xref: /XiangShan/src/main/scala/xiangshan/backend/rob/Rob.scala (revision 0dc4893d7629b8ec8a9c78fd371177de2d6aac94)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.backend.rob
18
19import chipsalliance.rocketchip.config.Parameters
20import chisel3._
21import chisel3.util._
22import difftest._
23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp}
24import utils._
25import xiangshan._
26import xiangshan.backend.exu.ExuConfig
27import xiangshan.frontend.FtqPtr
28
29class RobPtr(implicit p: Parameters) extends CircularQueuePtr[RobPtr](
30  p => p(XSCoreParamsKey).RobSize
31) with HasCircularQueuePtrHelper {
32
33  def needFlush(redirect: Valid[Redirect]): Bool = {
34    val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx
35    redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx))
36  }
37
38  def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR
39}
40
41object RobPtr {
42  def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = {
43    val ptr = Wire(new RobPtr)
44    ptr.flag := f
45    ptr.value := v
46    ptr
47  }
48}
49
50class RobCSRIO(implicit p: Parameters) extends XSBundle {
51  val intrBitSet = Input(Bool())
52  val trapTarget = Input(UInt(VAddrBits.W))
53  val isXRet     = Input(Bool())
54  val wfiEvent   = Input(Bool())
55
56  val fflags     = Output(Valid(UInt(5.W)))
57  val dirty_fs   = Output(Bool())
58  val perfinfo   = new Bundle {
59    val retiredInstr = Output(UInt(3.W))
60  }
61}
62
63class RobLsqIO(implicit p: Parameters) extends XSBundle {
64  val lcommit = Output(UInt(log2Up(CommitWidth + 1).W))
65  val scommit = Output(UInt(log2Up(CommitWidth + 1).W))
66  val pendingld = Output(Bool())
67  val pendingst = Output(Bool())
68  val commit = Output(Bool())
69}
70
71class RobEnqIO(implicit p: Parameters) extends XSBundle {
72  val canAccept = Output(Bool())
73  val isEmpty = Output(Bool())
74  // valid vector, for robIdx gen and walk
75  val needAlloc = Vec(RenameWidth, Input(Bool()))
76  val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp)))
77  val resp = Vec(RenameWidth, Output(new RobPtr))
78}
79
80class RobDispatchData(implicit p: Parameters) extends RobCommitInfo
81
82class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
83  val io = IO(new Bundle {
84    // for commits/flush
85    val state = Input(UInt(2.W))
86    val deq_v = Vec(CommitWidth, Input(Bool()))
87    val deq_w = Vec(CommitWidth, Input(Bool()))
88    val exception_state = Flipped(ValidIO(new RobExceptionInfo))
89    // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth)
90    val intrBitSetReg = Input(Bool())
91    val hasNoSpecExec = Input(Bool())
92    val interrupt_safe = Input(Bool())
93    val misPredBlock = Input(Bool())
94    val isReplaying = Input(Bool())
95    val hasWFI = Input(Bool())
96    // output: the CommitWidth deqPtr
97    val out = Vec(CommitWidth, Output(new RobPtr))
98    val next_out = Vec(CommitWidth, Output(new RobPtr))
99  })
100
101  val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr))))
102
103  // for exceptions (flushPipe included) and interrupts:
104  // only consider the first instruction
105  val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe
106  val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0)
107  val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable)
108
109  // for normal commits: only to consider when there're no exceptions
110  // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions.
111  val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last)
112  val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i) && !io.misPredBlock && !io.isReplaying && !io.hasWFI))
113  val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B)
114  // when io.intrBitSetReg or there're possible exceptions in these instructions,
115  // only one instruction is allowed to commit
116  val allowOnlyOne = commit_exception || io.intrBitSetReg
117  val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt)
118
119  val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt))
120  val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid, commitDeqPtrVec, deqPtrVec)
121
122  deqPtrVec := deqPtrVec_next
123
124  io.next_out := deqPtrVec_next
125  io.out      := deqPtrVec
126
127  when (io.state === 0.U) {
128    XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt)
129  }
130
131}
132
133class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
134  val io = IO(new Bundle {
135    // for input redirect
136    val redirect = Input(Valid(new Redirect))
137    // for enqueue
138    val allowEnqueue = Input(Bool())
139    val hasBlockBackward = Input(Bool())
140    val enq = Vec(RenameWidth, Input(Bool()))
141    val out = Output(new RobPtr)
142  })
143
144  val enqPtr = RegInit(0.U.asTypeOf(new RobPtr))
145
146  // enqueue
147  val canAccept = io.allowEnqueue && !io.hasBlockBackward
148  val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U)
149
150  when (io.redirect.valid) {
151    enqPtr := io.redirect.bits.robIdx + Mux(io.redirect.bits.flushItself(), 0.U, 1.U)
152  }.otherwise {
153    enqPtr := enqPtr + dispatchNum
154  }
155
156  io.out := enqPtr
157
158}
159
160class RobExceptionInfo(implicit p: Parameters) extends XSBundle {
161  // val valid = Bool()
162  val robIdx = new RobPtr
163  val exceptionVec = ExceptionVec()
164  val flushPipe = Bool()
165  val replayInst = Bool() // redirect to that inst itself
166  val singleStep = Bool() // TODO add frontend hit beneath
167  val crossPageIPFFix = Bool()
168  val trigger = new TriggerCf
169
170//  def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend
171//  def trigger_after = trigger.getTimingBackend && trigger.getHitBackend
172  def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit
173  def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit
174  // only exceptions are allowed to writeback when enqueue
175  def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit
176}
177
178class ExceptionGen(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
179  val io = IO(new Bundle {
180    val redirect = Input(Valid(new Redirect))
181    val flush = Input(Bool())
182    val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo)))
183    val wb = Vec(1 + LoadPipelineWidth + StorePipelineWidth, Flipped(ValidIO(new RobExceptionInfo)))
184    val out = ValidIO(new RobExceptionInfo)
185    val state = ValidIO(new RobExceptionInfo)
186  })
187
188  def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = {
189    assert(valid.length == bits.length)
190    assert(isPow2(valid.length))
191    if (valid.length == 1) {
192      (valid, bits)
193    } else if (valid.length == 2) {
194      val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0)))))
195      for (i <- res.indices) {
196        res(i).valid := valid(i)
197        res(i).bits := bits(i)
198      }
199      val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1))
