1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.rob 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 24import utility._ 25import utils._ 26import xiangshan._ 27import xiangshan.backend.BackendParams 28import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 29import xiangshan.backend.fu.{FuType, FuConfig} 30import xiangshan.frontend.FtqPtr 31import xiangshan.mem.{LqPtr, LsqEnqIO, SqPtr} 32import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} 33import xiangshan.backend.ctrlblock.{DebugLSIO, DebugLsInfo, LsTopdownInfo} 34import xiangshan.backend.rename.SnapshotGenerator 35 36class RobPtr(entries: Int) extends CircularQueuePtr[RobPtr]( 37 entries 38) with HasCircularQueuePtrHelper { 39 40 def this()(implicit p: Parameters) = this(p(XSCoreParamsKey).RobSize) 41 42 def needFlush(redirect: Valid[Redirect]): Bool = { 43 val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx 44 redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx)) 45 } 46 47 def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR 48} 49 50object RobPtr { 51 def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = { 52 val ptr = Wire(new RobPtr) 53 ptr.flag := f 54 ptr.value := v 55 ptr 56 } 57} 58 59class RobCSRIO(implicit p: Parameters) extends XSBundle { 60 val intrBitSet = Input(Bool()) 61 val trapTarget = Input(UInt(VAddrBits.W)) 62 val isXRet = Input(Bool()) 63 val wfiEvent = Input(Bool()) 64 65 val fflags = Output(Valid(UInt(5.W))) 66 val vxsat = Output(Valid(Bool())) 67 val dirty_fs = Output(Bool()) 68 val perfinfo = new Bundle { 69 val retiredInstr = Output(UInt(3.W)) 70 } 71 72 val vcsrFlag = Output(Bool()) 73} 74 75class RobLsqIO(implicit p: Parameters) extends XSBundle { 76 val lcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 77 val scommit = Output(UInt(log2Up(CommitWidth + 1).W)) 78 val pendingld = Output(Bool()) 79 val pendingst = Output(Bool()) 80 val commit = Output(Bool()) 81 val pendingPtr = Output(new RobPtr) 82 83 val mmio = Input(Vec(LoadPipelineWidth, Bool())) 84 val uop = Input(Vec(LoadPipelineWidth, new DynInst)) 85} 86 87class RobEnqIO(implicit p: Parameters) extends XSBundle { 88 val canAccept = Output(Bool()) 89 val isEmpty = Output(Bool()) 90 // valid vector, for robIdx gen and walk 91 val needAlloc = Vec(RenameWidth, Input(Bool())) 92 val req = Vec(RenameWidth, Flipped(ValidIO(new DynInst))) 93 val resp = Vec(RenameWidth, Output(new RobPtr)) 94} 95 96class RobDispatchData(implicit p: Parameters) extends RobCommitInfo {} 97 98class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 99 val io = IO(new Bundle { 100 // for commits/flush 101 val state = Input(UInt(2.W)) 102 val deq_v = Vec(CommitWidth, Input(Bool())) 103 val deq_w = Vec(CommitWidth, Input(Bool())) 104 val exception_state = Flipped(ValidIO(new RobExceptionInfo)) 105 // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth) 106 val intrBitSetReg = Input(Bool()) 107 val hasNoSpecExec = Input(Bool()) 108 val interrupt_safe = Input(Bool()) 109 val blockCommit = Input(Bool()) 110 // output: the CommitWidth deqPtr 111 val out = Vec(CommitWidth, Output(new RobPtr)) 112 val next_out = Vec(CommitWidth, Output(new RobPtr)) 113 }) 114 115 val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr)))) 116 117 // for exceptions (flushPipe included) and interrupts: 118 // only consider the first instruction 119 val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe 120 val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0) 121 val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable) 122 123 // for normal commits: only to consider when there're no exceptions 124 // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions. 125 val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last) 126 val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i))) 127 val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B) 128 // when io.intrBitSetReg or there're possible exceptions in these instructions, 129 // only one instruction is allowed to commit 130 val allowOnlyOne = commit_exception || io.intrBitSetReg 131 val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt) 132 133 val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt)) 134 val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec) 135 136 deqPtrVec := deqPtrVec_next 137 138 io.next_out := deqPtrVec_next 139 io.out := deqPtrVec 140 141 when (io.state === 0.U) { 142 XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt) 143 } 144 145} 146 147class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 148 val io = IO(new Bundle { 149 // for input redirect 150 val redirect = Input(Valid(new Redirect)) 151 // for enqueue 152 val allowEnqueue = Input(Bool()) 153 val hasBlockBackward = Input(Bool()) 154 val enq = Vec(RenameWidth, Input(Bool())) 155 val out = Output(Vec(RenameWidth, new RobPtr)) 156 }) 157 158 val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr))) 159 160 // enqueue 161 val canAccept = io.allowEnqueue && !io.hasBlockBackward 162 val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U) 163 164 for ((ptr, i) <- enqPtrVec.zipWithIndex) { 165 when(io.redirect.valid) { 166 ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 167 }.otherwise { 168 ptr := ptr + dispatchNum 169 } 170 } 171 172 io.out := enqPtrVec 173 174} 175 176class RobExceptionInfo(implicit p: Parameters) extends XSBundle { 177 // val valid = Bool() 178 val robIdx = new RobPtr 179 val exceptionVec = ExceptionVec() 180 val flushPipe = Bool() 181 val isVset = Bool() 182 val replayInst = Bool() // redirect to that inst itself 183 val singleStep = Bool() // TODO add frontend hit beneath 184 val crossPageIPFFix = Bool() 185 val trigger = new TriggerCf 186 187// def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend 188// def trigger_after = trigger.getTimingBackend && trigger.getHitBackend 189 def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit 190 def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit 191 // only exceptions are allowed to writeback when enqueue 192 def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit 193} 194 195class ExceptionGen(params: BackendParams)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 196 val io = IO(new Bundle { 197 val redirect = Input(Valid(new Redirect)) 198 val flush = Input(Bool()) 199 val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo))) 200 // csr + load + store 201 val wb = Vec(params.numException, Flipped(ValidIO(new RobExceptionInfo))) 202 val out = ValidIO(new RobExceptionInfo) 203 val state = ValidIO(new RobExceptionInfo) 204 }) 205 206 val wbExuParams = params.allExuParams.filter(_.exceptionOut.nonEmpty) 207 208 def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): RobExceptionInfo = { 209 def getOldest_recursion(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = { 210 assert(valid.length == bits.length) 211 if (valid.length == 1) { 212 (valid, bits) 213 } else if (valid.length == 2) { 214 val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0))))) 215 for (i <- res.indices) { 216 res(i).valid := valid(i) 217 res(i).bits := bits(i) 218 } 219 val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1)) 220 (Seq(oldest.valid), Seq(oldest.bits)) 221 } else { 222 val left = getOldest_recursion(valid.take(valid.length / 2), bits.take(valid.length / 2)) 223 val right = getOldest_recursion(valid.drop(valid.length / 2), bits.drop(valid.length / 2)) 224 getOldest_recursion(left._1 ++ right._1, left._2 ++ right._2) 225 } 226 } 227 getOldest_recursion(valid, bits)._2.head 228 } 229 230 231 val currentValid = RegInit(false.B) 232 val current = Reg(new RobExceptionInfo) 233 234 // orR the exceptionVec 235 val lastCycleFlush = RegNext(io.flush) 236 val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush)) 237 238 // s0: compare wb in 4 groups 239 val csrvldu_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(t => t.isCsr || t.fuType == FuType.vldu).nonEmpty).map(_._1) 240 val load_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.ldu).nonEmpty).map(_._1) 241 val store_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(t => t.isSta || t.fuType == FuType.mou).nonEmpty).map(_._1) 242 val varith_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.isVecArith).nonEmpty).map(_._1) 243 // TODO: vsta_wb = ??? 