xref: /XiangShan/src/main/scala/xiangshan/backend/fu/NewCSR/MachineLevel.scala (revision 64523a1df1d208b1de44c785bdafe956e36db975)
1package xiangshan.backend.fu.NewCSR
2
3import chisel3._
4import chisel3.util._
5import org.chipsalliance.cde.config.Parameters
6import freechips.rocketchip.rocket.CSRs
7import utility.SignExt
8import utils.PerfEvent
9import xiangshan.backend.fu.NewCSR.CSRBundles._
10import xiangshan.backend.fu.NewCSR.CSRDefines._
11import xiangshan.backend.fu.NewCSR.CSRDefines.{CSRROField => RO, CSRRWField => RW, _}
12import xiangshan.backend.fu.NewCSR.CSREvents._
13import xiangshan.backend.fu.NewCSR.CSREnumTypeImplicitCast._
14import xiangshan.backend.fu.NewCSR.ChiselRecordForField._
15import xiangshan.backend.fu.PerfCounterIO
16import xiangshan.backend.fu.NewCSR.CSRConfig._
17
18import scala.collection.immutable.SeqMap
19
20trait MachineLevel { self: NewCSR =>
21  val mstatus = Module(new MstatusModule)
22    .setAddr(CSRs.mstatus)
23
24  val misa = Module(new CSRModule("Misa", new MisaBundle))
25    .setAddr(CSRs.misa)
26
27  println(s"[CSR] supported isa ext: ${misa.bundle.getISAString}")
28
29  val medeleg = Module(new CSRModule("Medeleg", new MedelegBundle))
30    .setAddr(CSRs.medeleg)
31
32  val mideleg = Module(new CSRModule("Mideleg", new MidelegBundle))
33    .setAddr(CSRs.mideleg)
34
35  val mie = Module(new CSRModule("Mie", new MieBundle) with HasIpIeBundle {
36    val fromHie  = IO(Flipped(new HieToMie))
37    val fromSie  = IO(Flipped(new SieToMie))
38    val fromVSie = IO(Flipped(new VSieToMie))
39
40    // bit 1 SSIE
41    when (fromSie.SSIE.valid) {
42      reg.SSIE := fromSie.SSIE.bits
43    }
44
45    // bit 2 VSSIE
46    when (fromHie.VSSIE.valid || fromVSie.VSSIE.valid) {
47      reg.VSSIE := Mux1H(Seq(
48        fromHie .VSSIE.valid -> fromHie .VSSIE.bits,
49        fromVSie.VSSIE.valid -> fromVSie.VSSIE.bits,
50      ))
51    }
52
53    // bit 5 STIE
54    when(fromSie.STIE.valid) {
55      reg.STIE := fromSie.STIE.bits
56    }
57
58    // bit 6 VSTIE
59    when(fromHie.VSTIE.valid || fromVSie.VSTIE.valid) {
60      reg.VSTIE := Mux1H(Seq(
61        fromHie .VSTIE.valid -> fromHie .VSTIE.bits,
62        fromVSie.VSTIE.valid -> fromVSie.VSTIE.bits,
63      ))
64    }
65
66    // bit 9 SEIE
67    when(fromSie.SEIE.valid) {
68      reg.SEIE := fromSie.SEIE.bits
69    }
70
71    // bit 10 VSEIE
72    when(fromHie.VSEIE.valid || fromVSie.VSEIE.valid) {
73      reg.VSEIE := Mux1H(Seq(
74        fromHie .VSEIE.valid -> fromHie .VSEIE.bits,
75        fromVSie.VSEIE.valid -> fromVSie.VSEIE.bits,
76      ))
77    }
78
79    // bit 12 SGEIE
80    when(fromHie.SGEIE.valid) {
81      reg.SGEIE := fromHie.SGEIE.bits
82    }
83
