017 val commitLoadWaitBit = commitDebugUop.map(_.loadWaitBit) 1018 XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))) 1019 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 1020 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }))) 1021 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i)))) 1022 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire))) 1023 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 1024 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)) 1025 XSPerfAccumulate("walkCycle", state === s_walk) 1026 val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value) 1027 val deqUopCommitType = io.commits.info(0).commitType 1028 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 1029 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 1030 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 1031 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 1032 XSPerfAccumulate("robHeadPC", io.commits.info(0).pc) 1033 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 1034 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 1035 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 1036 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 1037 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 1038 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 1039 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 1040 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 1041 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 1042 } 1043 for (fuType <- FuType.functionNameMap.keys) { 1044 val fuName = FuType.functionNameMap(fuType) 1045 val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U ) 1046 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 1047 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 1048 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 1049 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 1050 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 1051 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 1052 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 1053 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 1054 if (fuType == FuType.fmac) { 1055 val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.fpu.ren3 ) 1056 XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma))) 1057 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency))) 1058 XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency))) 1059 } 1060 } 1061 1062 //difftest signals 1063 val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value 1064 1065 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1066 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1067 1068 for(i <- 0 until CommitWidth) { 1069 val idx = deqPtrVec(i).value 1070 wdata(i) := debug_exuData(idx) 1071 wpc(i) := SignExt(commitDebugUop(i).pc, XLEN) 1072 } 1073 1074 if (env.EnableDifftest) { 1075 for (i <- 0 until CommitWidth) { 1076 val difftest = Module(new DifftestInstrCommit) 1077 // assgin default value 1078 difftest.io := DontCare 1079 1080 difftest.io.clock := clock 1081 difftest.io.coreid := io.hartId 1082 difftest.io.index := i.U 1083 1084 val ptr = deqPtrVec(i).value 1085 val uop = commitDebugUop(i) 1086 val exuOut = debug_exuDebug(ptr) 1087 val exuData = debug_exuData(ptr) 1088 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1089 difftest.io.pc := RegNext(RegNext(RegNext(SignExt(uop.pc, XLEN)))) 1090 difftest.io.instr := RegNext(RegNext(RegNext(uop.instr))) 1091 difftest.io.robIdx := RegNext(RegNext(RegNext(ZeroExt(ptr, 10)))) 1092 difftest.io.lqIdx := RegNext(RegNext(RegNext(ZeroExt(uop.lqIdx.value, 7)))) 1093 difftest.io.sqIdx := RegNext(RegNext(RegNext(ZeroExt(uop.sqIdx.value, 7)))) 1094 difftest.io.isLoad := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.LOAD))) 1095 difftest.io.isStore := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.STORE))) 1096 difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(io.commits.info(i).commitType)))) 1097 // when committing an eliminated move instruction, 1098 // we must make sure that skip is properly set to false (output from EXU is random value) 1099 difftest.io.skip := RegNext(RegNext(RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)))) 1100 difftest.io.isRVC := RegNext(RegNext(RegNext(uop.preDecodeInfo.isRVC))) 1101 difftest.io.rfwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U))) 1102 difftest.io.fpwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).fpWen))) 1103 difftest.io.wpdest := RegNext(RegNext(RegNext(io.commits.info(i).pdest))) 1104 difftest.io.wdest := RegNext(RegNext(RegNext(io.commits.info(i).ldest))) 1105 1106 difftest.io.isVsetFirst := RegNext(RegNext(RegNext(io.commits.commitValid(i) && !io.commits.info(i).uopIdx.orR))) 1107 // // runahead commit hint 1108 // val runahead_commit = Module(new DifftestRunaheadCommitEvent) 1109 // runahead_commit.io.clock := clock 1110 // runahead_commit.io.coreid := io.hartId 1111 // runahead_commit.io.index := i.U 1112 // runahead_commit.io.valid := difftest.io.valid && 1113 // (commitBranchValid(i) || commitIsStore(i)) 1114 // // TODO: is branch or store 1115 // runahead_commit.io.pc := difftest.io.pc 1116 } 1117 } 1118 else if (env.AlwaysBasicDiff) { 1119 // These are the structures used by difftest only and should be optimized after synthesis. 