200      (Seq(oldest.valid), Seq(oldest.bits))
201    } else {
202      val left = getOldest(valid.take(valid.length / 2), bits.take(valid.length / 2))
203      val right = getOldest(valid.takeRight(valid.length / 2), bits.takeRight(valid.length / 2))
204      getOldest(left._1 ++ right._1, left._2 ++ right._2)
205    }
206  }
207
208  val current = Reg(Valid(new RobExceptionInfo))
209
210  // orR the exceptionVec
211  val lastCycleFlush = RegNext(io.flush)
212  val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush))
213  val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush)
214
215  // s0: compare wb(1)~wb(LoadPipelineWidth) and wb(1 + LoadPipelineWidth)~wb(LoadPipelineWidth + StorePipelineWidth)
216  val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }
217  val csr_wb_bits = io.wb(0).bits
218  val load_wb_bits = getOldest(in_wb_valid.slice(1, 1 + LoadPipelineWidth), io.wb.map(_.bits).slice(1, 1 + LoadPipelineWidth))._2(0)
219  val store_wb_bits = getOldest(in_wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth), io.wb.map(_.bits).slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth))._2(0)
220  val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid.slice(1, 1 + LoadPipelineWidth).reduce(_ || _), wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth).reduce(_ || _))))
221  val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits)))
222
223  // s1: compare last four and current flush
224  val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) })
225  val compare_01_valid = s0_out_valid(0) || s0_out_valid(1)
226  val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0))
227  val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2))
228  val s1_out_bits = RegNext(compare_bits)
229  val s1_out_valid = RegNext(s1_valid.asUInt.orR)
230
231  val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush)
232  val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits)))
233
234  // s2: compare the input exception with the current one
235  // priorities:
236  // (1) system reset
237  // (2) current is valid: flush, remain, merge, update
238  // (3) current is not valid: s1 or enq
239  val current_flush = current.bits.robIdx.needFlush(io.redirect) || io.flush
240  val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush
241  when (reset.asBool) {
242    current.valid := false.B
243  }.elsewhen (current.valid) {
244    when (current_flush) {
245      current.valid := Mux(s1_flush, false.B, s1_out_valid)
246    }
247    when (s1_out_valid && !s1_flush) {
248      when (isAfter(current.bits.robIdx, s1_out_bits.robIdx)) {
249        current.bits := s1_out_bits
250      }.elsewhen (current.bits.robIdx === s1_out_bits.robIdx) {
251        current.bits.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.bits.exceptionVec.asUInt).asTypeOf(ExceptionVec())
252        current.bits.flushPipe := s1_out_bits.flushPipe || current.bits.flushPipe
253        current.bits.replayInst := s1_out_bits.replayInst || current.bits.replayInst
254        current.bits.singleStep := s1_out_bits.singleStep || current.bits.singleStep
255        current.bits.trigger := (s1_out_bits.trigger.asUInt | current.bits.trigger.asUInt).asTypeOf(new TriggerCf)
256      }
257    }
258  }.elsewhen (s1_out_valid && !s1_flush) {
259    current.valid := true.B
260    current.bits := s1_out_bits
261  }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) {
262    current.valid := true.B
263    current.bits := enq_bits
264  }
265
266  io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback
267  io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits)
268  io.state := current
269
270}
271
272class RobFlushInfo(implicit p: Parameters) extends XSBundle {
273  val ftqIdx = new FtqPtr
274  val robIdx = new RobPtr
275  val ftqOffset = UInt(log2Up(PredictWidth).W)
276  val replayInst = Bool()
277}
278
279class Rob(implicit p: Parameters) extends LazyModule with HasWritebackSink with HasXSParameter {
280
281  lazy val module = new RobImp(this)
282
283  override def generateWritebackIO(
284    thisMod: Option[HasWritebackSource] = None,
285    thisModImp: Option[HasWritebackSourceImp] = None
286  ): Unit = {
287    val sources = writebackSinksImp(thisMod, thisModImp)
288    module.io.writeback.zip(sources).foreach(x => x._1 := x._2)
289  }
290}
291
292class RobImp(outer: Rob)(implicit p: Parameters) extends LazyModuleImp(outer)
293  with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents {
294  val wbExuConfigs = outer.writebackSinksParams.map(_.exuConfigs)
295  val numWbPorts = wbExuConfigs.map(_.length)
296
297  val io = IO(new Bundle() {
298    val hartId = Input(UInt(8.W))
299    val redirect = Input(Valid(new Redirect))
300    val enq = new RobEnqIO
301    val flushOut = ValidIO(new Redirect)
302    val exception = ValidIO(new ExceptionInfo)
303    // exu + brq
304    val writeback = MixedVec(numWbPorts.map(num => Vec(num, Flipped(ValidIO(new ExuOutput)))))
305    val commits = new RobCommitIO
306    val lsq = new RobLsqIO
307    val robDeqPtr = Output(new RobPtr)
308    val csr = new RobCSRIO
309    val robFull = Output(Bool())
310    val cpu_halt = Output(Bool())
311  })
312
313  def selectWb(index: Int, func: Seq[ExuConfig] => Boolean): Seq[(Seq[ExuConfig], ValidIO[ExuOutput])] = {
314    wbExuConfigs(index).zip(io.writeback(index)).filter(x => func(x._1))
315  }
316  val exeWbSel = outer.selWritebackSinks(_.exuConfigs.length)
317  val fflagsWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.writeFflags)))
318  val fflagsPorts = selectWb(fflagsWbSel, _.exists(_.writeFflags))
319  val exceptionWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.needExceptionGen)))
320  val exceptionPorts = selectWb(fflagsWbSel, _.exists(_.needExceptionGen))
321  val exuWbPorts = selectWb(exeWbSel, _.forall(_ != StdExeUnitCfg))
322  val stdWbPorts = selectWb(exeWbSel, _.contains(StdExeUnitCfg))
323  println(s"Rob: size $RobSize, numWbPorts: $numWbPorts, commitwidth: $CommitWidth")
324  println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}")
325  println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}")
326  println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}")
327
328
329  val exuWriteback = exuWbPorts.map(_._2)
330  val stdWriteback = stdWbPorts.map(_._2)
331
332  // instvalid field
333  val valid = Mem(RobSize, Bool())
334  // writeback status
335  val writebacked = Mem(RobSize, Bool())
336  val store_data_writebacked = Mem(RobSize, Bool())
337  // data for redirect, exception, etc.
338  val flagBkup = Mem(RobSize, Bool())
339  // some instructions are not allowed to trigger interrupts
340  // They have side effects on the states of the processor before they write back
341  val interrupt_safe = Mem(RobSize, Bool())
342
343  // data for debug
344  // Warn: debug_* prefix should not exist in generated verilog.
