1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 23import utils._ 24import xiangshan._ 25import xiangshan.backend.decode.{DecodeStage, FusionDecoder, ImmUnion} 26import xiangshan.backend.dispatch.{Dispatch, Dispatch2Rs, DispatchQueue} 27import xiangshan.backend.fu.PFEvent 28import xiangshan.backend.rename.{Rename, RenameTableWrapper} 29import xiangshan.backend.rob.{Rob, RobCSRIO, RobLsqIO} 30import xiangshan.frontend.{FtqRead, Ftq_RF_Components} 31import xiangshan.mem.mdp.{LFST, SSIT, WaitTable} 32import xiangshan.ExceptionNO._ 33import xiangshan.backend.exu.ExuConfig 34import xiangshan.mem.{LsqEnqCtrl, LsqEnqIO} 35 36class CtrlToFtqIO(implicit p: Parameters) extends XSBundle { 37 def numRedirect = exuParameters.JmpCnt + exuParameters.AluCnt 38 val rob_commits = Vec(CommitWidth, Valid(new RobCommitInfo)) 39 val redirect = Valid(new Redirect) 40} 41 42class RedirectGenerator(implicit p: Parameters) extends XSModule 43 with HasCircularQueuePtrHelper { 44 45 class RedirectGeneratorIO(implicit p: Parameters) extends XSBundle { 46 def numRedirect = exuParameters.JmpCnt + exuParameters.AluCnt 47 val hartId = Input(UInt(8.W)) 48 val exuMispredict = Vec(numRedirect, Flipped(ValidIO(new ExuOutput))) 49 val loadReplay = Flipped(ValidIO(new Redirect)) 50 val flush = Input(Bool()) 51 val redirectPcRead = new FtqRead(UInt(VAddrBits.W)) 52 val stage2Redirect = ValidIO(new Redirect) 53 val stage3Redirect = ValidIO(new Redirect) 54 val memPredUpdate = Output(new MemPredUpdateReq) 55 val memPredPcRead = new FtqRead(UInt(VAddrBits.W)) // read req send form stage 2 56 val isMisspreRedirect = Output(Bool()) 57 } 58 val io = IO(new RedirectGeneratorIO) 59 /* 60 LoadQueue Jump ALU0 ALU1 ALU2 ALU3 exception Stage1 61 | | | | | | | 62 |============= reg & compare =====| | ======== 63 | | 64 | | 65 | | Stage2 66 | | 67 redirect (flush backend) | 68 | | 69 === reg === | ======== 70 | | 71 |----- mux (exception first) -----| Stage3 72 | 73 redirect (send to frontend) 74 */ 75 def selectOldestRedirect(xs: Seq[Valid[Redirect]]): Vec[Bool] = { 76 val compareVec = (0 until xs.length).map(i => (0 until i).map(j => isAfter(xs(j).bits.robIdx, xs(i).bits.robIdx))) 77 val resultOnehot = VecInit((0 until xs.length).map(i => Cat((0 until xs.length).map(j => 78 (if (j < i) !xs(j).valid || compareVec(i)(j) 79 else if (j == i) xs(i).valid 80 else !xs(j).valid || !compareVec(j)(i)) 81 )).andR)) 82 resultOnehot 83 } 84 85 def getRedirect(exuOut: Valid[ExuOutput]): ValidIO[Redirect] = { 86 val redirect = Wire(Valid(new Redirect)) 87 redirect.valid := exuOut.valid && exuOut.bits.redirect.cfiUpdate.isMisPred 88 redirect.bits := exuOut.bits.redirect 89 redirect 90 } 91 92 val jumpOut = io.exuMispredict.head 93 val allRedirect = VecInit(io.exuMispredict.map(x => getRedirect(x)) :+ io.loadReplay) 94 val oldestOneHot = selectOldestRedirect(allRedirect) 95 val needFlushVec = VecInit(allRedirect.map(_.bits.robIdx.needFlush(io.stage2Redirect) || io.flush)) 96 val oldestValid = VecInit(oldestOneHot.zip(needFlushVec).map{ case (v, f) => v && !f }).asUInt.orR 97 val oldestExuOutput = Mux1H(io.exuMispredict.indices.map(oldestOneHot), io.exuMispredict) 