84    // bit 13~63 LCIP
85    reg.getLocal lazyZip fromSie.getLocal lazyZip fromVSie.getLocal foreach { case (rLCIE, sieLCIE, vsieLCIE) =>
86      when (sieLCIE.valid || vsieLCIE.valid) {
87        rLCIE := Mux1H(Seq(
88          sieLCIE .valid -> sieLCIE .bits,
89          vsieLCIE.valid -> vsieLCIE.bits,
90        ))
91      }
92    }
93
94    // 14~63 read only 0
95    regOut.getLocal.filterNot(_.lsb == InterruptNO.COI).foreach(_ := 0.U)
96  }).setAddr(CSRs.mie)
97
98  val mtvec = Module(new CSRModule("Mtvec", new XtvecBundle))
99    .setAddr(CSRs.mtvec)
100
101  // Todo: support "Stimecmp/Vstimecmp" Extension, Version 1.0.0
102  // Todo: support Sscounterenw Extension
103  val mcounteren = Module(new CSRModule("Mcounteren", new Counteren))
104    .setAddr(CSRs.mcounteren)
105
106  val mvien = Module(new CSRModule("Mvien", new MvienBundle))
107    .setAddr(CSRs.mvien)
108
109  val mvip = Module(new CSRModule("Mvip", new MvipBundle)
110    with HasIpIeBundle
111    with HasMachineEnvBundle
112  {
113    val toMip = IO(new MvipToMip).connectZeroNonRW
114    val fromMip = IO(Flipped(new MipToMvip))
115    val fromSip = IO(Flipped(new SipToMvip))
116    val fromVSip = IO(Flipped(new VSipToMvip))
117
118    // When bit 1 of mvien is zero, bit 1(SSIP) of mvip is an alias of the same bit (SSIP) of mip.
119    // But when bit 1 of mvien is one, bit 1(SSIP) of mvip is a separate writable bit independent of mip.SSIP.
120    // When the value of bit 1 of mvien is changed from zero to one, the value of bit 1 of mvip becomes UNSPECIFIED.
121    // XiangShan will keep the value in mvip.SSIP when mvien.SSIE is changed from zero to one
122    reg.SSIP := Mux(wen && mvien.SSIE.asBool, wdata.SSIP, reg.SSIP)
123    regOut.SSIP := Mux(mvien.SSIE.asBool, reg.SSIP, this.mip.SSIP)
124    toMip.SSIP.valid := wen && !mvien.SSIE.asBool
125    toMip.SSIP.bits := wdata.SSIP
126
127    // Bit 5 of mvip is an alias of the same bit (STIP) in mip when that bit is writable in mip.
128    // When STIP is not writable in mip (such as when menvcfg.STCE = 1), bit 5 of mvip is read-only zero.
129    // Todo: check mip writable when menvcfg.STCE = 1
130    regOut.STIP := Mux(this.menvcfg.STCE.asBool, 0.U, this.mip.STIP.asBool)
131    // Don't update mip.STIP when menvcfg.STCE is 1
132    toMip.STIP.valid := wen && !this.menvcfg.STCE.asBool
133    toMip.STIP.bits := wdata.STIP
134
135    // When bit 9 of mvien is zero, bit 9 of mvip is an alias of the software-writable bit 9 of mip (SEIP).
136    // But when bit 9 of mvien is one, bit 9 of mvip is a writable bit independent of mip.SEIP.
137    // Unlike for bit 1, changing the value of bit 9 of mvien does not affect the value of bit 9 of mvip.