345  val debug_microOp = Mem(RobSize, new MicroOp)
346  val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug
347  val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug
348
349  // pointers
350  // For enqueue ptr, we don't duplicate it since only enqueue needs it.
351  val enqPtr = Wire(new RobPtr)
352  val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr))
353
354  val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr))
355  val validCounter = RegInit(0.U(log2Ceil(RobSize + 1).W))
356  val allowEnqueue = RegInit(true.B)
357
358  val enqPtrVec = VecInit((0 until RenameWidth).map(i => enqPtr + PopCount(io.enq.needAlloc.take(i))))
359  val deqPtr = deqPtrVec(0)
360  val walkPtr = walkPtrVec(0)
361
362  val isEmpty = enqPtr === deqPtr
363  val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level)
364
365  /**
366    * states of Rob
367    */
368  val s_idle :: s_walk :: s_extrawalk :: Nil = Enum(3)
369  val state = RegInit(s_idle)
370
371  /**
372    * Data Modules
373    *
374    * CommitDataModule: data from dispatch
375    * (1) read: commits/walk/exception
376    * (2) write: enqueue
377    *
378    * WritebackData: data from writeback
379    * (1) read: commits/walk/exception
380    * (2) write: write back from exe units
381    */
382  val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth))
383  val dispatchDataRead = dispatchData.io.rdata
384
385  val exceptionGen = Module(new ExceptionGen)
386  val exceptionDataRead = exceptionGen.io.state
387  val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W)))
388
389  io.robDeqPtr := deqPtr
390
391  /**
392    * Enqueue (from dispatch)
393    */
394  // special cases
395  val hasBlockBackward = RegInit(false.B)
396  val hasNoSpecExec = RegInit(false.B)
397  val doingSvinval = RegInit(false.B)
398  // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B
399  // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty.
400  when (isEmpty) { hasBlockBackward:= false.B }
401  // When any instruction commits, hasNoSpecExec should be set to false.B
402  when (io.commits.valid.asUInt.orR  && state =/= s_extrawalk) { hasNoSpecExec:= false.B }
403
404  // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing.
405  // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle.
406  // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts.
407  val hasWFI = RegInit(false.B)
408  io.cpu_halt := hasWFI
409  when (RegNext(RegNext(io.csr.wfiEvent))) {
410    hasWFI := false.B
411  }
412
413  io.enq.canAccept := allowEnqueue && !hasBlockBackward
414  io.enq.resp      := enqPtrVec
415  val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept))
416  val timer = GTimer()
417  for (i <- 0 until RenameWidth) {
418    // we don't check whether io.redirect is valid here since redirect has higher priority
419    when (canEnqueue(i)) {
420      val enqUop = io.enq.req(i).bits
421      // store uop in data module and debug_microOp Vec
422      debug_microOp(enqPtrVec(i).value) := enqUop
423      debug_microOp(enqPtrVec(i).value).debugInfo.dispatchTime := timer
424      debug_microOp(enqPtrVec(i).value).debugInfo.enqRsTime := timer
425      debug_microOp(enqPtrVec(i).value).debugInfo.selectTime := timer
426      debug_microOp(enqPtrVec(i).value).debugInfo.issueTime := timer
427      debug_microOp(enqPtrVec(i).value).debugInfo.writebackTime := timer
428      when (enqUop.ctrl.blockBackward) {
429        hasBlockBackward := true.B
430      }
431      when (enqUop.ctrl.noSpecExec) {
432        hasNoSpecExec := true.B
433      }
434      val enqHasTriggerHit = io.enq.req(i).bits.cf.trigger.getHitFrontend
435      val enqHasException = ExceptionNO.selectFrontend(enqUop.cf.exceptionVec).asUInt.orR
436      // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process
437      when(!enqHasTriggerHit && !enqHasException && FuType.isSvinvalBegin(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe))
438      {
439        doingSvinval := true.B
440      }
441      // the end instruction of Svinval enqs so clear doingSvinval
442      when(!enqHasTriggerHit && !enqHasException && FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe))
443      {
444        doingSvinval := false.B
445      }
446      // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear
447      assert(!doingSvinval || (FuType.isSvinval(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe) ||
448        FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe)))
449      when (enqUop.ctrl.isWFI && !enqHasException && !enqHasTriggerHit) {
450        hasWFI := true.B
451      }
452    }
453  }
454  val dispatchNum = Mux(io.enq.canAccept, PopCount(Cat(io.enq.req.map(_.valid))), 0.U)
455  io.enq.isEmpty   := RegNext(isEmpty && dispatchNum === 0.U)
456
457  // debug info for enqueue (dispatch)
458  XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n")
459  XSInfo(dispatchNum =/= 0.U, p"dispatched $dispatchNum insts\n")
460
461
462  /**
463    * Writeback (from execution units)
464    */
465  for (wb <- exuWriteback) {
466    when (wb.valid) {
467      val wbIdx = wb.bits.uop.robIdx.value
468      debug_exuData(wbIdx) := wb.bits.data
469      debug_exuDebug(wbIdx) := wb.bits.debug
470      debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.uop.debugInfo.enqRsTime
471      debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.uop.debugInfo.selectTime
472      debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.uop.debugInfo.issueTime
473      debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.uop.debugInfo.writebackTime
474
475      val debug_Uop = debug_microOp(wbIdx)
476      XSInfo(true.B,
477        p"writebacked pc 0x${Hexadecimal(debug_Uop.cf.pc)} wen ${debug_Uop.ctrl.rfWen} " +
478        p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ctrl.ldest} pdst ${debug_Uop.pdest} " +
479        p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.uop.robIdx}\n"
480      )
481    }
482  }
483  val writebackNum = PopCount(exuWriteback.map(_.valid))
484  XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum)
485
486
487  /**
488    * RedirectOut: Interrupt and Exceptions
489    */
490  val deqDispatchData = dispatchDataRead(0)
491  val debug_deqUop = debug_microOp(deqPtr.value)
492
493  val intrBitSetReg = RegNext(io.csr.intrBitSet)
494  val intrEnable = intrBitSetReg && !hasNoSpecExec && interrupt_safe(deqPtr.value)
495  val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr
496  val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR ||
497    exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit)
498  val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe
499  val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst
500  val exceptionEnable = writebacked(deqPtr.value) && deqHasException
501
502  XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n")
503  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n")
504  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n")
505
506  val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst)
507
508  // io.flushOut will trigger redirect at the next cycle.
509  // Block any redirect or commit at the next cycle.
