1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend.rob 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 24import utils._ 25import xiangshan._ 26import xiangshan.backend.exu.ExuConfig 27import xiangshan.frontend.FtqPtr 28 29class RobPtr(implicit p: Parameters) extends CircularQueuePtr[RobPtr]( 30 p => p(XSCoreParamsKey).RobSize 31) with HasCircularQueuePtrHelper { 32 33 def needFlush(redirect: Valid[Redirect]): Bool = { 34 val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx 35 redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx)) 36 } 37 38 def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR 39} 40 41object RobPtr { 42 def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = { 43 val ptr = Wire(new RobPtr) 44 ptr.flag := f 45 ptr.value := v 46 ptr 47 } 48} 49 50class RobCSRIO(implicit p: Parameters) extends XSBundle { 51 val intrBitSet = Input(Bool()) 52 val trapTarget = Input(UInt(VAddrBits.W)) 53 val isXRet = Input(Bool()) 54 val wfiEvent = Input(Bool()) 55 56 val fflags = Output(Valid(UInt(5.W))) 57 val dirty_fs = Output(Bool()) 58 val perfinfo = new Bundle { 59 val retiredInstr = Output(UInt(3.W)) 60 } 61} 62 63class RobLsqIO(implicit p: Parameters) extends XSBundle { 64 val lcommit = Output(UInt(log2Up(CommitWidth + 1).W)) 65 val scommit = Output(UInt(log2Up(CommitWidth + 1).W)) 66 val pendingld = Output(Bool()) 67 val pendingst = Output(Bool()) 68 val commit = Output(Bool()) 69} 70 71class RobEnqIO(implicit p: Parameters) extends XSBundle { 72 val canAccept = Output(Bool()) 73 val isEmpty = Output(Bool()) 74 // valid vector, for robIdx gen and walk 75 val needAlloc = Vec(RenameWidth, Input(Bool())) 76 val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp))) 77 val resp = Vec(RenameWidth, Output(new RobPtr)) 78} 79 80class RobDispatchData(implicit p: Parameters) extends RobCommitInfo 81 82class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 83 val io = IO(new Bundle { 84 // for commits/flush 85 val state = Input(UInt(2.W)) 86 val deq_v = Vec(CommitWidth, Input(Bool())) 87 val deq_w = Vec(CommitWidth, Input(Bool())) 88 val exception_state = Flipped(ValidIO(new RobExceptionInfo)) 89 // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth) 90 val intrBitSetReg = Input(Bool()) 91 val hasNoSpecExec = Input(Bool()) 92 val interrupt_safe = Input(Bool()) 93 val blockCommit = Input(Bool()) 94 // output: the CommitWidth deqPtr 95 val out = Vec(CommitWidth, Output(new RobPtr)) 96 val next_out = Vec(CommitWidth, Output(new RobPtr)) 97 }) 98 99 val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr)))) 100 101 // for exceptions (flushPipe included) and interrupts: 102 // only consider the first instruction 103 val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe 104 val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0) 105 val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable) 106 107 // for normal commits: only to consider when there're no exceptions 108 // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions. 109 val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last) 110 val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i))) 111 val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B) 112 // when io.intrBitSetReg or there're possible exceptions in these instructions, 113 // only one instruction is allowed to commit 114 val allowOnlyOne = commit_exception || io.intrBitSetReg 115 val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt) 116 117 val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt)) 118 val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec) 119 120 deqPtrVec := deqPtrVec_next 121 122 io.next_out := deqPtrVec_next 123 io.out := deqPtrVec 124 125 when (io.state === 0.U) { 126 XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt) 127 } 128 129} 130 131class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 132 val io = IO(new Bundle { 133 // for input redirect 134 val redirect = Input(Valid(new Redirect)) 135 // for enqueue 136 val allowEnqueue = Input(Bool()) 137 val hasBlockBackward = Input(Bool()) 138 val enq = Vec(RenameWidth, Input(Bool())) 139 val out = Output(Vec(RenameWidth, new RobPtr)) 140 }) 141 142 val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr))) 143 144 // enqueue 145 val canAccept = io.allowEnqueue && !io.hasBlockBackward 146 val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U) 147 148 for ((ptr, i) <- enqPtrVec.zipWithIndex) { 149 when(io.redirect.valid) { 150 ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) 151 }.otherwise { 152 ptr := ptr + dispatchNum 153 } 154 } 155 156 io.out := enqPtrVec 157 158} 159 160class RobExceptionInfo(implicit p: Parameters) extends XSBundle { 161 // val valid = Bool() 162 val robIdx = new RobPtr 163 val exceptionVec = ExceptionVec() 164 val flushPipe = Bool() 165 val replayInst = Bool() // redirect to that inst itself 166 val singleStep = Bool() // TODO add frontend hit beneath 167 val crossPageIPFFix = Bool() 168 val trigger = new TriggerCf 169 170// def trigger_before = !trigger.getTimingBackend && trigger.getHitBackend 171// def trigger_after = trigger.getTimingBackend && trigger.getHitBackend 172 def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.hit 173 def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.hit 174 // only exceptions are allowed to writeback when enqueue 175 def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.hit 176} 177 178class ExceptionGen(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 179 val io = IO(new Bundle { 180 val redirect = Input(Valid(new Redirect)) 181 val flush = Input(Bool()) 182 val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo))) 183 val wb = Vec(1 + LoadPipelineWidth + StorePipelineWidth, Flipped(ValidIO(new RobExceptionInfo))) 184 val out = ValidIO(new RobExceptionInfo) 185 val state = ValidIO(new RobExceptionInfo) 186 }) 187 188 def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = { 189 assert(valid.length == bits.length) 190 assert(isPow2(valid.length)) 191 if (valid.length == 1) { 192 (valid, bits) 193 } else if (valid.length == 2) { 194 val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0))))) 195 for (i <- res.indices) { 196 res(i).valid := valid(i) 197 res(i).bits := bits(i) 198 } 199 val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1)) 200 (Seq(oldest.valid), Seq(oldest.bits)) 201 } else { 202 val left = getOldest(valid.take(valid.length / 2), bits.take(valid.length / 2)) 203 val right = getOldest(valid.takeRight(valid.length / 2), bits.takeRight(valid.length / 2)) 204 getOldest(left._1 ++ right._1, left._2 ++ right._2) 205 } 206 } 207 208 val current = Reg(Valid(new RobExceptionInfo)) 209 210 // orR the exceptionVec 211 val lastCycleFlush = RegNext(io.flush) 212 val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush)) 213 val in_wb_valid = io.wb.map(w => w.valid && w.bits.has_exception && !lastCycleFlush) 214 215 // s0: compare wb(1)~wb(LoadPipelineWidth) and wb(1 + LoadPipelineWidth)~wb(LoadPipelineWidth + StorePipelineWidth) 216 val wb_valid = in_wb_valid.zip(io.wb.map(_.bits)).map{ case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) } 217 val csr_wb_bits = io.wb(0).bits 218 val load_wb_bits = getOldest(in_wb_valid.slice(1, 1 + LoadPipelineWidth), io.wb.map(_.bits).slice(1, 1 + LoadPipelineWidth))._2(0) 219 val store_wb_bits = getOldest(in_wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth), io.wb.map(_.bits).slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth))._2(0) 220 val s0_out_valid = RegNext(VecInit(Seq(wb_valid(0), wb_valid.slice(1, 1 + LoadPipelineWidth).reduce(_ || _), wb_valid.slice(1 + LoadPipelineWidth, 1 + LoadPipelineWidth + StorePipelineWidth).reduce(_ || _)))) 221 val s0_out_bits = RegNext(VecInit(Seq(csr_wb_bits, load_wb_bits, store_wb_bits))) 222 223 // s1: compare last four and current flush 224 val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) }) 225 val compare_01_valid = s0_out_valid(0) || s0_out_valid(1) 226 val compare_01_bits = Mux(!s0_out_valid(0) || s0_out_valid(1) && isAfter(s0_out_bits(0).robIdx, s0_out_bits(1).robIdx), s0_out_bits(1), s0_out_bits(0)) 227 val compare_bits = Mux(!s0_out_valid(2) || compare_01_valid && isAfter(s0_out_bits(2).robIdx, compare_01_bits.robIdx), compare_01_bits, s0_out_bits(2)) 228 val s1_out_bits = RegNext(compare_bits) 229 val s1_out_valid = RegNext(s1_valid.asUInt.orR) 230 231 val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) 232 val enq_bits = RegNext(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits))) 233 234 // s2: compare the input exception with the current one 235 // priorities: 236 // (1) system reset 237 // (2) current is valid: flush, remain, merge, update 238 // (3) current is not valid: s1 or enq 239 val current_flush = current.bits.robIdx.needFlush(io.redirect) || io.flush 240 val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush 241 when (reset.asBool) { 242 current.valid := false.B 243 }.elsewhen (current.valid) { 244 when (current_flush) { 245 current.valid := Mux(s1_flush, false.B, s1_out_valid) 246 } 247 when (s1_out_valid && !s1_flush) { 248 when (isAfter(current.bits.robIdx, s1_out_bits.robIdx)) { 249 current.bits := s1_out_bits 250 }.elsewhen (current.bits.robIdx === s1_out_bits.robIdx) { 251 current.bits.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.bits.exceptionVec.asUInt).asTypeOf(ExceptionVec()) 252 current.bits.flushPipe := s1_out_bits.flushPipe || current.bits.flushPipe 253 current.bits.replayInst := s1_out_bits.replayInst || current.bits.replayInst 254 current.bits.singleStep := s1_out_bits.singleStep || current.bits.singleStep 255 current.bits.trigger := (s1_out_bits.trigger.asUInt | current.bits.trigger.asUInt).asTypeOf(new TriggerCf) 256 } 257 } 258 }.elsewhen (s1_out_valid && !s1_flush) { 259 current.valid := true.B 260 current.bits := s1_out_bits 261 }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) { 262 current.valid := true.B 263 current.bits := enq_bits 264 } 265 266 io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback 267 io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits) 268 io.state := current 269 270} 271 272class RobFlushInfo(implicit p: Parameters) extends XSBundle { 273 val ftqIdx = new FtqPtr 274 val robIdx = new RobPtr 275 val ftqOffset = UInt(log2Up(PredictWidth).W) 276 val replayInst = Bool() 277} 278 279class Rob(implicit p: Parameters) extends LazyModule with HasWritebackSink with HasXSParameter { 280 281 lazy val module = new RobImp(this) 282 283 override def generateWritebackIO( 284 thisMod: Option[HasWritebackSource] = None, 285 thisModImp: Option[HasWritebackSourceImp] = None 286 ): Unit = { 287 val sources = writebackSinksImp(thisMod, thisModImp) 288 module.io.writeback.zip(sources).foreach(x => x._1 := x._2) 289 } 290} 291 292class RobImp(outer: Rob)(implicit p: Parameters) extends LazyModuleImp(outer) 293 with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents { 294 val wbExuConfigs = outer.writebackSinksParams.map(_.exuConfigs) 295 val numWbPorts = wbExuConfigs.map(_.length) 296 297 val io = IO(new Bundle() { 298 val hartId = Input(UInt(8.W)) 299 val redirect = Input(Valid(new Redirect)) 300 val enq = new RobEnqIO 301 val flushOut = ValidIO(new Redirect) 302 val exception = ValidIO(new ExceptionInfo) 303 // exu + brq 304 val writeback = MixedVec(numWbPorts.map(num => Vec(num, Flipped(ValidIO(new ExuOutput))))) 305 val commits = new RobCommitIO 306 val lsq = new RobLsqIO 307 val robDeqPtr = Output(new RobPtr) 308 val csr = new RobCSRIO 309 val robFull = Output(Bool()) 310 val cpu_halt = Output(Bool()) 311 }) 312 313 def selectWb(index: Int, func: Seq[ExuConfig] => Boolean): Seq[(Seq[ExuConfig], ValidIO[ExuOutput])] = { 314 wbExuConfigs(index).zip(io.writeback(index)).filter(x => func(x._1)) 315 } 316 val exeWbSel = outer.selWritebackSinks(_.exuConfigs.length) 317 val fflagsWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.writeFflags))) 318 val fflagsPorts = selectWb(fflagsWbSel, _.exists(_.writeFflags)) 319 val exceptionWbSel = outer.selWritebackSinks(_.exuConfigs.count(_.exists(_.needExceptionGen))) 320 val exceptionPorts = selectWb(fflagsWbSel, _.exists(_.needExceptionGen)) 321 val exuWbPorts = selectWb(exeWbSel, _.forall(_ != StdExeUnitCfg)) 322 val stdWbPorts = selectWb(exeWbSel, _.contains(StdExeUnitCfg)) 323 println(s"Rob: size $RobSize, numWbPorts: $numWbPorts, commitwidth: $CommitWidth") 324 println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}") 325 println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}") 326 println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}") 327 328 329 val exuWriteback = exuWbPorts.map(_._2) 330 val stdWriteback = stdWbPorts.map(_._2) 331 332 // instvalid field 333 val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B))) 334 // writeback status 335 val writebacked = Mem(RobSize, Bool()) 336 val store_data_writebacked = Mem(RobSize, Bool()) 337 // data for redirect, exception, etc. 338 val flagBkup = Mem(RobSize, Bool()) 339 // some instructions are not allowed to trigger interrupts 340 // They have side effects on the states of the processor before they write back 341 val interrupt_safe = Mem(RobSize, Bool()) 342 343 // data for debug 344 // Warn: debug_* prefix should not exist in generated verilog. 