138    toMip.SEIP.valid := wen && !mvien.SEIE.asUInt.asBool
139    toMip.SEIP.bits := wdata.SEIP
140    when (fromMip.SEIP.valid) {
141      reg.SEIP := fromMip.SEIP.bits
142    }
143
144    // write from sip
145    when (fromSip.SSIP.valid) {
146      reg.SSIP := fromSip.SSIP.bits
147    }
148
149    reg.getLocal lazyZip fromSip.getLocal lazyZip fromVSip.getLocal foreach { case (rLCIP, sipLCIP, vsipLCIP) =>
150      // sip should assert valid when mideleg=0 && mvien=1
151      when (sipLCIP.valid || vsipLCIP.valid) {
152        rLCIP := Mux1H(Seq(
153          sipLCIP .valid -> sipLCIP .bits,
154          vsipLCIP.valid -> vsipLCIP.bits,
155        ))
156      }
157    }
158  }).setAddr(CSRs.mvip)
159
160  val menvcfg = Module(new CSRModule("Menvcfg", new MEnvCfg))
161    .setAddr(CSRs.menvcfg)
162
163  val mcountinhibit = Module(new CSRModule("Mcountinhibit", new McountinhibitBundle))
164    .setAddr(CSRs.mcountinhibit)
165
166  val mhpmevents: Seq[CSRModule[_]] = (3 to 0x1F).map(num =>
167    Module(new CSRModule(s"Mhpmevent$num") with HasPerfEventBundle {
168      regOut := perfEvents(num - 3)
169    })
170      .setAddr(CSRs.mhpmevent3 - 3 + num)
171  )
172
173  val mscratch = Module(new CSRModule("Mscratch"))
174    .setAddr(CSRs.mscratch)
175
176  val mepc = Module(new CSRModule("Mepc", new Epc) with TrapEntryMEventSinkBundle {
177    rdata := SignExt(Cat(reg.epc.asUInt, 0.U(1.W)), XLEN)
178  })
179    .setAddr(CSRs.mepc)
180
181  val mcause = Module(new CSRModule("Mcause", new McauseBundle) with TrapEntryMEventSinkBundle)
182    .setAddr(CSRs.mcause)
183
184  val mtval = Module(new CSRModule("Mtval") with TrapEntryMEventSinkBundle)
185    .setAddr(CSRs.mtval)
186
187  val mip = Module(new CSRModule("Mip", new MipBundle)
188    with HasIpIeBundle
189    with HasExternalInterruptBundle
190    with HasMachineEnvBundle
191    with HasLocalInterruptReqBundle
192    with HasAIABundle
193  {
194    // Alias write in
195    val fromMvip = IO(Flipped(new MvipToMip))
196    val fromSip  = IO(Flipped(new SipToMip))
197    val fromVSip = IO(Flipped(new VSipToMip))
198    // Alias write out
199    val toMvip   = IO(new MipToMvip).connectZeroNonRW
200    val toHvip   = IO(new MipToHvip).connectZeroNonRW
201
202    // bit 1 SSIP
203    when (fromMvip.SSIP.valid || fromSip.SSIP.valid) {
204      reg.SSIP := Mux1H(Seq(
205        fromMvip.SSIP.valid -> fromMvip.SSIP.bits,
206        fromSip .SSIP.valid -> fromSip .SSIP.bits,
207      ))
208    }
209
210    // bit 2 VSSIP reg in hvip
211    // alias of hvip.VSSIP
212    toHvip.VSSIP.valid := wen
213    toHvip.VSSIP.bits  := wdata.VSSIP
214    regOut.VSSIP := hvip.VSSIP
215
216    // bit 3 MSIP is read-only in mip, and is written by accesses to memory-mapped control registers,
217    // which are used by remote harts to provide machine-level interprocessor interrupts.
218    regOut.MSIP := platformIRP.MSIP
219
220    // bit 5 STIP
221    // If the stimecmp (supervisor-mode timer compare) register is implemented(menvcfg.STCE=1), STIP is read-only in mip.
222    regOut.STIP := Mux(this.menvcfg.STCE.asBool, platformIRP.STIP, reg.STIP.asBool)
223    when ((wen || fromMvip.STIP.valid) && !this.menvcfg.STCE) {
224      reg.STIP := Mux1H(Seq(
225        wen -> wdata.STIP,
226        fromMvip.STIP.valid -> fromMvip.STIP.bits,
227      ))
228    }
229
230    // bit 6 VSTIP
231    regOut.VSTIP := hvip.VSTIP || platformIRP.VSTIP
232
233    // bit 7 MTIP is read-only in mip, and is cleared by writing to the memory-mapped machine-mode timer compare register
234    regOut.MTIP := platformIRP.MTIP
235
236    // bit 9 SEIP
237    // When bit 9 of mvien is zero, the value of bit 9 of mvip is logically ORed into the readable value of mip.SEIP.
238    // when bit 9 of mvien is one, bit SEIP in mip is read-only and does not include the value of bit 9 of mvip.