244 245 val writebacks = Seq(csrvldu_wb, load_wb, store_wb, varith_wb) 246 val in_wb_valids = writebacks.map(_.map(w => w.valid && w.bits.has_exception && !lastCycleFlush)) 247 val wb_valid = in_wb_valids.zip(writebacks).map { case (valid, wb) => 248 valid.zip(wb.map(_.bits)).map { case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }.reduce(_ || _) 249 } 250 val wb_bits = in_wb_valids.zip(writebacks).map { case (valid, wb) => getOldest(valid, wb.map(_.bits))} 251 252 val s0_out_valid = wb_valid.map(x => RegNext(x)) 253 val s0_out_bits = wb_bits.map(x => RegNext(x)) 254 255 // s1: compare last four and current flush 256 val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) }) 257 val s1_out_bits = RegNext(getOldest(s0_out_valid, s0_out_bits)) 258 val s1_out_valid = RegNext(s1_valid.asUInt.orR) 259 260 val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 261 val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits))) 262 263 // s2: compare the input exception with the current one 264 // priorities: 265 // (1) system reset 266 // (2) current is valid: flush, remain, merge, update 267 // (3) current is not valid: s1 or enq 268 val current_flush = current.robIdx.needFlush(io.redirect) || io.flush 269 val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush 270 when (currentValid) { 271 when (current_flush) { 272 currentValid := Mux(s1_flush, false.B, s1_out_valid) 273 } 274 when (s1_out_valid && !s1_flush) { 275 when (isAfter(current.robIdx, s1_out_bits.robIdx)) { 276 current := s1_out_bits 277 }.elsewhen (current.robIdx === s1_out_bits.robIdx) { 278 current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec()) 279 current.flushPipe := s1_out_bits.flushPipe || current.flushPipe 280 current.replayInst := s1_out_bits.replayInst || current.replayInst 281 current.singleStep := s1_out_bits.singleStep || current.singleStep 282 current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf) 283 } 284 } 285 }.elsewhen (s1_out_valid && !s1_flush) { 286 currentValid := true.B 287 current := s1_out_bits 288 }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) { 289 currentValid := true.B 290 current := enq_bits 291 } 292 293 io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback 294 io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits) 295 io.state.valid := currentValid 296 io.state.bits := current 297 298} 299 300class RobFlushInfo(implicit p: Parameters) extends XSBundle { 301 val ftqIdx = new FtqPtr 302 val robIdx = new RobPtr 303 val ftqOffset = UInt(log2Up(PredictWidth).W) 304 val replayInst = Bool() 305} 306 307class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter { 308 309 lazy val module = new RobImp(this)(p, params) 310} 311 312class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper) 313 with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents { 314 315 private val LduCnt = params.LduCnt 316 private val StaCnt = params.StaCnt 317 318 val io = IO(new Bundle() { 319 val hartId = Input(UInt(8.W)) 320 val redirect = Input(Valid(new Redirect)) 321 val enq = new RobEnqIO 322 val flushOut = ValidIO(new Redirect) 323 val exception = ValidIO(new ExceptionInfo) 324 // exu + brq 325 val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles) 326 val commits = Output(new RobCommitIO) 327 val rabCommits = Output(new RobCommitIO) 328 val diffCommits = Output(new DiffCommitIO) 329 val isVsetFlushPipe = Output(Bool()) 330 val vconfigPdest = Output(UInt(PhyRegIdxWidth.W)) 331 val lsq = new RobLsqIO 332 val robDeqPtr = Output(new RobPtr) 333 val csr = new RobCSRIO 334 val snpt = Input(new SnapshotPort) 335 val robFull = Output(Bool()) 336 val headNotReady = Output(Bool()) 337 val cpu_halt = Output(Bool()) 338 val wfi_enable = Input(Bool()) 339 val debug_ls = Flipped(new DebugLSIO) 340 val debugRobHead = Output(new DynInst) 341 val debugEnqLsq = Input(new LsqEnqIO) 342 val debugHeadLsIssue = Input(Bool()) 343 val lsTopdownInfo = Vec(LduCnt, Input(new LsTopdownInfo)) 344 }) 345 346 val exuWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(!_.bits.params.hasStdFu) 347 val stdWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(_.bits.params.hasStdFu) 348 val fflagsWBs = io.writeback.filter(x => x.bits.fflags.nonEmpty) 349 val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty) 350 val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty) 351 352 val exuWbPorts = io.writeback.filter(!_.bits.params.hasStdFu) 353 val stdWbPorts = io.writeback.filter(_.bits.params.hasStdFu) 354 val fflagsPorts = io.writeback.filter(x => x.bits.fflags.nonEmpty) 355 val vxsatPorts = io.writeback.filter(x => x.bits.vxsat.nonEmpty) 356 val exceptionPorts = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty) 357 val numExuWbPorts = exuWBs.length 358 val numStdWbPorts = stdWBs.length 359 360 361 println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth") 362// println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}") 363// println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}") 364// println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}") 365 366 367 // instvalid field 368 val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 369 // writeback status 370 371 val stdWritebacked = Reg(Vec(RobSize, Bool())) 372 val uopNumVec = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W)))) 373 val realDestSize = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W)))) 374 val fflagsDataModule = RegInit(VecInit(Seq.fill(RobSize)(0.U(5.W)))) 375 val vxsatDataModule = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 376 377 def isWritebacked(ptr: UInt): Bool = { 378 !uopNumVec(ptr).orR && stdWritebacked(ptr) 379 } 380 381 val mmio = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 382 383 // data for redirect, exception, etc. 384 val flagBkup = Mem(RobSize, Bool()) 385 // some instructions are not allowed to trigger interrupts 386 // They have side effects on the states of the processor before they write back 387 val interrupt_safe = Mem(RobSize, Bool()) 388 389 // data for debug 390 // Warn: debug_* prefix should not exist in generated verilog. 