xref: /XiangShan/src/main/scala/xiangshan/backend/rob/Rob.scala (revision 124bf66ab86a0eea8a5ebddde77457289668a0e7)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.backend.rob
18
19import chipsalliance.rocketchip.config.Parameters
20import chisel3._
21import chisel3.util._
22import difftest._
23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp}
24import utility._
25import utils._
26import xiangshan._
27import xiangshan.frontend.FtqPtr
28import xiangshan.mem.{LqPtr, SqPtr}
29import xiangshan.v2backend.Bundles.{DynInst, ExceptionInfo, ExuOutput}
30import xiangshan.v2backend.{BackendParams, FuType}
31
32class RobPtr(entries: Int) extends CircularQueuePtr[RobPtr](
33  entries
34) with HasCircularQueuePtrHelper {
35
36  def this()(implicit p: Parameters) = this(p(XSCoreParamsKey).RobSize)
37
38  def needFlush(redirect: Valid[Redirect]): Bool = {
39    val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx
40    redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx))
41  }
42
43  def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR
44}
45
46object RobPtr {
47  def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = {
48    val ptr = Wire(new RobPtr)
49    ptr.flag := f
50    ptr.value := v
51    ptr
52  }
53}
54
55class RobCSRIO(implicit p: Parameters) extends XSBundle {
56  val intrBitSet = Input(Bool())
57  val trapTarget = Input(UInt(VAddrBits.W))
58  val isXRet     = Input(Bool())
59  val wfiEvent   = Input(Bool())
60
61  val fflags     = Output(Valid(UInt(5.W)))
62  val dirty_fs   = Output(Bool())
63  val perfinfo   = new Bundle {
64    val retiredInstr = Output(UInt(3.W))
65  }
66
67  val vcsrFlag   = Output(Bool())
68}
69
70class RobLsqIO(implicit p: Parameters) extends XSBundle {
71  val lcommit = Output(UInt(log2Up(CommitWidth + 1).W))
72  val scommit = Output(UInt(log2Up(CommitWidth + 1).W))
73  val pendingld = Output(Bool())
74  val pendingst = Output(Bool())
75  val commit = Output(Bool())
76}
77
78class RobEnqIO(implicit p: Parameters) extends XSBundle {
79  val canAccept = Output(Bool())
80  val isEmpty = Output(Bool())
81  // valid vector, for robIdx gen and walk
82  val needAlloc = Vec(RenameWidth, Input(Bool()))
83  val req = Vec(RenameWidth, Flipped(ValidIO(new DynInst)))
84  val resp = Vec(RenameWidth, Output(new RobPtr))
85}
86
87class RobDispatchData(implicit p: Parameters) extends RobCommitInfo
88
89class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
90  val io = IO(new Bundle {
91    // for commits/flush
92    val state = Input(UInt(2.W))
93    val deq_v = Vec(CommitWidth, Input(Bool()))
94    val deq_w = Vec(CommitWidth, Input(Bool()))
95    val exception_state = Flipped(ValidIO(new RobExceptionInfo))
96    // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth)
97    val intrBitSetReg = Input(Bool())
98    val hasNoSpecExec = Input(Bool())
99    val interrupt_safe = Input(Bool())
100    val blockCommit = Input(Bool())
101    // output: the CommitWidth deqPtr
102    val out = Vec(CommitWidth, Output(new RobPtr))
103    val next_out = Vec(CommitWidth, Output(new RobPtr))
104  })
105
106  val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr))))
107
108  // for exceptions (flushPipe included) and interrupts:
109  // only consider the first instruction
110  val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe
111  val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0)
112  val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable)
113
114  // for normal commits: only to consider when there're no exceptions
115  // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions.
116  val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last)
117  val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i)))
118  val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B)
119  // when io.intrBitSetReg or there're possible exceptions in these instructions,
120  // only one instruction is allowed to commit
121  val allowOnlyOne = commit_exception || io.intrBitSetReg
122  val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt)
123
124  val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt))
125  val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec)
126
127  deqPtrVec := deqPtrVec_next
128
129  io.next_out := deqPtrVec_next
130  io.out      := deqPtrVec
131
132  when (io.state === 0.U) {
133    XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt)
134  }
135
136}
137
138class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
139  val io = IO(new Bundle {
140    // for input redirect
141    val redirect = Input(Valid(new Redirect))
142    // for enqueue
143    val allowEnqueue = Input(Bool())
144    val hasBlockBackward = Input(Bool())
145    val enq = Vec(RenameWidth, Input(Bool()))
146    val out = Output(Vec(RenameWidth, new RobPtr))
147  })
148
149  val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr)))
150
151  // enqueue
152  val canAccept = io.allowEnqueue && !io.hasBlockBackward
153  val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U)
154
155  for ((ptr, i) <- enqPtrVec.zipWithIndex) {
156    when(io.redirect.valid) {
157      ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
158    }.otherwise {
159      ptr := ptr + dispatchNum
160    }
161  }
162
163  io.out := enqPtrVec
164
165}
166
167class RobExceptionInfo(implicit p: Parameters) extends XSBundle {
168  // val valid = Bool()
169  val robIdx = new RobPtr
170  val exceptionVec = ExceptionVec()
171  val flushPipe = Bool()
172  val isVset = Bool()
173  val replayInst = Bool() // redirect to that inst itself
174  val singleStep = Bool() // TODO add frontend hit beneath
175  val crossPageIPFFix = Bool()
176  val trigger = new TriggerCf
177
178//  def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend
179//  def trigger_after = trigger.getTimingBackend && trigger.getHitBackend
180  def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit
181  def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit
182  // only exceptions are allowed to writeback when enqueue
183  def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit
184}
185
186class ExceptionGen(params: BackendParams)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
187  val io = IO(new Bundle {
188    val redirect = Input(Valid(new Redirect))
189    val flush = Input(Bool())
190    val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo)))
191    // csr + load + store
192    val wb = Vec(params.numException, Flipped(ValidIO(new RobExceptionInfo)))
193    val out = ValidIO(new RobExceptionInfo)
194    val state = ValidIO(new RobExceptionInfo)
195  })
196
197  def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = {
198    assert(valid.length == bits.length)