239    //
240    // As explained in this issue(https://github.com/riscv/riscv-aia/issues/64),
241    // when mvien[9]=0, mip.SEIP is a software-writable bit and is special in its read value, which is the logical-OR of
242    // mip.SEIP reg and other source from the interrupt controller.
243    // mvip.SEIP is alias of mip.SEIP's reg part, and is independent of the other source from the interrupt controller.
244    //
245    // mip.SEIP is implemented as the alias of mvip.SEIP when mvien=0
246    // the read valid of SEIP is ORed by mvip.SEIP and the other source from the interrupt controller.
247
248    toMvip.SEIP.valid := wen && !mvien.SSIE
249    toMvip.SEIP.bits := wdata.SEIP
250    // When mvien.SEIE = 0, mip.SEIP is alias of mvip.SEIP.
251    // Otherwise, mip.SEIP is read only 0
252    regOut.SEIP := Mux(!mvien.SEIE, mvip.SEIP.asUInt, 0.U)
253    rdataFields.SEIP := regOut.SEIP || platformIRP.SEIP || aiaToCSR.seip
254
255    // bit 10 VSEIP
256    regOut.VSEIP := hvip.VSEIP || platformIRP.VSEIP || hgeip.asUInt(hstatusVGEIN.asUInt)
257
258    // bit 11 MEIP is read-only in mip, and is set and cleared by a platform-specific interrupt controller.
259    // MEIP can from PLIC and IMSIC
260    regOut.MEIP := platformIRP.MEIP || aiaToCSR.meip
261
262    // bit 12 SGEIP
263    regOut.SGEIP := Cat(hgeip.asUInt & hgeie.asUInt).orR
264
265    // bit 13 LCOFIP
266    reg.LCOFIP := lcofiReq
267    when (fromSip.LCOFIP.valid || fromVSip.LCOFIP.valid) {
268      reg.LCOFIP := Mux1H(Seq(
269        fromSip.LCOFIP.valid  -> fromSip.LCOFIP.bits,
270        fromVSip.LCOFIP.valid -> fromVSip.LCOFIP.bits,
271      ))
272    }
273  }).setAddr(CSRs.mip)
274
275  val mtinst = Module(new CSRModule("Mtinst") with TrapEntryMEventSinkBundle)
276    .setAddr(CSRs.mtinst)
277
278  val mtval2 = Module(new CSRModule("Mtval2") with TrapEntryMEventSinkBundle)
279    .setAddr(CSRs.mtval2)
280
281  val mseccfg = Module(new CSRModule("Mseccfg", new CSRBundle {
282    val PMM   = RO(33, 32)
283    val SSEED = RO(     9)
284    val USEED = RO(     8)
285    val RLB   = RO(     2)
286    val MMWP  = RO(     1)
287    val MML   = RO(     0)
288  })).setAddr(CSRs.mseccfg)
289
290  val mcycle = Module(new CSRModule("Mcycle") with HasMachineCounterControlBundle {
291    when(w.wen) {
292      reg := w.wdata
293    }.elsewhen(!mcountinhibit.CY.asUInt.asBool) {
294      reg := reg.ALL.asUInt + 1.U
295    }.otherwise {
296      reg := reg
297    }
298  }).setAddr(CSRs.mcycle)
299
300
301  val minstret = Module(new CSRModule("Minstret") with HasMachineCounterControlBundle with HasRobCommitBundle {
302    when(w.wen) {
303      reg := w.wdata
304    }.elsewhen(!mcountinhibit.IR && robCommit.instNum.valid) {
305      reg := reg.ALL.asUInt + robCommit.instNum.bits
306    }.otherwise {
307      reg := reg
308    }
309  }).setAddr(CSRs.minstret)
310
311  val mhpmcounters: Seq[CSRModule[_]] = (3 to 0x1F).map(num =>
312    Module(new CSRModule(s"Mhpmcounter$num") with HasMachineCounterControlBundle with HasPerfCounterBundle {
313      val countingInhibit = mcountinhibit.asUInt(num) | !countingEn
314      val counterAdd = reg.ALL.asUInt +& perf.value
315      when (w.wen) {
316        reg := w.wdata
317      }.elsewhen (perf.value =/= 0.U && !countingInhibit) {
318        reg := counterAdd.tail(1)
319      }.otherwise {
320        reg := reg
321      }
322      // Count overflow never results from writes to the mhpmcountern or mhpmeventn registers, only from
323      // hardware increments of counter registers.