510  val lastCycleFlush = RegNext(io.flushOut.valid)
511
512  io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush
513  io.flushOut.bits := DontCare
514  io.flushOut.bits.robIdx := deqPtr
515  io.flushOut.bits.ftqIdx := deqDispatchData.ftqIdx
516  io.flushOut.bits.ftqOffset := deqDispatchData.ftqOffset
517  io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next"
518  io.flushOut.bits.interrupt := true.B
519  XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable)
520  XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable)
521  XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe)
522  XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst)
523
524  val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush
525  io.exception.valid := RegNext(exceptionHappen)
526  io.exception.bits.uop := RegEnable(debug_deqUop, exceptionHappen)
527  io.exception.bits.uop.ctrl.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen)
528  io.exception.bits.uop.cf.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen)
529  io.exception.bits.uop.ctrl.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen)
530  io.exception.bits.uop.cf.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen)
531  io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen)
532  io.exception.bits.uop.cf.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen)
533
534  XSDebug(io.flushOut.valid,
535    p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.uop.cf.pc)} intr $intrEnable " +
536    p"excp $exceptionEnable flushPipe $isFlushPipe " +
537    p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n")
538
539
540  /**
541    * Commits (and walk)
542    * They share the same width.
543    */
544  val walkCounter = Reg(UInt(log2Up(RobSize + 1).W))
545  val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter))
546  val walkFinished = walkCounter <= CommitWidth.U
547
548  // extra space is used when rob has no enough space, but mispredict recovery needs such info to walk regmap
549  require(RenameWidth <= CommitWidth)
550  val extraSpaceForMPR = Reg(Vec(RenameWidth, new RobDispatchData))
551  val usedSpaceForMPR = Reg(Vec(RenameWidth, Bool()))
552  when (io.enq.needAlloc.asUInt.orR && io.redirect.valid) {
553    usedSpaceForMPR := io.enq.needAlloc
554    extraSpaceForMPR := dispatchData.io.wdata
555    XSDebug("rob full, switched to s_extrawalk. needExtraSpaceForMPR: %b\n", io.enq.needAlloc.asUInt)
556  }
557
558  // wiring to csr
559  val (wflags, fpWen) = (0 until CommitWidth).map(i => {
560    val v = io.commits.valid(i)
561    val info = io.commits.info(i)
562    (v & info.wflags, v & info.fpWen)
563  }).unzip
564  val fflags = Wire(Valid(UInt(5.W)))
565  fflags.valid := Mux(io.commits.isWalk, false.B, Cat(wflags).orR)
566  fflags.bits := wflags.zip(fflagsDataRead).map({
567    case (w, f) => Mux(w, f, 0.U)
568  }).reduce(_|_)
569  val dirty_fs = Mux(io.commits.isWalk, false.B, Cat(fpWen).orR)
570
571  // when mispredict branches writeback, stop commit in the next 2 cycles
572  // TODO: don't check all exu write back
573  val misPredWb = Cat(VecInit(exuWriteback.map(wb =>
574    wb.bits.redirect.cfiUpdate.isMisPred && wb.bits.redirectValid
575  ))).orR
576  val misPredBlockCounter = Reg(UInt(3.W))
577  misPredBlockCounter := Mux(misPredWb,
578    "b111".U,
579    misPredBlockCounter >> 1.U
580  )
581  val misPredBlock = misPredBlockCounter(0)
582
583  io.commits.isWalk := state =/= s_idle
584  val commit_v = Mux(state === s_idle, VecInit(deqPtrVec.map(ptr => valid(ptr.value))), VecInit(walkPtrVec.map(ptr => valid(ptr.value))))
585  // store will be commited iff both sta & std have been writebacked
586  val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value)))
587  val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last)
588  val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i)))
589  val allowOnlyOneCommit = commit_exception || intrBitSetReg
590  // for instructions that may block others, we don't allow them to commit
591  for (i <- 0 until CommitWidth) {
592    // defaults: state === s_idle and instructions commit
593    // when intrBitSetReg, allow only one instruction to commit at each clock cycle
594    val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst
595    io.commits.valid(i) := commit_v(i) && commit_w(i) && !isBlocked && !misPredBlock && !isReplaying && !lastCycleFlush && !hasWFI
596    io.commits.walkValid(i) := DontCare
597    io.commits.info(i)  := dispatchDataRead(i)
598
599    when (state === s_walk) {
600      io.commits.valid(i) := commit_v(i) && shouldWalkVec(i)
601      io.commits.walkValid(i) := commit_v(i) && shouldWalkVec(i)
602    }.elsewhen(state === s_extrawalk) {
603      io.commits.valid(i) := (if (i < RenameWidth) usedSpaceForMPR(RenameWidth-i-1) else false.B)
604      io.commits.walkValid(i) := (if (i < RenameWidth) usedSpaceForMPR(RenameWidth-i-1) else false.B)
605      io.commits.info(i)  := (if (i < RenameWidth) extraSpaceForMPR(RenameWidth-i-1) else DontCare)
606    }
607
608    XSInfo(state === s_idle && io.commits.valid(i),
609      "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b\n",
610      debug_microOp(deqPtrVec(i).value).cf.pc,
611      io.commits.info(i).rfWen,
612      io.commits.info(i).ldest,
613      io.commits.info(i).pdest,
614      io.commits.info(i).old_pdest,
615      debug_exuData(deqPtrVec(i).value),
616      fflagsDataRead(i)
617    )
618    XSInfo(state === s_walk && io.commits.valid(i), "walked pc %x wen %d ldst %d data %x\n",
619      debug_microOp(walkPtrVec(i).value).cf.pc,
620      io.commits.info(i).rfWen,
621      io.commits.info(i).ldest,
622      debug_exuData(walkPtrVec(i).value)
623    )
624    XSInfo(state === s_extrawalk && io.commits.valid(i), "use extra space walked wen %d ldst %d\n",
625      io.commits.info(i).rfWen,
626      io.commits.info(i).ldest
627    )
628  }
629  if (env.EnableDifftest) {
630    io.commits.info.map(info => dontTouch(info.pc))
631  }
632
633  // sync fflags/dirty_fs to csr
634  io.csr.fflags := RegNext(fflags)
635  io.csr.dirty_fs := RegNext(dirty_fs)
636
637  // commit load/store to lsq
638  val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.LOAD))
639  val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.STORE))
640  io.lsq.lcommit := RegNext(Mux(io.commits.isWalk, 0.U, PopCount(ldCommitVec)))
641  io.lsq.scommit := RegNext(Mux(io.commits.isWalk, 0.U, PopCount(stCommitVec)))
642  io.lsq.pendingld := RegNext(!io.commits.isWalk && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value))
643  io.lsq.pendingst := RegNext(!io.commits.isWalk && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value))
644  io.lsq.commit := RegNext(!io.commits.isWalk && io.commits.valid(0))
645
646  /**