345 val debug_microOp = Mem(RobSize, new MicroOp) 346 val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug 347 val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug 348 349 // pointers 350 // For enqueue ptr, we don't duplicate it since only enqueue needs it. 351 val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr)) 352 val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) 353 354 val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) 355 val allowEnqueue = RegInit(true.B) 356 357 val enqPtr = enqPtrVec.head 358 val deqPtr = deqPtrVec(0) 359 val walkPtr = walkPtrVec(0) 360 361 val isEmpty = enqPtr === deqPtr 362 val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level) 363 364 /** 365 * states of Rob 366 */ 367 val s_idle :: s_walk :: s_extrawalk :: Nil = Enum(3) 368 val state = RegInit(s_idle) 369 370 /** 371 * Data Modules 372 * 373 * CommitDataModule: data from dispatch 374 * (1) read: commits/walk/exception 375 * (2) write: enqueue 376 * 377 * WritebackData: data from writeback 378 * (1) read: commits/walk/exception 379 * (2) write: write back from exe units 380 */ 381 val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth)) 382 val dispatchDataRead = dispatchData.io.rdata 383 384 val exceptionGen = Module(new ExceptionGen) 385 val exceptionDataRead = exceptionGen.io.state 386 val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) 387 388 io.robDeqPtr := deqPtr 389 390 /** 391 * Enqueue (from dispatch) 392 */ 393 // special cases 394 val hasBlockBackward = RegInit(false.B) 395 val hasNoSpecExec = RegInit(false.B) 396 val doingSvinval = RegInit(false.B) 397 // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B 398 // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. 399 when (isEmpty) { hasBlockBackward:= false.B } 400 // When any instruction commits, hasNoSpecExec should be set to false.B 401 when ((io.commits.hasWalkInstr && state =/= s_extrawalk) || io.commits.hasCommitInstr) { hasNoSpecExec:= false.B } 402 403 // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing. 404 // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle. 405 // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts. 406 val hasWFI = RegInit(false.B) 407 io.cpu_halt := hasWFI 408 when (RegNext(RegNext(io.csr.wfiEvent))) { 409 hasWFI := false.B 410 } 411 412 val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.needAlloc.take(i))))) 413 io.enq.canAccept := allowEnqueue && !hasBlockBackward 414 io.enq.resp := allocatePtrVec 415 val canEnqueue = VecInit(io.enq.req.map(_.valid && io.enq.canAccept)) 416 val timer = GTimer() 417 for (i <- 0 until RenameWidth) { 418 // we don't check whether io.redirect is valid here since redirect has higher priority 419 when (canEnqueue(i)) { 420 val enqUop = io.enq.req(i).bits 421 val enqIndex = allocatePtrVec(i).value 422 // store uop in data module and debug_microOp Vec 423 debug_microOp(enqIndex) := enqUop 424 debug_microOp(enqIndex).debugInfo.dispatchTime := timer 425 debug_microOp(enqIndex).debugInfo.enqRsTime := timer 426 debug_microOp(enqIndex).debugInfo.selectTime := timer 427 debug_microOp(enqIndex).debugInfo.issueTime := timer 428 debug_microOp(enqIndex).debugInfo.writebackTime := timer 429 when (enqUop.ctrl.blockBackward) { 430 hasBlockBackward := true.B 431 } 432 when (enqUop.ctrl.noSpecExec) { 433 hasNoSpecExec := true.B 434 } 435 val enqHasTriggerHit = io.enq.req(i).bits.cf.trigger.getHitFrontend 436 val enqHasException = ExceptionNO.selectFrontend(enqUop.cf.exceptionVec).asUInt.orR 437 // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process 438 when(!enqHasTriggerHit && !enqHasException && FuType.isSvinvalBegin(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe)) 439 { 440 doingSvinval := true.B 441 } 442 // the end instruction of Svinval enqs so clear doingSvinval 443 when(!enqHasTriggerHit && !enqHasException && FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe)) 444 { 445 doingSvinval := false.B 446 } 447 // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear 448 assert(!doingSvinval || (FuType.isSvinval(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe) || 449 FuType.isSvinvalEnd(enqUop.ctrl.fuType, enqUop.ctrl.fuOpType, enqUop.ctrl.flushPipe))) 450 when (enqUop.ctrl.isWFI && !enqHasException && !enqHasTriggerHit) { 451 hasWFI := true.B 452 } 453 } 454 } 455 val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(_.valid)), 0.U) 456 io.enq.isEmpty := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR) 457 458 /** 459 * Writeback (from execution units) 460 */ 461 for (wb <- exuWriteback) { 462 when (wb.valid) { 463 val wbIdx = wb.bits.uop.robIdx.value 464 debug_exuData(wbIdx) := wb.bits.data 465 debug_exuDebug(wbIdx) := wb.bits.debug 466 debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.uop.debugInfo.enqRsTime 467 debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.uop.debugInfo.selectTime 468 debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.uop.debugInfo.issueTime 469 debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.uop.debugInfo.writebackTime 470 471 val debug_Uop = debug_microOp(wbIdx) 472 XSInfo(true.B, 473 p"writebacked pc 0x${Hexadecimal(debug_Uop.cf.pc)} wen ${debug_Uop.ctrl.rfWen} " + 474 p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ctrl.ldest} pdst ${debug_Uop.pdest} " + 475 p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.uop.robIdx}\n" 476 ) 477 } 478 } 479 val writebackNum = PopCount(exuWriteback.map(_.valid)) 480 XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) 481 482 483 /** 484 * RedirectOut: Interrupt and Exceptions 485 */ 486 val deqDispatchData = dispatchDataRead(0) 487 val debug_deqUop = debug_microOp(deqPtr.value) 488 489 val intrBitSetReg = RegNext(io.csr.intrBitSet) 490 val intrEnable = intrBitSetReg && !hasNoSpecExec && interrupt_safe(deqPtr.value) 491 val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr 492 val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR || 493 exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.hit) 494 val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe 495 val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst 496 val exceptionEnable = writebacked(deqPtr.value) && deqHasException 497 498 XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n") 499 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitFrontend, "Debug Mode: Deq has frontend trigger exception\n") 500 XSDebug(deqHasException && exceptionDataRead.bits.trigger.getHitBackend, "Debug Mode: Deq has backend trigger exception\n") 501 502 val isFlushPipe = writebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst) 503 504 // io.flushOut will trigger redirect at the next cycle. 