324      toMhpmeventOF := !countingInhibit & counterAdd.head(1)
325    }).setAddr(CSRs.mhpmcounter3 - 3 + num)
326  )
327
328  val mvendorid = Module(new CSRModule("Mvendorid") { rdata := 0.U })
329    .setAddr(CSRs.mvendorid)
330
331  // architecture id for XiangShan is 25
332  // see https://github.com/riscv/riscv-isa-manual/blob/master/marchid.md
333  val marchid = Module(new CSRModule("Marchid", new CSRBundle {
334    val ALL = MarchidField(63, 0).withReset(MarchidField.XSArchid)
335  })).setAddr(CSRs.marchid)
336
337  val mimpid = Module(new CSRModule("Mimpid", new CSRBundle {
338    val ALL = RO(0).withReset(0.U)
339  }))
340    .setAddr(CSRs.mimpid)
341
342  val mhartid = Module(new CSRModule("Mhartid", new CSRBundle {
343    val ALL = RO(7, 0)
344  }) {
345    val hartid = IO(Input(UInt(hartIdLen.W)))
346    this.reg.ALL := RegEnable(hartid, reset.asBool)
347  })
348    .setAddr(CSRs.mhartid)
349
350  val mconfigptr = Module(new CSRModule("Mconfigptr"))
351    .setAddr(CSRs.mconfigptr)
352
353  val mstateen0 = Module(new CSRModule("Mstateen", new MstateenBundle0)).setAddr(CSRs.mstateen0)
354
355  val machineLevelCSRMods: Seq[CSRModule[_]] = Seq(
356    mstatus,
357    misa,
358    medeleg,
359    mideleg,
360    mie,
361    mtvec,
362    mcounteren,
363    mvien,
364    mvip,
365    menvcfg,
366    mcountinhibit,
367    mscratch,
368    mepc,
369    mcause,
370    mtval,
371    mip,
372    mtinst,
373    mtval2,
374    mseccfg,
375    mcycle,
376    minstret,
377    mvendorid,
378    marchid,
379    mimpid,
380    mhartid,
381    mconfigptr,
382    mstateen0,
383  ) ++ mhpmevents ++ mhpmcounters
384
385  val machineLevelCSRMap: SeqMap[Int, (CSRAddrWriteBundle[_], UInt)] = SeqMap.from(
386    machineLevelCSRMods.map(csr => (csr.addr -> (csr.w -> csr.rdata))).iterator
387  )
388
389  val machineLevelCSROutMap: SeqMap[Int, UInt] = SeqMap.from(
390    machineLevelCSRMods.map(csr => (csr.addr -> csr.regOut.asInstanceOf[CSRBundle].asUInt)).iterator
391  )
392
393  // read/write/update mhpmevents -> read/write/update perfEvents
394  val perfEvents = List.fill(8)(RegInit("h0000000000".U(XLEN.W))) ++
395    List.fill(8)(RegInit("h4010040100".U(XLEN.W))) ++
396    List.fill(8)(RegInit("h8020080200".U(XLEN.W))) ++
397    List.fill(5)(RegInit("hc0300c0300".U(XLEN.W)))
398
399  mhpmevents.foreach { mod =>
400    mod match {
401      case m: HasPerfEventBundle =>
402        m.perfEvents := perfEvents
403      case _ =>
404    }
405  }
406
407}
408
409class MstatusBundle extends CSRBundle {
410
411  val SIE  = CSRRWField     (1).withReset(0.U)
412  val MIE  = CSRRWField     (3).withReset(0.U)
413  val SPIE = CSRRWField     (5).withReset(0.U)
414  val UBE  = CSRROField     (6).withReset(0.U)
415  val MPIE = CSRRWField     (7).withReset(0.U)
416  val SPP  = CSRRWField     (8).withReset(0.U)
417  val VS   = ContextStatus  (10,  9).withReset(ContextStatus.Off)
418  val MPP  = PrivMode       (12, 11).withReset(PrivMode.U)
419  val FS   = ContextStatus  (14, 13).withReset(ContextStatus.Off)
420  val XS   = ContextStatusRO(16, 15).withReset(0.U)