647    * state changes
648    * (1) exceptions: when exception occurs, cancels all and switch to s_idle
649    * (2) redirect: switch to s_walk or s_extrawalk (depends on whether there're pending instructions in dispatch1)
650    * (3) walk: when walking comes to the end, switch to s_walk
651    * (4) s_extrawalk to s_walk
652    */
653  val state_next = Mux(io.redirect.valid,
654    Mux(io.enq.needAlloc.asUInt.orR, s_extrawalk, s_walk),
655    Mux(state === s_walk && walkFinished,
656      s_idle,
657      Mux(state === s_extrawalk, s_walk, state)
658    )
659  )
660  state := state_next
661
662  /**
663    * pointers and counters
664    */
665  val deqPtrGenModule = Module(new RobDeqPtrWrapper)
666  deqPtrGenModule.io.state := state
667  deqPtrGenModule.io.deq_v := commit_v
668  deqPtrGenModule.io.deq_w := commit_w
669  deqPtrGenModule.io.exception_state := exceptionDataRead
670  deqPtrGenModule.io.intrBitSetReg := intrBitSetReg
671  deqPtrGenModule.io.hasNoSpecExec := hasNoSpecExec
672  deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value)
673  deqPtrGenModule.io.misPredBlock := misPredBlock
674  deqPtrGenModule.io.isReplaying := isReplaying
675  deqPtrGenModule.io.hasWFI := hasWFI
676  deqPtrVec := deqPtrGenModule.io.out
677  val deqPtrVec_next = deqPtrGenModule.io.next_out
678
679  val enqPtrGenModule = Module(new RobEnqPtrWrapper)
680  enqPtrGenModule.io.redirect := io.redirect
681  enqPtrGenModule.io.allowEnqueue := allowEnqueue
682  enqPtrGenModule.io.hasBlockBackward := hasBlockBackward
683  enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid))
684  enqPtr := enqPtrGenModule.io.out
685
686  val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U)
687  // next walkPtrVec:
688  // (1) redirect occurs: update according to state
689  // (2) walk: move backwards
690  val walkPtrVec_next = Mux(io.redirect.valid && state =/= s_extrawalk,
691    Mux(state === s_walk,
692      VecInit(walkPtrVec.map(_ - thisCycleWalkCount)),
693      VecInit((0 until CommitWidth).map(i => enqPtr - (i+1).U))
694    ),
695    Mux(state === s_walk, VecInit(walkPtrVec.map(_ - CommitWidth.U)), walkPtrVec)
696  )
697  walkPtrVec := walkPtrVec_next
698
699  val lastCycleRedirect = RegNext(io.redirect.valid)
700  val trueValidCounter = Mux(lastCycleRedirect, distanceBetween(enqPtr, deqPtr), validCounter)
701  val commitCnt = PopCount(io.commits.valid)
702  validCounter := Mux(state === s_idle,
703    (validCounter - commitCnt) + dispatchNum,
704    trueValidCounter
705  )
706
707  allowEnqueue := Mux(state === s_idle,
708    validCounter + dispatchNum <= (RobSize - RenameWidth).U,
709    trueValidCounter <= (RobSize - RenameWidth).U
710  )
711
712  val currentWalkPtr = Mux(state === s_walk || state === s_extrawalk, walkPtr, enqPtr - 1.U)
713  val redirectWalkDistance = distanceBetween(currentWalkPtr, io.redirect.bits.robIdx)
714  when (io.redirect.valid) {
715    walkCounter := Mux(state === s_walk,
716      // NOTE: +& is used here because:
717      // When rob is full and the head instruction causes an exception,
718      // the redirect robIdx is the deqPtr. In this case, currentWalkPtr is
719      // enqPtr - 1.U and redirectWalkDistance is RobSize - 1.
720      // Since exceptions flush the instruction itself, flushItSelf is true.B.
721      // Previously we use `+` to count the walk distance and it causes overflows
722      // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize.
723      // The width of walkCounter also needs to be changed.
724      redirectWalkDistance +& io.redirect.bits.flushItself() - commitCnt,
725      redirectWalkDistance +& io.redirect.bits.flushItself()
726    )
727  }.elsewhen (state === s_walk) {
728    walkCounter := walkCounter - commitCnt
729    XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n")
730  }
731
732
733  /**
734    * States
735    * We put all the stage bits changes here.
736
737    * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit);
738    * All states: (1) valid; (2) writebacked; (3) flagBkup
739    */
740  val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value)))
741
742  // enqueue logic writes 6 valid
743  for (i <- 0 until RenameWidth) {
744    when (canEnqueue(i) && !io.redirect.valid) {
745      valid(enqPtrVec(i).value) := true.B
746    }
747  }
748  // dequeue/walk logic writes 6 valid, dequeue and walk will not happen at the same time
749  for (i <- 0 until CommitWidth) {
750    when (io.commits.valid(i) && state =/= s_extrawalk) {
751      valid(commitReadAddr(i)) := false.B
752    }
753  }
754  // reset: when exception, reset all valid to false
755  when (reset.asBool) {
756    for (i <- 0 until RobSize) {
757      valid(i) := false.B
758    }
759  }
760
761  // status field: writebacked
762  // enqueue logic set 6 writebacked to false
763  for (i <- 0 until RenameWidth) {
764    when (canEnqueue(i)) {
765      val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec).asUInt.orR
766      val enqHasTriggerHit = io.enq.req(i).bits.cf.trigger.getHitFrontend
767      val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove
768      writebacked(enqPtrVec(i).value) := enqIsWritebacked && !enqHasException && !enqHasTriggerHit
769      val isStu = io.enq.req(i).bits.ctrl.fuType === FuType.stu
770      store_data_writebacked(enqPtrVec(i).value) := !isStu
771    }
772  }
773  when (exceptionGen.io.out.valid) {
774    val wbIdx = exceptionGen.io.out.bits.robIdx.value
775    writebacked(wbIdx) := true.B
776    store_data_writebacked(wbIdx) := true.B
777  }
778  // writeback logic set numWbPorts writebacked to true
779  for ((wb, cfgs) <- exuWriteback.zip(wbExuConfigs(exeWbSel))) {
780    when (wb.valid) {
781      val wbIdx = wb.bits.uop.robIdx.value
782      val wbHasException = ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, cfgs).asUInt.orR
783      val wbHasTriggerHit = wb.bits.uop.cf.trigger.getHitBackend
784      val wbHasFlushPipe = cfgs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe
785      val wbHasReplayInst = cfgs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst
786      val block_wb = wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit
787      writebacked(wbIdx) := !block_wb
788    }
789  }
790  // store data writeback logic mark store as data_writebacked
791  for (wb <- stdWriteback) {
792    when(RegNext(wb.valid)) {
793      store_data_writebacked(RegNext(wb.bits.uop.robIdx.value)) := true.B
794    }
795  }
796
797  // flagBkup
798  // enqueue logic set 6 flagBkup at most
799  for (i <- 0 until RenameWidth) {
800    when (canEnqueue(i)) {
801      flagBkup(enqPtrVec(i).value) := enqPtrVec(i).flag
802    }
803  }
804
805  // interrupt_safe
806  for (i <- 0 until RenameWidth) {
807    // We RegNext the updates for better timing.