505 // Block any redirect or commit at the next cycle. 506 val lastCycleFlush = RegNext(io.flushOut.valid) 507 508 io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush 509 io.flushOut.bits := DontCare 510 io.flushOut.bits.robIdx := deqPtr 511 io.flushOut.bits.ftqIdx := deqDispatchData.ftqIdx 512 io.flushOut.bits.ftqOffset := deqDispatchData.ftqOffset 513 io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next" 514 io.flushOut.bits.interrupt := true.B 515 XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) 516 XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable) 517 XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) 518 XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) 519 520 val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush 521 io.exception.valid := RegNext(exceptionHappen) 522 io.exception.bits.uop := RegEnable(debug_deqUop, exceptionHappen) 523 io.exception.bits.uop.ctrl.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) 524 io.exception.bits.uop.cf.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) 525 io.exception.bits.uop.ctrl.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) 526 io.exception.bits.uop.cf.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) 527 io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) 528 io.exception.bits.uop.cf.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen) 529 530 XSDebug(io.flushOut.valid, 531 p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.uop.cf.pc)} intr $intrEnable " + 532 p"excp $exceptionEnable flushPipe $isFlushPipe " + 533 p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") 534 535 536 /** 537 * Commits (and walk) 538 * They share the same width. 539 */ 540 val walkCounter = Reg(UInt(log2Up(RobSize + 1).W)) 541 val shouldWalkVec = VecInit((0 until CommitWidth).map(_.U < walkCounter)) 542 val walkFinished = walkCounter <= CommitWidth.U 543 544 // extra space is used when rob has no enough space, but mispredict recovery needs such info to walk regmap 545 require(RenameWidth <= CommitWidth) 546 val extraSpaceForMPR = Reg(Vec(RenameWidth, new RobDispatchData)) 547 val usedSpaceForMPR = Reg(Vec(RenameWidth, Bool())) 548 when (io.enq.needAlloc.asUInt.orR && io.redirect.valid) { 549 usedSpaceForMPR := io.enq.needAlloc 550 extraSpaceForMPR := dispatchData.io.wdata 551 XSDebug("rob full, switched to s_extrawalk. needExtraSpaceForMPR: %b\n", io.enq.needAlloc.asUInt) 552 } 553 554 // wiring to csr 555 val (wflags, fpWen) = (0 until CommitWidth).map(i => { 556 val v = io.commits.commitValid(i) 557 val info = io.commits.info(i) 558 (v & info.wflags, v & info.fpWen) 559 }).unzip 560 val fflags = Wire(Valid(UInt(5.W))) 561 fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR 562 fflags.bits := wflags.zip(fflagsDataRead).map({ 563 case (w, f) => Mux(w, f, 0.U) 564 }).reduce(_|_) 565 val dirty_fs = io.commits.isCommit && VecInit(fpWen).asUInt.orR 566 567 // when mispredict branches writeback, stop commit in the next 2 cycles 568 // TODO: don't check all exu write back 569 val misPredWb = Cat(VecInit(exuWriteback.map(wb => 570 wb.bits.redirect.cfiUpdate.isMisPred && wb.bits.redirectValid 571 ))).orR 572 val misPredBlockCounter = Reg(UInt(3.W)) 573 misPredBlockCounter := Mux(misPredWb, 574 "b111".U, 575 misPredBlockCounter >> 1.U 576 ) 577 val misPredBlock = misPredBlockCounter(0) 578 val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI 579 580 io.commits.isWalk := state =/= s_idle 581 io.commits.isCommit := state === s_idle && !blockCommit 582 val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value))) 583 val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value))) 584 // store will be commited iff both sta & std have been writebacked 585 val commit_w = VecInit(deqPtrVec.map(ptr => writebacked(ptr.value) && store_data_writebacked(ptr.value))) 586 val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last) 587 val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i))) 588 val allowOnlyOneCommit = commit_exception || intrBitSetReg 589 // for instructions that may block others, we don't allow them to commit 590 for (i <- 0 until CommitWidth) { 591 // defaults: state === s_idle and instructions commit 592 // when intrBitSetReg, allow only one instruction to commit at each clock cycle 593 val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst 594 io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked 595 io.commits.info(i) := dispatchDataRead(i) 596 597 io.commits.walkValid(i) := shouldWalkVec(i) 598 when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) { 599 XSError(!walk_v(i), s"why not $i???