421  val MPRV = CSRRWField     (17).withReset(0.U)
422  val SUM  = CSRRWField     (18).withReset(0.U)
423  val MXR  = CSRRWField     (19).withReset(0.U)
424  val TVM  = CSRRWField     (20).withReset(0.U)
425  val TW   = CSRRWField     (21).withReset(0.U)
426  val TSR  = CSRRWField     (22).withReset(0.U)
427  val UXL  = XLENField      (33, 32).withReset(XLENField.XLEN64)
428  val SXL  = XLENField      (35, 34).withReset(XLENField.XLEN64)
429  val SBE  = CSRROField     (36).withReset(0.U)
430  val MBE  = CSRROField     (37).withReset(0.U)
431  val GVA  = CSRRWField     (38).withReset(0.U)
432  val MPV  = VirtMode       (39).withReset(0.U)
433  val SD   = CSRROField     (63,
434    (_, _) => FS === ContextStatus.Dirty || VS === ContextStatus.Dirty
435  )
436}
437
438class MstatusModule(implicit override val p: Parameters) extends CSRModule("MStatus", new MstatusBundle)
439  with TrapEntryMEventSinkBundle
440  with TrapEntryHSEventSinkBundle
441  with DretEventSinkBundle
442  with MretEventSinkBundle
443  with SretEventSinkBundle
444  with HasRobCommitBundle
445{
446  val mstatus = IO(Output(bundle))
447  val sstatus = IO(Output(new SstatusBundle))
448  val sstatusRdata = IO(Output(UInt(64.W)))
449
450  val wAliasSstatus = IO(Input(new CSRAddrWriteBundle(new SstatusBundle)))
451
452  // write connection
453  this.wfn(reg)(Seq(wAliasSstatus))
454
455  when (robCommit.fsDirty || writeFCSR) {
456    assert(reg.FS =/= ContextStatus.Off, "The [m|s]status.FS should not be Off when set dirty, please check decode")
457    reg.FS := ContextStatus.Dirty
458  }
459
460  when (robCommit.vsDirty || writeVCSR) {
461    assert(reg.VS =/= ContextStatus.Off, "The [m|s]status.VS should not be Off when set dirty, please check decode")
462    reg.VS := ContextStatus.Dirty
463  }
464
465  // read connection
466  mstatus :|= reg
467  sstatus := mstatus
468  rdata := mstatus.asUInt
469  sstatusRdata := sstatus.asUInt
470}
471
472class MisaBundle extends CSRBundle {
473  // Todo: reset with ISA string
474  val A = RO( 0).withReset(1.U) // Atomic extension
475  val B = RO( 1).withReset(0.U) // Reserved
476  val C = RO( 2).withReset(1.U) // Compressed extension
477  val D = RO( 3).withReset(1.U) // Double-precision floating-point extension
478  val E = RO( 4).withReset(0.U) // RV32E/64E base ISA
479  val F = RO( 5).withReset(1.U) // Single-precision floating-point extension
480  val G = RO( 6).withReset(0.U) // Reserved
481  val H = RO( 7).withReset(1.U) // Hypervisor extension
482  val I = RO( 8).withReset(1.U) // RV32I/64I/128I base ISA
483  val J = RO( 9).withReset(0.U) // Reserved
484  val K = RO(10).withReset(0.U) // Reserved
485  val L = RO(11).withReset(0.U) // Reserved
486  val M = RO(12).withReset(1.U) // Integer Multiply/Divide extensi
487  val N = RO(13).withReset(0.U) // Tentatively reserved for User-Level Interrupts extension
488  val O = RO(14).withReset(0.U) // Reserved
489  val P = RO(15).withReset(0.U) // Tentatively reserved for Packed-SIMD extension
490  val Q = RO(16).withReset(0.U) // Quad-precision floating-point extension