199    assert(isPow2(valid.length))
200    if (valid.length == 1) {
201      (valid, bits)
202    } else if (valid.length == 2) {
203      val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0)))))
204      for (i <- res.indices) {
205        res(i).valid := valid(i)
206        res(i).bits := bits(i)
207      }
208      val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1))
209      (Seq(oldest.valid), Seq(oldest.bits))
210    } else {
211      val left = getOldest(valid.take(valid.length / 2), bits.take(valid.length / 2))
212      val right = getOldest(valid.takeRight(valid.length / 2), bits.takeRight(valid.length / 2))
213      getOldest(left._1 ++ right._1, left._2 ++ right._2)
214    }
215  }
216
217  val currentValid = RegInit(false.B)
218  val current = Reg(new RobExceptionInfo)
219
220  // orR the exceptionVec
221  val lastCycleFlush = RegNext(io.flush)
222  val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush))
223  val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush)
224
225  // s0: compare wb(1)~wb(LoadPipelineWidth) and wb(1 + LoadPipelineWidth)~wb(LoadPipelineWidth + StorePipelineWidth)
226  val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }
227  val csr_wb_bits = io.wb(0).bits
228  val load_wb_bits = getOldest(in_wb_valid.slice(1, 1 + LoadPipelineWidth), io.wb.map(_.bits).slice(1, 1 + LoadPipelineWidth))._2(0)
229  val store_wb_bits = getOldest(in_wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth), io.wb.map(_.bits).slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth))._2(0)
230  val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid.slice(1, 1 + LoadPipelineWidth).reduce(_ || _), wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth).reduce(_ || _))))
231  val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits)))
232
233  // s1: compare last four and current flush
234  val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) })
235  val compare_01_valid = s0_out_valid(0) || s0_out_valid(1)
236  val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0))
237  val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2))
238  val s1_out_bits = RegNext(compare_bits)
239  val s1_out_valid = RegNext(s1_valid.asUInt.orR)
240
241  val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush)
242  val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits)))
243
244  // s2: compare the input exception with the current one
245  // priorities:
246  // (1) system reset
247  // (2) current is valid: flush, remain, merge, update
248  // (3) current is not valid: s1 or enq
249  val current_flush = current.robIdx.needFlush(io.redirect) || io.flush
250  val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush
251  when (currentValid) {
252    when (current_flush) {
253      currentValid := Mux(s1_flush, false.B, s1_out_valid)
254    }
255    when (s1_out_valid && !s1_flush) {
256      when (isAfter(current.robIdx, s1_out_bits.robIdx)) {
257        current := s1_out_bits
258      }.elsewhen (current.robIdx === s1_out_bits.robIdx) {
259        current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec())
260        current.flushPipe := s1_out_bits.flushPipe || current.flushPipe
261        current.replayInst := s1_out_bits.replayInst || current.replayInst
262        current.singleStep := s1_out_bits.singleStep || current.singleStep
263        current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf)
264      }
265    }
266  }.elsewhen (s1_out_valid && !s1_flush) {
267    currentValid := true.B
268    current := s1_out_bits
269  }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) {
270    currentValid := true.B
271    current := enq_bits
272  }
273
274  io.out.valid   := s1_out_valid || enq_valid && enq_bits.can_writeback
275  io.out.bits    := Mux(s1_out_valid, s1_out_bits, enq_bits)
276  io.state.valid := currentValid
277  io.state.bits  := current
278
279}
280
281class RobFlushInfo(implicit p: Parameters) extends XSBundle {
282  val ftqIdx = new FtqPtr
283  val robIdx = new RobPtr
284  val ftqOffset = UInt(log2Up(PredictWidth).W)
285  val replayInst = Bool()
286}
287
288class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter {
289
290  lazy val module = new RobImp(this)(p, params)
291  //
292  //  override def generateWritebackIO(
293  //    thisMod: Option[HasWritebackSource] = None,
294  //    thisModImp: Option[HasWritebackSourceImp] = None
295  //  ): Unit = {
296  //    val sources = writebackSinksImp(thisMod, thisModImp)
297  //    module.io.writeback.zip(sources).foreach(x => x._1 := x._2)
298  //  }
299  //}
300}
301
302class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper)
303  with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents {
304
305  val io = IO(new Bundle() {
306    val hartId = Input(UInt(8.W))
307    val redirect = Input(Valid(new Redirect))
308    val enq = new RobEnqIO
309    val flushOut = ValidIO(new Redirect)
310    val isVsetFlushPipe = Output(Bool())
311    val exception = ValidIO(new ExceptionInfo)
312    // exu + brq
313    val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles)
314    val commits = Output(new RobCommitIO)
315    val lsq = new RobLsqIO
316    val robDeqPtr = Output(new RobPtr)
317    val csr = new RobCSRIO
318    val robFull = Output(Bool())
319    val cpu_halt = Output(Bool())
320    val wfi_enable = Input(Bool())
321  })
322
323  val exuWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(!_.bits.params.hasStdFu)
324  val stdWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(_.bits.params.hasStdFu)
325  val fflagsWBs = io.writeback.filter(x => x.bits.fflags.nonEmpty)
326  val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty)
327  val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty)
328
329  val exuWbPorts = io.writeback.filter(!_.bits.params.hasStdFu)
330  val stdWbPorts = io.writeback.filter(_.bits.params.hasStdFu)
331  val fflagsPorts = io.writeback.filter(x => x.bits.fflags.nonEmpty)
332  val exceptionPorts = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty)
333  val numExuWbPorts = exuWBs.length
334  val numStdWbPorts = stdWBs.length
335
336
337  println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth")
338//  println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}")
339//  println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}")
340//  println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}")
341
342
343  // instvalid field
344  val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
345  // writeback status
346  val writebacked = Mem(RobSize, Bool())
347  val store_data_writebacked = Mem(RobSize, Bool())
348  // data for redirect, exception, etc.