98 val oldestRedirect = Mux1H(oldestOneHot, allRedirect) 99 io.isMisspreRedirect := VecInit(io.exuMispredict.map(x => getRedirect(x).valid)).asUInt.orR 100 io.redirectPcRead.ptr := oldestRedirect.bits.ftqIdx 101 io.redirectPcRead.offset := oldestRedirect.bits.ftqOffset 102 103 val s1_jumpTarget = RegEnable(jumpOut.bits.redirect.cfiUpdate.target, jumpOut.valid) 104 val s1_imm12_reg = RegNext(oldestExuOutput.bits.uop.ctrl.imm(11, 0)) 105 val s1_pd = RegNext(oldestExuOutput.bits.uop.cf.pd) 106 val s1_redirect_bits_reg = RegNext(oldestRedirect.bits) 107 val s1_redirect_valid_reg = RegNext(oldestValid) 108 val s1_redirect_onehot = RegNext(oldestOneHot) 109 110 // stage1 -> stage2 111 io.stage2Redirect.valid := s1_redirect_valid_reg && !io.flush 112 io.stage2Redirect.bits := s1_redirect_bits_reg 113 114 val s1_isReplay = s1_redirect_onehot.last 115 val s1_isJump = s1_redirect_onehot.head 116 val real_pc = io.redirectPcRead.data 117 val brTarget = real_pc + SignExt(ImmUnion.B.toImm32(s1_imm12_reg), XLEN) 118 val snpc = real_pc + Mux(s1_pd.isRVC, 2.U, 4.U) 119 val target = Mux(s1_isReplay, 120 real_pc, // replay from itself 121 Mux(s1_redirect_bits_reg.cfiUpdate.taken, 122 Mux(s1_isJump, s1_jumpTarget, brTarget), 123 snpc 124 ) 125 ) 126 127 val stage2CfiUpdate = io.stage2Redirect.bits.cfiUpdate 128 stage2CfiUpdate.pc := real_pc 129 stage2CfiUpdate.pd := s1_pd 130 // stage2CfiUpdate.predTaken := s1_redirect_bits_reg.cfiUpdate.predTaken 131 stage2CfiUpdate.target := target 132 // stage2CfiUpdate.taken := s1_redirect_bits_reg.cfiUpdate.taken 133 // stage2CfiUpdate.isMisPred := s1_redirect_bits_reg.cfiUpdate.isMisPred 134 135 val s2_target = RegEnable(target, s1_redirect_valid_reg) 136 val s2_pc = RegEnable(real_pc, s1_redirect_valid_reg) 137 val s2_redirect_bits_reg = RegEnable(s1_redirect_bits_reg, s1_redirect_valid_reg) 138 val s2_redirect_valid_reg = RegNext(s1_redirect_valid_reg && !io.flush, init = false.B) 139 140 io.stage3Redirect.valid := s2_redirect_valid_reg 141 io.stage3Redirect.bits := s2_redirect_bits_reg 142 143 // get pc from ftq 144 // valid only if redirect is caused by load violation 145 // store_pc is used to update store set 146 val store_pc = io.memPredPcRead(s1_redirect_bits_reg.stFtqIdx, s1_redirect_bits_reg.stFtqOffset) 147 148 // update load violation predictor if load violation redirect triggered 149 io.memPredUpdate.valid := RegNext(s1_isReplay && s1_redirect_valid_reg, init = false.B) 150 // update wait table 151 io.memPredUpdate.waddr := RegNext(XORFold(real_pc(VAddrBits-1, 1), MemPredPCWidth)) 152 io.memPredUpdate.wdata := true.B 153 // update store set 154 io.memPredUpdate.ldpc := RegNext(XORFold(real_pc(VAddrBits-1, 1), MemPredPCWidth)) 155 // store pc is ready 1 cycle after s1_isReplay is judged 156 io.memPredUpdate.stpc := XORFold(store_pc(VAddrBits-1, 1), MemPredPCWidth) 157 158 // // recover runahead checkpoint if redirect 159 // if (!env.FPGAPlatform) { 160 // val runahead_redirect = Module(new DifftestRunaheadRedirectEvent) 161 // runahead_redirect.io.clock := clock 162 // runahead_redirect.io.coreid := io.hartId 163 // runahead_redirect.io.valid := io.stage3Redirect.valid 164 // runahead_redirect.io.pc := s2_pc // for debug only 165 // runahead_redirect.io.target_pc := s2_target // for debug only 166 // runahead_redirect.io.checkpoint_id := io.stage3Redirect.bits.debug_runahead_checkpoint_id // make sure it is right 167 // } 168} 169 170class CtrlBlock(dpExuConfigs: Seq[Seq[Seq[ExuConfig]]])(implicit p: Parameters) extends LazyModule 171 with HasWritebackSink with HasWritebackSource { 172 val rob = LazyModule(new Rob) 173 174 override def addWritebackSink(source: Seq[HasWritebackSource], index: Option[Seq[Int]]): HasWritebackSink = { 175 rob.addWritebackSink(Seq(this), Some(Seq(writebackSinks.length))) 176 super.addWritebackSink(source, index) 177 } 178 179 // duplicated dispatch2 here to avoid cross-module timing path loop. 180 val dispatch2 = dpExuConfigs.map(c => LazyModule(new Dispatch2Rs(c))) 181 lazy val module = new CtrlBlockImp(this) 182 183 override lazy val writebackSourceParams: Seq[WritebackSourceParams] = { 184 writebackSinksParams 185 } 186 override lazy val writebackSourceImp: HasWritebackSourceImp = module 187 188 override def generateWritebackIO( 189 thisMod: Option[HasWritebackSource] = None, 190 thisModImp: Option[HasWritebackSourceImp] = None 191 ): Unit = { 192 module.io.writeback.zip(writebackSinksImp(thisMod, thisModImp)).foreach(x => x._1 := x._2) 193 } 194} 195 196class CtrlBlockImp(outer: CtrlBlock)(implicit p: Parameters) extends LazyModuleImp(outer) 197 with HasXSParameter 198 with HasCircularQueuePtrHelper 199 with HasWritebackSourceImp 200 with HasPerfEvents 201{ 202 val writebackLengths = outer.writebackSinksParams.map(_.length) 203 204 val io = IO(new Bundle { 205 val hartId = Input(UInt(8.W)) 206 val cpu_halt = Output(Bool()) 207 val frontend = Flipped(new FrontendToCtrlIO) 208 // to exu blocks 209 val allocPregs = Vec(RenameWidth, Output(new ResetPregStateReq)) 210 val dispatch = Vec(3*dpParams.IntDqDeqWidth, DecoupledIO(new MicroOp)) 211 val rsReady = Vec(outer.dispatch2.map(_.module.io.out.length).sum, Input(Bool())) 212 val enqLsq = Flipped(new LsqEnqIO) 213 val lqCancelCnt = Input(UInt(log2Up(LoadQueueSize + 1).W)) 214 val sqCancelCnt = Input(UInt(log2Up(StoreQueueSize + 1).W)) 215 val sqDeq = Input(UInt(log2Ceil(EnsbufferWidth + 1).W)) 216 // from int block 217 val exuRedirect = Vec(exuParameters.AluCnt + exuParameters.JmpCnt, Flipped(ValidIO(new ExuOutput))) 218 val stIn = Vec(exuParameters.StuCnt, Flipped(ValidIO(new ExuInput))) 219 val memoryViolation = Flipped(ValidIO(new Redirect)) 220 val jumpPc = Output(UInt(VAddrBits.W)) 221 val jalr_target = Output(UInt(VAddrBits.W)) 222 val robio = new Bundle { 223 // to int block 224 val toCSR = new RobCSRIO 225 val exception = ValidIO(new ExceptionInfo) 226 // to mem block 227 val lsq = new RobLsqIO 228 } 229 val csrCtrl = Input(new CustomCSRCtrlIO) 230 val perfInfo = Output(new Bundle{ 231 val ctrlInfo = new Bundle { 232 val robFull = Input(Bool()) 233 val intdqFull = Input(Bool()) 234 val fpdqFull = Input(Bool()) 235 val lsdqFull = Input(Bool()) 236 } 237 }) 238 val writeback = MixedVec(writebackLengths.map(num => Vec(num, Flipped(ValidIO(new