\n") 600 } 601 when (state === s_extrawalk) { 602 if (i < RenameWidth) { 603 io.commits.walkValid(i) := usedSpaceForMPR(RenameWidth - i - 1) 604 io.commits.info(i) := extraSpaceForMPR(RenameWidth - i - 1) 605 } 606 else { 607 io.commits.walkValid(i) := false.B 608 } 609 } 610 611 XSInfo(io.commits.isCommit && io.commits.commitValid(i), 612 "retired pc %x wen %d ldest %d pdest %x old_pdest %x data %x fflags: %b\n", 613 debug_microOp(deqPtrVec(i).value).cf.pc, 614 io.commits.info(i).rfWen, 615 io.commits.info(i).ldest, 616 io.commits.info(i).pdest, 617 io.commits.info(i).old_pdest, 618 debug_exuData(deqPtrVec(i).value), 619 fflagsDataRead(i) 620 ) 621 XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n", 622 debug_microOp(walkPtrVec(i).value).cf.pc, 623 io.commits.info(i).rfWen, 624 io.commits.info(i).ldest, 625 debug_exuData(walkPtrVec(i).value) 626 ) 627 XSInfo(state === s_extrawalk && io.commits.walkValid(i), "use extra space walked wen %d ldst %d\n", 628 io.commits.info(i).rfWen, 629 io.commits.info(i).ldest 630 ) 631 } 632 if (env.EnableDifftest) { 633 io.commits.info.map(info => dontTouch(info.pc)) 634 } 635 636 // sync fflags/dirty_fs to csr 637 io.csr.fflags := RegNext(fflags) 638 io.csr.dirty_fs := RegNext(dirty_fs) 639 640 // commit load/store to lsq 641 val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD)) 642 val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE)) 643 io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U)) 644 io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U)) 645 // indicate a pending load or store 646 io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value)) 647 io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value)) 648 io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0)) 649 650 /** 651 * state changes 652 * (1) exceptions: when exception occurs, cancels all and switch to s_idle 653 * (2) redirect: switch to s_walk or s_extrawalk (depends on whether there're pending instructions in dispatch1) 654 * (3) walk: when walking comes to the end, switch to s_walk 655 * (4) s_extrawalk to s_walk 656 */ 657 // state === s_idle: don't change when walk_no_need 658 // state === s_walk: don't change when walk_no_need && walkFinished 659 // state === s_extrawalk: always continue to walk (because it's not possible for walk_no_need) 660 val zeroWalkDistance = enqPtr - 1.U === io.redirect.bits.robIdx && !io.redirect.bits.flushItself() 661 val noNeedToWalk = zeroWalkDistance && (state === s_idle || (state === s_walk && walkFinished)) 662 // update the state depending on whether there is a redirect 663 val state_next = Mux(io.redirect.valid, 664 Mux(io.enq.needAlloc.asUInt.orR, 665 s_extrawalk, 666 Mux(noNeedToWalk, s_idle, s_walk) 667 ), 668 Mux(state === s_walk && walkFinished, 669 s_idle, 670 Mux(state === s_extrawalk, 671 // if no more walk, switch to s_idle 672 Mux(walkCounter === 0.U, s_idle, s_walk), 673 state 674 ) 675 ) 676 ) 677 XSPerfAccumulate("s_idle_to_idle", state === s_idle && state_next === s_idle) 678 XSPerfAccumulate("s_idle_to_walk", state === s_idle && state_next === s_walk) 679 XSPerfAccumulate("s_idle_to_extrawalk", state === s_idle && state_next === s_extrawalk) 680 XSPerfAccumulate("s_walk_to_idle", state === s_walk && state_next === s_idle) 681 XSPerfAccumulate("s_walk_to_walk", state === s_walk && state_next === s_walk) 682 XSPerfAccumulate("s_walk_to_extrawalk", state === s_walk && state_next === s_extrawalk) 683 XSPerfAccumulate("s_extrawalk_to_idle", state === s_extrawalk && state_next === s_idle) 684 XSPerfAccumulate("s_extrawalk_to_walk", state === s_extrawalk && state_next === s_walk) 685 XSPerfAccumulate("s_extrawalk_to_extrawalk", state === s_extrawalk && state_next === s_extrawalk) 686 XSPerfAccumulate("redirect_bypass_to_idle", io.redirect.valid && !io.enq.needAlloc.asUInt.orR && noNeedToWalk) 687 XSPerfAccumulate("extra_walk_bypass_to_idle", !io.redirect.valid && state === s_extrawalk && walkCounter === 0.U) 688 state := state_next 689 690 /** 691 * pointers and counters 692 */ 693 val deqPtrGenModule = Module(new RobDeqPtrWrapper) 694 deqPtrGenModule.io.state := state 695 deqPtrGenModule.io.deq_v := commit_v 696 deqPtrGenModule.io.deq_w := commit_w 697 deqPtrGenModule.io.exception_state := exceptionDataRead 698 deqPtrGenModule.io.intrBitSetReg := intrBitSetReg 699 deqPtrGenModule.io.hasNoSpecExec := hasNoSpecExec 700 deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value) 701 deqPtrGenModule.io.blockCommit := blockCommit 702 deqPtrVec := deqPtrGenModule.io.out 703 val deqPtrVec_next = deqPtrGenModule.io.next_out 704 705 val enqPtrGenModule = Module(new RobEnqPtrWrapper) 706 enqPtrGenModule.io.redirect := io.redirect 707 enqPtrGenModule.io.allowEnqueue := allowEnqueue 708 enqPtrGenModule.io.hasBlockBackward := hasBlockBackward 709 enqPtrGenModule.io.enq := VecInit(io.enq.req.map(_.valid)) 710 enqPtrVec := enqPtrGenModule.io.out 711 712 val thisCycleWalkCount = Mux(walkFinished, walkCounter, CommitWidth.U) 713 // next walkPtrVec: 714 // (1) redirect occurs: update according to state 715 // (2) walk: move backwards 716 val walkPtrVec_next = Mux(io.redirect.valid && state =/= s_extrawalk, 717 Mux(state === s_walk, 718 VecInit(walkPtrVec.map(_ - thisCycleWalkCount)), 719 VecInit((0 until CommitWidth).map(i => enqPtr - (i+1).U)) 720 ), 721 Mux(state === s_walk, VecInit(walkPtrVec.map(_ - CommitWidth.U)), walkPtrVec) 722 ) 723 walkPtrVec := walkPtrVec_next 724 725 val numValidEntries = distanceBetween(enqPtr, deqPtr) 726 val commitCnt = PopCount(io.commits.commitValid) 727 728 allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U 729 730 val currentWalkPtr = Mux(state === s_walk || state === s_extrawalk, walkPtr, enqPtr - 1.U) 731 val redirectWalkDistance = distanceBetween(currentWalkPtr, io.redirect.bits.robIdx) 732 when (io.redirect.valid) { 733 walkCounter := Mux(state === s_walk, 734 // NOTE: +& is used here because: 735 // When rob is full and the head instruction causes an exception, 736 // the redirect robIdx is the deqPtr. In this case, currentWalkPtr is 737 // enqPtr - 1.U and redirectWalkDistance is RobSize - 1. 738 // Since exceptions flush the instruction itself, flushItSelf is true.B. 739 // Previously we use `+` to count the walk distance and it causes overflows 740 // when RobSize is power of 2. We change it to `+&` to allow walkCounter to be RobSize. 741 // The width of walkCounter also needs to be changed. 