491  val R = RO(17).withReset(0.U) // Reserved
492  val S = RO(18).withReset(1.U) // Supervisor mode implemented
493  val T = RO(19).withReset(0.U) // Reserved
494  val U = RO(20).withReset(1.U) // User mode implemented
495  val V = RO(21).withReset(1.U) // Vector extension
496  val W = RO(22).withReset(0.U) // Reserved
497  val X = RO(23).withReset(0.U) // Non-standard extensions present
498  val Y = RO(24).withReset(0.U) // Reserved
499  val Z = RO(25).withReset(0.U) // Reserved
500  val MXL = XLENField(63, 62).withReset(XLENField.XLEN64)
501
502  def getISAString = this.getFields.filter(x => x != MXL && x.init.litValue == 1).sortBy(_.lsb).map(x => ('A' + x.msb).toChar).mkString
503}
504
505class MedelegBundle extends ExceptionBundle {
506  this.getALL.foreach(_.setRW().withReset(0.U))
507  this.EX_MCALL.setRO().withReset(0.U) // never delegate machine level ecall
508  this.EX_BP.setRO().withReset(0.U)    // Parter 5.4 in debug spec. tcontrol is implemented. medeleg [3] is hard-wired to 0.
509}
510
511class MidelegBundle extends InterruptBundle {
512  this.getALL.foreach(_.setRW().withReset(0.U))
513  // Don't delegate Machine level interrupts
514  this.getM.foreach(_.setRO().withReset(0.U))
515  // Ref: 13.4.2. Machine Interrupt Delegation Register (mideleg)
516  // When the hypervisor extension is implemented, bits 10, 6, and 2 of mideleg (corresponding to the standard VS-level
517  // interrupts) are each read-only one.
518  this.getVS.foreach(_.setRO().withReset(1.U))
519  // bit 12 of mideleg (corresponding to supervisor-level guest external interrupts) is also read-only one.
520  // VS-level interrupts and guest external interrupts are always delegated past M-mode to HS-mode.
521  this.SGEI.setRO().withReset(1.U)
522  this.getLocal.foreach(_.setRO().withReset(0.U))
523  this.LCOFI.setRW().withReset(0.U)
524}
525
526class MieBundle extends InterruptEnableBundle {
527  this.getNonLocal.foreach(_.setRW().withReset(0.U))
528}
529
530class MipBundle extends InterruptPendingBundle {
531  // Ref: riscv privileged spec - 18.4.3. Machine Interrupt (mip and mie) Registers
532  // Bits SGEIP, VSEIP, VSTIP, and VSSIP in mip are aliases for the same bits in hypervisor CSR hip
533  //
534  // We implement SGEIP, VSEIP, VSTIP, and VSSIP in mip are registers,
535  // while these bits in hip are aliases for the same bits in mip.
536  //
537  // Ref: riscv interrupt spec - 2.1 Machine-level CSRs
538  // Existing CSRs mie, mip, and mideleg are widended to 64 bits to support a total of 64 interrupt causes.
539  this.getHS.foreach(_.setRW().withReset(0.U))
540  this.getVS.foreach(_.setRW().withReset(0.U))
541  this.LCOFIP.setRW().withReset(0.U)
542}
543
544class MvienBundle extends InterruptEnableBundle {
545  // Ref: riscv interrupt spec - 5.3 Interrupt filtering and virtual interrupts for supervisor level
546  // It is strongly recommended that bit 9 of mvien be writable.
547  // It is strongly recommended that bit 1 of mvien also be writable.
548  // A bit in mvien can be set to 1 only for major interrupts 1, 9, and 13–63.
