xref: /XiangShan/src/main/scala/xiangshan/backend/rob/Rob.scala (revision 0adf86dc82ae4398b47f4ccbfa077971f64e1698)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.backend.rob
18
19import chipsalliance.rocketchip.config.Parameters
20import chisel3._
21import chisel3.util._
22import difftest._
23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp}
24import utility._
25import utils._
26import xiangshan._
27import xiangshan.backend.BackendParams
28import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput}
29import xiangshan.backend.fu.{FuType, FuConfig}
30import xiangshan.frontend.FtqPtr
31import xiangshan.mem.{LqPtr, LsqEnqIO, SqPtr}
32import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput}
33import xiangshan.backend.ctrlblock.{DebugLSIO, DebugLsInfo, LsTopdownInfo}
34import xiangshan.backend.rename.SnapshotGenerator
35
36class RobPtr(entries: Int) extends CircularQueuePtr[RobPtr](
37  entries
38) with HasCircularQueuePtrHelper {
39
40  def this()(implicit p: Parameters) = this(p(XSCoreParamsKey).RobSize)
41
42  def needFlush(redirect: Valid[Redirect]): Bool = {
43    val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx
44    redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx))
45  }
46
47  def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR
48}
49
50object RobPtr {
51  def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = {
52    val ptr = Wire(new RobPtr)
53    ptr.flag := f
54    ptr.value := v
55    ptr
56  }
57}
58
59class RobCSRIO(implicit p: Parameters) extends XSBundle {
60  val intrBitSet = Input(Bool())
61  val trapTarget = Input(UInt(VAddrBits.W))
62  val isXRet     = Input(Bool())
63  val wfiEvent   = Input(Bool())
64
65  val fflags     = Output(Valid(UInt(5.W)))
66  val vxsat      = Output(Valid(Bool()))
67  val dirty_fs   = Output(Bool())
68  val perfinfo   = new Bundle {
69    val retiredInstr = Output(UInt(3.W))
70  }
71
72  val vcsrFlag   = Output(Bool())
73}
74
75class RobLsqIO(implicit p: Parameters) extends XSBundle {
76  val lcommit = Output(UInt(log2Up(CommitWidth + 1).W))
77  val scommit = Output(UInt(log2Up(CommitWidth + 1).W))
78  val pendingld = Output(Bool())
79  val pendingst = Output(Bool())
80  val commit = Output(Bool())
81  val pendingPtr = Output(new RobPtr)
82
83  val mmio = Input(Vec(LoadPipelineWidth, Bool()))
84  val uop = Input(Vec(LoadPipelineWidth, new DynInst))
85}
86
87class RobEnqIO(implicit p: Parameters) extends XSBundle {
88  val canAccept = Output(Bool())
89  val isEmpty = Output(Bool())
90  // valid vector, for robIdx gen and walk
91  val needAlloc = Vec(RenameWidth, Input(Bool()))
92  val req = Vec(RenameWidth, Flipped(ValidIO(new DynInst)))
93  val resp = Vec(RenameWidth, Output(new RobPtr))
94}
95
96class RobDispatchData(implicit p: Parameters) extends RobCommitInfo {}
97
98class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
99  val io = IO(new Bundle {
100    // for commits/flush
101    val state = Input(UInt(2.W))
102    val deq_v = Vec(CommitWidth, Input(Bool()))
103    val deq_w = Vec(CommitWidth, Input(Bool()))
104    val exception_state = Flipped(ValidIO(new RobExceptionInfo))
105    // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth)
106    val intrBitSetReg = Input(Bool())
107    val hasNoSpecExec = Input(Bool())
108    val interrupt_safe = Input(Bool())
109    val blockCommit = Input(Bool())
110    // output: the CommitWidth deqPtr
111    val out = Vec(CommitWidth, Output(new RobPtr))
112    val next_out = Vec(CommitWidth, Output(new RobPtr))
113  })
114
115  val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr))))
116
117  // for exceptions (flushPipe included) and interrupts:
118  // only consider the first instruction
119  val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe
120  val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0)
121  val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable)
122
123  // for normal commits: only to consider when there're no exceptions
124  // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions.
125  val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last)
126  val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i)))
127  val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B)
128  // when io.intrBitSetReg or there're possible exceptions in these instructions,
129  // only one instruction is allowed to commit
130  val allowOnlyOne = commit_exception || io.intrBitSetReg
131  val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt)
132
133  val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt))
134  val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec)
135
136  deqPtrVec := deqPtrVec_next
137
138  io.next_out := deqPtrVec_next
139  io.out      := deqPtrVec
140
141  when (io.state === 0.U) {
142    XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt)
143  }
144
145}
146
147class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
148  val io = IO(new Bundle {
149    // for input redirect
150    val redirect = Input(Valid(new Redirect))
151    // for enqueue
152    val allowEnqueue = Input(Bool())
153    val hasBlockBackward = Input(Bool())
154    val enq = Vec(RenameWidth, Input(Bool()))
155    val out = Output(Vec(RenameWidth, new RobPtr))
156  })
157
158  val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr)))
159
160  // enqueue
161  val canAccept = io.allowEnqueue && !io.hasBlockBackward
162  val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U)
163
164  for ((ptr, i) <- enqPtrVec.zipWithIndex) {
165    when(io.redirect.valid) {
166      ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
167    }.otherwise {
168      ptr := ptr + dispatchNum
169    }
170  }
171
172  io.out := enqPtrVec
173
174}
175
176class RobExceptionInfo(implicit p: Parameters) extends XSBundle {
177  // val valid = Bool()
178  val robIdx = new RobPtr
179  val exceptionVec = ExceptionVec()
180  val flushPipe = Bool()
181  val isVset = Bool()
182  val replayInst = Bool() // redirect to that inst itself
183  val singleStep = Bool() // TODO add frontend hit beneath
184  val crossPageIPFFix = Bool()
185  val trigger = new TriggerCf
186
187//  def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend
188//  def trigger_after = trigger.getTimingBackend && trigger.getHitBackend
189  def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit
190  def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit
191  // only exceptions are allowed to writeback when enqueue
192  def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit
193}
194
195class ExceptionGen(params: BackendParams)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
196  val io = IO(new Bundle {
197    val redirect = Input(Valid(new Redirect))
198    val flush = Input(Bool())
199    val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo)))
200    // csr + load + store
201    val wb = Vec(params.numException, Flipped(ValidIO(new RobExceptionInfo)))
202    val out = ValidIO(new RobExceptionInfo)
203    val state = ValidIO(new RobExceptionInfo)
204  })
205
206  val wbExuParams = params.allExuParams.filter(_.exceptionOut.nonEmpty)
207
208  def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): RobExceptionInfo = {
209    def getOldest_recursion(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = {
210      assert(valid.length == bits.length)
211      if (valid.length == 1) {
212        (valid, bits)
213      } else if (valid.length == 2) {
214        val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0)))))
215        for (i <- res.indices) {
216          res(i).valid := valid(i)
217          res(i).bits := bits(i)
218        }
219        val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1))
220        (Seq(oldest.valid), Seq(oldest.bits))
221      } else {
222        val left = getOldest_recursion(valid.take(valid.length / 2), bits.take(valid.length / 2))
223        val right = getOldest_recursion(valid.drop(valid.length / 2), bits.drop(valid.length / 2))
224        getOldest_recursion(left._1 ++ right._1, left._2 ++ right._2)
225      }
226    }
227    getOldest_recursion(valid, bits)._2.head
228  }
229
230
231  val currentValid = RegInit(false.B)
232  val current = Reg(new RobExceptionInfo)
233
234  // orR the exceptionVec
235  val lastCycleFlush = RegNext(io.flush)
236  val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush))
237
238  // s0: compare wb in 4 groups
239  val csrvldu_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(t => t.isCsr || t.fuType == FuType.vldu).nonEmpty).map(_._1)
240  val load_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.ldu).nonEmpty).map(_._1)
241  val store_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(t => t.isSta || t.fuType == FuType.mou).nonEmpty).map(_._1)
242  val varith_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.isVecArith).nonEmpty).map(_._1)
243  // TODO: vsta_wb = ???