742 redirectWalkDistance - (thisCycleWalkCount - io.redirect.bits.flushItself()), 743 redirectWalkDistance + io.redirect.bits.flushItself() 744 ) 745 XSError(state === s_walk && thisCycleWalkCount < io.redirect.bits.flushItself(), 746 p"walk distance error ($thisCycleWalkCount < ${io.redirect.bits.flushItself()}\n") 747 }.elsewhen (state === s_walk) { 748 walkCounter := walkCounter - thisCycleWalkCount 749 XSInfo(p"rolling back: $enqPtr $deqPtr walk $walkPtr walkcnt $walkCounter\n") 750 } 751 752 753 /** 754 * States 755 * We put all the stage bits changes here. 756 757 * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); 758 * All states: (1) valid; (2) writebacked; (3) flagBkup 759 */ 760 val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) 761 762 // enqueue logic writes 6 valid 763 for (i <- 0 until RenameWidth) { 764 when (canEnqueue(i) && !io.redirect.valid) { 765 valid(allocatePtrVec(i).value) := true.B 766 } 767 } 768 // dequeue/walk logic writes 6 valid, dequeue and walk will not happen at the same time 769 for (i <- 0 until CommitWidth) { 770 val commitValid = io.commits.isCommit && io.commits.commitValid(i) 771 val walkValid = io.commits.isWalk && io.commits.walkValid(i) && state =/= s_extrawalk 772 when (commitValid || walkValid) { 773 valid(commitReadAddr(i)) := false.B 774 } 775 } 776 // reset: when exception, reset all valid to false 777 when (reset.asBool) { 778 for (i <- 0 until RobSize) { 779 valid(i) := false.B 780 } 781 } 782 783 // status field: writebacked 784 // enqueue logic set 6 writebacked to false 785 for (i <- 0 until RenameWidth) { 786 when (canEnqueue(i)) { 787 val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec).asUInt.orR 788 val enqHasTriggerHit = io.enq.req(i).bits.cf.trigger.getHitFrontend 789 val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove 790 writebacked(allocatePtrVec(i).value) := enqIsWritebacked && !enqHasException && !enqHasTriggerHit 791 val isStu = io.enq.req(i).bits.ctrl.fuType === FuType.stu 792 store_data_writebacked(allocatePtrVec(i).value) := !isStu 793 } 794 } 795 when (exceptionGen.io.out.valid) { 796 val wbIdx = exceptionGen.io.out.bits.robIdx.value 797 writebacked(wbIdx) := true.B 798 store_data_writebacked(wbIdx) := true.B 799 } 800 // writeback logic set numWbPorts writebacked to true 801 for ((wb, cfgs) <- exuWriteback.zip(wbExuConfigs(exeWbSel))) { 802 when (wb.valid) { 803 val wbIdx = wb.bits.uop.robIdx.value 804 val wbHasException = ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, cfgs).asUInt.orR 805 val wbHasTriggerHit = wb.bits.uop.cf.trigger.getHitBackend 806 val wbHasFlushPipe = cfgs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe 807 val wbHasReplayInst = cfgs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst 808 val block_wb = wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerHit 809 writebacked(wbIdx) := !block_wb 810 } 811 } 812 // store data writeback logic mark store as data_writebacked 813 for (wb <- stdWriteback) { 814 when(RegNext(wb.valid)) { 815 store_data_writebacked(RegNext(wb.bits.uop.robIdx.value)) := true.B 816 } 817 } 818 819 // flagBkup 820 // enqueue logic set 6 flagBkup at most 821 for (i <- 0 until RenameWidth) { 822 when (canEnqueue(i)) { 823 flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag 824 } 825 } 826 827 // interrupt_safe 828 for (i <- 0 until RenameWidth) { 829 // We RegNext the updates for better timing. 830 // Note that instructions won't change the system's states in this cycle. 831 when (RegNext(canEnqueue(i))) { 832 // For now, we allow non-load-store instructions to trigger interrupts 833 // For MMIO instructions, they should not trigger interrupts since they may 834 // be sent to lower level before it writes back. 835 // However, we cannot determine whether a load/store instruction is MMIO. 836 // Thus, we don't allow load/store instructions to trigger an interrupt. 837 // TODO: support non-MMIO load-store instructions to trigger interrupts 838 val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.ctrl.commitType) 839 interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts) 840 } 841 } 842 843 /** 844 * read and write of data modules 845 */ 846 val commitReadAddr_next = Mux(state_next === s_idle, 847 VecInit(deqPtrVec_next.map(_.value)), 848 VecInit(walkPtrVec_next.map(_.value)) 849 ) 850 dispatchData.io.wen := canEnqueue 851 dispatchData.io.waddr := allocatePtrVec.map(_.value) 852 dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).foreach{ case (wdata, req) => 853 wdata.ldest := req.ctrl.ldest 854 wdata.rfWen := req.ctrl.rfWen 855 wdata.fpWen := req.ctrl.fpWen 856 wdata.wflags := req.ctrl.fpu.wflags 857 wdata.commitType := req.ctrl.commitType 858 wdata.pdest := req.pdest 859 wdata.old_pdest := req.old_pdest 860 wdata.ftqIdx := req.cf.ftqPtr 861 wdata.ftqOffset := req.cf.ftqOffset 862 wdata.pc := req.cf.pc 863 } 864 dispatchData.io.raddr := commitReadAddr_next 865 866 exceptionGen.io.redirect <> io.redirect 867 exceptionGen.io.flush := io.flushOut.valid 868 for (i <- 0 until RenameWidth) { 869 exceptionGen.io.enq(i).valid := canEnqueue(i) 870 exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx 871 exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.cf.exceptionVec) 872 exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.ctrl.flushPipe 873 exceptionGen.io.enq(i).bits.replayInst := false.B 874 XSError(canEnqueue(i) && io.enq.req(i).bits.ctrl.replayInst, "enq should not set replayInst") 875 exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.ctrl.singleStep 876 exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.cf.crossPageIPFFix 877 exceptionGen.io.enq(i).bits.trigger.clear() 878 exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.cf.trigger.frontendHit 879 } 880 881 println(s"ExceptionGen:") 882 val exceptionCases = exceptionPorts.map(_._1.flatMap(_.exceptionOut).distinct.sorted) 883 require(exceptionCases.length == exceptionGen.io.wb.length) 884 for ((((configs, wb), exc_wb), i) <- exceptionPorts.zip(exceptionGen.io.wb).zipWithIndex) { 885 exc_wb.valid := wb.valid 886 exc_wb.bits.robIdx := wb.bits.uop.robIdx 887 exc_wb.bits.exceptionVec := ExceptionNO.selectByExu(wb.bits.uop.cf.exceptionVec, configs) 888 exc_wb.bits.flushPipe := configs.exists(_.flushPipe).B && wb.bits.uop.ctrl.flushPipe 889 exc_wb.bits.replayInst := configs.exists(_.replayInst).B && wb.bits.uop.ctrl.replayInst 890 exc_wb.bits.singleStep := false.B 891 exc_wb.bits.crossPageIPFFix := false.B 892 // TODO: make trigger configurable 893 exc_wb.bits.trigger.clear() 894 exc_wb.bits.trigger.backendHit := wb.bits.uop.cf.trigger.backendHit 895 println(s" [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " + 896 s"flushPipe ${configs.exists(_.flushPipe)}, " + 897 s"replayInst ${configs.exists(_.replayInst)}") 898 } 899 900 val fflags_wb = fflagsPorts.map(_._2) 901 val fflagsDataModule = Module(new SyncDataModuleTemplate( 902 UInt(5.W), RobSize, CommitWidth, fflags_wb.size) 903 ) 904 for(i <- fflags_wb.indices){ 905 fflagsDataModule.io.wen (i) := fflags_wb(i).valid 906 fflagsDataModule.io.waddr(i) := fflags_wb(i).bits.uop.robIdx.value 907 fflagsDataModule.io.wdata(i) := fflags_wb(i).bits.fflags 908 } 909 fflagsDataModule.io.raddr := VecInit(deqPtrVec_next.map(_.value)) 910 fflagsDataRead := fflagsDataModule.io.rdata 911 912 913 val instrCntReg = RegInit(0.U(64.W)) 914 val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) }) 915 val trueCommitCnt = RegNext(commitCnt) +& fuseCommitCnt 916 val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U) 917 val instrCnt = instrCntReg + retireCounter 918 instrCntReg := instrCnt 919 io.csr.perfinfo.retiredInstr := retireCounter 920 io.robFull := !allowEnqueue 921 922 /** 923 * debug info 924 */ 925 XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") 926 XSDebug("") 927 for(i <- 0 until RobSize){ 928 XSDebug(false, !valid(i), "-") 929 XSDebug(false, valid(i) && writebacked(i), "w") 930 XSDebug(false, valid(i) && !writebacked(i), "v") 931 } 932 XSDebug(false, true.B, "\n") 933 934 for(i <- 0 until RobSize) { 935 if(i % 4 == 0) XSDebug("") 936 XSDebug(false, true.B, "%x ", debug_microOp(i).cf.pc) 937 XSDebug(false, !valid(i), "- ") 938 XSDebug(false, valid(i) && writebacked(i), "w ") 939 XSDebug(false, valid(i) && !writebacked(i), "v ") 940 if(i % 4 == 3) XSDebug(false, true.B, "\n") 941 } 942 943 def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U) 944 def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U) 945 946 val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) 947 XSPerfAccumulate("clock_cycle", 1.U) 948 QueuePerf(RobSize, PopCount((0 until RobSize).map(valid(_))), !allowEnqueue) 949 XSPerfAccumulate("commitUop", ifCommit(commitCnt)) 950 XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt)) 951 val commitIsMove = commitDebugUop.map(_.ctrl.isMove) 952 XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }))) 953 val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) 954 XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e }))) 955 XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt)) 956 val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) 957 val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t } 958 XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) 959 val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) 960 val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t } 961 XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) 962 val commitLoadWaitBit = commitDebugUop.map(_.cf.loadWaitBit) 963 XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))) 964 val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) 965 XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }))) 966 XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && writebacked(i)))) 967 // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire))) 968 // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) 969 XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)) 970 XSPerfAccumulate("walkCycle", state === s_walk || state === s_extrawalk) 971 val deqNotWritebacked = valid(deqPtr.value) && !writebacked(deqPtr.value) 972 val deqUopCommitType = io.commits.info(0).commitType 973 XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) 974 XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) 975 XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) 976 XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) 977 XSPerfAccumulate("robHeadPC", io.commits.info(0).pc) 978 val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) 979 val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) 980 val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) 981 val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) 982 val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) 983 val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) 984 val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) 985 def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { 986 cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) 987 } 988 for (fuType <- FuType.functionNameMap.keys) { 989 val fuName = FuType.functionNameMap(fuType) 990 val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fuType === fuType.U ) 991 XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) 992 XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) 993 XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) 994 XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) 995 XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) 996 XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) 997 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) 998 XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) 999 if (fuType == FuType.fmac.litValue) { 1000 val commitIsFma = commitIsFuType.zip(commitDebugUop).map(x => x._1 && x._2.ctrl.fpu.ren3 ) 1001 XSPerfAccumulate(s"${fuName}_instr_cnt_fma", ifCommit(PopCount(commitIsFma))) 1002 XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute_fma", ifCommit(latencySum(commitIsFma, rsFuLatency))) 1003 XSPerfAccumulate(s"${fuName}_latency_execute_fma", ifCommit(latencySum(commitIsFma, executeLatency))) 1004 } 1005 } 1006 1007 //difftest signals 1008 val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U)))).value 1009 1010 val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1011 val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) 1012 1013 for(i <- 0 until CommitWidth) { 1014 val idx = deqPtrVec(i).value 1015 wdata(i) := debug_exuData(idx) 1016 wpc(i) := SignExt(commitDebugUop(i).cf.pc, XLEN) 1017 } 1018 1019 if (env.EnableDifftest) { 1020 for (i <- 0 until CommitWidth) { 1021 val difftest = Module(new DifftestInstrCommit) 1022 difftest.io.clock := clock 1023 difftest.io.coreid := io.hartId 1024 difftest.io.index := i.U 1025 1026 val ptr = deqPtrVec(i).value 1027 val uop = commitDebugUop(i) 1028 val exuOut = debug_exuDebug(ptr) 1029 val exuData = debug_exuData(ptr) 1030 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1031 difftest.io.pc := RegNext(RegNext(RegNext(SignExt(uop.cf.pc, XLEN)))) 1032 difftest.io.instr := RegNext(RegNext(RegNext(uop.cf.instr))) 1033 difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(io.commits.info(i).commitType)))) 1034 // when committing an eliminated move instruction, 1035 // we must make sure that skip is properly set to false (output from EXU is random value) 1036 difftest.io.skip := RegNext(RegNext(RegNext(Mux(uop.eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)))) 1037 difftest.io.isRVC := RegNext(RegNext(RegNext(uop.cf.pd.isRVC))) 1038 difftest.io.rfwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).rfWen && io.commits.info(i).ldest =/= 0.U))) 1039 difftest.io.fpwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.info(i).fpWen))) 1040 difftest.io.wpdest := RegNext(RegNext(RegNext(io.commits.info(i).pdest))) 1041 difftest.io.wdest := RegNext(RegNext(RegNext(io.commits.info(i).ldest))) 1042 1043 // // runahead commit hint 1044 // val runahead_commit = Module(new DifftestRunaheadCommitEvent) 1045 // runahead_commit.io.clock := clock 1046 // runahead_commit.io.coreid := io.hartId 1047 // runahead_commit.io.index := i.U 1048 // runahead_commit.io.valid := difftest.io.valid && 1049 // (commitBranchValid(i) || commitIsStore(i)) 1050 // // TODO: is branch or store 1051 // runahead_commit.io.pc := difftest.io.pc 1052 } 1053 } 1054 else if (env.AlwaysBasicDiff) { 1055 // These are the structures used by difftest only and should be optimized after synthesis. 