549  this.SSIE.setRW().withReset(0.U)
550  this.SEIE.setRW().withReset(0.U)
551  this.getLocal.foreach(_.setRW().withReset(0.U))
552}
553
554class MvipBundle extends InterruptPendingBundle {
555  this.getHS.foreach(_.setRW().withReset(0.U))
556  this.getLocal.foreach(_.setRW().withReset(0.U))
557}
558
559class McauseBundle extends CauseBundle {
560  this.Interrupt.withReset(0.U)
561  this.ExceptionCode.withReset(0.U)
562}
563
564class Epc extends CSRBundle {
565  import CSRConfig._
566
567  val epc = RW(VaddrMaxWidth - 1, 1)
568}
569
570class McountinhibitBundle extends CSRBundle {
571  val CY = RW(0).withReset(0.U)
572  val IR = RW(2).withReset(0.U)
573  val HPM3 = RW(31, 3).withReset(0.U)
574}
575
576// todo: for the future, delete bypass between mhpmevents and perfEvents
577class MhpmeventBundle extends CSRBundle {
578  val OF    = RW(63).withReset(0.U)
579  val MINH  = RW(62).withReset(0.U)
580  val SINH  = RW(61).withReset(0.U)
581  val UINH  = RW(60).withReset(0.U)
582  val VSINH = RW(59).withReset(0.U)
583  val VUINH = RW(58).withReset(0.U)
584}
585
586class MEnvCfg extends EnvCfg {
587  if (CSRConfig.EXT_SSTC) {
588    this.STCE.setRW().withReset(1.U)
589  }
590}
591
592object MarchidField extends CSREnum with ROApply {
593  val XSArchid = Value(25.U)
594}
595
596class MieToHie extends Bundle {
597  val VSSIE = ValidIO(RW(0))
598  val VSTIE = ValidIO(RW(0))
599  val VSEIE = ValidIO(RW(0))
600  val SGEIE = ValidIO(RW(0))
601}
602
603class MvipToMip extends IpValidBundle {
604  this.getHS.foreach(_.bits.setRW())
605}
606
607class HipToMip extends IpValidBundle {
608  // Only hip.VSSIP is writable
609  this.VSSIP.bits.setRW()
610}
611
612class VSipToMip extends IpValidBundle {
613  this.LCOFIP.bits.setRW()
614}
615
616class MipToHvip extends IpValidBundle {
617  this.VSSIP.bits.setRW()
618}
619
620class MipToMvip extends IpValidBundle {
621  this.SEIP.bits.setRW()
622}
623
624trait HasMipToAlias { self: CSRModule[_] =>
625  val mipAlias = Output(new MipBundle)
626}
627
628trait HasMachineDelegBundle { self: CSRModule[_] =>
629  val mideleg = IO(Input(new MidelegBundle))
630  val medeleg = IO(Input(new MedelegBundle))
631}
632
633trait HasExternalInterruptBundle {
634  val platformIRP = IO(new Bundle {
635    val MEIP  = Input(Bool())
636    val MTIP  = Input(Bool())
637    val MSIP  = Input(Bool())
638    val SEIP  = Input(Bool())
639    val STIP  = Input(Bool())
640    val VSEIP = Input(Bool())
641    val VSTIP = Input(Bool())
642    // debug interrupt from debug module
643    val debugIP = Input(Bool())
644  })
645}
646
647trait HasMachineCounterControlBundle { self: CSRModule[_] =>
648  val mcountinhibit = IO(Input(new McountinhibitBundle))
649}
650
651trait HasRobCommitBundle { self: CSRModule[_] =>
652  val robCommit = IO(Input(new RobCommitCSR))
653  val writeFCSR = IO(Input(Bool()))
654  val writeVCSR = IO(Input(Bool()))
655  val isVirtMode = IO(Input(Bool()))
656}
657
658trait HasMachineEnvBundle { self: CSRModule[_] =>
659  val menvcfg = IO(Input(new MEnvCfg))
660}
661
662trait HasPerfCounterBundle { self: CSRModule[_] =>
663  val countingEn    = IO(Input(Bool()))
664  val perf          = IO(Input(new PerfEvent))
665  val toMhpmeventOF = IO(Output(Bool()))
666}
667
668trait HasPerfEventBundle { self: CSRModule[_] =>
669  val perfEvents = IO(Input(Vec(perfCntNum, UInt(XLEN.W))))
670}
671
672trait HasLocalInterruptReqBundle { self: CSRModule[_] =>
673  val lcofiReq = IO(Input(Bool()))
674}