1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.rob 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 24import utils._ 25import xiangshan._ 26import xiangshan.backend.exu.ExuConfig 27import xiangshan.frontend.FtqPtr 28 29class RobPtr(implicit p: Parameters) extends CircularQueuePtr[RobPtr]( 30 p => p(XSCoreParamsKey).RobSize 31) with HasCircularQueuePtrHelper { 32 33 def needFlush(redirect: Valid[Redirect]): Bool = { 34 val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx 35 redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx)) 36 } 37 38 def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR 39} 40 41object RobPtr { 42 def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = { 43 val ptr = Wire(new RobPtr) 44 ptr.flag := f 45 ptr.value := v 46 ptr 47 } 48} 49 50class RobCSRIO(implicit p: Parameters) extends XSBundle { 51 val intrBitSet = Input(Bool()) 52 val trapTarget = Input(UInt(VAddrBits.W)) 53 val isXRet = Input(Bool()) 54 val wfiEvent = Input(Bool()) 55 56 val fflags = Output(Valid(UInt(5.W))) 57 val dirty_fs = Output(Bool()) 58 val perfinfo = new Bundle { 59 val retiredInstr = Output(UInt(3.W)) 60 } 61} 62 63class RobLsqIO(implicit p: Parameters) extends XSBundle { 64 val lcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 65 val scommit = Output(UInt(log2Up(CommitWidth + 1).W)) 66 val pendingld = Output(Bool()) 67 val pendingst = Output(Bool()) 68 val commit = Output(Bool()) 69} 70 71class RobEnqIO(implicit p: Parameters) extends XSBundle { 72 val canAccept = Output(Bool()) 73 val isEmpty = Output(Bool()) 74 // valid vector, for robIdx gen and walk 75 val needAlloc = Vec(RenameWidth, Input(Bool())) 76 val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp))) 77 val resp = Vec(RenameWidth, Output(new RobPtr)) 78} 79 80class RobDispatchData(implicit p: Parameters) extends RobCommitInfo 81 82class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 83 val io = IO(new Bundle { 84 // for commits/flush 85 val state = Input(UInt(2.W)) 86 val deq_v = Vec(CommitWidth, Input(Bool())) 87 val deq_w = Vec(CommitWidth, Input(Bool())) 88 val exception_state = Flipped(ValidIO(new RobExceptionInfo)) 89 // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth) 90 val intrBitSetReg = Input(Bool()) 91 val hasNoSpecExec = Input(Bool()) 92 val interrupt_safe = Input(Bool()) 93 val misPredBlock = Input(Bool()) 94 val isReplaying = Input(Bool()) 95 val hasWFI = Input(Bool()) 96 // output: the CommitWidth deqPtr 97 val out = Vec(CommitWidth, Output(new RobPtr)) 98 val next_out = Vec(CommitWidth, Output(new RobPtr)) 99 }) 100 101 val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr)))) 102 103 // for exceptions (flushPipe included) and interrupts: 104 // only consider the first instruction 105 val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe 106 val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0) 107 val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable) 108 109 // for normal commits: only to consider when there're no exceptions 110 // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions. 111 val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last) 112 val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i) && !io.misPredBlock && !io.isReplaying && !io.hasWFI)) 113 val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B) 114 // when io.intrBitSetReg or there're possible exceptions in these instructions, 115 // only one instruction is allowed to commit 116 val allowOnlyOne = commit_exception || io.intrBitSetReg 117 val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt) 118 119 val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt)) 120 val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid, commitDeqPtrVec, deqPtrVec) 121 122 deqPtrVec := deqPtrVec_next 123 124 io.next_out := deqPtrVec_next 125 io.out := deqPtrVec 126 127 when (io.state === 0.U) { 128 XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt) 129 } 130 131} 132 133class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 134 val io = IO(new Bundle { 135 // for input redirect 136 val redirect = Input(Valid(new Redirect)) 137 // for enqueue 138 val allowEnqueue = Input(Bool()) 139 val hasBlockBackward = Input(Bool()) 140 val enq = Vec(RenameWidth, Input(Bool())) 141 val out = Output(new RobPtr) 142 }) 143 144 val enqPtr = RegInit(0.U.asTypeOf(new RobPtr)) 145 146 // enqueue 147 val canAccept = io.allowEnqueue && !io.hasBlockBackward 148 val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U) 149 150 when (io.redirect.valid) { 151 enqPtr := io.redirect.bits.robIdx + Mux(io.redirect.bits.flushItself(), 0.U, 1.U) 152 }.otherwise { 153 enqPtr := enqPtr + dispatchNum 154 } 155 156 io.out := enqPtr 157 158} 159 160class RobExceptionInfo(implicit p: Parameters) extends XSBundle { 161 // val valid = Bool() 162 val robIdx = new RobPtr 163 val exceptionVec = ExceptionVec() 164 val flushPipe = Bool() 165 val replayInst = Bool() // redirect to that inst itself 166 val singleStep = Bool() // TODO add frontend hit beneath 167 val crossPageIPFFix = Bool() 168 val trigger = new TriggerCf 169 170// def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend 171// def trigger_after = trigger.getTimingBackend && trigger.getHitBackend 172 def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit 173 def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit 174 // only exceptions are allowed to writeback when enqueue 175 def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit 176} 177 178class ExceptionGen(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 179 val io = IO(new Bundle { 180 val redirect = Input(Valid(new Redirect)) 181 val flush = Input(Bool()) 182 val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo))) 183 val wb = Vec(1 + LoadPipelineWidth + StorePipelineWidth, Flipped(ValidIO(new RobExceptionInfo))) 184 val out = ValidIO(new RobExceptionInfo) 185 val state = ValidIO(new RobExceptionInfo) 186 }) 187 188 def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = { 189 assert(valid.length == bits.length) 190 assert(isPow2(valid.length)) 191 if (valid.length == 1) { 192 (valid, bits) 193 } else if (valid.length == 2) { 