ExuOutput))))) 239 // redirect out 240 val redirect = ValidIO(new Redirect) 241 val debug_int_rat = Vec(32, Output(UInt(PhyRegIdxWidth.W))) 242 val debug_fp_rat = Vec(32, Output(UInt(PhyRegIdxWidth.W))) 243 }) 244 245 override def writebackSource: Option[Seq[Seq[Valid[ExuOutput]]]] = { 246 Some(io.writeback.map(writeback => { 247 val exuOutput = WireInit(writeback) 248 val timer = GTimer() 249 for ((wb_next, wb) <- exuOutput.zip(writeback)) { 250 wb_next.valid := RegNext(wb.valid && !wb.bits.uop.robIdx.needFlush(Seq(stage2Redirect, redirectForExu))) 251 wb_next.bits := RegNext(wb.bits) 252 wb_next.bits.uop.debugInfo.writebackTime := timer 253 } 254 exuOutput 255 })) 256 } 257 258 val decode = Module(new DecodeStage) 259 val fusionDecoder = Module(new FusionDecoder) 260 val rat = Module(new RenameTableWrapper) 261 val ssit = Module(new SSIT) 262 val waittable = Module(new WaitTable) 263 val rename = Module(new Rename) 264 val dispatch = Module(new Dispatch) 265 val intDq = Module(new DispatchQueue(dpParams.IntDqSize, RenameWidth, dpParams.IntDqDeqWidth)) 266 val fpDq = Module(new DispatchQueue(dpParams.FpDqSize, RenameWidth, dpParams.FpDqDeqWidth)) 267 val lsDq = Module(new DispatchQueue(dpParams.LsDqSize, RenameWidth, dpParams.LsDqDeqWidth)) 268 val redirectGen = Module(new RedirectGenerator) 269 // jumpPc (2) + redirects (1) + loadPredUpdate (1) + jalr_target (1) + robFlush (1) 270 val pcMem = Module(new SyncDataModuleTemplate(new Ftq_RF_Components, FtqSize, 6, 1, "BackendPC")) 271 val rob = outer.rob.module 272 273 pcMem.io.wen.head := RegNext(io.frontend.fromFtq.pc_mem_wen) 274 pcMem.io.waddr.head := RegNext(io.frontend.fromFtq.pc_mem_waddr) 275 pcMem.io.wdata.head := RegNext(io.frontend.fromFtq.pc_mem_wdata) 276 277 278 pcMem.io.raddr.last := rob.io.flushOut.bits.ftqIdx.value 279 val flushPC = pcMem.io.rdata.last.getPc(RegNext(rob.io.flushOut.bits.ftqOffset)) 280 281 val flushRedirect = Wire(Valid(new Redirect)) 282 flushRedirect.valid := RegNext(rob.io.flushOut.valid) 283 flushRedirect.bits := RegEnable(rob.io.flushOut.bits, rob.io.flushOut.valid) 284 285 val flushRedirectReg = Wire(Valid(new Redirect)) 286 flushRedirectReg.valid := RegNext(flushRedirect.valid, init = false.B) 287 flushRedirectReg.bits := RegEnable(flushRedirect.bits, flushRedirect.valid) 288 289 val stage2Redirect = Mux(flushRedirect.valid, flushRedirect, redirectGen.io.stage2Redirect) 290 // Redirect will be RegNext at ExuBlocks. 291 val redirectForExu = RegNextWithEnable(stage2Redirect) 292 293 val exuRedirect = io.exuRedirect.map(x => { 294 val valid = x.valid && x.bits.redirectValid 295 val killedByOlder = x.bits.uop.robIdx.needFlush(Seq(stage2Redirect, redirectForExu)) 296 val delayed = Wire(Valid(new ExuOutput)) 297 delayed.valid := RegNext(valid && !killedByOlder, init = false.B) 298 delayed.bits := RegEnable(x.bits, x.valid) 299 delayed 300 }) 301 val loadReplay = Wire(Valid(new Redirect)) 302 loadReplay.valid := RegNext(io.memoryViolation.valid && 303 !io.memoryViolation.bits.robIdx.needFlush(Seq(stage2Redirect, redirectForExu)), 304 init = false.B 305 ) 306 loadReplay.bits := RegEnable(io.memoryViolation.bits, io.memoryViolation.valid) 