244
245  val writebacks = Seq(csrvldu_wb, load_wb, store_wb, varith_wb)
246  val in_wb_valids = writebacks.map(_.map(w => w.valid && w.bits.has_exception && !lastCycleFlush))
247  val wb_valid = in_wb_valids.zip(writebacks).map { case (valid, wb) =>
248    valid.zip(wb.map(_.bits)).map { case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }.reduce(_ || _)
249  }
250  val wb_bits = in_wb_valids.zip(writebacks).map { case (valid, wb) => getOldest(valid, wb.map(_.bits))}
251
252  val s0_out_valid = wb_valid.map(x => RegNext(x))
253  val s0_out_bits = wb_bits.map(x => RegNext(x))
254
255  // s1: compare last four and current flush
256  val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) })
257  val s1_out_bits = RegNext(getOldest(s0_out_valid, s0_out_bits))
258  val s1_out_valid = RegNext(s1_valid.asUInt.orR)
259
260  val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush)
261  val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits)))
262
263  // s2: compare the input exception with the current one
264  // priorities:
265  // (1) system reset
266  // (2) current is valid: flush, remain, merge, update
267  // (3) current is not valid: s1 or enq
268  val current_flush = current.robIdx.needFlush(io.redirect) || io.flush
269  val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush
270  when (currentValid) {
271    when (current_flush) {
272      currentValid := Mux(s1_flush, false.B, s1_out_valid)
273    }
274    when (s1_out_valid && !s1_flush) {
275      when (isAfter(current.robIdx, s1_out_bits.robIdx)) {
276        current := s1_out_bits
277      }.elsewhen (current.robIdx === s1_out_bits.robIdx) {
278        current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec())
279        current.flushPipe := s1_out_bits.flushPipe || current.flushPipe
280        current.replayInst := s1_out_bits.replayInst || current.replayInst
281        current.singleStep := s1_out_bits.singleStep || current.singleStep
282        current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf)
283      }
284    }
285  }.elsewhen (s1_out_valid && !s1_flush) {
286    currentValid := true.B
287    current := s1_out_bits
288  }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) {
289    currentValid := true.B
290    current := enq_bits
291  }
292
293  io.out.valid   := s1_out_valid || enq_valid && enq_bits.can_writeback
294  io.out.bits    := Mux(s1_out_valid, s1_out_bits, enq_bits)
295  io.state.valid := currentValid
296  io.state.bits  := current
297
298}
299
300class RobFlushInfo(implicit p: Parameters) extends XSBundle {
301  val ftqIdx = new FtqPtr
302  val robIdx = new RobPtr
303  val ftqOffset = UInt(log2Up(PredictWidth).W)
304  val replayInst = Bool()
305}
306
307class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter {
308
309  lazy val module = new RobImp(this)(p, params)
310}
311
312class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper)
313  with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents {
314
315  private val LduCnt = params.LduCnt
316  private val StaCnt = params.StaCnt
317
318  val io = IO(new Bundle() {
319    val hartId = Input(UInt(8.W))
320    val redirect = Input(Valid(new Redirect))
321    val enq = new RobEnqIO
322    val flushOut = ValidIO(new Redirect)
323    val exception = ValidIO(new ExceptionInfo)
324    // exu + brq
325    val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles)
326    val commits = Output(new RobCommitIO)
327    val rabCommits = Output(new RobCommitIO)
328    val diffCommits = Output(new DiffCommitIO)
329    val isVsetFlushPipe = Output(Bool())
330    val vconfigPdest = Output(UInt(PhyRegIdxWidth.W))
331    val lsq = new RobLsqIO
332    val robDeqPtr = Output(new RobPtr)
333    val csr = new RobCSRIO
334    val snpt = Input(new SnapshotPort)
335    val robFull = Output(Bool())
336    val headNotReady = Output(Bool())
337    val cpu_halt = Output(Bool())
338    val wfi_enable = Input(Bool())
339    val debug_ls = Flipped(new DebugLSIO)
340    val debugRobHead = Output(new DynInst)
341    val debugEnqLsq = Input(new LsqEnqIO)
342    val debugHeadLsIssue = Input(Bool())
343    val lsTopdownInfo = Vec(LduCnt, Input(new LsTopdownInfo))
344  })
345
346  val exuWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(!_.bits.params.hasStdFu)
347  val stdWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(_.bits.params.hasStdFu)
348  val fflagsWBs = io.writeback.filter(x => x.bits.fflags.nonEmpty)
349  val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty)
350  val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty)
351
352  val exuWbPorts = io.writeback.filter(!_.bits.params.hasStdFu)
353  val stdWbPorts = io.writeback.filter(_.bits.params.hasStdFu)
354  val fflagsPorts = io.writeback.filter(x => x.bits.fflags.nonEmpty)
355  val vxsatPorts = io.writeback.filter(x => x.bits.vxsat.nonEmpty)
356  val exceptionPorts = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty)
357  val numExuWbPorts = exuWBs.length
358  val numStdWbPorts = stdWBs.length
359
360
361  println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth")
362//  println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}")
363//  println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}")
364//  println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}")
365
366
367  // instvalid field
368  val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
369  // writeback status
370
371  val stdWritebacked = Reg(Vec(RobSize, Bool()))
372  val uopNumVec          = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W))))
373  val realDestSize       = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W))))
374  val fflagsDataModule   = RegInit(VecInit(Seq.fill(RobSize)(0.U(5.W))))
375  val vxsatDataModule    = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
376
377  def isWritebacked(ptr: UInt): Bool = {
378    !uopNumVec(ptr).orR && stdWritebacked(ptr)
379  }
380
381  val mmio = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
382
383  // data for redirect, exception, etc.
384  val flagBkup = Mem(RobSize, Bool())
385  // some instructions are not allowed to trigger interrupts
386  // They have side effects on the states of the processor before they write back
387  val interrupt_safe = Mem(RobSize, Bool())
388
389  // data for debug
390  // Warn: debug_* prefix should not exist in generated verilog.
391  val debug_microOp = Mem(RobSize, new DynInst)
392  val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug
393  val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug
394  val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init)))
395  val debug_lsTopdownInfo = RegInit(VecInit(Seq.fill(RobSize)(LsTopdownInfo.init)))
396  val debug_lqIdxValid = RegInit(VecInit.fill(RobSize)(false.B))
397  val debug_lsIssued = RegInit(VecInit.fill(RobSize)(false.B))
398
399  // pointers
400  // For enqueue ptr, we don't duplicate it since only enqueue needs it.