194 val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0))))) 195 for (i <- res.indices) { 196 res(i).valid := valid(i) 197 res(i).bits := bits(i) 198 } 199 val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1)) 200 (Seq(oldest.valid), Seq(oldest.bits)) 201 } else { 202 val left = getOldest(valid.take(valid.length / 2), bits.take(valid.length / 2)) 203 val right = getOldest(valid.takeRight(valid.length / 2), bits.takeRight(valid.length / 2)) 204 getOldest(left._1 ++ right._1, left._2 ++ right._2) 205 } 206 } 207 208 val current = Reg(Valid(new RobExceptionInfo)) 209 210 // orR the exceptionVec 211 val lastCycleFlush = RegNext(io.flush) 212 val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush)) 213 val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush) 214 215 // s0: compare wb(1)~wb(LoadPipelineWidth) and wb(1 + LoadPipelineWidth)~wb(LoadPipelineWidth + StorePipelineWidth) 216 val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) } 217 val csr_wb_bits = io.wb(0).bits 218 val load_wb_bits = getOldest(in_wb_valid.slice(1, 1 + LoadPipelineWidth), io.wb.map(_.bits).slice(1, 1 + LoadPipelineWidth))._2(0) 219 val store_wb_bits = getOldest(in_wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth), io.wb.map(_.bits).slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth))._2(0) 220 val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid.slice(1, 1 + LoadPipelineWidth).reduce(_ || _), wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth).reduce(_ || _)))) 221 val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits))) 222 223 // s1: compare last four and current flush 224 val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) }) 225 val compare_01_valid = s0_out_valid(0) || s0_out_valid(1) 226 val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0)) 227 val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2)) 228 val s1_out_bits = RegNext(compare_bits) 229 val s1_out_valid = RegNext(s1_valid.asUInt.orR) 230 231 val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 232 val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits))) 233 234 // s2: compare the input exception with the current one 235 // priorities: 236 // (1) system reset 237 // (2) current is valid: flush, remain, merge, update 238 // (3) current is not valid: s1 or enq 239 val current_flush = current.bits.robIdx.needFlush(io.redirect) || io.flush 240 val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush 241 when (reset.asBool) { 242 current.valid := false.B 243 }.elsewhen (current.valid) { 244 when (current_flush) { 245 current.valid := Mux(s1_flush, false.B, s1_out_valid) 246 } 247 when (s1_out_valid && !s1_flush) { 248 when (isAfter(current.bits.robIdx, s1_out_bits.robIdx)) { 249 current.bits := s1_out_bits 250 }.elsewhen (current.bits.robIdx === s1_out_bits.robIdx) { 251 current.bits.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.bits.exceptionVec.asUInt).asTypeOf(ExceptionVec()) 252 current.bits.flushPipe := s1_out_bits.flushPipe || current.bits.flushPipe 253 current.bits.replayInst := s1_out_bits.replayInst || current.bits.replayInst 254 current.bits.singleStep := s1_out_bits.singleStep || current.bits.singleStep 255 current.bits.trigger := (s1_out_bits.trigger.asUInt | current.bits.trigger.asUInt).asTypeOf(new TriggerCf) 256 } 257 } 258 }.elsewhen (s1_out_valid && !s1_flush) { 259 current.valid := true.B 260 current.bits := s1_out_bits 261 }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) { 262 current.valid := true.B 263 current.bits := enq_bits 264 } 265 266 io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback 267 io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits) 268 io.state := current 269 270} 271 272class RobFlushInfo(implicit p: Parameters) extends XSBundle { 273 val ftqIdx = new FtqPtr 274 val robIdx = new RobPtr 275 val ftqOffset = UInt(log2Up(PredictWidth).W) 276 val replayInst = Bool() 277} 278 279class Rob(implicit p: Parameters) extends LazyModule with HasWritebackSink with HasXSParameter { 280 281 lazy val module = new RobImp(this) 282 283 override def generateWritebackIO( 284 thisMod: Option[HasWritebackSource] = None, 285 thisModImp: Option[HasWritebackSourceImp] = None 286 ): Unit = { 287 val sources = writebackSinksImp(thisMod, thisModImp) 288 module.io.writeback.zip(sources).foreach(x => x._1 := x._2) 289 } 290} 291 292class RobImp(outer: Rob)(implicit p: Parameters) extends LazyModuleImp(outer) 293 with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents { 294 val wbExuConfigs = outer.writebackSinksParams.map(_.exuConfigs) 295 val numWbPorts = wbExuConfigs.map(_.length) 296 297 val io = IO(new Bundle() { 298 val hartId = Input(UInt(8.W)) 299 val redirect = Input(Valid(new Redirect)) 300 val enq = new RobEnqIO 301 val flushOut = ValidIO(new Redirect) 302 val exception = ValidIO(new ExceptionInfo) 303 // exu + brq 304 val writeback = MixedVec(numWbPorts.map(num => Vec(num, Flipped(ValidIO(new ExuOutput))))) 305 val commits = new RobCommitIO 306 val lsq = new RobLsqIO 307 val robDeqPtr = Output(new RobPtr) 308 val csr = new RobCSRIO 309 val robFull = Output(Bool()) 310 val cpu_halt = Output(Bool()) 311 }) 312 313 def selectWb(index: Int, func: Seq[ExuConfig] => Boolean): Seq[(Seq[ExuConfig], ValidIO[ExuOutput])] = { 314 wbExuConfigs(index).zip(io.writeback(index)).filter(x => func(x._1)) 315 } 316 val exeWbSel = outer.selWritebackSinks(_.exuConfigs.length) 317 val fflagsWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.writeFflags))) 318 val fflagsPorts = selectWb(fflagsWbSel, _.exists(_.writeFflags)) 319 val exceptionWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.needExceptionGen))) 320 val exceptionPorts = selectWb(fflagsWbSel, _.exists(_.needExceptionGen)) 321 val exuWbPorts = selectWb(exeWbSel, _.forall(_ != StdExeUnitCfg)) 322 val stdWbPorts = selectWb(exeWbSel, _.contains(StdExeUnitCfg)) 323 println(s"Rob: size $RobSize, numWbPorts: $numWbPorts, commitwidth: $CommitWidth") 324 println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}") 325 println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}") 326 println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}") 327 328 329 val exuWriteback = exuWbPorts.map(_._2) 330 val stdWriteback = stdWbPorts.map(_._2) 331 332 // instvalid field 333 val valid = Mem(RobSize, Bool()) 334 // writeback status 335 val writebacked = Mem(RobSize, Bool()) 336 val store_data_writebacked = Mem(RobSize, Bool()) 337 // data for redirect, exception, etc. 338 val flagBkup = Mem(RobSize, Bool()) 339 // some instructions are not allowed to trigger interrupts 340 // They have side effects on the states of the processor before they write back 341 val interrupt_safe = Mem(RobSize, Bool()) 342 343 // data for debug 344 // Warn: debug_* prefix should not exist in generated verilog. 