349  val flagBkup = Mem(RobSize, Bool())
350  // some instructions are not allowed to trigger interrupts
351  // They have side effects on the states of the processor before they write back
352  val interrupt_safe = Mem(RobSize, Bool())
353
354  // data for debug
355  // Warn: debug_* prefix should not exist in generated verilog.
356  val debug_microOp = Mem(RobSize, new DynInst)
357  val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug
358  val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug
359
360  // pointers
361  // For enqueue ptr, we don't duplicate it since only enqueue needs it.
362  val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr))
363  val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr))
364
365  val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr))
366  val allowEnqueue = RegInit(true.B)
367
368  val enqPtr = enqPtrVec.head
369  val deqPtr = deqPtrVec(0)
370  val walkPtr = walkPtrVec(0)
371
372  val isEmpty = enqPtr === deqPtr
373  val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level)
374
375  /**
376    * states of Rob
377    */
378  val s_idle :: s_walk :: Nil = Enum(2)
379  val state = RegInit(s_idle)
380
381  /**
382    * Data Modules
383    *
384    * CommitDataModule: data from dispatch
385    * (1) read: commits/walk/exception
386    * (2) write: enqueue
387    *
388    * WritebackData: data from writeback
389    * (1) read: commits/walk/exception
390    * (2) write: write back from exe units
391    */
392  val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth))
393  val dispatchDataRead = dispatchData.io.rdata
394
395  val exceptionGen = Module(new ExceptionGen(params))
396  val exceptionDataRead = exceptionGen.io.state
397  val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W)))
398
399  io.robDeqPtr := deqPtr
400
401  /**
402    * Enqueue (from dispatch)
403    */
404  // special cases
405  val hasBlockBackward = RegInit(false.B)
406  val hasWaitForward = RegInit(false.B)
407  val doingSvinval = RegInit(false.B)
408  // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B
409  // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty.
410  when (isEmpty) { hasBlockBackward:= false.B }
411  // When any instruction commits, hasNoSpecExec should be set to false.B
412  when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasWaitForward:= false.B }
413
414  // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing.
415  // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle.
416  // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts.
417  val hasWFI = RegInit(false.B)
418  io.cpu_halt := hasWFI
419  // WFI Timeout: 2^20 = 1M cycles
420  val wfi_cycles = RegInit(0.U(20.W))
421  when (hasWFI) {
422    wfi_cycles := wfi_cycles + 1.U
423  }.elsewhen (!hasWFI && RegNext(hasWFI)) {
424    wfi_cycles := 0.U
425  }
426  val wfi_timeout = wfi_cycles.andR
427  when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) {
428    hasWFI := false.B
429  }
430
431  val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.needAlloc.take(i)))))
432  io.enq.canAccept := allowEnqueue && !hasBlockBackward
433  io.enq.resp      := allocatePtrVec
434  val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept))
435  val timer = GTimer()
436  for (i <- 0 until RenameWidth) {
437    // we don't check whether io.redirect is valid here since redirect has higher priority
438    when (canEnqueue(i)) {
439      val enqUop = io.enq.req(i).bits
440      val enqIndex = allocatePtrVec(i).value
441      // store uop in data module and debug_microOp Vec
442      debug_microOp(enqIndex) := enqUop
443      debug_microOp(enqIndex).debugInfo.dispatchTime := timer
444      debug_microOp(enqIndex).debugInfo.enqRsTime := timer
445      debug_microOp(enqIndex).debugInfo.selectTime := timer
446      debug_microOp(enqIndex).debugInfo.issueTime := timer
447      debug_microOp(enqIndex).debugInfo.writebackTime := timer
448      when (enqUop.blockBackward) {
449        hasBlockBackward := true.B
450      }
451      when (enqUop.waitForward) {
452        hasWaitForward := true.B
453      }
454      val enqHasTriggerHit = false.B // io.enq.req(i).bits.cf.trigger.getHitFrontend
455      val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR
456      // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process
457      when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe))
458      {
459        doingSvinval := true.B
460      }
461      // the end instruction of Svinval enqs so clear doingSvinval
462      when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe))
463      {
464        doingSvinval := false.B
465      }
466      // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear
467      assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe)))
468      when (enqUop.isWFI && !enqHasException && !enqHasTriggerHit) {
469        hasWFI := true.B
470      }
471    }
472  }
473  val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(_.valid)), 0.U)
474  io.enq.isEmpty   := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR)
475
476  when (!io.wfi_enable) {
477    hasWFI := false.B
478  }
479  // sel vsetvl's flush position
480  val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3)
481  val vsetvlState = RegInit(vs_idle)
482
483  val firstVInstrFtqPtr    = RegInit(0.U.asTypeOf(new FtqPtr))
484  val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W)))
485  val firstVInstrRobIdx    = RegInit(0.U.asTypeOf(new RobPtr))
486
487  val enq0            = io.enq.req(0)
488  val enq0IsVset      = FuType.isInt(enq0.bits.fuType) && ALUOpType.isVset(enq0.bits.fuOpType) && enq0.bits.uopIdx.andR && canEnqueue(0)
489  val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe
490  val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVpu(req.bits.fuType) && fire}
491  // for vs_idle
492  val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType)))
493  // for vs_waitVinstr
494  val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1)
495  val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req)
496  when(vsetvlState === vs_idle){
497    firstVInstrFtqPtr    := firstVInstrIdle.bits.ftqPtr
498    firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset
499    firstVInstrRobIdx    := firstVInstrIdle.bits.robIdx
500  }.elsewhen(vsetvlState === vs_waitVinstr){
501    firstVInstrFtqPtr    := firstVInstrWait.bits.ftqPtr
502    firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset
503    firstVInstrRobIdx    := firstVInstrWait.bits.robIdx
504  }
505
506  val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR
507  when(vsetvlState === vs_idle){
508    when(enq0IsVsetFlush){
509      vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr)
510    }
511  }.elsewhen(vsetvlState === vs_waitVinstr){
512    when(io.redirect.valid){
513      vsetvlState := vs_idle
514    }.elsewhen(Cat(enqIsVInstrOrVset).orR){
515      vsetvlState := vs_waitFlush
516    }
517  }.elsewhen(vsetvlState === vs_waitFlush){
518    when(io.redirect.valid){
519      vsetvlState := vs_idle
520    }
521  }
522
523  /**
524    * Writeback (from execution units)
525    */
526  for (wb <- exuWBs) {
527    when (wb.valid) {
528      val wbIdx = wb.bits.robIdx.value
529      debug_exuData(wbIdx) := wb.bits.data
530      debug_exuDebug(wbIdx) := wb.bits.debug
531      debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime
532      debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime
533      debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime
534      debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime
535
536      // debug for lqidx and sqidx
537      debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr))
538      debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr))
539
540      val debug_Uop = debug_microOp(wbIdx)
541      XSInfo(true.B,
542        p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " +
543        p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " +
544        p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.robIdx}\n"
545      )
546    }
547  }
548
549  val writebackNum = PopCount(exuWBs.map(_.valid))
550  XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum)
551
552
553  /**
554    * RedirectOut: Interrupt and Exceptions
555    */
556  val deqDispatchData = dispatchDataRead(0)
557  val debug_deqUop = debug_microOp(deqPtr.value)
558
559  val intrBitSetReg = RegNext(io.csr.intrBitSet)
560  val intrEnable = intrBitSetReg && !hasWaitForward && interrupt_safe(deqPtr.value)
561  val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr
562  val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR ||
563    exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit)
564  val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe
565  val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst
566  val exceptionEnable = writebacked(deqPtr.value) && deqHasException
567
568  XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n")
569  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n")
570  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n")
571
572  val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst)
573
574  val isVsetFlushPipe = writebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset
575  val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush)
576  io.isVsetFlushPipe := RegNext(isVsetFlushPipe)
577  // io.flushOut will trigger redirect at the next cycle.