808    // Note that instructions won't change the system's states in this cycle.
809    when (RegNext(canEnqueue(i))) {
810      // For now, we allow non-load-store instructions to trigger interrupts
811      // For MMIO instructions, they should not trigger interrupts since they may
812      // be sent to lower level before it writes back.
813      // However, we cannot determine whether a load/store instruction is MMIO.
814      // Thus, we don't allow load/store instructions to trigger an interrupt.
815      // TODO: support non-MMIO load-store instructions to trigger interrupts
816      val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.ctrl.commitType)
817      interrupt_safe(RegNext(enqPtrVec(i).value)) := RegNext(allow_interrupts)
818    }
819  }
820
821  /**
822    * read and write of data modules
823    */
824  val commitReadAddr_next = Mux(state_next === s_idle,
825    VecInit(deqPtrVec_next.map(_.value)),
826    VecInit(walkPtrVec_next.map(_.value))
827  )
828  dispatchData.io.wen := canEnqueue
829  dispatchData.io.waddr := enqPtrVec.map(_.value)
830  dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) =>
831    wdata.ldest := req.ctrl.ldest
832    wdata.rfWen := req.ctrl.rfWen
833    wdata.fpWen := req.ctrl.fpWen
834    wdata.wflags := req.ctrl.fpu.wflags
835    wdata.commitType := req.ctrl.commitType
836    wdata.pdest := req.pdest
837    wdata.old_pdest := req.old_pdest
838    wdata.ftqIdx := req.cf.ftqPtr
839    wdata.ftqOffset := req.cf.ftqOffset
840    wdata.pc := req.cf.pc
841  }
842  dispatchData.io.raddr := commitReadAddr_next
843
844  exceptionGen.io.redirect <> io.redirect
845  exceptionGen.io.flush := io.flushOut.valid
846  for (i <- 0 until RenameWidth) {
847    exceptionGen.io.enq(i).valid := canEnqueue(i)
848    exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx
849    exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec)
850    exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.ctrl.flushPipe
851    exceptionGen.io.enq(i).bits.replayInst := false.B
852    XSError(canEnqueue(i) && io.enq.req(i).bits.ctrl.replayInst, "enq should not set replayInst")
853    exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.ctrl.singleStep
854    exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.cf.crossPageIPFFix
855    exceptionGen.io.enq(i).bits.trigger.clear()
856    exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.cf.trigger.frontendHit
857  }
858
859  println(s"ExceptionGen:")
860  val exceptionCases = exceptionPorts.map(_._1.flatMap(_.exceptionOut).distinct.sorted)
861  require(exceptionCases.length == exceptionGen.io.wb.length)
862  for ((((configs, wb), exc_wb), i) <- exceptionPorts.zip(exceptionGen.io.wb).zipWithIndex) {
863    exc_wb.valid                := wb.valid
864    exc_wb.bits.robIdx          := wb.bits.uop.robIdx
865    exc_wb.bits.exceptionVec    := ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, configs)
866    exc_wb.bits.flushPipe       := configs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe
867    exc_wb.bits.replayInst      := configs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst
868    exc_wb.bits.singleStep      := false.B
869    exc_wb.bits.crossPageIPFFix := false.B
870    // TODO: make trigger configurable
871    exc_wb.bits.trigger.clear()
872    exc_wb.bits.trigger.backendHit := wb.bits.uop.cf.trigger.backendHit
873    println(s"  [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " +
874      s"flushPipe ${configs.exists(_.flushPipe)}, " +
875      s"replayInst ${configs.exists(_.replayInst)}")
876  }
877
878  val fflags_wb = fflagsPorts.map(_._2)
879  val fflagsDataModule = Module(new SyncDataModuleTemplate(
880    UInt(5.W), RobSize, CommitWidth, fflags_wb.size)
881  )
882  for(i <- fflags_wb.indices){
883    fflagsDataModule.io.wen  (i) := fflags_wb(i).valid
884    fflagsDataModule.io.waddr(i) := fflags_wb(i).bits.uop.robIdx.value
885    fflagsDataModule.io.wdata(i) := fflags_wb(i).bits.fflags
886  }
887  fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value))
888  fflagsDataRead := fflagsDataModule.io.rdata
889
890
891  val instrCnt = RegInit(0.U(64.W))
892  val fuseCommitCnt = PopCount(io.commits.valid.zip(io.commits.info).map{ case (v, i) => v && CommitType.isFused(i.commitType) })
893  val trueCommitCnt = commitCnt +& fuseCommitCnt
894  val retireCounter = Mux(state === s_idle, trueCommitCnt, 0.U)
895  instrCnt := instrCnt + retireCounter
896  io.csr.perfinfo.retiredInstr := RegNext(retireCounter)
897  io.robFull := !allowEnqueue
898
899  /**
900    * debug info
901    */
902  XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n")
903  XSDebug("")
904  for(i <- 0 until RobSize){
905    XSDebug(false, !valid(i), "-")
906    XSDebug(false, valid(i) && writebacked(i), "w")
907    XSDebug(false, valid(i) && !writebacked(i), "v")
908  }
909  XSDebug(false, true.B, "\n")
910
911  for(i <- 0 until RobSize) {
912    if(i % 4 == 0) XSDebug("")
913    XSDebug(false, true.B, "%x ", debug_microOp(i).cf.pc)
914    XSDebug(false, !valid(i), "- ")
915    XSDebug(false, valid(i) && writebacked(i), "w ")
916    XSDebug(false, valid(i) && !writebacked(i), "v ")
917    if(i % 4 == 3) XSDebug(false, true.B, "\n")
918  }
919
920  def ifCommit(counter: UInt): UInt = Mux(io.commits.isWalk, 0.U, counter)
921
922  val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_))
923  XSPerfAccumulate("clock_cycle", 1.U)
924  QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue)
925  XSPerfAccumulate("commitUop", ifCommit(commitCnt))
926  XSPerfAccumulate("commitInstr", ifCommit(trueCommitCnt))
927  val commitIsMove = commitDebugUop.map(_.ctrl.isMove)
928  XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.valid.zip(commitIsMove).map{ case (v, m) => v && m })))
929  val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove)
930  XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.valid zip commitMoveElim map { case (v, e) => v && e })))
931  XSPerfAccumulate("commitInstrFused", ifCommit(fuseCommitCnt))
932  val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD)
933  val commitLoadValid = io.commits.valid.zip(commitIsLoad).map{ case (v, t) => v && t }
934  XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid)))
935  val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH)
936  val commitBranchValid = io.commits.valid.zip(commitIsBranch).map{ case (v, t) => v && t }
937  XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid)))