307 pcMem.io.raddr(2) := redirectGen.io.redirectPcRead.ptr.value 308 redirectGen.io.redirectPcRead.data := pcMem.io.rdata(2).getPc(RegNext(redirectGen.io.redirectPcRead.offset)) 309 pcMem.io.raddr(3) := redirectGen.io.memPredPcRead.ptr.value 310 redirectGen.io.memPredPcRead.data := pcMem.io.rdata(3).getPc(RegNext(redirectGen.io.memPredPcRead.offset)) 311 redirectGen.io.hartId := io.hartId 312 redirectGen.io.exuMispredict <> exuRedirect 313 redirectGen.io.loadReplay <> loadReplay 314 redirectGen.io.flush := flushRedirect.valid 315 316 val frontendFlushValid = DelayN(flushRedirect.valid, 5) 317 val frontendFlushBits = RegEnable(flushRedirect.bits, flushRedirect.valid) 318 // When ROB commits an instruction with a flush, we notify the frontend of the flush without the commit. 319 // Flushes to frontend may be delayed by some cycles and commit before flush causes errors. 320 // Thus, we make all flush reasons to behave the same as exceptions for frontend. 321 for (i <- 0 until CommitWidth) { 322 // why flushOut: instructions with flushPipe are not commited to frontend 323 // If we commit them to frontend, it will cause flush after commit, which is not acceptable by frontend. 324 val is_commit = rob.io.commits.commitValid(i) && rob.io.commits.isCommit && !rob.io.flushOut.valid 325 io.frontend.toFtq.rob_commits(i).valid := RegNext(is_commit) 326 io.frontend.toFtq.rob_commits(i).bits := RegEnable(rob.io.commits.info(i), is_commit) 327 } 328 io.frontend.toFtq.redirect.valid := frontendFlushValid || redirectGen.io.stage2Redirect.valid 329 io.frontend.toFtq.redirect.bits := Mux(frontendFlushValid, frontendFlushBits, redirectGen.io.stage2Redirect.bits) 330 // Be careful here: 331 // T0: flushRedirect.valid, exception.valid 332 // T1: csr.redirect.valid 333 // T2: csr.exception.valid 334 // T3: csr.trapTarget 335 // T4: ctrlBlock.trapTarget 336 // T5: io.frontend.toFtq.stage2Redirect.valid 337 val pc_from_csr = io.robio.toCSR.isXRet || DelayN(rob.io.exception.valid, 4) 338 val rob_flush_pc = RegEnable(Mux(flushRedirect.bits.flushItself(), 339 flushPC, // replay inst 340 flushPC + 4.U // flush pipe 341 ), flushRedirect.valid) 342 val flushTarget = Mux(pc_from_csr, io.robio.toCSR.trapTarget, rob_flush_pc) 343 when (frontendFlushValid) { 344 io.frontend.toFtq.redirect.bits.level := RedirectLevel.flush 345 io.frontend.toFtq.redirect.bits.cfiUpdate.target := RegNext(flushTarget) 346 } 347 348 349 val pendingRedirect = RegInit(false.B) 350 when (stage2Redirect.valid) { 351 pendingRedirect := true.B 352 }.elsewhen (RegNext(io.frontend.toFtq.redirect.valid)) { 353 pendingRedirect := false.B 354 } 355 356 if (env.EnableTopDown) { 357 val stage2Redirect_valid_when_pending = pendingRedirect && stage2Redirect.valid 358 359 val stage2_redirect_cycles = RegInit(false.B) // frontend_bound->fetch_lantency->stage2_redirect 360 val MissPredPending = RegInit(false.B); val branch_resteers_cycles = RegInit(false.B) // frontend_bound->fetch_lantency->stage2_redirect->branch_resteers 361 val RobFlushPending = RegInit(false.B); val robFlush_bubble_cycles = RegInit(false.B) // frontend_bound->fetch_lantency->stage2_redirect->robflush_bubble 