578  // Block any redirect or commit at the next cycle.
579  val lastCycleFlush = RegNext(io.flushOut.valid)
580
581  io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush
582  io.flushOut.bits := DontCare
583  io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr)
584  io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx)
585  io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset)
586  io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next"
587  io.flushOut.bits.interrupt := true.B
588  XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable)
589  XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable)
590  XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe)
591  XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst)
592
593  val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush
594  io.exception.valid                := RegNext(exceptionHappen)
595  io.exception.bits.pc              := RegEnable(debug_deqUop.pc, exceptionHappen)
596  io.exception.bits.instr           := RegEnable(debug_deqUop.instr, exceptionHappen)
597  io.exception.bits.commitType      := RegEnable(deqDispatchData.commitType, exceptionHappen)
598  io.exception.bits.exceptionVec    := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen)
599  io.exception.bits.singleStep      := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen)
600  io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen)
601  io.exception.bits.isInterrupt     := RegEnable(intrEnable, exceptionHappen)
602//  io.exception.bits.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen)
603
604  XSDebug(io.flushOut.valid,
605    p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " +
606    p"excp $exceptionEnable flushPipe $isFlushPipe " +
607    p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n")
608
609
610  /**
611    * Commits (and walk)
612    * They share the same width.
613    */
614  val walkCounter = Reg(UInt(log2Up(RobSize + 1).W))
615  val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter))
616  val walkFinished = walkCounter <= CommitWidth.U
617
618  require(RenameWidth <= CommitWidth)
619
620  // wiring to csr
621  val (wflags, fpWen) = (0 until CommitWidth).map(i => {
622    val v = io.commits.commitValid(i)
623    val info = io.commits.info(i)
624    (v & info.wflags, v & info.fpWen)
625  }).unzip
626  val fflags = Wire(Valid(UInt(5.W)))
627  fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR
628  fflags.bits := wflags.zip(fflagsDataRead).map({
629    case (w, f) => Mux(w, f, 0.U)
630  }).reduce(_|_)
631  val dirty_fs = io.commits.isCommit && VecInit(fpWen).asUInt.orR
632
633  // when mispredict branches writeback, stop commit in the next 2 cycles
634  // TODO: don't check all exu write back
635  val misPredWb = Cat(VecInit(redirectWBs.map(wb =>
636    wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid
637  ))).orR
638  val misPredBlockCounter = Reg(UInt(3.W))
639  misPredBlockCounter := Mux(misPredWb,
640    "b111".U,
641    misPredBlockCounter >> 1.U
642  )
643  val misPredBlock = misPredBlockCounter(0)
644  val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI
645
646  io.commits.isWalk := state === s_walk
647  io.commits.isCommit := state === s_idle && !blockCommit
648  val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value)))
649  val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value)))
650  // store will be commited iff both sta & std have been writebacked
651  val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value)))
652  val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last)
653  val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i)))
654  val allowOnlyOneCommit = commit_exception || intrBitSetReg
655  // for instructions that may block others, we don't allow them to commit
656  for (i <- 0 until CommitWidth) {
657    // defaults: state === s_idle and instructions commit
658    // when intrBitSetReg, allow only one instruction to commit at each clock cycle
659    val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst
660    io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked
661    io.commits.info(i)  := dispatchDataRead(i)
662
663    when (state === s_walk) {
664      io.commits.walkValid(i) := shouldWalkVec(i)
665      when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) {
666        XSError(!walk_v(i), s"why not $i???\n")
667      }
668    }
669
670    XSInfo(io.commits.isCommit && io.commits.commitValid(i),
671      "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b\n",
672      debug_microOp(deqPtrVec(i).value).pc,
673      io.commits.info(i).rfWen,
674      io.commits.info(i).ldest,
675      io.commits.info(i).pdest,
676      io.commits.info(i).old_pdest,
677      debug_exuData(deqPtrVec(i).value),
678      fflagsDataRead(i)
679    )
680    XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n",
681      debug_microOp(walkPtrVec(i).value).pc,
682      io.commits.info(i).rfWen,
683      io.commits.info(i).ldest,
684      debug_exuData(walkPtrVec(i).value)
685    )
686  }
687  if (env.EnableDifftest) {
688    io.commits.info.map(info => dontTouch(info.pc))
689  }
690
691  // sync fflags/dirty_fs to csr
692  io.csr.fflags := RegNext(fflags)
693  io.csr.dirty_fs := RegNext(dirty_fs)
694
695  // sync v csr to csr
696//  io.csr.vcsrFlag := RegNext(isVsetFlushPipe)
697
698  // commit load/store to lsq
699  val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD))
700  val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE))
701  io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U))
702  io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U))
703  // indicate a pending load or store
704  io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value))
705  io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value))
706  io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0))
707
708  /**
709    * state changes
710    * (1) redirect: switch to s_walk
711    * (2) walk: when walking comes to the end, switch to s_idle
712    */
713  val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished, s_idle, state))
714  XSPerfAccumulate("s_idle_to_idle",            state === s_idle && state_next === s_idle)
715  XSPerfAccumulate("s_idle_to_walk",            state === s_idle && state_next === s_walk)
716  XSPerfAccumulate("s_walk_to_idle",            state === s_walk && state_next === s_idle)
717  XSPerfAccumulate("s_walk_to_walk",            state === s_walk && state_next === s_walk)
718  state := state_next
719
720  /**
721    * pointers and counters