391 val debug_microOp = Mem(RobSize, new DynInst) 392 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug 393 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug 394 val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init))) 395 val debug_lsTopdownInfo = RegInit(VecInit(Seq.fill(RobSize)(LsTopdownInfo.init))) 396 val debug_lqIdxValid = RegInit(VecInit.fill(RobSize)(false.B)) 397 val debug_lsIssued = RegInit(VecInit.fill(RobSize)(false.B)) 398 399 // pointers 400 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 401 val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr)) 402 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 403 404 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 405 val lastWalkPtr = Reg(new RobPtr) 406 val allowEnqueue = RegInit(true.B) 407 408 val enqPtr = enqPtrVec.head 409 val deqPtr = deqPtrVec(0) 410 val walkPtr = walkPtrVec(0) 411 412 val isEmpty = enqPtr === deqPtr 413 val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level) 414 415 val snptEnq = io.enq.canAccept && io.enq.req.head.valid && io.enq.req.head.bits.snapshot 416 val snapshots = SnapshotGenerator(enqPtrVec, snptEnq, io.snpt.snptDeq, io.redirect.valid) 417 val debug_lsIssue = WireDefault(debug_lsIssued) 418 debug_lsIssue(deqPtr.value) := io.debugHeadLsIssue 419 420 /** 421 * states of Rob 422 */ 423 val s_idle :: s_walk :: Nil = Enum(2) 424 val state = RegInit(s_idle) 425 426 /** 427 * Data Modules 428 * 429 * CommitDataModule: data from dispatch 430 * (1) read: commits/walk/exception 431 * (2) write: enqueue 432 * 433 * WritebackData: data from writeback 434 * (1) read: commits/walk/exception 435 * (2) write: write back from exe units 436 */ 437 val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth)) 438 val dispatchDataRead = dispatchData.io.rdata 439 440 val exceptionGen = Module(new ExceptionGen(params)) 441 val exceptionDataRead = exceptionGen.io.state 442 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 443 val vxsatDataRead = Wire(Vec(CommitWidth, Bool())) 444 445 io.robDeqPtr := deqPtr 446 io.debugRobHead := debug_microOp(deqPtr.value) 447 448 val rab = Module(new RenameBuffer(RabSize)) 449 450 rab.io.redirect.valid := io.redirect.valid 451 452 rab.io.req.zip(io.enq.req).map { case (dest, src) => 453 dest.bits := src.bits 454 dest.valid := src.valid && io.enq.canAccept 455 } 456 457 val commitDestSizeSeq = (0 until CommitWidth).map(i => realDestSize(deqPtrVec(i).value)) 458 val walkDestSizeSeq = (0 until CommitWidth).map(i => realDestSize(walkPtrVec(i).value)) 459 460 val commitSizeSum = io.commits.commitValid.zip(commitDestSizeSeq).map { case (commitValid, destSize) => 461 Mux(io.commits.isCommit && commitValid, destSize, 0.U) 462 }.reduce(_ +& _) 463 val walkSizeSum = io.commits.walkValid.zip(walkDestSizeSeq).map { case (walkValid, destSize) => 464 Mux(io.commits.isWalk && walkValid, destSize, 0.U) 465 }.reduce(_ +& _) 466 467 rab.io.fromRob.commitSize := commitSizeSum 468 rab.io.fromRob.walkSize := walkSizeSum 469 rab.io.snpt.snptEnq := false.B 470 rab.io.snpt.snptDeq := io.snpt.snptDeq 471 rab.io.snpt.snptSelect := io.snpt.snptSelect 472 rab.io.snpt.useSnpt := io.snpt.useSnpt 473 474 io.rabCommits := rab.io.commits 475 io.diffCommits := rab.io.diffCommits 476 477 /** 478 * Enqueue (from dispatch) 479 */ 480 // special cases 481 val hasBlockBackward = RegInit(false.B) 482 val hasWaitForward = RegInit(false.B) 483 val doingSvinval = RegInit(false.B) 484 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 485 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 486 when (isEmpty) { hasBlockBackward:= false.B } 487 // When any instruction commits, hasNoSpecExec should be set to false.B 488 when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasWaitForward:= false.B } 489 490 // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing. 491 // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle. 492 // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts. 493 val hasWFI = RegInit(false.B) 494 io.cpu_halt := hasWFI 495 // WFI Timeout: 2^20 = 1M cycles 496 val wfi_cycles = RegInit(0.U(20.W)) 497 when (hasWFI) { 498 wfi_cycles := wfi_cycles + 1.U 499 }.elsewhen (!hasWFI && RegNext(hasWFI)) { 500 wfi_cycles := 0.U 501 } 502 val wfi_timeout = wfi_cycles.andR 503 when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) { 504 hasWFI := false.B 505 } 506 507 val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.req.take(i).map(req => req.valid && req.bits.firstUop))))) 508 io.enq.canAccept := allowEnqueue && !hasBlockBackward && rab.io.canEnq 509 io.enq.resp := allocatePtrVec 510 val canEnqueue = VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop && io.enq.canAccept)) 511 val timer = GTimer() 512 for (i <- 0 until RenameWidth) { 513 // we don't check whether io.redirect is valid here since redirect has higher priority 514 when (canEnqueue(i)) { 515 val enqUop = io.enq.req(i).bits 516 val enqIndex = allocatePtrVec(i).value 517 // store uop in data module and debug_microOp Vec 518 debug_microOp(enqIndex) := enqUop 519 debug_microOp(enqIndex).debugInfo.dispatchTime := timer 520 debug_microOp(enqIndex).debugInfo.enqRsTime := timer 521 debug_microOp(enqIndex).debugInfo.selectTime := timer 522 debug_microOp(enqIndex).debugInfo.issueTime := timer 523 debug_microOp(enqIndex).debugInfo.writebackTime := timer 524 debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer 525 debug_microOp(enqIndex).debugInfo.tlbRespTime := timer 526 debug_lsInfo(enqIndex) := DebugLsInfo.init 527 debug_lsTopdownInfo(enqIndex) := LsTopdownInfo.init 528 debug_lqIdxValid(enqIndex) := false.B 529 debug_lsIssued(enqIndex) := false.B 530 531 when (enqUop.blockBackward) { 532 hasBlockBackward := true.B 533 } 534 when (enqUop.waitForward) { 535 hasWaitForward := true.B 536 } 537 val enqHasTriggerHit = false.B // io.enq.req(i).bits.cf.trigger.getHitFrontend 538 val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR 539 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 540 when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe)) 541 { 542 doingSvinval := true.B 543 } 544 // the end instruction of Svinval enqs so clear doingSvinval 545 when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe)) 546 { 547 doingSvinval := false.B 548 } 549 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 550 assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe))) 551 when (enqUop.isWFI && !enqHasException && !enqHasTriggerHit) { 552 hasWFI := true.B 553 } 554 555 mmio(enqIndex) := false.B 556 } 557 } 558 val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(req => req.valid && req.bits.firstUop)), 0.U) 559 io.enq.isEmpty := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR) 560 561 when (!io.wfi_enable) { 562 hasWFI := false.B 563 } 564 // sel vsetvl's flush position 565 val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3) 566 val vsetvlState = RegInit(vs_idle) 567 568 val firstVInstrFtqPtr = RegInit(0.U.asTypeOf(new FtqPtr)) 569 val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W))) 570 val firstVInstrRobIdx = RegInit(0.U.asTypeOf(new RobPtr)) 571 572 val enq0 = io.enq.req(0) 573 val enq0IsVset = enq0.bits.isVset && enq0.bits.lastUop && canEnqueue(0) 574 val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe 575 val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVpu(req.bits.fuType) && fire} 576 // for vs_idle 577 val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType))) 578 // for vs_waitVinstr 579 val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1) 580 val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req) 581 when(vsetvlState === vs_idle){ 582 firstVInstrFtqPtr := firstVInstrIdle.bits.ftqPtr 583 firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset 584 firstVInstrRobIdx := firstVInstrIdle.bits.robIdx 585 }.elsewhen(vsetvlState === vs_waitVinstr){ 586 when(Cat(enqIsVInstrOrVset).orR){ 587 firstVInstrFtqPtr := firstVInstrWait.bits.ftqPtr 588 firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset 589 firstVInstrRobIdx := firstVInstrWait.bits.robIdx 590 } 591 } 592 593 val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR 594 when(vsetvlState === vs_idle && !io.redirect.valid){ 595 when(enq0IsVsetFlush){ 596 vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr) 