401  val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr))
402  val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr))
403
404  val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr))
405  val lastWalkPtr = Reg(new RobPtr)
406  val allowEnqueue = RegInit(true.B)
407
408  val enqPtr = enqPtrVec.head
409  val deqPtr = deqPtrVec(0)
410  val walkPtr = walkPtrVec(0)
411
412  val isEmpty = enqPtr === deqPtr
413  val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level)
414
415  val snptEnq = io.enq.canAccept && io.enq.req.head.valid && io.enq.req.head.bits.snapshot
416  val snapshots = SnapshotGenerator(enqPtrVec, snptEnq, io.snpt.snptDeq, io.redirect.valid)
417  val debug_lsIssue = WireDefault(debug_lsIssued)
418  debug_lsIssue(deqPtr.value) := io.debugHeadLsIssue
419
420  /**
421    * states of Rob
422    */
423  val s_idle :: s_walk :: Nil = Enum(2)
424  val state = RegInit(s_idle)
425
426  /**
427    * Data Modules
428    *
429    * CommitDataModule: data from dispatch
430    * (1) read: commits/walk/exception
431    * (2) write: enqueue
432    *
433    * WritebackData: data from writeback
434    * (1) read: commits/walk/exception
435    * (2) write: write back from exe units
436    */
437  val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth))
438  val dispatchDataRead = dispatchData.io.rdata
439
440  val exceptionGen = Module(new ExceptionGen(params))
441  val exceptionDataRead = exceptionGen.io.state
442  val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W)))
443  val vxsatDataRead = Wire(Vec(CommitWidth, Bool()))
444
445  io.robDeqPtr := deqPtr
446  io.debugRobHead := debug_microOp(deqPtr.value)
447
448  val rab = Module(new RenameBuffer(RabSize))
449
450  rab.io.redirect.valid := io.redirect.valid
451
452  rab.io.req.zip(io.enq.req).map { case (dest, src) =>
453    dest.bits := src.bits
454    dest.valid := src.valid && io.enq.canAccept
455  }
456
457  val commitDestSizeSeq = (0 until CommitWidth).map(i => realDestSize(deqPtrVec(i).value))
458  val walkDestSizeSeq = (0 until CommitWidth).map(i => realDestSize(walkPtrVec(i).value))
459
460  val commitSizeSum = io.commits.commitValid.zip(commitDestSizeSeq).map { case (commitValid, destSize) =>
461    Mux(io.commits.isCommit && commitValid, destSize, 0.U)
462  }.reduce(_ +& _)
463  val walkSizeSum = io.commits.walkValid.zip(walkDestSizeSeq).map { case (walkValid, destSize) =>
464    Mux(io.commits.isWalk && walkValid, destSize, 0.U)
465  }.reduce(_ +& _)
466
467  rab.io.fromRob.commitSize := commitSizeSum
468  rab.io.fromRob.walkSize := walkSizeSum
469  rab.io.snpt.snptEnq := false.B
470  rab.io.snpt.snptDeq := io.snpt.snptDeq
471  rab.io.snpt.snptSelect := io.snpt.snptSelect
472  rab.io.snpt.useSnpt := io.snpt.useSnpt
473
474  io.rabCommits := rab.io.commits
475  io.diffCommits := rab.io.diffCommits
476
477  /**
478    * Enqueue (from dispatch)
479    */
480  // special cases
481  val hasBlockBackward = RegInit(false.B)
482  val hasWaitForward = RegInit(false.B)
483  val doingSvinval = RegInit(false.B)
484  // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B
485  // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty.
486  when (isEmpty) { hasBlockBackward:= false.B }
487  // When any instruction commits, hasNoSpecExec should be set to false.B
488  when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasWaitForward:= false.B }
489
490  // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing.
491  // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle.
492  // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts.
493  val hasWFI = RegInit(false.B)
494  io.cpu_halt := hasWFI
495  // WFI Timeout: 2^20 = 1M cycles
496  val wfi_cycles = RegInit(0.U(20.W))
497  when (hasWFI) {
498    wfi_cycles := wfi_cycles + 1.U
499  }.elsewhen (!hasWFI && RegNext(hasWFI)) {
500    wfi_cycles := 0.U
501  }
502  val wfi_timeout = wfi_cycles.andR
503  when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) {
504    hasWFI := false.B
505  }
506
507  val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.req.take(i).map(req => req.valid && req.bits.firstUop)))))
508  io.enq.canAccept := allowEnqueue && !hasBlockBackward && rab.io.canEnq
509  io.enq.resp      := allocatePtrVec
510  val canEnqueue = VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop && io.enq.canAccept))
511  val timer = GTimer()
512  for (i <- 0 until RenameWidth) {
513    // we don't check whether io.redirect is valid here since redirect has higher priority
514    when (canEnqueue(i)) {
515      val enqUop = io.enq.req(i).bits
516      val enqIndex = allocatePtrVec(i).value
517      // store uop in data module and debug_microOp Vec
518      debug_microOp(enqIndex) := enqUop
519      debug_microOp(enqIndex).debugInfo.dispatchTime := timer
520      debug_microOp(enqIndex).debugInfo.enqRsTime := timer
521      debug_microOp(enqIndex).debugInfo.selectTime := timer
522      debug_microOp(enqIndex).debugInfo.issueTime := timer
523      debug_microOp(enqIndex).debugInfo.writebackTime := timer
524      debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer
525      debug_microOp(enqIndex).debugInfo.tlbRespTime := timer
526      debug_lsInfo(enqIndex) := DebugLsInfo.init
527      debug_lsTopdownInfo(enqIndex) := LsTopdownInfo.init
528      debug_lqIdxValid(enqIndex) := false.B
529      debug_lsIssued(enqIndex) := false.B
530
531      when (enqUop.blockBackward) {
532        hasBlockBackward := true.B
533      }
534      when (enqUop.waitForward) {
535        hasWaitForward := true.B
536      }
537      val enqHasTriggerHit = false.B // io.enq.req(i).bits.cf.trigger.getHitFrontend
538      val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR
539      // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process
540      when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe))
541      {
542        doingSvinval := true.B
543      }
544      // the end instruction of Svinval enqs so clear doingSvinval
545      when(!enqHasTriggerHit && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe))
546      {
547        doingSvinval := false.B
548      }
549      // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear
550      assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe)))
551      when (enqUop.isWFI && !enqHasException && !enqHasTriggerHit) {
552        hasWFI := true.B
553      }
554
555      mmio(enqIndex) := false.B
556    }
557  }
558  val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(req => req.valid && req.bits.firstUop)), 0.U)
559  io.enq.isEmpty   := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR)
560
561  when (!io.wfi_enable) {
562    hasWFI := false.B
563  }
564  // sel vsetvl's flush position
565  val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3)
566  val vsetvlState = RegInit(vs_idle)
567
568  val firstVInstrFtqPtr    = RegInit(0.U.asTypeOf(new FtqPtr))
569  val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W)))
570  val firstVInstrRobIdx    = RegInit(0.U.asTypeOf(new RobPtr))
571
572  val enq0            = io.enq.req(0)
573  val enq0IsVset      = enq0.bits.isVset && enq0.bits.lastUop && canEnqueue(0)
574  val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe
575  val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVpu(req.bits.fuType) && fire}
576  // for vs_idle
577  val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType)))
578  // for vs_waitVinstr
579  val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1)
580  val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req)
581  when(vsetvlState === vs_idle){
582    firstVInstrFtqPtr    := firstVInstrIdle.bits.ftqPtr
583    firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset
584    firstVInstrRobIdx    := firstVInstrIdle.bits.robIdx
585  }.elsewhen(vsetvlState === vs_waitVinstr){
586    when(Cat(enqIsVInstrOrVset).orR){
587      firstVInstrFtqPtr := firstVInstrWait.bits.ftqPtr
588      firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset
589      firstVInstrRobIdx := firstVInstrWait.bits.robIdx
590    }
591  }
592
593  val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR
594  when(vsetvlState === vs_idle && !io.redirect.valid){
595    when(enq0IsVsetFlush){
596      vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr)
597    }
598  }.elsewhen(vsetvlState === vs_waitVinstr){
599    when(io.redirect.valid){
600      vsetvlState := vs_idle
601    }.elsewhen(Cat(enqIsVInstrOrVset).orR){
602      vsetvlState := vs_waitFlush
603    }
604  }.elsewhen(vsetvlState === vs_waitFlush){
605    when(io.redirect.valid){
606      vsetvlState := vs_idle
607    }
608  }
609
610  // lqEnq
611  io.debugEnqLsq.needAlloc.map(_(0)).zip(io.debugEnqLsq.req).foreach { case (alloc, req) =>
612    when(io.debugEnqLsq.canAccept && alloc && req.valid) {
613      debug_microOp(req.bits.robIdx.value).lqIdx := req.bits.lqIdx
614      debug_lqIdxValid(req.bits.robIdx.value) := true.B
615    }
616  }
617
618  // lsIssue
619  when(io.debugHeadLsIssue) {
620    debug_lsIssued(deqPtr.value) := true.B
621  }
622
623  /**
624    * Writeback (from execution units)