722    */
723  val deqPtrGenModule = Module(new RobDeqPtrWrapper)
724  deqPtrGenModule.io.state := state
725  deqPtrGenModule.io.deq_v := commit_v
726  deqPtrGenModule.io.deq_w := commit_w
727  deqPtrGenModule.io.exception_state := exceptionDataRead
728  deqPtrGenModule.io.intrBitSetReg := intrBitSetReg
729  deqPtrGenModule.io.hasNoSpecExec := hasWaitForward
730  deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value)
731  deqPtrGenModule.io.blockCommit := blockCommit
732  deqPtrVec := deqPtrGenModule.io.out
733  val deqPtrVec_next = deqPtrGenModule.io.next_out
734
735  val enqPtrGenModule = Module(new RobEnqPtrWrapper)
736  enqPtrGenModule.io.redirect := io.redirect
737  enqPtrGenModule.io.allowEnqueue := allowEnqueue
738  enqPtrGenModule.io.hasBlockBackward := hasBlockBackward
739  enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid))
740  enqPtrVec := enqPtrGenModule.io.out
741
742  val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U)
743  // next walkPtrVec:
744  // (1) redirect occurs: update according to state
745  // (2) walk: move forwards
746  val walkPtrVec_next = Mux(io.redirect.valid,
747    deqPtrVec_next,
748    Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec)
749  )
750  walkPtrVec := walkPtrVec_next
751
752  val numValidEntries = distanceBetween(enqPtr, deqPtr)
753  val isLastUopVec = io.commits.info.map(_.uopIdx.andR)
754  val commitCnt = PopCount(io.commits.commitValid.zip(isLastUopVec).map{case(isCommitValid, isLastUop) => isCommitValid && isLastUop})
755
756  allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U
757
758  val currentWalkPtr = Mux(state === s_walk, walkPtr, deqPtrVec_next(0))
759  val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0))
760  when (io.redirect.valid) {
761    // full condition:
762    // +& is used here because:
763    // When rob is full and the tail instruction causes a misprediction,
764    // the redirect robIdx is the deqPtr - 1. In this case, redirectWalkDistance
765    // is RobSize - 1.
766    // Since misprediction does not flush the instruction itself, flushItSelf is false.B.
767    // Previously we use `+` to count the walk distance and it causes overflows
768    // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize.
769    // The width of walkCounter also needs to be changed.
770    // empty condition:
771    // When the last instruction in ROB commits and causes a flush, a redirect
772    // will be raised later. In such circumstances, the redirect robIdx is before
773    // the deqPtrVec_next(0) and will cause underflow.
774    walkCounter := Mux(isBefore(io.redirect.bits.robIdx, deqPtrVec_next(0)), 0.U,
775                       redirectWalkDistance +& !io.redirect.bits.flushItself())
776  }.elsewhen (state === s_walk) {
777    walkCounter := walkCounter - thisCycleWalkCount
778    XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n")
779  }
780
781
782  /**
783    * States
784    * We put all the stage bits changes here.
785
786    * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit);
787    * All states: (1) valid; (2) writebacked; (3) flagBkup
788    */
789  val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value)))
790
791  // redirect logic writes 6 valid
792  val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr))
793  val redirectTail = Reg(new RobPtr)
794  val redirectIdle :: redirectBusy :: Nil = Enum(2)
795  val redirectState = RegInit(redirectIdle)
796  val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail))
797  when(redirectState === redirectBusy) {
798    redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U)
799    redirectHeadVec zip invMask foreach {
800      case (redirectHead, inv) => when(inv) {
801        valid(redirectHead.value) := false.B
802      }
803    }
804    when(!invMask.last) {
805      redirectState := redirectIdle
806    }
807  }
808  when(io.redirect.valid) {
809    redirectState := redirectBusy
810    when(redirectState === redirectIdle) {
811      redirectTail := enqPtr
812    }
813    redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) =>
814      redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
815    }
816  }
817  // enqueue logic writes 6 valid
818  for (i <- 0 until RenameWidth) {
819    when (canEnqueue(i) && !io.redirect.valid) {
820      valid(allocatePtrVec(i).value) := true.B
821    }
822  }
823  // dequeue logic writes 6 valid
824  for (i <- 0 until CommitWidth) {
825    val commitValid = io.commits.isCommit && io.commits.commitValid(i)
826    when (commitValid) {
827      valid(commitReadAddr(i)) := false.B
828    }
829  }
830
831  // status field: writebacked
832  // enqueue logic set 6 writebacked to false
833  for (i <- 0 until RenameWidth) {
834    when (canEnqueue(i)) {
835      val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec).asUInt.orR
836      val enqHasTriggerHit = io.enq.req(i).bits.trigger.getHitFrontend
837      val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove
838      writebacked(allocatePtrVec(i).value) := enqIsWritebacked && !enqHasException && !enqHasTriggerHit
839      val isStu = io.enq.req(i).bits.fuType === FuType.stu.U
840      store_data_writebacked(allocatePtrVec(i).value) := !isStu
841    }
842  }
843  when (exceptionGen.io.out.valid) {
844    val wbIdx = exceptionGen.io.out.bits.robIdx.value
845    writebacked(wbIdx) := true.B
846    store_data_writebacked(wbIdx) := true.B
847  }
848  // writeback logic set numWbPorts writebacked to true
849  for (wb <- exuWBs) {
850    when (wb.valid) {
851      val wbIdx = wb.bits.robIdx.value
852      val wbHasException = wb.bits.exceptionVec.getOrElse(0.U).asUInt.orR
853      val wbHasTriggerHit = false.B //Todo: wb.bits.trigger.getHitBackend
854      val wbHasFlushPipe = wb.bits.flushPipe.getOrElse(false.B)
855      val wbHasReplayInst = wb.bits.replay.getOrElse(false.B) //Todo: && wb.bits.replayInst
856      val block_wb = wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit
857      writebacked(wbIdx) := !block_wb
858    }
859  }
860  // store data writeback logic mark store as data_writebacked
861  for (wb <- stdWBs) {
862    when(RegNext(wb.valid)) {
863      store_data_writebacked(RegNext(wb.bits.robIdx.value)) := true.B
864    }
865  }
866
867  // flagBkup
868  // enqueue logic set 6 flagBkup at most
869  for (i <- 0 until RenameWidth) {
870    when (canEnqueue(i)) {
871      flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag
872    }
873  }
874
875  // interrupt_safe
876  for (i <- 0 until RenameWidth) {
877    // We RegNext the updates for better timing.