597 } 598 }.elsewhen(vsetvlState === vs_waitVinstr){ 599 when(io.redirect.valid){ 600 vsetvlState := vs_idle 601 }.elsewhen(Cat(enqIsVInstrOrVset).orR){ 602 vsetvlState := vs_waitFlush 603 } 604 }.elsewhen(vsetvlState === vs_waitFlush){ 605 when(io.redirect.valid){ 606 vsetvlState := vs_idle 607 } 608 } 609 610 // lqEnq 611 io.debugEnqLsq.needAlloc.map(_(0)).zip(io.debugEnqLsq.req).foreach { case (alloc, req) => 612 when(io.debugEnqLsq.canAccept && alloc && req.valid) { 613 debug_microOp(req.bits.robIdx.value).lqIdx := req.bits.lqIdx 614 debug_lqIdxValid(req.bits.robIdx.value) := true.B 615 } 616 } 617 618 // lsIssue 619 when(io.debugHeadLsIssue) { 620 debug_lsIssued(deqPtr.value) := true.B 621 } 622 623 /** 624 * Writeback (from execution units) 625 */ 626 for (wb <- exuWBs) { 627 when (wb.valid) { 628 val wbIdx = wb.bits.robIdx.value 629 debug_exuData(wbIdx) := wb.bits.data 630 debug_exuDebug(wbIdx) := wb.bits.debug 631 debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime 632 debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime 633 debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime 634 debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime 635 636 // debug for lqidx and sqidx 637 debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr)) 638 debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr)) 639 640 val debug_Uop = debug_microOp(wbIdx) 641 XSInfo(true.B, 642 p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " + 643 p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " + 644 p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.robIdx}\n" 645 ) 646 } 647 } 648 649 val writebackNum = PopCount(exuWBs.map(_.valid)) 650 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 651 652 for (i <- 0 until LoadPipelineWidth) { 653 when (RegNext(io.lsq.mmio(i))) { 654 mmio(RegNext(io.lsq.uop(i).robIdx).value) := true.B 655 } 656 } 657 658 /** 659 * RedirectOut: Interrupt and Exceptions 660 */ 661 val deqDispatchData = dispatchDataRead(0) 662 val debug_deqUop = debug_microOp(deqPtr.value) 663 664 val intrBitSetReg = RegNext(io.csr.intrBitSet) 665 val intrEnable = intrBitSetReg && !hasWaitForward && interrupt_safe(deqPtr.value) 666 val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 667 val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR || 668 exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit) 669 val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe 670 val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst 671 val exceptionEnable = isWritebacked(deqPtr.value) && deqHasException 672 673 XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n") 674 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n") 675 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n") 676 677 val isFlushPipe = isWritebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst) 678 679 val isVsetFlushPipe = isWritebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset 680// val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush) 681 val needModifyFtqIdxOffset = false.B 682 io.isVsetFlushPipe := isVsetFlushPipe 683 io.vconfigPdest := rab.io.vconfigPdest 684 // io.flushOut will trigger redirect at the next cycle. 685 // Block any redirect or commit at the next cycle. 686 val lastCycleFlush = RegNext(io.flushOut.valid) 687 688 io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush 689 io.flushOut.bits := DontCare 690 io.flushOut.bits.isRVC := deqDispatchData.isRVC 691 io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr) 692 io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx) 693 io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset) 694 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next" 695 io.flushOut.bits.interrupt := true.B 696 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 697 XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable) 698 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 699 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 700 701 val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush 702 io.exception.valid := RegNext(exceptionHappen) 703 io.exception.bits.pc := RegEnable(debug_deqUop.pc, exceptionHappen) 704 io.exception.bits.instr := RegEnable(debug_deqUop.instr, exceptionHappen) 705 io.exception.bits.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 706 io.exception.bits.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 707 io.exception.bits.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 708 io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 709 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 710// io.exception.bits.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen) 711 712 XSDebug(io.flushOut.valid, 713 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " + 714 p"excp $exceptionEnable flushPipe $isFlushPipe " + 715 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 716 717 718 /** 719 * Commits (and walk) 720 * They share the same width. 721 */ 722 val shouldWalkVec = VecInit(walkPtrVec.map(_ <= lastWalkPtr)) 723 val walkFinished = VecInit(walkPtrVec.map(_ >= lastWalkPtr)).asUInt.orR 724 rab.io.fromRob.walkEnd := state === s_walk && walkFinished 725 726 require(RenameWidth <= CommitWidth) 727 728 // wiring to csr 729 val (wflags, fpWen) = (0 until CommitWidth).map(i => { 730 val v = io.commits.commitValid(i) 731 val info = io.commits.info(i) 732 (v & info.wflags, v & info.fpWen) 733 }).unzip 734 val fflags = Wire(Valid(UInt(5.W))) 735 fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR 736 fflags.bits := wflags.zip(fflagsDataRead).map({ 737 case (w, f) => Mux(w, f, 0.U) 738 }).reduce(_|_) 739 val dirty_fs = io.commits.isCommit && VecInit(fpWen).asUInt.orR 740 741 val vxsat = Wire(Valid(Bool())) 742 vxsat.valid := io.commits.isCommit && vxsat.bits 743 vxsat.bits := io.commits.commitValid.zip(vxsatDataRead).map { 744 case (valid, vxsat) => valid & vxsat 745 }.reduce(_ | _) 746 747 // when mispredict branches writeback, stop commit in the next 2 cycles 748 // TODO: don't check all exu write back 749 val misPredWb = Cat(VecInit(redirectWBs.map(wb => 750 wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid 751 ))).orR 752 val misPredBlockCounter = Reg(UInt(3.W)) 753 misPredBlockCounter := Mux(misPredWb, 754 "b111".U, 755 misPredBlockCounter >> 1.U 756 ) 757 val misPredBlock = misPredBlockCounter(0) 758 val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI 759 760 io.commits.isWalk := state === s_walk 761 io.commits.isCommit := state === s_idle && !blockCommit 762 val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value))) 763 val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value))) 764 // store will be commited iff both sta & std have been writebacked 765 val commit_w = VecInit(deqPtrVec.map(ptr => isWritebacked(ptr.value))) 766 val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last) 767 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i))) 768 val allowOnlyOneCommit = commit_exception || intrBitSetReg 769 // for instructions that may block others, we don't allow them to commit 770 for (i <- 0 until CommitWidth) { 771 // defaults: state === s_idle and instructions commit 772 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 773 val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst 774 io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked 775 io.commits.info(i) := dispatchDataRead(i) 776 io.commits.robIdx(i) := deqPtrVec(i) 777 778 when (state === s_walk) { 779 io.commits.walkValid(i) := shouldWalkVec(i) 780 