938  val commitLoadWaitBit = commitDebugUop.map(_.cf.loadWaitBit)
939  XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })))
940  val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE)
941  XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.valid.zip(commitIsStore).map{ case (v, t) => v && t })))
942  XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i))))
943  // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire)))
944  // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready)))
945  XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.valid), 0.U))
946  XSPerfAccumulate("walkCycle", state === s_walk || state === s_extrawalk)
947  val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value)
948  val deqUopCommitType = io.commits.info(0).commitType
949  XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL)
950  XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH)
951  XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD)
952  XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE)
953  XSPerfAccumulate("robHeadPC", io.commits.info(0).pc)
954  val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime)
955  val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime)
956  val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime)
957  val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime)
958  val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime)
959  val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime)
960  val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime)
961  def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = {
962    cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _)
963  }
964  for (fuType <- FuType.functionNameMap.keys) {
965    val fuName = FuType.functionNameMap(fuType)
966    val commitIsFuType = io.commits.valid.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fuType === fuType.U )
967    XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType)))
968    XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency)))
969    XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency)))
970    XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency)))
971    XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency)))
972    XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency)))
973    XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency)))
974    XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency)))
975    if (fuType == FuType.fmac.litValue) {
976      val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fpu.ren3 )
977      XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma)))
978      XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency)))
979      XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency)))
980    }
981  }
982
983  //difftest signals
984  val firstValidCommit = (deqPtr + PriorityMux(io.commits.valid, VecInit(List.tabulate(CommitWidth)(_.U)))).value
985
986  val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W)))
987  val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W)))
988
989  for(i <- 0 until CommitWidth) {
990    val idx = deqPtrVec(i).value
991    wdata(i) := debug_exuData(idx)
992    wpc(i) := SignExt(commitDebugUop(i).cf.pc, XLEN)
993  }
994  val retireCounterFix = Mux(io.exception.valid, 1.U, retireCounter)
995  val retirePCFix = SignExt(Mux(io.exception.valid, io.exception.bits.uop.cf.pc, debug_microOp(firstValidCommit).cf.pc), XLEN)
996  val retireInstFix = Mux(io.exception.valid, io.exception.bits.uop.cf.instr, debug_microOp(firstValidCommit).cf.instr)
997
998  if (env.EnableDifftest) {
999    for (i <- 0 until CommitWidth) {
1000      val difftest = Module(new DifftestInstrCommit)
1001      difftest.io.clock    := clock
1002      difftest.io.coreid   := io.hartId
1003      difftest.io.index    := i.U
1004
1005      val ptr = deqPtrVec(i).value
1006      val uop = commitDebugUop(i)
1007      val exuOut = debug_exuDebug(ptr)
1008      val exuData = debug_exuData(ptr)
1009      difftest.io.valid    := RegNext(RegNext(RegNext(io.commits.valid(i) && !io.commits.isWalk)))
1010      difftest.io.pc       := RegNext(RegNext(RegNext(SignExt(uop.cf.pc, XLEN))))
1011      difftest.io.instr    := RegNext(RegNext(RegNext(uop.cf.instr)))
1012      difftest.io.special  := RegNext(RegNext(RegNext(CommitType.isFused(io.commits.info(i).commitType))))
1013      // when committing an eliminated move instruction,
1014      // we must make sure that skip is properly set to false (output from EXU is random value)
1015      difftest.io.skip     := RegNext(RegNext(RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))))
1016      difftest.io.isRVC    := RegNext(RegNext(RegNext(uop.cf.pd.isRVC)))
1017      difftest.io.rfwen    := RegNext(RegNext(RegNext(io.commits.valid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U)))
1018      difftest.io.fpwen    := RegNext(RegNext(RegNext(io.commits.valid(i) && io.commits.info(i).fpWen)))
1019      difftest.io.wpdest   := RegNext(RegNext(RegNext(io.commits.info(i).pdest)))
1020      difftest.io.wdest    := RegNext(RegNext(RegNext(io.commits.info(i).ldest)))
1021
1022      // // runahead commit hint
1023      // val runahead_commit = Module(new DifftestRunaheadCommitEvent)
1024      // runahead_commit.io.clock := clock
1025      // runahead_commit.io.coreid := io.hartId
1026      // runahead_commit.io.index := i.U
1027      // runahead_commit.io.valid := difftest.io.valid &&
1028      //   (commitBranchValid(i) || commitIsStore(i))
1029      // // TODO: is branch or store
1030      // runahead_commit.io.pc    := difftest.io.pc
1031    }
1032  }
1033  else if (env.AlwaysBasicDiff) {
1034    // These are the structures used by difftest only and should be optimized after synthesis.
1035    val dt_eliminatedMove = Mem(RobSize, Bool())
1036    val dt_isRVC = Mem(RobSize, Bool())
1037    val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle))
1038    for (i <- 0 until RenameWidth) {
1039      when (canEnqueue(i)) {
1040        dt_eliminatedMove(enqPtrVec(i).value) := io.enq.req(i).bits.eliminatedMove
1041        dt_isRVC(enqPtrVec(i).value) := io.enq.req(i).bits.cf.pd.isRVC
1042      }
1043    }
1044    for (wb <- exuWriteback) {
1045      when (wb.valid) {
1046        val wbIdx = wb.bits.uop.robIdx.value
1047        dt_exuDebug(wbIdx) := wb.bits.debug
1048      }
1049    }
1050    // Always instantiate basic difftest modules.