878    // Note that instructions won't change the system's states in this cycle.
879    when (RegNext(canEnqueue(i))) {
880      // For now, we allow non-load-store instructions to trigger interrupts
881      // For MMIO instructions, they should not trigger interrupts since they may
882      // be sent to lower level before it writes back.
883      // However, we cannot determine whether a load/store instruction is MMIO.
884      // Thus, we don't allow load/store instructions to trigger an interrupt.
885      // TODO: support non-MMIO load-store instructions to trigger interrupts
886      val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType)
887      interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts)
888    }
889  }
890
891  /**
892    * read and write of data modules
893    */
894  val commitReadAddr_next = Mux(state_next === s_idle,
895    VecInit(deqPtrVec_next.map(_.value)),
896    VecInit(walkPtrVec_next.map(_.value))
897  )
898  dispatchData.io.wen := canEnqueue
899  dispatchData.io.waddr := allocatePtrVec.map(_.value)
900  dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) =>
901    wdata.ldest := req.ldest
902    wdata.rfWen := req.rfWen
903    wdata.fpWen := req.fpWen
904    wdata.vecWen := req.vecWen
905    wdata.wflags := req.fpu.wflags
906    wdata.commitType := req.commitType
907    wdata.pdest := req.pdest
908    wdata.old_pdest := req.oldPdest
909    wdata.ftqIdx := req.ftqPtr
910    wdata.ftqOffset := req.ftqOffset
911    wdata.isMove := req.eliminatedMove
912    wdata.pc := req.pc
913    wdata.uopIdx := req.uopIdx
914//    wdata.vconfig := req.vconfig
915  }
916  dispatchData.io.raddr := commitReadAddr_next
917
918  exceptionGen.io.redirect <> io.redirect
919  exceptionGen.io.flush := io.flushOut.valid
920  for (i <- 0 until RenameWidth) {
921    exceptionGen.io.enq(i).valid := canEnqueue(i)
922    exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx
923    exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec)
924    exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe
925    exceptionGen.io.enq(i).bits.isVset := FuType.isInt(io.enq.req(i).bits.fuType) && ALUOpType.isVset(io.enq.req(i).bits.fuOpType)
926    exceptionGen.io.enq(i).bits.replayInst := false.B
927    XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst")
928    exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep
929    exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix
930    exceptionGen.io.enq(i).bits.trigger.clear()
931    exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.trigger.frontendHit
932  }
933
934  println(s"ExceptionGen:")
935  println(s"num of exceptions: ${params.numException}")
936  require(exceptionWBs.length == exceptionGen.io.wb.length,
937    f"exceptionWBs.length: ${exceptionWBs.length}, " +
938      f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}")
939  for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) {
940    exc_wb.valid                := wb.valid
941    exc_wb.bits.robIdx          := wb.bits.robIdx
942    exc_wb.bits.exceptionVec    := wb.bits.exceptionVec.get
943    exc_wb.bits.flushPipe       := wb.bits.flushPipe.getOrElse(false.B)
944    exc_wb.bits.isVset          := false.B
945    exc_wb.bits.replayInst      := wb.bits.replay.getOrElse(false.B)
946    exc_wb.bits.singleStep      := false.B
947    exc_wb.bits.crossPageIPFFix := false.B
948    exc_wb.bits.trigger         := 0.U.asTypeOf(exc_wb.bits.trigger) // Todo
949//    println(s"  [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " +
950//      s"flushPipe ${configs.exists(_.flushPipe)}, " +
951//      s"replayInst ${configs.exists(_.replayInst)}")
952  }
953
954  val fflagsDataModule = Module(new SyncDataModuleTemplate(
955    UInt(5.W), RobSize, CommitWidth, fflagsWBs.size)
956  )
957  require(fflagsWBs.length == fflagsDataModule.io.wen.length)
958  for(i <- fflagsWBs.indices){
959    fflagsDataModule.io.wen  (i) := fflagsWBs(i).valid
960    fflagsDataModule.io.waddr(i) := fflagsWBs(i).bits.robIdx.value
961    fflagsDataModule.io.wdata(i) := fflagsWBs(i).bits.fflags.get
962  }
963  fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value))
964  fflagsDataRead := fflagsDataModule.io.rdata
965
966
967  val instrCntReg = RegInit(0.U(64.W))
968  val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) })
969  val trueCommitCnt = RegNext(commitCnt) +& fuseCommitCnt
970  val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U)
971  val instrCnt = instrCntReg + retireCounter
972  instrCntReg := instrCnt
973  io.csr.perfinfo.retiredInstr := retireCounter
974  io.robFull := !allowEnqueue
975
976  /**
977    * debug info
978    */
979  XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n")
980  XSDebug("")
981  XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n")
982  for(i <- 0 until RobSize){
983    XSDebug(false, !valid(i), "-")
984    XSDebug(false, valid(i) && writebacked(i), "w")
985    XSDebug(false, valid(i) && !writebacked(i), "v")
986  }
987  XSDebug(false, true.B, "\n")
988
989  for(i <- 0 until RobSize) {
990    if(i % 4 == 0) XSDebug("")
991    XSDebug(false, true.B, "%x ", debug_microOp(i).pc)
992    XSDebug(false, !valid(i), "- ")
993    XSDebug(false, valid(i) && writebacked(i), "w ")
994    XSDebug(false, valid(i) && !writebacked(i), "v ")
995    if(i % 4 == 3) XSDebug(false, true.B, "\n")
996  }
997
998  def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U)
999  def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U)
1000
1001  val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_))
1002  XSPerfAccumulate("clock_cycle", 1.U)
1003  QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue)
1004  XSPerfAccumulate("commitUop", ifCommit(commitCnt))
1005  XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt))
1006  val commitIsMove = commitDebugUop.map(_.isMove)
1007  XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })))
1008  val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove)
1009  XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e })))
1010  XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt))
1011  val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD)