625    */
626  for (wb <- exuWBs) {
627    when (wb.valid) {
628      val wbIdx = wb.bits.robIdx.value
629      debug_exuData(wbIdx) := wb.bits.data
630      debug_exuDebug(wbIdx) := wb.bits.debug
631      debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime
632      debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime
633      debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime
634      debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime
635
636      // debug for lqidx and sqidx
637      debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr))
638      debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr))
639
640      val debug_Uop = debug_microOp(wbIdx)
641      XSInfo(true.B,
642        p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " +
643        p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " +
644        p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.robIdx}\n"
645      )
646    }
647  }
648
649  val writebackNum = PopCount(exuWBs.map(_.valid))
650  XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum)
651
652  for (i <- 0 until LoadPipelineWidth) {
653    when (RegNext(io.lsq.mmio(i))) {
654      mmio(RegNext(io.lsq.uop(i).robIdx).value) := true.B
655    }
656  }
657
658  /**
659    * RedirectOut: Interrupt and Exceptions
660    */
661  val deqDispatchData = dispatchDataRead(0)
662  val debug_deqUop = debug_microOp(deqPtr.value)
663
664  val intrBitSetReg = RegNext(io.csr.intrBitSet)
665  val intrEnable = intrBitSetReg && !hasWaitForward && interrupt_safe(deqPtr.value)
666  val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr
667  val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR ||
668    exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit)
669  val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe
670  val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst
671  val exceptionEnable = isWritebacked(deqPtr.value) && deqHasException
672
673  XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n")
674  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n")
675  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n")
676
677  val isFlushPipe = isWritebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst)
678
679  val isVsetFlushPipe = isWritebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset
680//  val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush)
681  val needModifyFtqIdxOffset = false.B
682  io.isVsetFlushPipe := isVsetFlushPipe
683  io.vconfigPdest := rab.io.vconfigPdest
684  // io.flushOut will trigger redirect at the next cycle.
685  // Block any redirect or commit at the next cycle.
686  val lastCycleFlush = RegNext(io.flushOut.valid)
687
688  io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush
689  io.flushOut.bits := DontCare
690  io.flushOut.bits.isRVC := deqDispatchData.isRVC
691  io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr)
692  io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx)
693  io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset)
694  io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next"
695  io.flushOut.bits.interrupt := true.B
696  XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable)
697  XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable)
698  XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe)
699  XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst)
700
701  val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush
702  io.exception.valid                := RegNext(exceptionHappen)
703  io.exception.bits.pc              := RegEnable(debug_deqUop.pc, exceptionHappen)
704  io.exception.bits.instr           := RegEnable(debug_deqUop.instr, exceptionHappen)
705  io.exception.bits.commitType      := RegEnable(deqDispatchData.commitType, exceptionHappen)
706  io.exception.bits.exceptionVec    := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen)
707  io.exception.bits.singleStep      := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen)
708  io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen)
709  io.exception.bits.isInterrupt     := RegEnable(intrEnable, exceptionHappen)
710//  io.exception.bits.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen)
711
712  XSDebug(io.flushOut.valid,
713    p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " +
714    p"excp $exceptionEnable flushPipe $isFlushPipe " +
715    p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n")
716
717
718  /**
719    * Commits (and walk)
720    * They share the same width.
721    */
722  val shouldWalkVec = VecInit(walkPtrVec.map(_ <= lastWalkPtr))
723  val walkFinished = VecInit(walkPtrVec.map(_ >= lastWalkPtr)).asUInt.orR
724  rab.io.fromRob.walkEnd := state === s_walk && walkFinished
725
726  require(RenameWidth <= CommitWidth)
727
728  // wiring to csr
729  val (wflags, fpWen) = (0 until CommitWidth).map(i => {
730    val v = io.commits.commitValid(i)
731    val info = io.commits.info(i)
732    (v & info.wflags, v & info.fpWen)
733  }).unzip
734  val fflags = Wire(Valid(UInt(5.W)))
735  fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR
736  fflags.bits := wflags.zip(fflagsDataRead).map({
737    case (w, f) => Mux(w, f, 0.U)
738  }).reduce(_|_)
739  val dirty_fs = io.commits.isCommit && VecInit(fpWen).asUInt.orR
740
741  val vxsat = Wire(Valid(Bool()))
742  vxsat.valid := io.commits.isCommit && vxsat.bits
743  vxsat.bits := io.commits.commitValid.zip(vxsatDataRead).map {
744    case (valid, vxsat) => valid & vxsat
745  }.reduce(_ | _)
746
747  // when mispredict branches writeback, stop commit in the next 2 cycles
748  // TODO: don't check all exu write back
749  val misPredWb = Cat(VecInit(redirectWBs.map(wb =>
750    wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid
751  ))).orR
752  val misPredBlockCounter = Reg(UInt(3.W))
753  misPredBlockCounter := Mux(misPredWb,
754    "b111".U,
755    misPredBlockCounter >> 1.U
756  )
757  val misPredBlock = misPredBlockCounter(0)
758  val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI
759
760  io.commits.isWalk := state === s_walk
761  io.commits.isCommit := state === s_idle && !blockCommit
762  val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value)))
763  val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value)))
764  // store will be commited iff both sta & std have been writebacked
765  val commit_w = VecInit(deqPtrVec.map(ptr => isWritebacked(ptr.value)))
766  val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last)
767  val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i)))
768  val allowOnlyOneCommit = commit_exception || intrBitSetReg
769  // for instructions that may block others, we don't allow them to commit
770  for (i <- 0 until CommitWidth) {
771    // defaults: state === s_idle and instructions commit
772    // when intrBitSetReg, allow only one instruction to commit at each clock cycle
773    val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst
774    io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked
775    io.commits.info(i) := dispatchDataRead(i)
776    io.commits.robIdx(i) := deqPtrVec(i)
777
778    when (state === s_walk) {
779      io.commits.walkValid(i) := shouldWalkVec(i)
780      when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) {
781        XSError(!walk_v(i), s"The walking entry($i) should be valid\n")
782      }
783    }
784
785    XSInfo(io.commits.isCommit && io.commits.commitValid(i),
786      "retired pc %x wen %d ldest %d pdest %x data %x fflags: %b vxsat: %b\n",
787      debug_microOp(deqPtrVec(i).value).pc,
788      io.commits.info(i).rfWen,
789      io.commits.info(i).ldest,
790      io.commits.info(i).pdest,
791      debug_exuData(deqPtrVec(i).value),
792      fflagsDataRead(i),
793      vxsatDataRead(i)
794    )
795    XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n",
796      debug_microOp(walkPtrVec(i).value).pc,
797      io.commits.info(i).rfWen,
798      io.commits.info(i).ldest,
799      debug_exuData(walkPtrVec(i).value)
800    )
801  }
802  if (env.EnableDifftest) {
803    io.commits.info.map(info => dontTouch(info.pc))
804  }
805
806  // sync fflags/dirty_fs/vxsat to csr
807  io.csr.fflags := RegNext(fflags)
808  io.csr.dirty_fs := RegNext(dirty_fs)
809  io.csr.vxsat := RegNext(vxsat)
810
811  // sync v csr to csr
812  // for difftest
813  if(env.AlwaysBasicDiff || env.EnableDifftest) {
814    val isDiffWriteVconfigVec = io.diffCommits.commitValid.zip(io.diffCommits.info).map { case (valid, info) => valid && info.ldest === VCONFIG_IDX.U && info.vecWen }.reverse
815    io.csr.vcsrFlag := RegNext(io.diffCommits.isCommit && Cat(isDiffWriteVconfigVec).orR)
816  }
817  else{
818    io.csr.vcsrFlag := false.B
819  }
820
821  // commit load/store to lsq
822  val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD))
823  val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE))
824  io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U))
825  io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U))
826  // indicate a pending load or store