345 val debug_microOp = Mem(RobSize, new MicroOp) 346 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug 347 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug 348 349 // pointers 350 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 351 val enqPtr = Wire(new RobPtr) 352 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 353 354 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 355 val validCounter = RegInit(0.U(log2Ceil(RobSize + 1).W)) 356 val allowEnqueue = RegInit(true.B) 357 358 val enqPtrVec = VecInit((0 until RenameWidth).map(i => enqPtr + PopCount(io.enq.needAlloc.take(i)))) 359 val deqPtr = deqPtrVec(0) 360 val walkPtr = walkPtrVec(0) 361 362 val isEmpty = enqPtr === deqPtr 363 val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level) 364 365 /** 366 * states of Rob 367 */ 368 val s_idle :: s_walk :: s_extrawalk :: Nil = Enum(3) 369 val state = RegInit(s_idle) 370 371 /** 372 * Data Modules 373 * 374 * CommitDataModule: data from dispatch 375 * (1) read: commits/walk/exception 376 * (2) write: enqueue 377 * 378 * WritebackData: data from writeback 379 * (1) read: commits/walk/exception 380 * (2) write: write back from exe units 381 */ 382 val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth)) 383 val dispatchDataRead = dispatchData.io.rdata 384 385 val exceptionGen = Module(new ExceptionGen) 386 val exceptionDataRead = exceptionGen.io.state 387 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 388 389 io.robDeqPtr := deqPtr 390 391 /** 392 * Enqueue (from dispatch) 393 */ 394 // special cases 395 val hasBlockBackward = RegInit(false.B) 396 val hasNoSpecExec = RegInit(false.B) 397 val doingSvinval = RegInit(false.B) 398 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 399 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 400 when (isEmpty) { hasBlockBackward:= false.B } 401 // When any instruction commits, hasNoSpecExec should be set to false.B 402 when (io.commits.valid.asUInt.orR && state =/= s_extrawalk) { hasNoSpecExec:= false.B } 403 404 // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing. 405 // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle. 406 // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts. 407 val hasWFI = RegInit(false.B) 408 io.cpu_halt := hasWFI 409 when (RegNext(RegNext(io.csr.wfiEvent))) { 410 hasWFI := false.B 411 } 412 413 io.enq.canAccept := allowEnqueue && !hasBlockBackward 414 io.enq.resp := enqPtrVec 415 val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept)) 416 val timer = GTimer() 417 for (i <- 0 until RenameWidth) { 418 // we don't check whether io.redirect is valid here since redirect has higher priority 419 when (canEnqueue(i)) { 420 val enqUop = io.enq.req(i).bits 421 // store uop in data module and debug_microOp Vec 422 debug_microOp(enqPtrVec(i).value) := enqUop 423 debug_microOp(enqPtrVec(i).value).debugInfo.dispatchTime := timer 424 debug_microOp(enqPtrVec(i).value).debugInfo.enqRsTime := timer 425 debug_microOp(enqPtrVec(i).value).debugInfo.selectTime := timer 426 debug_microOp(enqPtrVec(i).value).debugInfo.issueTime := timer 427 debug_microOp(enqPtrVec(i).value).debugInfo.writebackTime := timer 428 when (enqUop.ctrl.blockBackward) { 429 hasBlockBackward := true.B 430 } 431 when (enqUop.ctrl.noSpecExec) { 432 hasNoSpecExec := true.B 433 } 434 val enqHasTriggerHit = io.enq.req(i).bits.cf.trigger.getHitFrontend 435 val enqHasException = ExceptionNO.selectFrontend(enqUop.cf.exceptionVec).asUInt.orR 436 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 437 when(!enqHasTriggerHit && !enqHasException && FuType.isSvinvalBegin(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe)) 438 { 439 doingSvinval := true.B 440 } 441 // the end instruction of Svinval enqs so clear doingSvinval 442 when(!enqHasTriggerHit && !enqHasException && FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe)) 443 { 444 doingSvinval := false.B 445 } 446 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 447 assert(!doingSvinval || (FuType.isSvinval(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe) || 448 FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe))) 449 when (enqUop.ctrl.isWFI && !enqHasException && !enqHasTriggerHit) { 450 hasWFI := true.B 451 } 452 } 453 } 454 val dispatchNum = Mux(io.enq.canAccept, PopCount(Cat(io.enq.req.map(_.valid))), 0.U) 455 io.enq.isEmpty := RegNext(isEmpty && dispatchNum === 0.U) 456 457 // debug info for enqueue (dispatch) 458 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 459 XSInfo(dispatchNum =/= 0.U, p"dispatched $dispatchNum insts\n") 460 461 462 /** 463 * Writeback (from execution units) 464 */ 465 for (wb <- exuWriteback) { 466 when (wb.valid) { 467 val wbIdx = wb.bits.uop.robIdx.value 468 debug_exuData(wbIdx) := wb.bits.data 469 debug_exuDebug(wbIdx) := wb.bits.debug 470 debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.uop.debugInfo.enqRsTime 471 debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.uop.debugInfo.selectTime 472 debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.uop.debugInfo.issueTime 473 debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.uop.debugInfo.writebackTime 474 475 val debug_Uop = debug_microOp(wbIdx) 476 XSInfo(true.B, 477 p"writebacked pc 0x${Hexadecimal(debug_Uop.cf.pc)} wen ${debug_Uop.ctrl.rfWen} " + 478 p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ctrl.ldest} pdst ${debug_Uop.pdest} " + 479 p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.uop.robIdx}\n" 480 ) 481 } 482 } 483 val writebackNum = PopCount(exuWriteback.map(_.valid)) 484 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 485 486 487 /** 488 * RedirectOut: Interrupt and Exceptions 489 */ 490 val deqDispatchData = dispatchDataRead(0) 491 val debug_deqUop = debug_microOp(deqPtr.value) 492 493 val intrBitSetReg = RegNext(io.csr.intrBitSet) 494 val intrEnable = intrBitSetReg && !hasNoSpecExec && interrupt_safe(deqPtr.value) 495 val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 496 val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR || 497 exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit) 498 val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe 499 val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst 500 val exceptionEnable = writebacked(deqPtr.value) && deqHasException 501 502 XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n") 503 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n") 504 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n") 505 506 val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst) 507 508 // io.flushOut will trigger redirect at the next cycle. 509 // Block any redirect or commit at the next cycle. 510 val lastCycleFlush = RegNext(io.flushOut.valid) 511 512 io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush 513 io.flushOut.bits := DontCare 514 io.flushOut.bits.robIdx := deqPtr 515 io.flushOut.bits.ftqIdx := deqDispatchData.ftqIdx 516 io.flushOut.bits.ftqOffset := deqDispatchData.ftqOffset 517 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next" 518 io.flushOut.bits.interrupt := true.B 519 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 520 XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable) 521 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 522 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 523 524 val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush 525 io.exception.valid := RegNext(exceptionHappen) 526 io.exception.bits.uop := RegEnable(debug_deqUop, exceptionHappen) 527 io.exception.bits.uop.ctrl.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 528 io.exception.bits.uop.cf.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 529 io.exception.bits.uop.ctrl.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 530 io.exception.bits.uop.cf.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 531 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 532 io.exception.bits.uop.cf.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen) 533 534 XSDebug(io.flushOut.valid, 535 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.uop.cf.pc)} intr $intrEnable " + 536 p"excp $exceptionEnable flushPipe $isFlushPipe " + 537 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 538 539 540 /** 541 * Commits (and walk) 542 * They share the same width. 543 */ 544 val walkCounter = Reg(UInt(log2Up(RobSize + 1).W)) 545 val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter)) 546 val walkFinished = walkCounter <= CommitWidth.U 547 548 // extra space is used when rob has no enough space, but mispredict recovery needs such info to walk regmap 549 require(RenameWidth <= CommitWidth) 550 val extraSpaceForMPR = Reg(Vec(RenameWidth, new RobDispatchData)) 551 val usedSpaceForMPR = Reg(Vec(RenameWidth, Bool())) 552 when (io.enq.needAlloc.asUInt.orR && io.redirect.valid) { 553 usedSpaceForMPR := io.enq.needAlloc 554 extraSpaceForMPR := dispatchData.io.wdata 555 XSDebug("rob full, switched to s_extrawalk. needExtraSpaceForMPR: %b\n", io.enq.needAlloc.asUInt) 556 } 557 558 // wiring to csr 559 val (wflags, fpWen) = (0 until CommitWidth).map(i => { 560 val v = io.commits.valid(i) 561 val info = io.commits.info(i) 562 (v & info.wflags, v & info.fpWen) 563 }).unzip 564 val fflags = Wire(Valid(UInt(5.W))) 565 fflags.valid := Mux(io.commits.isWalk, false.B, Cat(wflags).orR) 566 fflags.bits := wflags.zip(fflagsDataRead).map({ 567 case (w, f) => Mux(w, f, 0.U) 568 }).reduce(_|_) 569 val dirty_fs = Mux(io.commits.isWalk, false.B, Cat(fpWen).orR) 570 571 // when mispredict branches writeback, stop commit in the next 2 cycles 572 // TODO: don't check all exu write back 573 val misPredWb = Cat(VecInit(exuWriteback.map(wb => 574 wb.bits.redirect.cfiUpdate.isMisPred && wb.bits.redirectValid 575 ))).orR 576 val misPredBlockCounter = Reg(UInt(3.W)) 577 misPredBlockCounter := Mux(misPredWb, 578 "b111".U, 579 misPredBlockCounter >> 1.U 580 ) 581 val misPredBlock = misPredBlockCounter(0) 582 583 io.commits.isWalk := state =/= s_idle 584 val commit_v = Mux(state === s_idle, VecInit(deqPtrVec.map(ptr => valid(ptr.value))), VecInit(walkPtrVec.map(ptr => valid(ptr.value)))) 585 // store will be commited iff both sta & std have been writebacked 586 val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value))) 587 val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last) 588 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i))) 589 val allowOnlyOneCommit = commit_exception || intrBitSetReg 590 // for instructions that may block others, we don't allow them to commit 591 for (i <- 0 until CommitWidth) { 592 // defaults: state === s_idle and instructions commit 593 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 594 val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst 595 io.commits.valid(i) := commit_v(i) && commit_w(i) && !isBlocked && !misPredBlock && !isReplaying && !lastCycleFlush && !hasWFI 596 io.commits.walkValid(i) := DontCare 597 io.commits.info(i) := dispatchDataRead(i) 598 599 when (state === s_walk) { 600 io.commits.valid(i) := commit_v(i) && shouldWalkVec(i) 601 io.commits.walkValid(i) := commit_v(i) && shouldWalkVec(i) 602 }.elsewhen(state === s_extrawalk) { 603 io.commits.valid(i) := (if (i < RenameWidth) usedSpaceForMPR(RenameWidth-i-1) else false.B) 604 io.commits.walkValid(i) := (if (i < RenameWidth) usedSpaceForMPR(RenameWidth-i-1) else false.B) 605 io.commits.info(i) := (if (i < RenameWidth) extraSpaceForMPR(RenameWidth-i-1) else DontCare) 606 } 607 608 XSInfo(state === s_idle && io.commits.valid(i), 609 "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b\n", 610 debug_microOp(deqPtrVec(i).value).cf.pc, 611 io.commits.info(i).rfWen, 612 io.commits.info(i).ldest, 613 