1056 val dt_eliminatedMove = Mem(RobSize, Bool()) 1057 val dt_isRVC = Mem(RobSize, Bool()) 1058 val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) 1059 for (i <- 0 until RenameWidth) { 1060 when (canEnqueue(i)) { 1061 dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove 1062 dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.cf.pd.isRVC 1063 } 1064 } 1065 for (wb <- exuWriteback) { 1066 when (wb.valid) { 1067 val wbIdx = wb.bits.uop.robIdx.value 1068 dt_exuDebug(wbIdx) := wb.bits.debug 1069 } 1070 } 1071 // Always instantiate basic difftest modules. 1072 for (i <- 0 until CommitWidth) { 1073 val commitInfo = io.commits.info(i) 1074 val ptr = deqPtrVec(i).value 1075 val exuOut = dt_exuDebug(ptr) 1076 val eliminatedMove = dt_eliminatedMove(ptr) 1077 val isRVC = dt_isRVC(ptr) 1078 1079 val difftest = Module(new DifftestBasicInstrCommit) 1080 difftest.io.clock := clock 1081 difftest.io.coreid := io.hartId 1082 difftest.io.index := i.U 1083 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1084 difftest.io.special := RegNext(RegNext(RegNext(CommitType.isFused(commitInfo.commitType)))) 1085 difftest.io.skip := RegNext(RegNext(RegNext(Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)))) 1086 difftest.io.isRVC := RegNext(RegNext(RegNext(isRVC))) 1087 difftest.io.rfwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U))) 1088 difftest.io.fpwen := RegNext(RegNext(RegNext(io.commits.commitValid(i) && commitInfo.fpWen))) 1089 difftest.io.wpdest := RegNext(RegNext(RegNext(commitInfo.pdest))) 1090 difftest.io.wdest := RegNext(RegNext(RegNext(commitInfo.ldest))) 1091 } 1092 } 1093 1094 if (env.EnableDifftest) { 1095 for (i <- 0 until CommitWidth) { 1096 val difftest = Module(new DifftestLoadEvent) 1097 difftest.io.clock := clock 1098 difftest.io.coreid := io.hartId 1099 difftest.io.index := i.U 1100 1101 val ptr = deqPtrVec(i).value 1102 val uop = commitDebugUop(i) 1103 val exuOut = debug_exuDebug(ptr) 1104 difftest.io.valid := RegNext(RegNext(RegNext(io.commits.commitValid(i) && io.commits.isCommit))) 1105 difftest.io.paddr := RegNext(RegNext(RegNext(exuOut.paddr))) 1106 difftest.io.opType := RegNext(RegNext(RegNext(uop.ctrl.fuOpType))) 1107 difftest.io.fuType := RegNext(RegNext(RegNext(uop.ctrl.fuType))) 1108 } 1109 } 1110 1111 // Always instantiate basic difftest modules. 1112 if (env.EnableDifftest) { 1113 val dt_isXSTrap = Mem(RobSize, Bool()) 1114 for (i <- 0 until RenameWidth) { 1115 when (canEnqueue(i)) { 1116 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap 1117 } 1118 } 1119 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) } 1120 val hitTrap = trapVec.reduce(_||_) 1121 val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) 1122 val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN) 1123 val difftest = Module(new DifftestTrapEvent) 1124 difftest.io.clock := clock 1125 difftest.io.coreid := io.hartId 1126 difftest.io.valid := hitTrap 1127 difftest.io.code := trapCode 1128 difftest.io.pc := trapPC 1129 difftest.io.cycleCnt := timer 1130 difftest.io.instrCnt := instrCnt 1131 difftest.io.hasWFI := hasWFI 1132 } 1133 else if (env.AlwaysBasicDiff) { 1134 val dt_isXSTrap = Mem(RobSize, Bool()) 1135 for (i <- 0 until RenameWidth) { 1136 when (canEnqueue(i)) { 1137 dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.ctrl.isXSTrap 1138 } 1139 } 1140 val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) } 1141 val hitTrap = trapVec.reduce(_||_) 1142 val difftest = Module(new DifftestBasicTrapEvent) 1143 difftest.io.clock := clock 1144 difftest.io.coreid := io.hartId 1145 difftest.io.valid := hitTrap 1146 difftest.io.cycleCnt := timer 1147 difftest.io.instrCnt := instrCnt 1148 } 1149 1150 val validEntriesBanks = (0 until (RobSize + 63) / 64).map(i => RegNext(PopCount(valid.drop(i * 64).take(64)))) 1151 val validEntries = RegNext(ParallelOperation(validEntriesBanks, (a: UInt, b: UInt) => a +& b)) 1152 val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }) 1153 val commitLoadVec = VecInit(commitLoadValid) 1154 val commitBranchVec = VecInit(commitBranchValid) 1155 val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }) 1156 val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }) 1157 val perfEvents = Seq( 1158 ("rob_interrupt_num ", io.flushOut.valid && intrEnable ), 1159 ("rob_exception_num ", io.flushOut.valid && exceptionEnable ), 1160 ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe ), 1161 ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst ), 1162 ("rob_commitUop ", ifCommit(commitCnt) ), 1163 ("rob_commitInstr ", ifCommitReg(trueCommitCnt) ), 1164 ("rob_commitInstrMove ", ifCommitReg(PopCount(RegNext(commitMoveVec))) ), 1165 ("rob_commitInstrFused ", ifCommitReg(fuseCommitCnt) ), 1166 ("rob_commitInstrLoad ", ifCommitReg(PopCount(RegNext(commitLoadVec))) ), 1167 ("rob_commitInstrBranch ", ifCommitReg(PopCount(RegNext(commitBranchVec))) ), 1168 ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec))) ), 1169 ("rob_commitInstrStore ", ifCommitReg(PopCount(RegNext(commitStoreVec))) ), 1170 ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U) ), 1171 ("rob_walkCycle ", (state === s_walk || state === s_extrawalk) ), 1172 ("rob_1_4_valid ", validEntries <= (RobSize / 4).U ), 1173 ("rob_2_4_valid ", validEntries > (RobSize / 4).U && validEntries <= (RobSize / 2).U ), 1174 ("rob_3_4_valid ", validEntries > (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U), 1175 ("rob_4_4_valid ", validEntries > (RobSize * 3 / 4).U ), 1176 ) 1177 generatePerfEvent() 1178} 1179