827  io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value) && mmio(deqPtr.value))
828  io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value))
829  io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0))
830  io.lsq.pendingPtr := RegNext(deqPtr)
831
832  /**
833    * state changes
834    * (1) redirect: switch to s_walk
835    * (2) walk: when walking comes to the end, switch to s_idle
836    */
837  val state_next = Mux(io.redirect.valid, s_walk, Mux(state === s_walk && walkFinished && rab.io.status.walkEnd, s_idle, state))
838  XSPerfAccumulate("s_idle_to_idle",            state === s_idle && state_next === s_idle)
839  XSPerfAccumulate("s_idle_to_walk",            state === s_idle && state_next === s_walk)
840  XSPerfAccumulate("s_walk_to_idle",            state === s_walk && state_next === s_idle)
841  XSPerfAccumulate("s_walk_to_walk",            state === s_walk && state_next === s_walk)
842  state := state_next
843
844  /**
845    * pointers and counters
846    */
847  val deqPtrGenModule = Module(new RobDeqPtrWrapper)
848  deqPtrGenModule.io.state := state
849  deqPtrGenModule.io.deq_v := commit_v
850  deqPtrGenModule.io.deq_w := commit_w
851  deqPtrGenModule.io.exception_state := exceptionDataRead
852  deqPtrGenModule.io.intrBitSetReg := intrBitSetReg
853  deqPtrGenModule.io.hasNoSpecExec := hasWaitForward
854  deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value)
855  deqPtrGenModule.io.blockCommit := blockCommit
856  deqPtrVec := deqPtrGenModule.io.out
857  val deqPtrVec_next = deqPtrGenModule.io.next_out
858
859  val enqPtrGenModule = Module(new RobEnqPtrWrapper)
860  enqPtrGenModule.io.redirect := io.redirect
861  enqPtrGenModule.io.allowEnqueue := allowEnqueue && rab.io.canEnq
862  enqPtrGenModule.io.hasBlockBackward := hasBlockBackward
863  enqPtrGenModule.io.enq := VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop))
864  enqPtrVec := enqPtrGenModule.io.out
865
866  // next walkPtrVec:
867  // (1) redirect occurs: update according to state
868  // (2) walk: move forwards
869  val walkPtrVec_next = Mux(io.redirect.valid,
870    Mux(io.snpt.useSnpt, snapshots(io.snpt.snptSelect), deqPtrVec_next),
871    Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec)
872  )
873  walkPtrVec := walkPtrVec_next
874
875  val numValidEntries = distanceBetween(enqPtr, deqPtr)
876  val commitCnt = PopCount(io.commits.commitValid)
877
878  allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U
879
880  val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0))
881  when (io.redirect.valid) {
882    lastWalkPtr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx - 1.U, io.redirect.bits.robIdx)
883  }
884
885
886  /**
887    * States
888    * We put all the stage bits changes here.
889
890    * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit);
891    * All states: (1) valid; (2) writebacked; (3) flagBkup
892    */
893  val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value)))
894
895  // redirect logic writes 6 valid
896  val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr))
897  val redirectTail = Reg(new RobPtr)
898  val redirectIdle :: redirectBusy :: Nil = Enum(2)
899  val redirectState = RegInit(redirectIdle)
900  val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail))
901  when(redirectState === redirectBusy) {
902    redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U)
903    redirectHeadVec zip invMask foreach {
904      case (redirectHead, inv) => when(inv) {
905        valid(redirectHead.value) := false.B
906      }
907    }
908    when(!invMask.last) {
909      redirectState := redirectIdle
910    }
911  }
912  when(io.redirect.valid) {
913    redirectState := redirectBusy
914    when(redirectState === redirectIdle) {
915      redirectTail := enqPtr
916    }
917    redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) =>
918      redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
919    }
920  }
921  // enqueue logic writes 6 valid
922  for (i <- 0 until RenameWidth) {
923    when (canEnqueue(i) && !io.redirect.valid) {
924      valid(allocatePtrVec(i).value) := true.B
925    }
926  }
927  // dequeue logic writes 6 valid
928  for (i <- 0 until CommitWidth) {
929    val commitValid = io.commits.isCommit && io.commits.commitValid(i)
930    when (commitValid) {
931      valid(commitReadAddr(i)) := false.B
932    }
933  }
934
935  // debug_inst update
936  for(i <- 0 until (LduCnt + StaCnt)) {
937    debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i))
938    debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i))
939  }
940  for (i <- 0 until LduCnt) {
941    debug_lsTopdownInfo(io.lsTopdownInfo(i).s1.robIdx).s1SignalEnable(io.lsTopdownInfo(i))
942    debug_lsTopdownInfo(io.lsTopdownInfo(i).s2.robIdx).s2SignalEnable(io.lsTopdownInfo(i))
943  }
944
945  // writeback logic set numWbPorts writebacked to true
946  val blockWbSeq = Wire(Vec(exuWBs.length, Bool()))
947  blockWbSeq.map(_ := false.B)
948  for ((wb, blockWb) <- exuWBs.zip(blockWbSeq)) {
949    when(wb.valid) {
950      val wbHasException = wb.bits.exceptionVec.getOrElse(0.U).asUInt.orR
951      val wbHasTriggerHit = false.B //Todo: wb.bits.trigger.getHitBackend
952      val wbHasFlushPipe = wb.bits.flushPipe.getOrElse(false.B)
953      val wbHasReplayInst = wb.bits.replay.getOrElse(false.B) //Todo: && wb.bits.replayInst
954      blockWb := wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit
955    }
956  }
957
958  // if the first uop of an instruction is valid , write writebackedCounter
959  val uopEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid)
960  val instEnqValidSeq = io.enq.req.map (req => io.enq.canAccept && req.valid && req.bits.firstUop)
961  val enqNeedWriteRFSeq = io.enq.req.map(_.bits.needWriteRf)
962  val enqRobIdxSeq = io.enq.req.map(req => req.bits.robIdx.value)
963  val enqUopNumVec = VecInit(io.enq.req.map(req => req.bits.numUops))
964  val enqEliminatedMoveVec = VecInit(io.enq.req.map(req => req.bits.eliminatedMove))
965
966  private val enqWriteStdVec: Vec[Bool] = VecInit(io.enq.req.map {
967    req => FuType.isAMO(req.bits.fuType) || FuType.isStore(req.bits.fuType)
968  })
969  val fflags_wb = fflagsPorts
970  val vxsat_wb = vxsatPorts
971  for(i <- 0 until RobSize){
972
973    val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === i.U)
974    val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch }
975    val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch }
976    val instCanEnqFlag = Cat(instCanEnqSeq).orR
977
978    realDestSize(i) := Mux(!valid(i) && instCanEnqFlag || valid(i), realDestSize(i) + PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map{ case(writeFlag, valid) => writeFlag && valid }), 0.U)
979
980    val enqUopNum = PriorityMux(instCanEnqSeq, enqUopNumVec)
981    val enqEliminatedMove = PriorityMux(instCanEnqSeq, enqEliminatedMoveVec)
982    val enqWriteStd = PriorityMux(instCanEnqSeq, enqWriteStdVec)
983
984    val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)
985    val canWbNoBlockSeq = canWbSeq.zip(blockWbSeq).map{ case(canWb, blockWb) => canWb && !blockWb }
986    val canStdWbSeq = VecInit(stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U))
987    val wbCnt = PopCount(canWbNoBlockSeq)
988
989    val exceptionHas = RegInit(false.B)
990    val exceptionHasWire = Wire(Bool())
991    exceptionHasWire := MuxCase(exceptionHas, Seq(
992      (valid(i) && exceptionGen.io.out.valid && exceptionGen.io.out.bits.robIdx.value === i.U) -> true.B,
993      !valid(i) -> false.B
994    ))
995    exceptionHas := exceptionHasWire
996
997    when (exceptionHas || exceptionHasWire) {
998      // exception flush
999      uopNumVec(i) := 0.U
1000      stdWritebacked(i) := true.B
1001    }.elsewhen(!valid(i) && instCanEnqFlag) {
1002      // enq set num of uops
1003      uopNumVec(i) := enqUopNum
1004      stdWritebacked(i) := Mux(enqWriteStd, false.B, true.B)
1005    }.elsewhen(valid(i)) {
1006      // update by writing back
1007      uopNumVec(i) := uopNumVec(i) - wbCnt
1008      when (canStdWbSeq.asUInt.orR) {
1009        stdWritebacked(i) := true.B
1010      }
1011    }.otherwise {
1012      uopNumVec(i) := 0.U
1013    }
1014
1015    val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U && writeback.bits.wflags.getOrElse(false.B))
1016    val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.fold(false.B)(_ | _)
1017    fflagsDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, fflagsDataModule(i) | fflagsRes)
1018
1019    val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)
1020    val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.fold(false.B)(_ | _)
1021    vxsatDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, vxsatDataModule(i) | vxsatRes)
1022  }
1023
1024  // flagBkup
1025  // enqueue logic set 6 flagBkup at most
1026  for (i <- 0 until RenameWidth) {
1027    when (canEnqueue(i)) {
1028      flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag
1029    }
1030  }
1031
1032  // interrupt_safe
1033  for (i <- 0 until RenameWidth) {
1034    // We RegNext the updates for better timing.