1051    for (i <- 0 until CommitWidth) {
1052      val commitInfo = io.commits.info(i)
1053      val ptr = deqPtrVec(i).value
1054      val exuOut = dt_exuDebug(ptr)
1055      val eliminatedMove = dt_eliminatedMove(ptr)
1056      val isRVC = dt_isRVC(ptr)
1057
1058      val difftest = Module(new DifftestBasicInstrCommit)
1059      difftest.io.clock   := clock
1060      difftest.io.coreid  := io.hartId
1061      difftest.io.index   := i.U
1062      difftest.io.valid   := RegNext(RegNext(RegNext(io.commits.valid(i) && !io.commits.isWalk)))
1063      difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(commitInfo.commitType))))
1064      difftest.io.skip    := RegNext(RegNext(RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))))
1065      difftest.io.isRVC   := RegNext(RegNext(RegNext(isRVC)))
1066      difftest.io.rfwen   := RegNext(RegNext(RegNext(io.commits.valid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U)))
1067      difftest.io.fpwen   := RegNext(RegNext(RegNext(io.commits.valid(i) && commitInfo.fpWen)))
1068      difftest.io.wpdest  := RegNext(RegNext(RegNext(commitInfo.pdest)))
1069      difftest.io.wdest   := RegNext(RegNext(RegNext(commitInfo.ldest)))
1070    }
1071  }
1072
1073  if (env.EnableDifftest) {
1074    for (i <- 0 until CommitWidth) {
1075      val difftest = Module(new DifftestLoadEvent)
1076      difftest.io.clock  := clock
1077      difftest.io.coreid := io.hartId
1078      difftest.io.index  := i.U
1079
1080      val ptr = deqPtrVec(i).value
1081      val uop = commitDebugUop(i)
1082      val exuOut = debug_exuDebug(ptr)
1083      difftest.io.valid  := RegNext(RegNext(RegNext(io.commits.valid(i) && !io.commits.isWalk)))
1084      difftest.io.paddr  := RegNext(RegNext(RegNext(exuOut.paddr)))
1085      difftest.io.opType := RegNext(RegNext(RegNext(uop.ctrl.fuOpType)))
1086      difftest.io.fuType := RegNext(RegNext(RegNext(uop.ctrl.fuType)))
1087    }
1088  }
1089
1090  // Always instantiate basic difftest modules.
1091  if (env.EnableDifftest) {
1092    val dt_isXSTrap = Mem(RobSize, Bool())
1093    for (i <- 0 until RenameWidth) {
1094      when (canEnqueue(i)) {
1095        dt_isXSTrap(enqPtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap
1096      }
1097    }
1098    val trapVec = io.commits.valid.zip(deqPtrVec).map{ case (v, d) => state === s_idle && v && dt_isXSTrap(d.value) }
1099    val hitTrap = trapVec.reduce(_||_)
1100    val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1))
1101    val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN)
1102    val difftest = Module(new DifftestTrapEvent)
1103    difftest.io.clock    := clock
1104    difftest.io.coreid   := io.hartId
1105    difftest.io.valid    := hitTrap
1106    difftest.io.code     := trapCode
1107    difftest.io.pc       := trapPC
1108    difftest.io.cycleCnt := timer
1109    difftest.io.instrCnt := instrCnt
1110    difftest.io.hasWFI   := hasWFI
1111  }
1112  else if (env.AlwaysBasicDiff) {
1113    val dt_isXSTrap = Mem(RobSize, Bool())
1114    for (i <- 0 until RenameWidth) {
1115      when (canEnqueue(i)) {
1116        dt_isXSTrap(enqPtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap
1117      }
1118    }
1119    val trapVec = io.commits.valid.zip(deqPtrVec).map{ case (v, d) => state === s_idle && v && dt_isXSTrap(d.value) }
1120    val hitTrap = trapVec.reduce(_||_)
1121    val difftest = Module(new DifftestBasicTrapEvent)
1122    difftest.io.clock    := clock
1123    difftest.io.coreid   := io.hartId
1124    difftest.io.valid    := hitTrap
1125    difftest.io.cycleCnt := timer
1126    difftest.io.instrCnt := instrCnt
1127  }
1128
1129  val perfEvents = Seq(
1130    ("rob_interrupt_num       ", io.flushOut.valid && intrEnable                                                                                                   ),
1131    ("rob_exception_num       ", io.flushOut.valid && exceptionEnable                                                                                              ),
1132    ("rob_flush_pipe_num      ", io.flushOut.valid && isFlushPipe                                                                                                  ),
1133    ("rob_replay_inst_num     ", io.flushOut.valid && isFlushPipe && deqHasReplayInst                                                                              ),
1134    ("rob_commitUop           ", ifCommit(commitCnt)                                                                                                               ),
1135    ("rob_commitInstr         ", ifCommit(trueCommitCnt)                                                                                                           ),
1136    ("rob_commitInstrMove     ", ifCommit(PopCount(io.commits.valid.zip(commitIsMove).map{ case (v, m) => v && m }))                                               ),
1137    ("rob_commitInstrFused    ", ifCommit(fuseCommitCnt)                                                                                                           ),
1138    ("rob_commitInstrLoad     ", ifCommit(PopCount(commitLoadValid))                                                                                               ),
1139    ("rob_commitInstrLoad     ", ifCommit(PopCount(commitBranchValid))                                                                                               ),
1140    ("rob_commitInstrLoadWait ", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))                                           ),
1141    ("rob_commitInstrStore    ", ifCommit(PopCount(io.commits.valid.zip(commitIsStore).map{ case (v, t) => v && t }))                                              ),
1142    ("rob_walkInstr           ", Mux(io.commits.isWalk, PopCount(io.commits.valid), 0.U)                                                                           ),
1143    ("rob_walkCycle           ", (state === s_walk || state === s_extrawalk)                                                                                       ),
1144    ("rob_1_4_valid           ", (PopCount((0 until RobSize).map(valid(_))) < (RobSize.U/4.U))                                                                     ),
1145    ("rob_2_4_valid           ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U/4.U)) & (PopCount((0 until RobSize).map(valid(_))) <= (RobSize.U/2.U))    ),
1146    ("rob_3_4_valid           ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U/2.U)) & (PopCount((0 until RobSize).map(valid(_))) <= (RobSize.U*3.U/4.U))),
1147    ("rob_4_4_valid           ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U*3.U/4.U))                                                                 ),
1148  )
1149  generatePerfEvent()
1150}
1151