1120 val dt_eliminatedMove = Mem(RobSize, Bool()) 1121 val dt_isRVC = Mem(RobSize, Bool()) 1122 val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) 1123 for (i <- 0 until RenameWidth) { 1124 when (canEnqueue(i)) { 1125 dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 1126 dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC 1127 } 1128 } 1129 for (wb <- exuWBs) { 1130 when (wb.valid) { 1131 val wbIdx = wb.bits.robIdx.value 1132 dt_exuDebug(wbIdx) := wb.bits.debug 1133 } 1134 } 1135 // Always instantiate basic difftest modules. 1136 for (i <- 0 until CommitWidth) { 1137 val commitInfo = io.commits.info(i) 1138 val ptr = deqPtrVec(i).value 1139 val exuOut = dt_exuDebug(ptr) 1140 val eliminatedMove = dt_eliminatedMove(ptr) 1141 val isRVC = dt_isRVC(ptr) 1142 1143 val difftest = Module(new DifftestBasicInstrCommit) 1144 difftest.io.clock := clock 1145 difftest.io.coreid := io.hartId 1146 difftest.io.index := i.U 1147 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1148 difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(commitInfo.commitType)))) 1149 difftest.io.skip := RegNext(RegNext(RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)))) 1150 difftest.io.isRVC := RegNext(RegNext(RegNext(isRVC))) 1151 difftest.io.rfwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U))) 1152 difftest.io.fpwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.fpWen))) 1153 difftest.io.wpdest := RegNext(RegNext(RegNext(commitInfo.pdest))) 1154 difftest.io.wdest := RegNext(RegNext(RegNext(commitInfo.ldest))) 1155 } 1156 } 1157 1158 if (env.EnableDifftest) { 1159 for (i <- 0 until CommitWidth) { 1160 val difftest = Module(new DifftestLoadEvent) 1161 difftest.io.clock := clock 1162 difftest.io.coreid := io.hartId 1163 difftest.io.index := i.U 1164 1165 val ptr = deqPtrVec(i).value 1166 val uop = commitDebugUop(i) 1167 val exuOut = debug_exuDebug(ptr) 1168 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1169 difftest.io.paddr := RegNext(RegNext(RegNext(exuOut.paddr))) 1170 difftest.io.opType := RegNext(RegNext(RegNext(uop.fuOpType))) 1171 difftest.io.fuType := RegNext(RegNext(RegNext(uop.fuType))) 1172 } 1173 } 1174 1175 // Always instantiate basic difftest modules. 1176 if (env.EnableDifftest) { 1177 val dt_isXSTrap = Mem(RobSize, Bool()) 1178 for (i <- 0 until RenameWidth) { 1179 when (canEnqueue(i)) { 1180 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap 1181 } 1182 } 1183 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) } 1184 val hitTrap = trapVec.reduce(_||_) 1185 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 1186 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN) 1187 val difftest = Module(new DifftestTrapEvent) 1188 difftest.io.clock := clock 1189 difftest.io.coreid := io.hartId 1190 difftest.io.valid := hitTrap 1191 difftest.io.code := trapCode 1192 difftest.io.pc := trapPC 1193 difftest.io.cycleCnt := timer 1194 difftest.io.instrCnt := instrCnt 1195 difftest.io.hasWFI := hasWFI 1196 } 1197 else if (env.AlwaysBasicDiff) { 1198 val dt_isXSTrap = Mem(RobSize, Bool()) 1199 for (i <- 0 until RenameWidth) { 1200 when (canEnqueue(i)) { 1201 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap 1202 } 1203 } 1204 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) } 1205 val hitTrap = trapVec.reduce(_||_) 1206 val difftest = Module(new DifftestBasicTrapEvent) 1207 difftest.io.clock := clock 1208 difftest.io.coreid := io.hartId 1209 difftest.io.valid := hitTrap 1210 difftest.io.cycleCnt := timer 1211 difftest.io.instrCnt := instrCnt 1212 } 1213 1214 val validEntriesBanks = (0 until (RobSize + 63) / 64).map(i => RegNext(PopCount(valid.drop(i * 64).take(64)))) 1215 val validEntries = RegNext(ParallelOperation(validEntriesBanks, (a: UInt, b: UInt) => a +& b)) 1216 val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }) 1217 val commitLoadVec = VecInit(commitLoadValid) 1218 val commitBranchVec = VecInit(commitBranchValid) 1219 val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }) 1220 val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }) 1221 val perfEvents = Seq( 1222 ("rob_interrupt_num ", io.flushOut.valid && intrEnable ), 1223 ("rob_exception_num ", io.flushOut.valid && exceptionEnable ), 1224 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe ), 1225 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst ), 1226 ("rob_commitUop ", ifCommit(commitCnt) ), 1227 ("rob_commitInstr ", ifCommitReg(trueCommitCnt) ), 1228 ("rob_commitInstrMove ", ifCommitReg(PopCount(RegNext(commitMoveVec))) ), 1229 ("rob_commitInstrFused ", ifCommitReg(fuseCommitCnt) ), 1230 ("rob_commitInstrLoad ", ifCommitReg(PopCount(RegNext(commitLoadVec))) ), 1231 ("rob_commitInstrBranch ", ifCommitReg(PopCount(RegNext(commitBranchVec))) ), 1232 ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec))) ), 1233 ("rob_commitInstrStore ", ifCommitReg(PopCount(RegNext(commitStoreVec))) ), 1234 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U) ), 1235 ("rob_walkCycle ", (state === s_walk) ), 1236 ("rob_1_4_valid ", validEntries <= (RobSize / 4).U ), 1237 ("rob_2_4_valid ", validEntries > (RobSize / 4).U && validEntries <= (RobSize / 2).U ), 1238 ("rob_3_4_valid ", validEntries > (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U), 1239 ("rob_4_4_valid ", validEntries > (RobSize * 3 / 4).U ), 1240 ) 1241 generatePerfEvent() 1242} 1243