1035    // Note that instructions won't change the system's states in this cycle.
1036    when (RegNext(canEnqueue(i))) {
1037      // For now, we allow non-load-store instructions to trigger interrupts
1038      // For MMIO instructions, they should not trigger interrupts since they may
1039      // be sent to lower level before it writes back.
1040      // However, we cannot determine whether a load/store instruction is MMIO.
1041      // Thus, we don't allow load/store instructions to trigger an interrupt.
1042      // TODO: support non-MMIO load-store instructions to trigger interrupts
1043      val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType)
1044      interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts)
1045    }
1046  }
1047
1048  /**
1049    * read and write of data modules
1050    */
1051  val commitReadAddr_next = Mux(state_next === s_idle,
1052    VecInit(deqPtrVec_next.map(_.value)),
1053    VecInit(walkPtrVec_next.map(_.value))
1054  )
1055  dispatchData.io.wen := canEnqueue
1056  dispatchData.io.waddr := allocatePtrVec.map(_.value)
1057  dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).zipWithIndex.foreach { case ((wdata, req), portIdx) =>
1058    wdata.ldest := req.ldest
1059    wdata.rfWen := req.rfWen
1060    wdata.fpWen := req.fpWen
1061    wdata.vecWen := req.vecWen
1062    wdata.wflags := req.wfflags
1063    wdata.commitType := req.commitType
1064    wdata.pdest := req.pdest
1065    wdata.ftqIdx := req.ftqPtr
1066    wdata.ftqOffset := req.ftqOffset
1067    wdata.isMove := req.eliminatedMove
1068    wdata.isRVC := req.preDecodeInfo.isRVC
1069    wdata.pc := req.pc
1070    wdata.vtype := req.vpu.vtype
1071    wdata.isVset := req.isVset
1072    wdata.instrSize := req.instrSize
1073  }
1074  dispatchData.io.raddr := commitReadAddr_next
1075
1076  exceptionGen.io.redirect <> io.redirect
1077  exceptionGen.io.flush := io.flushOut.valid
1078
1079  val canEnqueueEG = VecInit(io.enq.req.map(req => req.valid && io.enq.canAccept))
1080  for (i <- 0 until RenameWidth) {
1081    exceptionGen.io.enq(i).valid := canEnqueueEG(i)
1082    exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx
1083    exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec)
1084    exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe
1085    exceptionGen.io.enq(i).bits.isVset := io.enq.req(i).bits.isVset
1086    exceptionGen.io.enq(i).bits.replayInst := false.B
1087    XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst")
1088    exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep
1089    exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix
1090    exceptionGen.io.enq(i).bits.trigger.clear()
1091    exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.trigger.frontendHit
1092  }
1093
1094  println(s"ExceptionGen:")
1095  println(s"num of exceptions: ${params.numException}")
1096  require(exceptionWBs.length == exceptionGen.io.wb.length,
1097    f"exceptionWBs.length: ${exceptionWBs.length}, " +
1098      f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}")
1099  for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) {
1100    exc_wb.valid                := wb.valid
1101    exc_wb.bits.robIdx          := wb.bits.robIdx
1102    exc_wb.bits.exceptionVec    := wb.bits.exceptionVec.get
1103    exc_wb.bits.flushPipe       := wb.bits.flushPipe.getOrElse(false.B)
1104    exc_wb.bits.isVset          := false.B
1105    exc_wb.bits.replayInst      := wb.bits.replay.getOrElse(false.B)
1106    exc_wb.bits.singleStep      := false.B
1107    exc_wb.bits.crossPageIPFFix := false.B
1108    exc_wb.bits.trigger         := 0.U.asTypeOf(exc_wb.bits.trigger) // Todo
1109//    println(s"  [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " +
1110//      s"flushPipe ${configs.exists(_.flushPipe)}, " +
1111//      s"replayInst ${configs.exists(_.replayInst)}")
1112  }
1113
1114  fflagsDataRead := (0 until CommitWidth).map(i => fflagsDataModule(deqPtrVec(i).value))
1115  vxsatDataRead := (0 until CommitWidth).map(i => vxsatDataModule(deqPtrVec(i).value))
1116
1117  val instrCntReg = RegInit(0.U(64.W))
1118  val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) })
1119  val trueCommitCnt = RegNext(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => Mux(v, i.instrSize, 0.U) }.reduce(_ +& _)) +& fuseCommitCnt
1120  val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U)
1121  val instrCnt = instrCntReg + retireCounter
1122  instrCntReg := instrCnt
1123  io.csr.perfinfo.retiredInstr := retireCounter
1124  io.robFull := !allowEnqueue
1125  io.headNotReady := commit_v.head && !commit_w.head
1126
1127  /**
1128    * debug info
1129    */
1130  XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n")
1131  XSDebug("")
1132  XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n")
1133  for(i <- 0 until RobSize) {
1134    XSDebug(false, !valid(i), "-")
1135    XSDebug(false, valid(i) && isWritebacked(i.U), "w")
1136    XSDebug(false, valid(i) && !isWritebacked(i.U), "v")
1137  }
1138  XSDebug(false, true.B, "\n")
1139
1140  for(i <- 0 until RobSize) {
1141    if (i % 4 == 0) XSDebug("")
1142    XSDebug(false, true.B, "%x ", debug_microOp(i).pc)
1143    XSDebug(false, !valid(i), "- ")
1144    XSDebug(false, valid(i) && isWritebacked(i.U), "w ")
1145    XSDebug(false, valid(i) && !isWritebacked(i.U), "v ")
1146    if (i % 4 == 3) XSDebug(false, true.B, "\n")
1147  }
1148
1149  def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U)
1150  def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U)
1151
1152  val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_))
1153  XSPerfAccumulate("clock_cycle", 1.U)
1154  QueuePerf(RobSize, numValidEntries, numValidEntries === RobSize.U)
1155  XSPerfAccumulate("commitUop", ifCommit(commitCnt))
1156  XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt))
1157  val commitIsMove = commitDebugUop.map(_.isMove)
1158  XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })))
1159  val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove)
1160  XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e })))
1161  XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt))
1162  val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD)
1163  val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t }
1164  XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid)))
1165  val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH)
1166  val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t }
1167  XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid)))
1168  val commitLoadWaitBit = commitDebugUop.map(_.loadWaitBit)
1169  XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })))
1170  val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE)
1171  XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })))
1172  XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && isWritebacked(i.U))))
1173  // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire)))
1174  // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready)))
1175  XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U))
1176  XSPerfAccumulate("walkCycleTotal", state === s_walk)
1177  XSPerfAccumulate("waitRabWalkEnd", state === s_walk && walkFinished && !rab.io.status.walkEnd)
1178  private val walkCycle = RegInit(0.U(8.W))
1179  private val waitRabWalkCycle = RegInit(0.U(8.W))
1180  walkCycle := Mux(io.redirect.valid, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U))
1181  waitRabWalkCycle := Mux(state === s_walk && walkFinished, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U))
1182
1183  XSPerfHistogram("walkRobCycleHist", walkCycle, state === s_walk && walkFinished, 0, 32)
1184  XSPerfHistogram("walkRabExtraCycleHist", waitRabWalkCycle, state === s_walk && walkFinished && rab.io.status.walkEnd, 0, 32)