io.commits.info(i).pdest, 614 io.commits.info(i).old_pdest, 615 debug_exuData(deqPtrVec(i).value), 616 fflagsDataRead(i) 617 ) 618 XSInfo(state === s_walk && io.commits.valid(i), "walked pc %x wen %d ldst %d data %x\n", 619 debug_microOp(walkPtrVec(i).value).cf.pc, 620 io.commits.info(i).rfWen, 621 io.commits.info(i).ldest, 622 debug_exuData(walkPtrVec(i).value) 623 ) 624 XSInfo(state === s_extrawalk && io.commits.valid(i), "use extra space walked wen %d ldst %d\n", 625 io.commits.info(i).rfWen, 626 io.commits.info(i).ldest 627 ) 628 } 629 if (env.EnableDifftest) { 630 io.commits.info.map(info => dontTouch(info.pc)) 631 } 632 633 // sync fflags/dirty_fs to csr 634 io.csr.fflags := RegNext(fflags) 635 io.csr.dirty_fs := RegNext(dirty_fs) 636 637 // commit load/store to lsq 638 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 639 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.valid(i) && io.commits.info(i).commitType === CommitType.STORE)) 640 io.lsq.lcommit := RegNext(Mux(io.commits.isWalk, 0.U, PopCount(ldCommitVec))) 641 io.lsq.scommit := RegNext(Mux(io.commits.isWalk, 0.U, PopCount(stCommitVec))) 642 io.lsq.pendingld := RegNext(!io.commits.isWalk && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value)) 643 io.lsq.pendingst := RegNext(!io.commits.isWalk && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value)) 644 io.lsq.commit := RegNext(!io.commits.isWalk && io.commits.valid(0)) 645 646 /** 647 * state changes 648 * (1) exceptions: when exception occurs, cancels all and switch to s_idle 649 * (2) redirect: switch to s_walk or s_extrawalk (depends on whether there're pending instructions in dispatch1) 650 * (3) walk: when walking comes to the end, switch to s_walk 651 * (4) s_extrawalk to s_walk 652 */ 653 val state_next = Mux(io.redirect.valid, 654 Mux(io.enq.needAlloc.asUInt.orR, s_extrawalk, s_walk), 655 Mux(state === s_walk && walkFinished, 656 s_idle, 657 Mux(state === s_extrawalk, s_walk, state) 658 ) 659 ) 660 state := state_next 661 662 /** 663 * pointers and counters 664 */ 665 val deqPtrGenModule = Module(new RobDeqPtrWrapper) 666 deqPtrGenModule.io.state := state 667 deqPtrGenModule.io.deq_v := commit_v 668 deqPtrGenModule.io.deq_w := commit_w 669 deqPtrGenModule.io.exception_state := exceptionDataRead 670 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 671 deqPtrGenModule.io.hasNoSpecExec := hasNoSpecExec 672 deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value) 673 deqPtrGenModule.io.misPredBlock := misPredBlock 674 deqPtrGenModule.io.isReplaying := isReplaying 675 deqPtrGenModule.io.hasWFI := hasWFI 676 deqPtrVec := deqPtrGenModule.io.out 677 val deqPtrVec_next = deqPtrGenModule.io.next_out 678 679 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 680 enqPtrGenModule.io.redirect := io.redirect 681 enqPtrGenModule.io.allowEnqueue := allowEnqueue 682 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 683 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid)) 684 enqPtr := enqPtrGenModule.io.out 685 686 val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U) 687 // next walkPtrVec: 688 // (1) redirect occurs: update according to state 689 // (2) walk: move backwards 690 val walkPtrVec_next = Mux(io.redirect.valid && state =/= s_extrawalk, 691 Mux(state === s_walk, 692 VecInit(walkPtrVec.map(_ - thisCycleWalkCount)), 693 VecInit((0 until CommitWidth).map(i => enqPtr - (i+1).U)) 694 ), 695 Mux(state === s_walk, VecInit(walkPtrVec.map(_ - CommitWidth.U)), walkPtrVec) 696 ) 697 walkPtrVec := walkPtrVec_next 698 699 val lastCycleRedirect = RegNext(io.redirect.valid) 700 val trueValidCounter = Mux(lastCycleRedirect, distanceBetween(enqPtr, deqPtr), validCounter) 701 val commitCnt = PopCount(io.commits.valid) 702 validCounter := Mux(state === s_idle, 703 (validCounter - commitCnt) + dispatchNum, 704 trueValidCounter 705 ) 706 707 allowEnqueue := Mux(state === s_idle, 708 validCounter + dispatchNum <= (RobSize - RenameWidth).U, 709 trueValidCounter <= (RobSize - RenameWidth).U 710 ) 711 712 val currentWalkPtr = Mux(state === s_walk || state === s_extrawalk, walkPtr, enqPtr - 1.U) 713 val redirectWalkDistance = distanceBetween(currentWalkPtr, io.redirect.bits.robIdx) 714 when (io.redirect.valid) { 715 walkCounter := Mux(state === s_walk, 716 // NOTE: +& is used here because: 717 // When rob is full and the head instruction causes an exception, 718 // the redirect robIdx is the deqPtr. In this case, currentWalkPtr is 719 // enqPtr - 1.U and redirectWalkDistance is RobSize - 1. 720 // Since exceptions flush the instruction itself, flushItSelf is true.B. 721 // Previously we use `+` to count the walk distance and it causes overflows 722 // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize. 723 // The width of walkCounter also needs to be changed. 724 redirectWalkDistance +& io.redirect.bits.flushItself() - commitCnt, 725 redirectWalkDistance +& io.redirect.bits.flushItself() 726 ) 727 }.elsewhen (state === s_walk) { 728 walkCounter := walkCounter - commitCnt 729 XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n") 730 } 731 732 733 /** 734 * States 735 * We put all the stage bits changes here. 736 737 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 738 * All states: (1) valid; (2) writebacked; (3) flagBkup 739 */ 740 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 741 742 // enqueue logic writes 6 valid 743 for (i <- 0 until RenameWidth) { 744 when (canEnqueue(i) && !io.redirect.valid) { 745 valid(enqPtrVec(i).value) := true.B 746 } 747 } 748 // dequeue/walk logic writes 6 valid, dequeue and walk will not happen at the same time 749 for (i <- 0 until CommitWidth) { 750 when (io.commits.valid(i) && state =/= s_extrawalk) { 751 valid(commitReadAddr(i)) := false.B 752 } 753 } 754 // reset: when exception, reset all valid to false 755 when (reset.asBool) { 756 for (i <- 0 until RobSize) { 757 valid(i) := false.B 758 } 759 } 760 761 // status field: writebacked 762 // enqueue logic set 6 writebacked to false 763 for (i <- 0 until RenameWidth) { 764 when (canEnqueue(i)) { 765 val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec).asUInt.orR 766 val enqHasTriggerHit = io.enq.req(i).bits.cf.trigger.getHitFrontend 767 val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove 768 writebacked(enqPtrVec(i).value) := enqIsWritebacked && !enqHasException && !enqHasTriggerHit 769 val isStu = io.enq.req(i).bits.ctrl.fuType === FuType.stu 770 store_data_writebacked(enqPtrVec(i).value) := !isStu 771 } 772 } 773 when (exceptionGen.io.out.valid) { 774 val wbIdx = exceptionGen.io.out.bits.robIdx.value 775 writebacked(wbIdx) := true.B 776 store_data_writebacked(wbIdx) := true.B 777 } 778 // writeback logic set numWbPorts writebacked to true 779 for ((wb, cfgs) <- exuWriteback.zip(wbExuConfigs(exeWbSel))) { 780 when (wb.valid) { 781 val wbIdx = wb.bits.uop.robIdx.value 782 val wbHasException = ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, cfgs).asUInt.orR 783 val wbHasTriggerHit = wb.bits.uop.cf.trigger.getHitBackend 784 val wbHasFlushPipe = cfgs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe 785 val wbHasReplayInst = cfgs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst 786 val block_wb = wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit 787 writebacked(wbIdx) := !block_wb 788 } 789 } 790 // store data writeback logic mark store as data_writebacked 791 for (wb <- stdWriteback) { 792 when(RegNext(wb.valid)) { 793 store_data_writebacked(RegNext(wb.bits.uop.robIdx.value)) := true.B 794 } 795 } 796 797 // flagBkup 798 // enqueue logic set 6 flagBkup at most 799 for (i <- 0 until RenameWidth) { 800 when (canEnqueue(i)) { 801 flagBkup(enqPtrVec(i).value) := enqPtrVec(i).flag 802 } 803 } 804 805 // interrupt_safe 806 for (i <- 0 until RenameWidth) { 807 // We RegNext the updates for better timing. 808 // Note that instructions won't change the system's states in this cycle. 809 when (RegNext(canEnqueue(i))) { 810 // For now, we allow non-load-store instructions to trigger interrupts 811 // For MMIO instructions, they should not trigger interrupts since they may 812 // be sent to lower level before it writes back. 813 // However, we cannot determine whether a load/store instruction is MMIO. 814 // Thus, we don't allow load/store instructions to trigger an interrupt. 815 // TODO: support non-MMIO load-store instructions to trigger interrupts 816 val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.ctrl.commitType) 817 interrupt_safe(RegNext(enqPtrVec(i).value)) := RegNext(allow_interrupts) 818 } 819 } 820 821 /** 822 * read and write of data modules 823 */ 824 val commitReadAddr_next = Mux(state_next === s_idle, 825 VecInit(deqPtrVec_next.map(_.value)), 826 VecInit(walkPtrVec_next.map(_.value)) 827 ) 828 dispatchData.io.wen := canEnqueue 829 dispatchData.io.waddr := enqPtrVec.map(_.value) 830 dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) => 831 wdata.ldest := req.ctrl.ldest 832 wdata.rfWen := req.ctrl.rfWen 833 wdata.fpWen := req.ctrl.fpWen 834 wdata.wflags := req.ctrl.fpu.wflags 835 wdata.commitType := req.ctrl.commitType 836 wdata.pdest := req.pdest 837 wdata.old_pdest := req.old_pdest 838 wdata.ftqIdx := req.cf.ftqPtr 839 wdata.ftqOffset := req.cf.ftqOffset 840 wdata.pc := req.cf.pc 841 } 842 dispatchData.io.raddr := commitReadAddr_next 843 844 exceptionGen.io.redirect <> io.redirect 845 exceptionGen.io.flush := io.flushOut.valid 846 for (i <- 0 until RenameWidth) { 847 exceptionGen.io.enq(i).valid := canEnqueue(i) 848 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 849 exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec) 850 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.ctrl.flushPipe 851 exceptionGen.io.enq(i).bits.replayInst := false.B 852 XSError(canEnqueue(i) && io.enq.req(i).bits.ctrl.replayInst, "enq should not set replayInst") 853 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.ctrl.singleStep 854 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.cf.crossPageIPFFix 855 exceptionGen.io.enq(i).bits.trigger.clear() 856 exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.cf.trigger.frontendHit 857 } 858 859 println(s"ExceptionGen:") 860 val exceptionCases = exceptionPorts.map(_._1.flatMap(_.exceptionOut).distinct.sorted) 861 require(exceptionCases.length == exceptionGen.io.wb.length) 862 for ((((configs, wb), exc_wb), i) <- exceptionPorts.zip(exceptionGen.io.wb).zipWithIndex) { 863 exc_wb.valid := wb.valid 864 exc_wb.bits.robIdx := wb.bits.uop.robIdx 865 exc_wb.bits.exceptionVec := ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, configs) 866 exc_wb.bits.flushPipe := configs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe 867 exc_wb.bits.replayInst := configs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst 868 exc_wb.bits.singleStep := false.B 869 exc_wb.bits.crossPageIPFFix := false.B 870 // TODO: make trigger configurable 871 exc_wb.bits.trigger.clear() 872 exc_wb.bits.trigger.backendHit := wb.bits.uop.cf.trigger.backendHit 873 println(s" [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " + 874 s"flushPipe ${configs.exists(_.flushPipe)}, " + 875 s"replayInst ${configs.exists(_.replayInst)}") 876 } 877 878 val fflags_wb = fflagsPorts.map(_._2) 879 val fflagsDataModule = Module(new SyncDataModuleTemplate( 880 UInt(5.W), RobSize, CommitWidth, fflags_wb.size) 881 ) 882 for(i <- fflags_wb.indices){ 883 fflagsDataModule.io.wen (i) := fflags_wb(i).valid 884 fflagsDataModule.io.waddr(i) := fflags_wb(i).bits.uop.robIdx.value 885 fflagsDataModule.io.wdata(i) := fflags_wb(i).bits.fflags 886 } 887 fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value)) 888 fflagsDataRead := fflagsDataModule.io.rdata 889 890 891 val instrCnt = RegInit(0.U(64.W)) 892 val fuseCommitCnt = PopCount(io.commits.valid.zip(io.commits.info).map{ case (v, i) => v && CommitType.isFused(i.commitType) }) 893 val trueCommitCnt = commitCnt +& fuseCommitCnt 894 val retireCounter = Mux(state === s_idle, trueCommitCnt, 0.U) 895 instrCnt := instrCnt + retireCounter 896 io.csr.perfinfo.retiredInstr := RegNext(retireCounter) 897 io.robFull := !allowEnqueue 898 899 /** 900 * debug info 901 */ 902 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 903 XSDebug("") 904 for(i <- 0 until RobSize){ 905 XSDebug(false, !valid(i), "-") 906 XSDebug(false, valid(i) && writebacked(i), "w") 907 