when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) { 781 XSError(!walk_v(i), s"The walking entry($i) should be valid\n") 782 } 783 } 784 785 XSInfo(io.commits.isCommit && io.commits.commitValid(i), 786 "retired pc %x wen %d ldest %d pdest %x data %x fflags: %b vxsat: %b\n", 787 debug_microOp(deqPtrVec(i).value).pc, 788 io.commits.info(i).rfWen, 789 io.commits.info(i).ldest, 790 io.commits.info(i).pdest, 791 debug_exuData(deqPtrVec(i).value), 792 fflagsDataRead(i), 793 vxsatDataRead(i) 794 ) 795 XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n", 796 debug_microOp(walkPtrVec(i).value).pc, 797 io.commits.info(i).rfWen, 798 io.commits.info(i).ldest, 799 debug_exuData(walkPtrVec(i).value) 800 ) 801 } 802 if (env.EnableDifftest) { 803 io.commits.info.map(info => dontTouch(info.pc)) 804 } 805 806 // sync fflags/dirty_fs/vxsat to csr 807 io.csr.fflags := RegNext(fflags) 808 io.csr.dirty_fs := RegNext(dirty_fs) 809 io.csr.vxsat := RegNext(vxsat) 810 811 // sync v csr to csr 812 // for difftest 813 if(env.AlwaysBasicDiff || env.EnableDifftest) { 814 val isDiffWriteVconfigVec = io.diffCommits.commitValid.zip(io.diffCommits.info).map { case (valid, info) => valid && info.ldest === VCONFIG_IDX.U && info.vecWen }.reverse 815 io.csr.vcsrFlag := RegNext(io.diffCommits.isCommit && Cat(isDiffWriteVconfigVec).orR) 816 } 817 else{ 818 io.csr.vcsrFlag := false.B 819 } 820 821 // commit load/store to lsq 822 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 823 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE)) 824 io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U)) 825 io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U)) 826 // indicate a pending load or store 827 io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value) && mmio(deqPtr.value)) 828 io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value)) 829 io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0)) 830 io.lsq.pendingPtr := RegNext(deqPtr) 831 832 /** 833 * state changes 834 * (1) redirect: switch to s_walk 835 * (2) walk: when walking comes to the end, switch to s_idle 836 */ 837 val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished && rab.io.status.walkEnd, s_idle, state)) 838 XSPerfAccumulate("s_idle_to_idle", state === s_idle && state_next === s_idle) 839 XSPerfAccumulate("s_idle_to_walk", state === s_idle && state_next === s_walk) 840 XSPerfAccumulate("s_walk_to_idle", state === s_walk && state_next === s_idle) 841 XSPerfAccumulate("s_walk_to_walk", state === s_walk && state_next === s_walk) 842 state := state_next 843 844 /** 845 * pointers and counters 846 */ 847 val deqPtrGenModule = Module(new RobDeqPtrWrapper) 848 deqPtrGenModule.io.state := state 849 deqPtrGenModule.io.deq_v := commit_v 850 deqPtrGenModule.io.deq_w := commit_w 851 deqPtrGenModule.io.exception_state := exceptionDataRead 852 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 853 deqPtrGenModule.io.hasNoSpecExec := hasWaitForward 854 deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value) 855 deqPtrGenModule.io.blockCommit := blockCommit 856 deqPtrVec := deqPtrGenModule.io.out 857 val deqPtrVec_next = deqPtrGenModule.io.next_out 858 859 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 860 enqPtrGenModule.io.redirect := io.redirect 861 enqPtrGenModule.io.allowEnqueue := allowEnqueue && rab.io.canEnq 862 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 863 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop)) 864 enqPtrVec := enqPtrGenModule.io.out 865 866 // next walkPtrVec: 867 // (1) redirect occurs: update according to state 868 // (2) walk: move forwards 869 val walkPtrVec_next = Mux(io.redirect.valid, 870 Mux(io.snpt.useSnpt, snapshots(io.snpt.snptSelect), deqPtrVec_next), 871 Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec) 872 ) 873 walkPtrVec := walkPtrVec_next 874 875 val numValidEntries = distanceBetween(enqPtr, deqPtr) 876 val commitCnt = PopCount(io.commits.commitValid) 877 878 allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U 879 880 val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0)) 881 when (io.redirect.valid) { 882 lastWalkPtr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx - 1.U, io.redirect.bits.robIdx) 883 } 884 885 886 /** 887 * States 888 * We put all the stage bits changes here. 889 890 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 891 * All states: (1) valid; (2) writebacked; (3) flagBkup 892 */ 893 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 894 895 // redirect logic writes 6 valid 896 val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr)) 897 val redirectTail = Reg(new RobPtr) 898 val redirectIdle :: redirectBusy :: Nil = Enum(2) 899 val redirectState = RegInit(redirectIdle) 900 val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail)) 901 when(redirectState === redirectBusy) { 902 redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U) 903 redirectHeadVec zip invMask foreach { 904 case (redirectHead, inv) => when(inv) { 905 valid(redirectHead.value) := false.B 906 } 907 } 908 when(!invMask.last) { 909 redirectState := redirectIdle 910 } 911 } 912 when(io.redirect.valid) { 913 redirectState := redirectBusy 914 when(redirectState === redirectIdle) { 915 redirectTail := enqPtr 916 } 917 redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) => 918 redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 919 } 920 } 921 // enqueue logic writes 6 valid 922 for (i <- 0 until RenameWidth) { 923 when (canEnqueue(i) && !io.redirect.valid) { 924 valid(allocatePtrVec(i).value) := true.B 925 } 926 } 927 // dequeue logic writes 6 valid 928 for (i <- 0 until CommitWidth) { 929 val commitValid = io.commits.isCommit && io.commits.commitValid(i) 930 when (commitValid) { 931 valid(commitReadAddr(i)) := false.B 932 } 933 } 934 935 // debug_inst update 936 for(i <- 0 until (LduCnt + StaCnt)) { 937 debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i)) 938 debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i)) 939 } 940 for (i <- 0 until LduCnt) { 941 debug_lsTopdownInfo(io.lsTopdownInfo(i).s1.robIdx).s1SignalEnable(io.lsTopdownInfo(i)) 942 debug_lsTopdownInfo(io.lsTopdownInfo(i).s2.robIdx).s2SignalEnable(io.lsTopdownInfo(i)) 943 } 944 945 // writeback logic set numWbPorts writebacked to true 946 val blockWbSeq = Wire(Vec(exuWBs.length, Bool())) 947 blockWbSeq.map(_ := false.B) 948 for ((wb, blockWb) <- exuWBs.zip(blockWbSeq)) { 949 when(wb.valid) { 950 val wbHasException = wb.bits.exceptionVec.getOrElse(0.U).asUInt.orR 951 val wbHasTriggerHit = false.B //Todo: wb.bits.trigger.getHitBackend 952 val wbHasFlushPipe = wb.bits.flushPipe.getOrElse(false.B) 953 val wbHasReplayInst = wb.bits.replay.getOrElse(false.B) //Todo: && wb.bits.replayInst 954 blockWb := wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit 955 } 956 } 957 958 // if the first uop of an instruction is valid , write writebackedCounter 959 val uopEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid) 960 val instEnqValidSeq = io.enq.req.map (req => io.enq.canAccept && req.valid && req.bits.firstUop) 961 val enqNeedWriteRFSeq = io.enq.req.map(_.bits.needWriteRf) 962 val enqRobIdxSeq = io.enq.req.map(req => req.bits.robIdx.value) 963 val enqUopNumVec = VecInit(io.enq.req.map(req => req.bits.numUops)) 964 val enqEliminatedMoveVec = VecInit(io.enq.req.map(req => req.bits.eliminatedMove)) 965 966 private val enqWriteStdVec: Vec[Bool] = VecInit(io.enq.req.map { 967 req => FuType.isAMO(req.bits.fuType) || FuType.isStore(req.bits.fuType) 968 }) 969 val fflags_wb = fflagsPorts 970 val vxsat_wb = vxsatPorts 971 for(i <- 0 until RobSize){ 972 973 val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === i.U) 974 val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch } 975 val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch } 976 val instCanEnqFlag = Cat(instCanEnqSeq).orR 977 978 realDestSize(i) := Mux(!valid(i) && instCanEnqFlag || valid(i), realDestSize(i) + PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map{ case(writeFlag, valid) => writeFlag && valid }), 0.U) 979 980 val enqUopNum = PriorityMux(instCanEnqSeq, enqUopNumVec) 981 val enqEliminatedMove = PriorityMux(instCanEnqSeq, enqEliminatedMoveVec) 982 val enqWriteStd = PriorityMux(instCanEnqSeq, enqWriteStdVec) 983 984 val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 985 val canWbNoBlockSeq = canWbSeq.zip(blockWbSeq).map{ case(canWb, blockWb) => canWb && !blockWb } 986 val canStdWbSeq = VecInit(stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)) 987 val wbCnt = PopCount(canWbNoBlockSeq) 988 989 val exceptionHas = RegInit(false.B) 990 val exceptionHasWire = Wire(Bool()) 991 exceptionHasWire := MuxCase(exceptionHas, Seq( 992 (valid(i) && exceptionGen.io.out.valid && exceptionGen.io.out.bits.robIdx.value === i.U) -> true.B, 993 !valid(i) -> false.B 994 )) 995 exceptionHas := exceptionHasWire 996 997 when (exceptionHas || exceptionHasWire) { 998 // exception flush 999 uopNumVec(i) := 0.U 1000 stdWritebacked(i) := true.B 1001 }.elsewhen(!valid(i) && instCanEnqFlag) { 1002 // enq set num of uops 1003 uopNumVec(i) := enqUopNum 1004 stdWritebacked(i) := Mux(enqWriteStd, false.B, true.B) 1005 }.elsewhen(valid(i)) { 1006 // update by writing back 1007 uopNumVec(i) := uopNumVec(i) - wbCnt 1008 when (canStdWbSeq.asUInt.orR) { 1009 stdWritebacked(i) := true.B 1010 } 1011 }.otherwise { 1012 uopNumVec(i) := 0.U 1013 } 1014 1015 val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U && writeback.bits.wflags.getOrElse(false.B)) 1016 val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.fold(false.B)(_ | _) 1017 fflagsDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, fflagsDataModule(i) | fflagsRes) 1018 1019 val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) 1020 val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.fold(false.B)(_ | _) 1021 vxsatDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, vxsatDataModule(i) | vxsatRes) 1022 } 1023 1024 // flagBkup 1025 // enqueue logic set 6 flagBkup at most 1026 for (i <- 0 until RenameWidth) { 1027 when (canEnqueue(i)) { 1028 flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag 1029 } 1030 } 1031 1032 // interrupt_safe 1033 for (i <- 0 until RenameWidth) { 1034 // We RegNext the updates for better timing. 1035 // Note that instructions won't change the system's states in this cycle. 1036 when (RegNext(canEnqueue(i))) { 1037 // For now, we allow non-load-store instructions to trigger interrupts 1038 // For MMIO instructions, they should not trigger interrupts since they may 1039 // be sent to lower level before it writes back. 1040 // However, we cannot determine whether a load/store instruction is MMIO. 1041 // Thus, we don't allow load/store instructions to trigger an interrupt. 1042 // TODO: support non-MMIO load-store instructions to trigger interrupts 1043 val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType) 1044 interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts) 1045 } 1046 } 1047 1048 /** 1049 * read and write of data modules 1050 */ 1051 val commitReadAddr_next = Mux(state_next === s_idle, 1052 VecInit(deqPtrVec_next.map(_.value)), 1053 VecInit(walkPtrVec_next.map(_.value)) 1054 ) 1055 dispatchData.io.wen := canEnqueue 1056 dispatchData.io.waddr := allocatePtrVec.map(_.value) 1057 dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).zipWithIndex.foreach { case ((wdata, req), portIdx) => 1058 wdata.ldest := req.ldest 1059 wdata.rfWen := req.rfWen 1060 wdata.fpWen := req.fpWen 1061 wdata.vecWen := req.vecWen 1062 wdata.wflags := req.wfflags 1063 wdata.commitType := req.commitType 1064 wdata.pdest := req.pdest 1065 wdata.ftqIdx := req.ftqPtr 1066 wdata.ftqOffset := req.ftqOffset 1067 wdata.isMove := req.eliminatedMove 1068 wdata.isRVC := req.preDecodeInfo.isRVC 1069 wdata.pc := req.pc 1070 wdata.vtype := req.vpu.vtype 1071 wdata.isVset := req.isVset 1072 wdata.instrSize := req.instrSize 1073 } 1074 dispatchData.io.raddr := commitReadAddr_next 1075 1076 exceptionGen.io.redirect <> io.redirect 1077 exceptionGen.io.flush := io.flushOut.valid 1078 1079 val canEnqueueEG = VecInit(io.enq.req.map(req => req.valid && io.enq.canAccept)) 1080 for (i <- 0 until RenameWidth) { 1081 exceptionGen.io.enq(i).valid := canEnqueueEG(i) 1082 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 1083 exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec) 1084 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe 1085 exceptionGen.io.enq(i).bits.isVset := io.enq.req(i).bits.isVset 1086 exceptionGen.io.enq(i).bits.replayInst := false.B 1087 XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst") 1088 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep 1089 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix 1090 exceptionGen.io.enq(i).bits.trigger.clear() 1091 exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.trigger.frontendHit 1092 } 1093 1094 println(s"ExceptionGen:") 1095 println(s"num of exceptions: ${params.numException}") 1096 require(exceptionWBs.length == exceptionGen.io.wb.length, 1097 f"exceptionWBs.length: ${exceptionWBs.length}, " + 1098 f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}") 1099 for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) { 1100 exc_wb.valid := wb.valid 1101 exc_wb.bits.robIdx := wb.bits.robIdx 1102 exc_wb.bits.exceptionVec := wb.bits.exceptionVec.get 1103 exc_wb.bits.flushPipe := wb.bits.flushPipe.getOrElse(false.B) 1104 exc_wb.bits.isVset := false.B 1105 exc_wb.bits.replayInst := wb.bits.replay.getOrElse(false.B) 1106 exc_wb.bits.singleStep := false.B 1107 exc_wb.bits.crossPageIPFFix := false.B 1108 exc_wb.bits.trigger := 0.U.asTypeOf(exc_wb.bits.trigger) // Todo 1109// println(s" [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " + 1110// s"flushPipe ${configs.exists(_.flushPipe)}, " + 1111// s"replayInst ${configs.exists(_.replayInst)}") 1112 } 1113 1114 fflagsDataRead := (0 until CommitWidth).map(i => fflagsDataModule(deqPtrVec(i).value)) 1115 vxsatDataRead := (0 until CommitWidth).map(i => vxsatDataModule(deqPtrVec(i).value)) 1116 1117 val instrCntReg = RegInit(0.U(64.W)) 1118 val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) }) 1119 val trueCommitCnt = RegNext(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => Mux(v, i.instrSize, 0.U) }.reduce(_ +& _)) +& fuseCommitCnt 1120 val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U) 1121 val instrCnt = instrCntReg + retireCounter 1122 instrCntReg := instrCnt 1123 io.csr.perfinfo.retiredInstr := retireCounter 1124 io.robFull := !allowEnqueue 1125 io.headNotReady := commit_v.head && !commit_w.head 1126 1127 /** 1128 * debug info 1129 */ 1130 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 1131 XSDebug("") 1132 XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n") 1133 for(i <- 0 until RobSize) { 1134 XSDebug(false, !valid(i), "-") 1135 XSDebug(false, valid(i) && isWritebacked(i.U), "w") 1136 XSDebug(false, valid(i) && !isWritebacked(i.U), "v") 1137 } 1138 XSDebug(false, true.B, "\n") 1139 1140 for(i <- 0 until RobSize) { 1141 if (i % 4 == 0) XSDebug("") 1142 XSDebug(false, true.B, "%x ", debug_microOp(i).pc) 