1185  XSPerfHistogram("walkTotalCycleHist", walkCycle, state === s_walk && state_next === s_idle, 0, 32)
1186
1187  val deqNotWritebacked = valid(deqPtr.value) && !isWritebacked(deqPtr.value)
1188  val deqUopCommitType = io.commits.info(0).commitType
1189  XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL)
1190  XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH)
1191  XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD)
1192  XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE)
1193  XSPerfAccumulate("robHeadPC", io.commits.info(0).pc)
1194  XSPerfAccumulate("commitCompressCntAll", PopCount(io.commits.commitValid.zip(io.commits.info).map{case(valid, info) => io.commits.isCommit && valid && info.instrSize > 1.U}))
1195  (2 to RenameWidth).foreach(i =>
1196    XSPerfAccumulate(s"commitCompressCnt${i}", PopCount(io.commits.commitValid.zip(io.commits.info).map{case(valid, info) => io.commits.isCommit && valid && info.instrSize === i.U}))
1197  )
1198  XSPerfAccumulate("compressSize", io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => Mux(io.commits.isCommit && valid && info.instrSize > 1.U, info.instrSize, 0.U) }.reduce(_ +& _))
1199  val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime)
1200  val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime)
1201  val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime)
1202  val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime)
1203  val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime)
1204  val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime)
1205  val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime)
1206  def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = {
1207    cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _)
1208  }
1209  for (fuType <- FuType.functionNameMap.keys) {
1210    val fuName = FuType.functionNameMap(fuType)
1211    val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U )
1212    XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType)))
1213    XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency)))
1214    XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency)))
1215    XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency)))
1216    XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency)))
1217    XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency)))
1218    XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency)))
1219    XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency)))
1220    if (fuType == FuType.fmac) {
1221      val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.fpu.ren3 )
1222      XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma)))
1223      XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency)))
1224      XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency)))
1225    }
1226  }
1227
1228  val sourceVaddr = Wire(Valid(UInt(VAddrBits.W)))
1229  sourceVaddr.valid := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_valid
1230  sourceVaddr.bits  := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_bits
1231  val sourcePaddr = Wire(Valid(UInt(PAddrBits.W)))
1232  sourcePaddr.valid := debug_lsTopdownInfo(deqPtr.value).s2.paddr_valid
1233  sourcePaddr.bits  := debug_lsTopdownInfo(deqPtr.value).s2.paddr_bits
1234  val sourceLqIdx = Wire(Valid(new LqPtr))
1235  sourceLqIdx.valid := debug_lqIdxValid(deqPtr.value)
1236  sourceLqIdx.bits  := debug_microOp(deqPtr.value).lqIdx
1237  val sourceHeadLsIssue = WireDefault(debug_lsIssue(deqPtr.value))
1238  ExcitingUtils.addSource(sourceVaddr, s"rob_head_vaddr_${coreParams.HartId}", ExcitingUtils.Perf, true)
1239  ExcitingUtils.addSource(sourcePaddr, s"rob_head_paddr_${coreParams.HartId}", ExcitingUtils.Perf, true)
1240  ExcitingUtils.addSource(sourceLqIdx, s"rob_head_lqIdx_${coreParams.HartId}", ExcitingUtils.Perf, true)
1241  ExcitingUtils.addSource(sourceHeadLsIssue, s"rob_head_ls_issue_${coreParams.HartId}", ExcitingUtils.Perf, true)
1242  // dummy sink
1243  ExcitingUtils.addSink(WireDefault(sourceLqIdx), s"rob_head_lqIdx_${coreParams.HartId}", ExcitingUtils.Perf)
1244  ExcitingUtils.addSink(WireDefault(sourcePaddr), name=s"rob_head_paddr_${coreParams.HartId}", ExcitingUtils.Perf)
1245  ExcitingUtils.addSink(WireDefault(sourceVaddr), name=s"rob_head_vaddr_${coreParams.HartId}", ExcitingUtils.Perf)
1246  ExcitingUtils.addSink(WireDefault(sourceHeadLsIssue), name=s"rob_head_ls_issue_${coreParams.HartId}", ExcitingUtils.Perf)
1247
1248  /**
1249    * DataBase info:
1250    * log trigger is at writeback valid
1251    * */
1252
1253  /**
1254    * @todo add InstInfoEntry back
1255    * @author Maxpicca-Li
1256    */
1257
1258  //difftest signals
1259  val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value
1260
1261  val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1262  val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1263
1264  for(i <- 0 until CommitWidth) {
1265    val idx = deqPtrVec(i).value
1266    wdata(i) := debug_exuData(idx)
1267    wpc(i) := SignExt(commitDebugUop(i).pc, XLEN)
1268  }
1269
1270  if (env.EnableDifftest) {
1271    for (i <- 0 until CommitWidth) {
1272      val difftest = Module(new DifftestInstrCommit)
1273      // assgin default value
1274      difftest.io := DontCare
1275
1276      difftest.io.clock    := clock
1277      difftest.io.coreid   := io.hartId
1278      difftest.io.index    := i.U
1279
1280      val ptr = deqPtrVec(i).value
1281      val uop = commitDebugUop(i)
1282      val exuOut = debug_exuDebug(ptr)
1283      val exuData = debug_exuData(ptr)
1284      difftest.io.valid    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1285      difftest.io.pc       := RegNext(RegNext(RegNext(SignExt(uop.pc, XLEN))))
1286      difftest.io.instr    := RegNext(RegNext(RegNext(uop.instr)))
1287      difftest.io.robIdx   := RegNext(RegNext(RegNext(ZeroExt(ptr, 10))))
1288      difftest.io.lqIdx    := RegNext(RegNext(RegNext(ZeroExt(uop.lqIdx.value, 7))))
1289      difftest.io.sqIdx    := RegNext(RegNext(RegNext(ZeroExt(uop.sqIdx.value, 7))))
1290      difftest.io.isLoad   := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.LOAD)))
1291      difftest.io.isStore  := RegNext(RegNext(RegNext(io.commits.info(i).commitType === CommitType.STORE)))
1292      difftest.io.special  := RegNext(RegNext(RegNext(CommitType.isFused(io.commits.info(i).commitType))))
1293      // when committing an eliminated move instruction,
1294      // we must make sure that skip is properly set to false (output from EXU is random value)
1295      difftest.io.skip     := RegNext(RegNext(RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))))
1296      difftest.io.isRVC    := RegNext(RegNext(RegNext(uop.preDecodeInfo.isRVC)))
1297      difftest.io.rfwen    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U)))
1298      difftest.io.fpwen    := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).fpWen)))
1299      difftest.io.wpdest   := RegNext(RegNext(RegNext(io.commits.info(i).pdest)))
1300      difftest.io.wdest    := RegNext(RegNext(RegNext(io.commits.info(i).ldest)))
1301      difftest.io.instrSize:= RegNext(RegNext(RegNext(io.commits.info(i).instrSize)))
1302      // // runahead commit hint
1303      // val runahead_commit = Module(new DifftestRunaheadCommitEvent)
1304      // runahead_commit.io.clock := clock
1305      // runahead_commit.io.coreid := io.hartId
1306      // runahead_commit.io.index := i.U
1307      // runahead_commit.io.valid := difftest.io.valid &&
1308      //   (commitBranchValid(i) || commitIsStore(i))
1309      // // TODO: is branch or store
1310      // runahead_commit.io.pc    := difftest.io.pc
1311    }
1312  }
1313  else if (env.AlwaysBasicDiff) {
1314    // These are the structures used by difftest only and should be optimized after synthesis.