XSDebug(false, valid(i) && !writebacked(i), "v") 908 } 909 XSDebug(false, true.B, "\n") 910 911 for(i <- 0 until RobSize) { 912 if(i % 4 == 0) XSDebug("") 913 XSDebug(false, true.B, "%x ", debug_microOp(i).cf.pc) 914 XSDebug(false, !valid(i), "- ") 915 XSDebug(false, valid(i) && writebacked(i), "w ") 916 XSDebug(false, valid(i) && !writebacked(i), "v ") 917 if(i % 4 == 3) XSDebug(false, true.B, "\n") 918 } 919 920 def ifCommit(counter: UInt): UInt = Mux(io.commits.isWalk, 0.U, counter) 921 922 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 923 XSPerfAccumulate("clock_cycle", 1.U) 924 QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue) 925 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 926 XSPerfAccumulate("commitInstr", ifCommit(trueCommitCnt)) 927 val commitIsMove = commitDebugUop.map(_.ctrl.isMove) 928 XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.valid.zip(commitIsMove).map{ case (v, m) => v && m }))) 929 val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) 930 XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.valid zip commitMoveElim map { case (v, e) => v && e }))) 931 XSPerfAccumulate("commitInstrFused", ifCommit(fuseCommitCnt)) 932 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 933 val commitLoadValid = io.commits.valid.zip(commitIsLoad).map{ case (v, t) => v && t } 934 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 935 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 936 val commitBranchValid = io.commits.valid.zip(commitIsBranch).map{ case (v, t) => v && t } 937 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 938 val commitLoadWaitBit = commitDebugUop.map(_.cf.loadWaitBit) 939 XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))) 940 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 941 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.valid.zip(commitIsStore).map{ case (v, t) => v && t }))) 942 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i)))) 943 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire))) 944 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 945 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.valid), 0.U)) 946 XSPerfAccumulate("walkCycle", state === s_walk || state === s_extrawalk) 947 val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value) 948 val deqUopCommitType = io.commits.info(0).commitType 949 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 950 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 951 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 952 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 953 XSPerfAccumulate("robHeadPC", io.commits.info(0).pc) 954 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 955 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 956 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 957 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 958 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 959 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 960 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 961 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 962 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 963 } 964 for (fuType <- FuType.functionNameMap.keys) { 965 val fuName = FuType.functionNameMap(fuType) 966 val commitIsFuType = io.commits.valid.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fuType === fuType.U ) 967 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 968 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 969 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 970 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 971 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 972 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 973 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 974 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 975 if (fuType == FuType.fmac.litValue) { 976 val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fpu.ren3 ) 977 XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma))) 978 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency))) 979 XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency))) 980 } 981 } 982 983 //difftest signals 984 val firstValidCommit = (deqPtr + PriorityMux(io.commits.valid, VecInit(List.tabulate(CommitWidth)(_.U)))).value 985 986 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 987 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 988 989 for(i <- 0 until CommitWidth) { 990 val idx = deqPtrVec(i).value 991 wdata(i) := debug_exuData(idx) 992 wpc(i) := SignExt(commitDebugUop(i).cf.pc, XLEN) 993 } 994 val retireCounterFix = Mux(io.exception.valid, 1.U, retireCounter) 995 val retirePCFix = SignExt(Mux(io.exception.valid, io.exception.bits.uop.cf.pc, debug_microOp(firstValidCommit).cf.pc), XLEN) 996 val retireInstFix = Mux(io.exception.valid, io.exception.bits.uop.cf.instr, debug_microOp(firstValidCommit).cf.instr) 997 998 if (env.EnableDifftest) { 999 for (i <- 0 until CommitWidth) { 1000 val difftest = Module(new DifftestInstrCommit) 1001 difftest.io.clock := clock 1002 difftest.io.coreid := io.hartId 1003 difftest.io.index := i.U 1004 1005 val ptr = deqPtrVec(i).value 1006 val uop = commitDebugUop(i) 1007 val exuOut = debug_exuDebug(ptr) 1008 val exuData = debug_exuData(ptr) 1009 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.valid(i) && !io.commits.isWalk))) 1010 difftest.io.pc := RegNext(RegNext(RegNext(SignExt(uop.cf.pc, XLEN)))) 1011 difftest.io.instr := RegNext(RegNext(RegNext(uop.cf.instr))) 1012 difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(io.commits.info(i).commitType)))) 1013 // when committing an eliminated move instruction, 1014 // we must make sure that skip is properly set to false (output from EXU is random value) 1015 difftest.io.skip := RegNext(RegNext(RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)))) 1016 difftest.io.isRVC := RegNext(RegNext(RegNext(uop.cf.pd.isRVC))) 1017 difftest.io.rfwen := RegNext(RegNext(RegNext(io.commits.valid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U))) 1018 difftest.io.fpwen := RegNext(RegNext(RegNext(io.commits.valid(i) && io.commits.info(i).fpWen))) 1019 difftest.io.wpdest := RegNext(RegNext(RegNext(io.commits.info(i).pdest))) 1020 difftest.io.wdest := RegNext(RegNext(RegNext(io.commits.info(i).ldest))) 1021 1022 // // runahead commit hint 1023 // val runahead_commit = Module(new DifftestRunaheadCommitEvent) 1024 // runahead_commit.io.clock := clock 1025 // runahead_commit.io.coreid := io.hartId 1026 // runahead_commit.io.index := i.U 1027 // runahead_commit.io.valid := difftest.io.valid && 1028 // (commitBranchValid(i) || commitIsStore(i)) 1029 // // TODO: is branch or store 1030 // runahead_commit.io.pc := difftest.io.pc 1031 } 1032 } 1033 else if (env.AlwaysBasicDiff) { 1034 // These are the structures used by difftest only and should be optimized after synthesis. 