1143 XSDebug(false, !valid(i), "- ") 1144 XSDebug(false, valid(i) && isWritebacked(i.U), "w ") 1145 XSDebug(false, valid(i) && !isWritebacked(i.U), "v ") 1146 if (i % 4 == 3) XSDebug(false, true.B, "\n") 1147 } 1148 1149 def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U) 1150 def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U) 1151 1152 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 1153 XSPerfAccumulate("clock_cycle", 1.U) 1154 QueuePerf(RobSize, numValidEntries, numValidEntries === RobSize.U) 1155 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 1156 XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt)) 1157 val commitIsMove = commitDebugUop.map(_.isMove) 1158 XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }))) 1159 val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) 1160 XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e }))) 1161 XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt)) 1162 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 1163 val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t } 1164 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 1165 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 1166 val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t } 1167 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 1168 val commitLoadWaitBit = commitDebugUop.map(_.loadWaitBit) 1169 XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))) 1170 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 1171 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }))) 1172 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && isWritebacked(i.U)))) 1173 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire))) 1174 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 1175 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)) 1176 XSPerfAccumulate("walkCycleTotal", state === s_walk) 1177 XSPerfAccumulate("waitRabWalkEnd", state === s_walk && walkFinished && !rab.io.status.walkEnd) 1178 private val walkCycle = RegInit(0.U(8.W)) 1179 private val waitRabWalkCycle = RegInit(0.U(8.W)) 1180 walkCycle := Mux(io.redirect.valid, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U)) 1181 waitRabWalkCycle := Mux(state === s_walk && walkFinished, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U)) 1182 1183 XSPerfHistogram("walkRobCycleHist", walkCycle, state === s_walk && walkFinished, 0, 32) 1184 XSPerfHistogram("walkRabExtraCycleHist", waitRabWalkCycle, state === s_walk && walkFinished && rab.io.status.walkEnd, 0, 32) 1185 XSPerfHistogram("walkTotalCycleHist", walkCycle, state === s_walk && state_next === s_idle, 0, 32) 1186 1187 val deqNotWritebacked = valid(deqPtr.value) && !isWritebacked(deqPtr.value) 1188 val deqUopCommitType = io.commits.info(0).commitType 1189 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 1190 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 1191 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 1192 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 1193 XSPerfAccumulate("robHeadPC", io.commits.info(0).pc) 1194 XSPerfAccumulate("commitCompressCntAll", PopCount(io.commits.commitValid.zip(io.commits.info).map{case(valid, info) => io.commits.isCommit && valid && info.instrSize > 1.U})) 1195 (2 to RenameWidth).foreach(i => 1196 XSPerfAccumulate(s"commitCompressCnt${i}", PopCount(io.commits.commitValid.zip(io.commits.info).map{case(valid, info) => io.commits.isCommit && valid && info.instrSize === i.U})) 1197 ) 1198 XSPerfAccumulate("compressSize", io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => Mux(io.commits.isCommit && valid && info.instrSize > 1.U, info.instrSize, 0.U) }.reduce(_ +& _)) 1199 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 1200 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 1201 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 1202 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 1203 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 1204 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 1205 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 1206 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 1207 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 1208 } 1209 for (fuType <- FuType.functionNameMap.keys) { 1210 val fuName = FuType.functionNameMap(fuType) 1211 val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U ) 1212 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 1213 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 1214 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 1215 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 1216 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 1217 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 1218 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 1219 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 1220 if (fuType == FuType.fmac) { 1221 val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.fpu.ren3 ) 1222 XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma))) 1223 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency))) 1224 XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency))) 1225 } 1226 } 1227 1228 val sourceVaddr = Wire(Valid(UInt(VAddrBits.W))) 1229 sourceVaddr.valid := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_valid 1230 sourceVaddr.bits := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_bits 1231 val sourcePaddr = Wire(Valid(UInt(PAddrBits.W))) 1232 sourcePaddr.valid := debug_lsTopdownInfo(deqPtr.value).s2.paddr_valid 1233 sourcePaddr.bits := debug_lsTopdownInfo(deqPtr.value).s2.paddr_bits 1234 val sourceLqIdx = Wire(Valid(new LqPtr)) 1235 sourceLqIdx.valid := debug_lqIdxValid(deqPtr.value) 1236 sourceLqIdx.bits := debug_microOp(deqPtr.value).lqIdx 1237 val sourceHeadLsIssue = WireDefault(debug_lsIssue(deqPtr.value)) 1238 ExcitingUtils.addSource(sourceVaddr, s"rob_head_vaddr_${coreParams.HartId}", ExcitingUtils.Perf, true) 1239 ExcitingUtils.addSource(sourcePaddr, s"rob_head_paddr_${coreParams.HartId}", ExcitingUtils.Perf, true) 1240 ExcitingUtils.addSource(sourceLqIdx, s"rob_head_lqIdx_${coreParams.HartId}", ExcitingUtils.Perf, true) 1241 ExcitingUtils.addSource(sourceHeadLsIssue, s"rob_head_ls_issue_${coreParams.HartId}", ExcitingUtils.Perf, true) 1242 // dummy sink 1243 ExcitingUtils.addSink(WireDefault(sourceLqIdx), s"rob_head_lqIdx_${coreParams.HartId}", ExcitingUtils.Perf) 1244 ExcitingUtils.addSink(WireDefault(sourcePaddr), name=s"rob_head_paddr_${coreParams.HartId}", ExcitingUtils.Perf) 1245 ExcitingUtils.addSink(WireDefault(sourceVaddr), name=s"rob_head_vaddr_${coreParams.HartId}", ExcitingUtils.Perf) 1246 ExcitingUtils.addSink(WireDefault(sourceHeadLsIssue), name=s"rob_head_ls_issue_${coreParams.HartId}", ExcitingUtils.Perf) 1247 1248 /** 1249 * DataBase info: 1250 * log trigger is at writeback valid 1251 * */ 1252 1253 /** 1254 * @todo add InstInfoEntry back 1255 * @author Maxpicca-Li 1256 */ 1257 1258 //difftest signals 1259 val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value 1260 1261 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1262 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1263 1264 for(i <- 0 until CommitWidth) { 1265 val idx = deqPtrVec(i).value 1266 wdata(i) := debug_exuData(idx) 1267 wpc(i) := SignExt(commitDebugUop(i).pc, XLEN) 1268 } 1269 1270 if (env.EnableDifftest) { 1271 for (i <- 0 until CommitWidth) { 1272 val difftest = Module(new DifftestInstrCommit) 1273 // assgin default value 1274 difftest.io := DontCare 1275 1276 difftest.io.clock := clock 1277 