1012  val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t }
1013  XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid)))
1014  val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH)
1015  val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t }
1016  XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid)))
1017  val commitLoadWaitBit = commitDebugUop.map(_.loadWaitBit)
1018  XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })))
1019  val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE)
1020  XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })))
1021  XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i))))
1022  // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire)))
1023  // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready)))
1024  XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U))
1025  XSPerfAccumulate("walkCycle", state === s_walk)
1026  val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value)
1027  val deqUopCommitType = io.commits.info(0).commitType
1028  XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL)
1029  XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH)
1030  XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD)
1031  XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE)
1032  XSPerfAccumulate("robHeadPC", io.commits.info(0).pc)
1033  val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime)
1034  val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime)
1035  val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime)
1036  val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime)
1037  val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime)
1038  val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime)
1039  val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime)
1040  def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = {
1041    cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _)
1042  }
1043  for (fuType <- FuType.functionNameMap.keys) {
1044    val fuName = FuType.functionNameMap(fuType)
1045    val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U )
1046    XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType)))
1047    XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency)))
1048    XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency)))
1049    XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency)))
1050    XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency)))
1051    XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency)))
1052    XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency)))
1053    XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency)))
1054    if (fuType == FuType.fmac) {
1055      val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.fpu.ren3 )
1056      XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma)))
1057      XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency)))
1058      XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency)))
1059    }
1060  }
1061
1062  //difftest signals
1063  val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value
1064
1065  val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1066  val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1067
1068  for(i <- 0 until CommitWidth) {
1069    val idx = deqPtrVec(i).value
1070    wdata(i) := debug_exuData(idx)
1071    wpc(i) := SignExt(commitDebugUop(i).pc, XLEN)
1072  }
1073
1074  if (env.EnableDifftest) {
1075    for (i <- 0 until CommitWidth) {
1076      val difftest = Module(new DifftestInstrCommit)
1077      // assgin default value
1078      difftest.io := DontCare
1079
1080      difftest.io.clock    := clock
1081      difftest.io.coreid   := io.hartId
1082      difftest.io.index    := i.U
1083
1084      val ptr = deqPtrVec(i).value
1085      val uop = commitDebugUop(i)
1086      val exuOut = debug_exuDebug(ptr)
1087      val exuData = debug_exuData(ptr)
1088      difftest.io.valid    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1089      difftest.io.pc       := RegNext(RegNext(RegNext(SignExt(uop.pc, XLEN))))
1090      difftest.io.instr    := RegNext(RegNext(RegNext(uop.instr)))
1091      difftest.io.robIdx   := RegNext(RegNext(RegNext(ZeroExt(ptr, 10))))
1092      difftest.io.lqIdx    := RegNext(RegNext(RegNext(ZeroExt(uop.lqIdx.value, 7))))
1093      difftest.io.sqIdx    := RegNext(RegNext(RegNext(ZeroExt(uop.sqIdx.value, 7))))
1094      difftest.io.isLoad   := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.LOAD)))
1095      difftest.io.isStore  := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.STORE)))
1096      difftest.io.special  := RegNext(RegNext(RegNext(CommitType.isFused(io.commits.info(i).commitType))))
1097      // when committing an eliminated move instruction,
1098      // we must make sure that skip is properly set to false (output from EXU is random value)
1099      difftest.io.skip     := RegNext(RegNext(RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))))
1100      difftest.io.isRVC    := RegNext(RegNext(RegNext(uop.preDecodeInfo.isRVC)))
1101      difftest.io.rfwen    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U)))
1102      difftest.io.fpwen    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).fpWen)))
1103      difftest.io.wpdest   := RegNext(RegNext(RegNext(io.commits.info(i).pdest)))
1104      difftest.io.wdest    := RegNext(RegNext(RegNext(io.commits.info(i).ldest)))
1105
1106      difftest.io.isVsetFirst := RegNext(RegNext(RegNext(io.commits.commitValid(i) && !io.commits.info(i).uopIdx.orR)))
1107      // // runahead commit hint
1108      // val runahead_commit = Module(new DifftestRunaheadCommitEvent)
1109      // runahead_commit.io.clock := clock
1110      // runahead_commit.io.coreid := io.hartId
1111      // runahead_commit.io.index := i.U
1112      // runahead_commit.io.valid := difftest.io.valid &&
1113      //   (commitBranchValid(i) || commitIsStore(i))
1114      // // TODO: is branch or store
1115      // runahead_commit.io.pc    := difftest.io.pc
1116    }
1117  }
1118  else if (env.AlwaysBasicDiff) {
1119    // These are the structures used by difftest only and should be optimized after synthesis.