1315    val dt_eliminatedMove = Mem(RobSize, Bool())
1316    val dt_isRVC = Mem(RobSize, Bool())
1317    val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle))
1318    for (i <- 0 until RenameWidth) {
1319      when (canEnqueue(i)) {
1320        dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove
1321        dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC
1322      }
1323    }
1324    for (wb <- exuWBs) {
1325      when (wb.valid) {
1326        val wbIdx = wb.bits.robIdx.value
1327        dt_exuDebug(wbIdx) := wb.bits.debug
1328      }
1329    }
1330    // Always instantiate basic difftest modules.
1331    for (i <- 0 until CommitWidth) {
1332      val commitInfo = io.commits.info(i)
1333      val ptr = deqPtrVec(i).value
1334      val exuOut = dt_exuDebug(ptr)
1335      val eliminatedMove = dt_eliminatedMove(ptr)
1336      val isRVC = dt_isRVC(ptr)
1337
1338      val difftest = Module(new DifftestBasicInstrCommit)
1339      difftest.io.clock   := clock
1340      difftest.io.coreid  := io.hartId
1341      difftest.io.index   := i.U
1342      difftest.io.valid   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1343      difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(commitInfo.commitType))))
1344      difftest.io.skip    := RegNext(RegNext(RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt))))
1345      difftest.io.isRVC   := RegNext(RegNext(RegNext(isRVC)))
1346      difftest.io.rfwen   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U)))
1347      difftest.io.fpwen   := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.fpWen)))
1348      difftest.io.wpdest  := RegNext(RegNext(RegNext(commitInfo.pdest)))
1349      difftest.io.wdest   := RegNext(RegNext(RegNext(commitInfo.ldest)))
1350    }
1351  }
1352
1353  if (env.EnableDifftest) {
1354    for (i <- 0 until CommitWidth) {
1355      val difftest = Module(new DifftestLoadEvent)
1356      difftest.io.clock  := clock
1357      difftest.io.coreid := io.hartId
1358      difftest.io.index  := i.U
1359
1360      val ptr = deqPtrVec(i).value
1361      val uop = commitDebugUop(i)
1362      val exuOut = debug_exuDebug(ptr)
1363      difftest.io.valid  := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit)))
1364      difftest.io.paddr  := RegNext(RegNext(RegNext(exuOut.paddr)))
1365      difftest.io.opType := RegNext(RegNext(RegNext(uop.fuOpType)))
1366      difftest.io.fuType := RegNext(RegNext(RegNext(uop.fuType)))
1367    }
1368  }
1369
1370  // Always instantiate basic difftest modules.
1371  if (env.EnableDifftest) {
1372    val dt_isXSTrap = Mem(RobSize, Bool())
1373    for (i <- 0 until RenameWidth) {
1374      when (canEnqueue(i)) {
1375        dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap
1376      }
1377    }
1378    val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) }
1379    val hitTrap = trapVec.reduce(_||_)
1380    val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1))
1381    val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN)
1382    val difftest = Module(new DifftestTrapEvent)
1383    difftest.io.clock    := clock
1384    difftest.io.coreid   := io.hartId
1385    difftest.io.valid    := hitTrap
1386    difftest.io.code     := trapCode
1387    difftest.io.pc       := trapPC
1388    difftest.io.cycleCnt := timer
1389    difftest.io.instrCnt := instrCnt
1390    difftest.io.hasWFI   := hasWFI
1391  }
1392  else if (env.AlwaysBasicDiff) {
1393    val dt_isXSTrap = Mem(RobSize, Bool())
1394    for (i <- 0 until RenameWidth) {
1395      when (canEnqueue(i)) {
1396        dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap
1397      }
1398    }
1399    val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) }
1400    val hitTrap = trapVec.reduce(_||_)
1401    val difftest = Module(new DifftestBasicTrapEvent)
1402    difftest.io.clock    := clock
1403    difftest.io.coreid   := io.hartId
1404    difftest.io.valid    := hitTrap
1405    difftest.io.cycleCnt := timer
1406    difftest.io.instrCnt := instrCnt
1407  }
1408
1409  val validEntriesBanks = (0 until (RobSize + 31) / 32).map(i => RegNext(PopCount(valid.drop(i * 32).take(32))))
1410  val validEntries = RegNext(VecInit(validEntriesBanks).reduceTree(_ +& _))
1411  val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })
1412  val commitLoadVec = VecInit(commitLoadValid)
1413  val commitBranchVec = VecInit(commitBranchValid)
1414  val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })
1415  val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })
1416  val perfEvents = Seq(
1417    ("rob_interrupt_num      ", io.flushOut.valid && intrEnable                                       ),
1418    ("rob_exception_num      ", io.flushOut.valid && exceptionEnable                                  ),
1419    ("rob_flush_pipe_num     ", io.flushOut.valid && isFlushPipe                                      ),
1420    ("rob_replay_inst_num    ", io.flushOut.valid && isFlushPipe && deqHasReplayInst                  ),
1421    ("rob_commitUop          ", ifCommit(commitCnt)                                                   ),
1422    ("rob_commitInstr        ", ifCommitReg(trueCommitCnt)                                            ),
1423    ("rob_commitInstrMove    ", ifCommitReg(PopCount(RegNext(commitMoveVec)))                         ),
1424    ("rob_commitInstrFused   ", ifCommitReg(fuseCommitCnt)                                            ),
1425    ("rob_commitInstrLoad    ", ifCommitReg(PopCount(RegNext(commitLoadVec)))                         ),
1426    ("rob_commitInstrBranch  ", ifCommitReg(PopCount(RegNext(commitBranchVec)))                       ),
1427    ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec)))                     ),
1428    ("rob_commitInstrStore   ", ifCommitReg(PopCount(RegNext(commitStoreVec)))                        ),
1429    ("rob_walkInstr          ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)           ),
1430    ("rob_walkCycle          ", (state === s_walk)                                                    ),
1431    ("rob_1_4_valid          ", validEntries <= (RobSize / 4).U                                       ),
1432    ("rob_2_4_valid          ", validEntries >  (RobSize / 4).U && validEntries <= (RobSize / 2).U    ),
1433    ("rob_3_4_valid          ", validEntries >  (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U),
1434    ("rob_4_4_valid          ", validEntries >  (RobSize * 3 / 4).U                                   ),
1435  )
1436  generatePerfEvent()
1437}
1438