1035 val dt_eliminatedMove = Mem(RobSize, Bool()) 1036 val dt_isRVC = Mem(RobSize, Bool()) 1037 val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) 1038 for (i <- 0 until RenameWidth) { 1039 when (canEnqueue(i)) { 1040 dt_eliminatedMove(enqPtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 1041 dt_isRVC(enqPtrVec(i).value) := io.enq.req(i).bits.cf.pd.isRVC 1042 } 1043 } 1044 for (wb <- exuWriteback) { 1045 when (wb.valid) { 1046 val wbIdx = wb.bits.uop.robIdx.value 1047 dt_exuDebug(wbIdx) := wb.bits.debug 1048 } 1049 } 1050 // Always instantiate basic difftest modules. 1051 for (i <- 0 until CommitWidth) { 1052 val commitInfo = io.commits.info(i) 1053 val ptr = deqPtrVec(i).value 1054 val exuOut = dt_exuDebug(ptr) 1055 val eliminatedMove = dt_eliminatedMove(ptr) 1056 val isRVC = dt_isRVC(ptr) 1057 1058 val difftest = Module(new DifftestBasicInstrCommit) 1059 difftest.io.clock := clock 1060 difftest.io.coreid := io.hartId 1061 difftest.io.index := i.U 1062 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.valid(i) && !io.commits.isWalk))) 1063 difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(commitInfo.commitType)))) 1064 difftest.io.skip := RegNext(RegNext(RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)))) 1065 difftest.io.isRVC := RegNext(RegNext(RegNext(isRVC))) 1066 difftest.io.rfwen := RegNext(RegNext(RegNext(io.commits.valid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U))) 1067 difftest.io.fpwen := RegNext(RegNext(RegNext(io.commits.valid(i) && commitInfo.fpWen))) 1068 difftest.io.wpdest := RegNext(RegNext(RegNext(commitInfo.pdest))) 1069 difftest.io.wdest := RegNext(RegNext(RegNext(commitInfo.ldest))) 1070 } 1071 } 1072 1073 if (env.EnableDifftest) { 1074 for (i <- 0 until CommitWidth) { 1075 val difftest = Module(new DifftestLoadEvent) 1076 difftest.io.clock := clock 1077 difftest.io.coreid := io.hartId 1078 difftest.io.index := i.U 1079 1080 val ptr = deqPtrVec(i).value 1081 val uop = commitDebugUop(i) 1082 val exuOut = debug_exuDebug(ptr) 1083 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.valid(i) && !io.commits.isWalk))) 1084 difftest.io.paddr := RegNext(RegNext(RegNext(exuOut.paddr))) 1085 difftest.io.opType := RegNext(RegNext(RegNext(uop.ctrl.fuOpType))) 1086 difftest.io.fuType := RegNext(RegNext(RegNext(uop.ctrl.fuType))) 1087 } 1088 } 1089 1090 // Always instantiate basic difftest modules. 1091 if (env.EnableDifftest) { 1092 val dt_isXSTrap = Mem(RobSize, Bool()) 1093 for (i <- 0 until RenameWidth) { 1094 when (canEnqueue(i)) { 1095 dt_isXSTrap(enqPtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap 1096 } 1097 } 1098 val trapVec = io.commits.valid.zip(deqPtrVec).map{ case (v, d) => state === s_idle && v && dt_isXSTrap(d.value) } 1099 val hitTrap = trapVec.reduce(_||_) 1100 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 1101 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN) 1102 val difftest = Module(new DifftestTrapEvent) 1103 difftest.io.clock := clock 1104 difftest.io.coreid := io.hartId 1105 difftest.io.valid := hitTrap 1106 difftest.io.code := trapCode 1107 difftest.io.pc := trapPC 1108 difftest.io.cycleCnt := timer 1109 difftest.io.instrCnt := instrCnt 1110 difftest.io.hasWFI := hasWFI 1111 } 1112 else if (env.AlwaysBasicDiff) { 1113 val dt_isXSTrap = Mem(RobSize, Bool()) 1114 for (i <- 0 until RenameWidth) { 1115 when (canEnqueue(i)) { 1116 dt_isXSTrap(enqPtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap 1117 } 1118 } 1119 val trapVec = io.commits.valid.zip(deqPtrVec).map{ case (v, d) => state === s_idle && v && dt_isXSTrap(d.value) } 1120 val hitTrap = trapVec.reduce(_||_) 1121 val difftest = Module(new DifftestBasicTrapEvent) 1122 difftest.io.clock := clock 1123 difftest.io.coreid := io.hartId 1124 difftest.io.valid := hitTrap 1125 difftest.io.cycleCnt := timer 1126 difftest.io.instrCnt := instrCnt 1127 } 1128 1129 val perfEvents = Seq( 1130 ("rob_interrupt_num ", io.flushOut.valid && intrEnable ), 1131 ("rob_exception_num ", io.flushOut.valid && exceptionEnable ), 1132 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe ), 1133 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst ), 1134 ("rob_commitUop ", ifCommit(commitCnt) ), 1135 ("rob_commitInstr ", ifCommit(trueCommitCnt) ), 1136 ("rob_commitInstrMove ", ifCommit(PopCount(io.commits.valid.zip(commitIsMove).map{ case (v, m) => v && m })) ), 1137 ("rob_commitInstrFused ", ifCommit(fuseCommitCnt) ), 1138 ("rob_commitInstrLoad ", ifCommit(PopCount(commitLoadValid)) ), 1139 ("rob_commitInstrLoad ", ifCommit(PopCount(commitBranchValid)) ), 1140 ("rob_commitInstrLoadWait ", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })) ), 1141 ("rob_commitInstrStore ", ifCommit(PopCount(io.commits.valid.zip(commitIsStore).map{ case (v, t) => v && t })) ), 1142 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.valid), 0.U) ), 1143 ("rob_walkCycle ", (state === s_walk || state === s_extrawalk) ), 1144 ("rob_1_4_valid ", (PopCount((0 until RobSize).map(valid(_))) < (RobSize.U/4.U)) ), 1145 ("rob_2_4_valid ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U/4.U)) & (PopCount((0 until RobSize).map(valid(_))) <= (RobSize.U/2.U)) ), 1146 ("rob_3_4_valid ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U/2.U)) & (PopCount((0 until RobSize).map(valid(_))) <= (RobSize.U*3.U/4.U))), 1147 ("rob_4_4_valid ", (PopCount((0 until RobSize).map(valid(_))) > (RobSize.U*3.U/4.U)) ), 1148 ) 1149 generatePerfEvent() 1150} 1151