362 val LdReplayPending = RegInit(false.B); val ldReplay_bubble_cycles = RegInit(false.B) // frontend_bound->fetch_lantency->stage2_redirect->ldReplay_bubble 363 364 when(redirectGen.io.isMisspreRedirect) { MissPredPending := true.B } 365 when(flushRedirect.valid) { RobFlushPending := true.B } 366 when(redirectGen.io.loadReplay.valid) { LdReplayPending := true.B } 367 368 when (RegNext(io.frontend.toFtq.redirect.valid)) { 369 when(pendingRedirect) { stage2_redirect_cycles := true.B } 370 when(MissPredPending) { MissPredPending := false.B; branch_resteers_cycles := true.B } 371 when(RobFlushPending) { RobFlushPending := false.B; robFlush_bubble_cycles := true.B } 372 when(LdReplayPending) { LdReplayPending := false.B; ldReplay_bubble_cycles := true.B } 373 } 374 375 when(VecInit(decode.io.out.map(x => x.valid)).asUInt.orR){ 376 when(stage2_redirect_cycles) { stage2_redirect_cycles := false.B } 377 when(branch_resteers_cycles) { branch_resteers_cycles := false.B } 378 when(robFlush_bubble_cycles) { robFlush_bubble_cycles := false.B } 379 when(ldReplay_bubble_cycles) { ldReplay_bubble_cycles := false.B } 380 } 381 382 XSPerfAccumulate("stage2_redirect_cycles", stage2_redirect_cycles) 383 XSPerfAccumulate("branch_resteers_cycles", branch_resteers_cycles) 384 XSPerfAccumulate("robFlush_bubble_cycles", robFlush_bubble_cycles) 385 XSPerfAccumulate("ldReplay_bubble_cycles", ldReplay_bubble_cycles) 386 XSPerfAccumulate("s2Redirect_pend_cycles", stage2Redirect_valid_when_pending) 387 } 388 389 decode.io.in <> io.frontend.cfVec 390 decode.io.csrCtrl := RegNext(io.csrCtrl) 391 decode.io.intRat <> rat.io.intReadPorts 392 decode.io.fpRat <> rat.io.fpReadPorts 393 394 // memory dependency predict 395 // when decode, send fold pc to mdp 396 for (i <- 0 until DecodeWidth) { 397 val mdp_foldpc = Mux( 398 decode.io.out(i).fire, 399 decode.io.in(i).bits.foldpc, 400 rename.io.in(i).bits.cf.foldpc 401 ) 402 ssit.io.raddr(i) := mdp_foldpc 403 waittable.io.raddr(i) := mdp_foldpc 404 } 405 // currently, we only update mdp info when isReplay 406 ssit.io.update <> RegNext(redirectGen.io.memPredUpdate) 407 ssit.io.csrCtrl := RegNext(io.csrCtrl) 408 waittable.io.update <> RegNext(redirectGen.io.memPredUpdate) 409 waittable.io.csrCtrl := RegNext(io.csrCtrl) 410 411 // LFST lookup and update 412 val lfst = Module(new LFST) 413 lfst.io.redirect <> RegNext(io.redirect) 414 lfst.io.storeIssue <> RegNext(io.stIn) 415 lfst.io.csrCtrl <> RegNext(io.csrCtrl) 416 lfst.io.dispatch <> dispatch.io.lfst 417 418 rat.io.redirect := stage2Redirect.valid 419 rat.io.robCommits := rob.io.commits 420 rat.io.intRenamePorts := rename.io.intRenamePorts 421 rat.io.fpRenamePorts := rename.io.fpRenamePorts 422 rat.io.debug_int_rat <> io.debug_int_rat 423 rat.io.debug_fp_rat <> io.debug_fp_rat 424 425 // pipeline between decode and rename 426 for (i <- 0 until RenameWidth) { 427 // fusion decoder 428 val decodeHasException = io.frontend.cfVec(i).bits.exceptionVec(instrPageFault) || io.frontend.cfVec(i).bits.exceptionVec(instrAccessFault) 429 val disableFusion = decode.io.csrCtrl.singlestep 430 fusionDecoder.io.in(i).valid := io.frontend.cfVec(i).valid && !