difftest.io.coreid := io.hartId 1278 difftest.io.index := i.U 1279 1280 val ptr = deqPtrVec(i).value 1281 val uop = commitDebugUop(i) 1282 val exuOut = debug_exuDebug(ptr) 1283 val exuData = debug_exuData(ptr) 1284 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1285 difftest.io.pc := RegNext(RegNext(RegNext(SignExt(uop.pc, XLEN)))) 1286 difftest.io.instr := RegNext(RegNext(RegNext(uop.instr))) 1287 difftest.io.robIdx := RegNext(RegNext(RegNext(ZeroExt(ptr, 10)))) 1288 difftest.io.lqIdx := RegNext(RegNext(RegNext(ZeroExt(uop.lqIdx.value, 7)))) 1289 difftest.io.sqIdx := RegNext(RegNext(RegNext(ZeroExt(uop.sqIdx.value, 7)))) 1290 difftest.io.isLoad := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.LOAD))) 1291 difftest.io.isStore := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.STORE))) 1292 difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(io.commits.info(i).commitType)))) 1293 // when committing an eliminated move instruction, 1294 // we must make sure that skip is properly set to false (output from EXU is random value) 1295 difftest.io.skip := RegNext(RegNext(RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)))) 1296 difftest.io.isRVC := RegNext(RegNext(RegNext(uop.preDecodeInfo.isRVC))) 1297 difftest.io.rfwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U))) 1298 difftest.io.fpwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).fpWen))) 1299 difftest.io.wpdest := RegNext(RegNext(RegNext(io.commits.info(i).pdest))) 1300 difftest.io.wdest := RegNext(RegNext(RegNext(io.commits.info(i).ldest))) 1301 difftest.io.instrSize:= RegNext(RegNext(RegNext(io.commits.info(i).instrSize))) 1302 // // runahead commit hint 1303 // val runahead_commit = Module(new DifftestRunaheadCommitEvent) 1304 // runahead_commit.io.clock := clock 1305 // runahead_commit.io.coreid := io.hartId 1306 // runahead_commit.io.index := i.U 1307 // runahead_commit.io.valid := difftest.io.valid && 1308 // (commitBranchValid(i) || commitIsStore(i)) 1309 // // TODO: is branch or store 1310 // runahead_commit.io.pc := difftest.io.pc 1311 } 1312 } 1313 else if (env.AlwaysBasicDiff) { 1314 // These are the structures used by difftest only and should be optimized after synthesis. 1315 val dt_eliminatedMove = Mem(RobSize, Bool()) 1316 val dt_isRVC = Mem(RobSize, Bool()) 1317 val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) 1318 for (i <- 0 until RenameWidth) { 1319 when (canEnqueue(i)) { 1320 dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 1321 dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC 1322 } 1323 } 1324 for (wb <- exuWBs) { 1325 when (wb.valid) { 1326 val wbIdx = wb.bits.robIdx.value 1327 dt_exuDebug(wbIdx) := wb.bits.debug 1328 } 1329 } 1330 // Always instantiate basic difftest modules. 1331 for (i <- 0 until CommitWidth) { 1332 val commitInfo = io.commits.info(i) 1333 val ptr = deqPtrVec(i).value 1334 val exuOut = dt_exuDebug(ptr) 1335 val eliminatedMove = dt_eliminatedMove(ptr) 1336 val isRVC = dt_isRVC(ptr) 1337 1338 val difftest = Module(new DifftestBasicInstrCommit) 1339 difftest.io.clock := clock 1340 difftest.io.coreid := io.hartId 1341 difftest.io.index := i.U 1342 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1343 difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(commitInfo.commitType)))) 1344 difftest.io.skip := RegNext(RegNext(RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)))) 1345 difftest.io.isRVC := RegNext(RegNext(RegNext(isRVC))) 1346 difftest.io.rfwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U))) 1347 difftest.io.fpwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.fpWen))) 1348 difftest.io.wpdest := RegNext(RegNext(RegNext(commitInfo.pdest))) 1349 difftest.io.wdest := RegNext(RegNext(RegNext(commitInfo.ldest))) 1350 } 1351 } 1352 1353 if (env.EnableDifftest) { 1354 for (i <- 0 until CommitWidth) { 1355 val difftest = Module(new DifftestLoadEvent) 1356 difftest.io.clock := clock 1357 difftest.io.coreid := io.hartId 1358 difftest.io.index := i.U 1359 1360 val ptr = deqPtrVec(i).value 1361 val uop = commitDebugUop(i) 1362 val exuOut = debug_exuDebug(ptr) 1363 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1364 difftest.io.paddr := RegNext(RegNext(RegNext(exuOut.paddr))) 1365 difftest.io.opType := RegNext(RegNext(RegNext(uop.fuOpType))) 1366 difftest.io.fuType := RegNext(RegNext(RegNext(uop.fuType))) 1367 } 1368 } 1369 1370 // Always instantiate basic difftest modules. 1371 if (env.EnableDifftest) { 1372 val dt_isXSTrap = Mem(RobSize, Bool()) 1373 for (i <- 0 until RenameWidth) { 1374 when (canEnqueue(i)) { 1375 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap 1376 } 1377 } 1378 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) } 1379 val hitTrap = trapVec.reduce(_||_) 1380 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 1381 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN) 1382 val difftest = Module(new DifftestTrapEvent) 1383 difftest.io.clock := clock 1384 difftest.io.coreid := io.hartId 1385 difftest.io.valid := hitTrap 1386 difftest.io.code := trapCode 1387 difftest.io.pc := trapPC 1388 difftest.io.cycleCnt := timer 1389 difftest.io.instrCnt := instrCnt 1390 difftest.io.hasWFI := hasWFI 1391 } 1392 else if (env.AlwaysBasicDiff) { 1393 val dt_isXSTrap = Mem(RobSize, Bool()) 1394 for (i <- 0 until RenameWidth) { 1395 when (canEnqueue(i)) { 1396 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap 1397 } 1398 } 1399 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) } 1400 val hitTrap = trapVec.reduce(_||_) 1401 val difftest = Module(new DifftestBasicTrapEvent) 1402 difftest.io.clock := clock 1403 difftest.io.coreid := io.hartId 1404 difftest.io.valid := hitTrap 1405 difftest.io.cycleCnt := timer 1406 difftest.io.instrCnt := instrCnt 1407 } 1408 1409 val validEntriesBanks = (0 until (RobSize + 31) / 32).map(i => RegNext(PopCount(valid.drop(i * 32).take(32)))) 1410 val validEntries = RegNext(VecInit(validEntriesBanks).reduceTree(_ +& _)) 1411 val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }) 1412 val commitLoadVec = VecInit(commitLoadValid) 1413 val commitBranchVec = VecInit(commitBranchValid) 1414 val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }) 1415 val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }) 1416 val perfEvents = Seq( 1417 ("rob_interrupt_num ", io.flushOut.valid && intrEnable ), 1418 ("rob_exception_num ", io.flushOut.valid && exceptionEnable ), 1419 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe ), 1420 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst ), 1421 ("rob_commitUop ", ifCommit(commitCnt) ), 1422 ("rob_commitInstr ", ifCommitReg(trueCommitCnt) ), 1423 ("rob_commitInstrMove ", ifCommitReg(PopCount(RegNext(commitMoveVec))) ), 1424 ("rob_commitInstrFused ", ifCommitReg(fuseCommitCnt) ), 1425 ("rob_commitInstrLoad ", ifCommitReg(PopCount(RegNext(commitLoadVec))) ), 1426 ("rob_commitInstrBranch ", ifCommitReg(PopCount(RegNext(commitBranchVec))) ), 1427 ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec))) ), 1428 ("rob_commitInstrStore ", ifCommitReg(PopCount(RegNext(commitStoreVec))) ), 1429 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U) ), 1430 ("rob_walkCycle ", (state === s_walk) ), 1431 ("rob_1_4_valid ", validEntries <= (RobSize / 4).U ), 1432 ("rob_2_4_valid ", validEntries > (RobSize / 4).U && validEntries <= (RobSize / 2).U ), 1433 ("rob_3_4_valid ", validEntries > (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U), 1434 ("rob_4_4_valid ", validEntries > (RobSize * 3 / 4).U ), 1435 ) 1436 generatePerfEvent() 1437} 1438