1120    val dt_eliminatedMove = Mem(RobSize, Bool())
1121    val dt_isRVC = Mem(RobSize, Bool())
1122    val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle))
1123    for (i <- 0 until RenameWidth) {
1124      when (canEnqueue(i)) {
1125        dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove
1126        dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC
1127      }
1128    }
1129    for (wb <- exuWBs) {
1130      when (wb.valid) {
1131        val wbIdx = wb.bits.robIdx.value
1132        dt_exuDebug(wbIdx) := wb.bits.debug
1133      }
1134    }
1135    // Always instantiate basic difftest modules.
1136    for (i <- 0 until CommitWidth) {
1137      val commitInfo = io.commits.info(i)
1138      val ptr = deqPtrVec(i).value
1139      val exuOut = dt_exuDebug(ptr)
1140      val eliminatedMove = dt_eliminatedMove(ptr)
1141      val isRVC = dt_isRVC(ptr)
1142
1143      val difftest = Module(new DifftestBasicInstrCommit)
1144      difftest.io.clock   := clock
1145      difftest.io.coreid  := io.hartId
1146      difftest.io.index   := i.U
1147      difftest.io.valid   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1148      difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(commitInfo.commitType))))
1149      difftest.io.skip    := RegNext(RegNext(RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))))
1150      difftest.io.isRVC   := RegNext(RegNext(RegNext(isRVC)))
1151      difftest.io.rfwen   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U)))
1152      difftest.io.fpwen   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.fpWen)))
1153      difftest.io.wpdest  := RegNext(RegNext(RegNext(commitInfo.pdest)))
1154      difftest.io.wdest   := RegNext(RegNext(RegNext(commitInfo.ldest)))
1155    }
1156  }
1157
1158  if (env.EnableDifftest) {
1159    for (i <- 0 until CommitWidth) {
1160      val difftest = Module(new DifftestLoadEvent)
1161      difftest.io.clock  := clock
1162      difftest.io.coreid := io.hartId
1163      difftest.io.index  := i.U
1164
1165      val ptr = deqPtrVec(i).value
1166      val uop = commitDebugUop(i)
1167      val exuOut = debug_exuDebug(ptr)
1168      difftest.io.valid  := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1169      difftest.io.paddr  := RegNext(RegNext(RegNext(exuOut.paddr)))
1170      difftest.io.opType := RegNext(RegNext(RegNext(uop.fuOpType)))
1171      difftest.io.fuType := RegNext(RegNext(RegNext(uop.fuType)))
1172    }
1173  }
1174
1175  // Always instantiate basic difftest modules.
1176  if (env.EnableDifftest) {
1177    val dt_isXSTrap = Mem(RobSize, Bool())
1178    for (i <- 0 until RenameWidth) {
1179      when (canEnqueue(i)) {
1180        dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap
1181      }
1182    }
1183    val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) }
1184    val hitTrap = trapVec.reduce(_||_)
1185    val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1))
1186    val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN)
1187    val difftest = Module(new DifftestTrapEvent)
1188    difftest.io.clock    := clock
1189    difftest.io.coreid   := io.hartId
1190    difftest.io.valid    := hitTrap
1191    difftest.io.code     := trapCode
1192    difftest.io.pc       := trapPC
1193    difftest.io.cycleCnt := timer
1194    difftest.io.instrCnt := instrCnt
1195    difftest.io.hasWFI   := hasWFI
1196  }
1197  else if (env.AlwaysBasicDiff) {
1198    val dt_isXSTrap = Mem(RobSize, Bool())
1199    for (i <- 0 until RenameWidth) {
1200      when (canEnqueue(i)) {
1201        dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap
1202      }
1203    }
1204    val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) }
1205    val hitTrap = trapVec.reduce(_||_)
1206    val difftest = Module(new DifftestBasicTrapEvent)
1207    difftest.io.clock    := clock
1208    difftest.io.coreid   := io.hartId
1209    difftest.io.valid    := hitTrap
1210    difftest.io.cycleCnt := timer
1211    difftest.io.instrCnt := instrCnt
1212  }
1213
1214  val validEntriesBanks = (0 until (RobSize + 63) / 64).map(i => RegNext(PopCount(valid.drop(i * 64).take(64))))
1215  val validEntries = RegNext(ParallelOperation(validEntriesBanks, (a: UInt, b: UInt) => a +& b))
1216  val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })
1217  val commitLoadVec = VecInit(commitLoadValid)
1218  val commitBranchVec = VecInit(commitBranchValid)
1219  val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })
1220  val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })
1221  val perfEvents = Seq(
1222    ("rob_interrupt_num      ", io.flushOut.valid && intrEnable                                       ),
1223    ("rob_exception_num      ", io.flushOut.valid && exceptionEnable                                  ),
1224    ("rob_flush_pipe_num     ", io.flushOut.valid && isFlushPipe                                      ),
1225    ("rob_replay_inst_num    ", io.flushOut.valid && isFlushPipe && deqHasReplayInst                  ),
1226    ("rob_commitUop          ", ifCommit(commitCnt)                                                   ),
1227    ("rob_commitInstr        ", ifCommitReg(trueCommitCnt)                                            ),
1228    ("rob_commitInstrMove    ", ifCommitReg(PopCount(RegNext(commitMoveVec)))                         ),
1229    ("rob_commitInstrFused   ", ifCommitReg(fuseCommitCnt)                                            ),
1230    ("rob_commitInstrLoad    ", ifCommitReg(PopCount(RegNext(commitLoadVec)))                         ),
1231    ("rob_commitInstrBranch  ", ifCommitReg(PopCount(RegNext(commitBranchVec)))                       ),
1232    ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec)))                     ),
1233    ("rob_commitInstrStore   ", ifCommitReg(PopCount(RegNext(commitStoreVec)))                        ),
1234    ("rob_walkInstr          ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)           ),
1235    ("rob_walkCycle          ", (state === s_walk)                                                    ),
1236    ("rob_1_4_valid          ", validEntries <= (RobSize / 4).U                                       ),
1237    ("rob_2_4_valid          ", validEntries >  (RobSize / 4).U && validEntries <= (RobSize / 2).U    ),
1238    ("rob_3_4_valid          ", validEntries >  (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U),
1239    ("rob_4_4_valid          ", validEntries >  (RobSize * 3 / 4).U                                   ),
1240  )
1241  generatePerfEvent()
1242}
1243