(decodeHasException || disableFusion) 431 fusionDecoder.io.in(i).bits := io.frontend.cfVec(i).bits.instr 432 if (i > 0) { 433 fusionDecoder.io.inReady(i - 1) := decode.io.out(i).ready 434 } 435 436 // Pipeline 437 val renamePipe = PipelineNext(decode.io.out(i), rename.io.in(i).ready, 438 stage2Redirect.valid || pendingRedirect) 439 renamePipe.ready := rename.io.in(i).ready 440 rename.io.in(i).valid := renamePipe.valid && !fusionDecoder.io.clear(i) 441 rename.io.in(i).bits := renamePipe.bits 442 rename.io.intReadPorts(i) := rat.io.intReadPorts(i).map(_.data) 443 rename.io.fpReadPorts(i) := rat.io.fpReadPorts(i).map(_.data) 444 rename.io.waittable(i) := RegEnable(waittable.io.rdata(i), decode.io.out(i).fire) 445 446 if (i < RenameWidth - 1) { 447 // fusion decoder sees the raw decode info 448 fusionDecoder.io.dec(i) := renamePipe.bits.ctrl 449 rename.io.fusionInfo(i) := fusionDecoder.io.info(i) 450 451 // update the first RenameWidth - 1 instructions 452 decode.io.fusion(i) := fusionDecoder.io.out(i).valid && rename.io.out(i).fire 453 when (fusionDecoder.io.out(i).valid) { 454 fusionDecoder.io.out(i).bits.update(rename.io.in(i).bits.ctrl) 455 // TODO: remove this dirty code for ftq update 456 val sameFtqPtr = rename.io.in(i).bits.cf.ftqPtr.value === rename.io.in(i + 1).bits.cf.ftqPtr.value 457 val ftqOffset0 = rename.io.in(i).bits.cf.ftqOffset 458 val ftqOffset1 = rename.io.in(i + 1).bits.cf.ftqOffset 459 val ftqOffsetDiff = ftqOffset1 - ftqOffset0 460 val cond1 = sameFtqPtr && ftqOffsetDiff === 1.U 461 val cond2 = sameFtqPtr && ftqOffsetDiff === 2.U 462 val cond3 = !sameFtqPtr && ftqOffset1 === 0.U 463 val cond4 = !sameFtqPtr && ftqOffset1 === 1.U 464 rename.io.in(i).bits.ctrl.commitType := Mux(cond1, 4.U, Mux(cond2, 5.U, Mux(cond3, 6.U, 7.U))) 465 XSError(!cond1 && !cond2 && !cond3 && !cond4, p"new condition $sameFtqPtr $ftqOffset0 $ftqOffset1\n") 466 } 467 } 468 } 469 470 rename.io.redirect <> stage2Redirect 471 rename.io.robCommits <> rob.io.commits 472 rename.io.ssit <> ssit.io.rdata 473 rename.io.debug_int_rat <> rat.io.debug_int_rat 474 rename.io.debug_fp_rat <> rat.io.debug_fp_rat 475 476 // pipeline between rename and dispatch 477 for (i <- 0 until RenameWidth) { 478 PipelineConnect(rename.io.out(i), dispatch.io.fromRename(i), dispatch.io.recv(i), stage2Redirect.valid) 479 } 480 481 dispatch.io.hartId := io.hartId 482 dispatch.io.redirect <> stage2Redirect 483 dispatch.io.enqRob <> rob.io.enq 484 dispatch.io.toIntDq <> intDq.io.enq 485 dispatch.io.toFpDq <> fpDq.io.enq 486 dispatch.io.toLsDq <> lsDq.io.enq 487 dispatch.io.allocPregs <> io.allocPregs 488 dispatch.io.singleStep := RegNext(io.csrCtrl.singlestep) 489 490 intDq.io.redirect <> redirectForExu 491 fpDq.io.redirect <> redirectForExu 492 lsDq.io.redirect <> redirectForExu 493 494 val dpqOut = intDq.io.deq ++ lsDq.io.deq ++ fpDq.io.deq 495 io.dispatch <> dpqOut 496 497 for (dp2 <- outer.dispatch2.map(_.module.io)) { 498 dp2.redirect := redirectForExu 499 if (dp2.readFpState.isDefined) { 500 dp2.readFpState.get := DontCare 501 } 502 if (dp2.readIntState.isDefined) { 503 dp2.readIntState.get := DontCare 504 } 505 if (dp2.enqLsq.isDefined) { 506 val lsqCtrl = Module(new LsqEnqCtrl) 507 lsqCtrl.io.redirect <> redirectForExu 508 lsqCtrl.io.enq <> dp2.enqLsq.get 509 lsqCtrl.io.lcommit := rob.io.lsq.lcommit 510 lsqCtrl.io.scommit := io.sqDeq 511 lsqCtrl.io.lqCancelCnt := io.lqCancelCnt 512 lsqCtrl.io.sqCancelCnt := io.sqCancelCnt 513 io.enqLsq <> lsqCtrl.io.enqLsq 514 } 515 } 516 for ((dp2In, i) <- outer.dispatch2.flatMap(_.module.io.in).zipWithIndex) { 517 dp2In.valid := dpqOut(i).valid 518 dp2In.bits := dpqOut(i).bits 519 // override ready here to avoid cross-module loop path 520 dpqOut(i).ready := dp2In.ready 521 } 522 for ((dp2Out, i) <- outer.dispatch2.flatMap(_.module.io.out).zipWithIndex) { 523 dp2Out.ready := io.rsReady(i) 524 } 525 526 val pingpong = RegInit(false.B) 527 pingpong := !pingpong 528 pcMem.io.raddr(0) := intDq.io.deqNext(0).cf.ftqPtr.value 529 pcMem.io.raddr(1) := intDq.io.deqNext(2).cf.ftqPtr.value 530 val jumpPcRead0 = pcMem.io.rdata(0).getPc(RegNext(intDq.io.deqNext(0).cf.ftqOffset)) 531 val jumpPcRead1 = pcMem.io.rdata(1).getPc(RegNext(intDq.io.deqNext(2).cf.ftqOffset)) 532 io.jumpPc := Mux(pingpong && (exuParameters.AluCnt > 2).B, jumpPcRead1, jumpPcRead0) 533 val jalrTargetReadPtr = Mux(pingpong && (exuParameters.AluCnt > 2).B, 534 io.dispatch(2).bits.cf.ftqPtr, 535 io.dispatch(0).bits.cf.ftqPtr) 536 pcMem.io.raddr(4) := (jalrTargetReadPtr + 1.U).value 537 val jalrTargetRead = pcMem.io.rdata(4).startAddr 538 val read_from_newest_entry = RegNext(jalrTargetReadPtr) === RegNext(io.frontend.fromFtq.newest_entry_ptr) 539 io.jalr_target := Mux(read_from_newest_entry, RegNext(io.frontend.fromFtq.newest_entry_target), jalrTargetRead) 540 541 rob.io.hartId := io.hartId 542 io.cpu_halt := DelayN(rob.io.cpu_halt, 5) 543 rob.io.redirect <> stage2Redirect 544 outer.rob.generateWritebackIO(Some(outer), Some(this)) 545 546 io.redirect <> stage2Redirect 547 548 // rob to int block 549 io.robio.toCSR <> rob.io.csr 550 io.robio.toCSR.perfinfo.retiredInstr <> RegNext(rob.io.csr.perfinfo.retiredInstr) 551 io.robio.exception := rob.io.exception 552 io.robio.exception.bits.uop.cf.pc := flushPC 553 554 // rob to mem block 555 io.robio.lsq <> rob.io.lsq 556 557 io.perfInfo.ctrlInfo.robFull := RegNext(rob.io.robFull) 558 io.perfInfo.ctrlInfo.intdqFull := RegNext(intDq.io.dqFull) 559 io.perfInfo.ctrlInfo.fpdqFull := RegNext(fpDq.io.dqFull) 560 io.perfInfo.ctrlInfo.lsdqFull := RegNext(lsDq.io.dqFull) 561 562 val pfevent = Module(new PFEvent) 563 pfevent.io.distribute_csr := RegNext(io.csrCtrl.distribute_csr) 564 val csrevents = pfevent.io.hpmevent.slice(8,16) 565 566 val perfinfo = IO(new Bundle(){ 567 val perfEventsRs = Input(Vec(NumRs, new PerfEvent)) 568 val perfEventsEu0 = Input(Vec(6, new PerfEvent)) 569 val perfEventsEu1 = Input(Vec(6, new PerfEvent)) 570 }) 571 572 val allPerfEvents = Seq(decode, rename, dispatch, intDq, fpDq, lsDq, rob).flatMap(_.getPerf) 573 val hpmEvents = allPerfEvents ++ perfinfo.perfEventsEu0 ++ perfinfo.perfEventsEu1 ++ perfinfo.perfEventsRs 574 val perfEvents = HPerfMonitor(csrevents, hpmEvents).getPerfEvents 575 generatePerfEvent() 576} 577