1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 23import utils._ 24import xiangshan._ 25import xiangshan.backend.decode.{DecodeStage, FusionDecoder, ImmUnion} 26import xiangshan.backend.dispatch.{Dispatch, Dispatch2Rs, DispatchQueue} 27import xiangshan.backend.fu.PFEvent 28import xiangshan.backend.rename.{Rename, RenameTableWrapper} 29import xiangshan.backend.rob.{Rob, RobCSRIO, RobLsqIO} 30import xiangshan.frontend.{FtqRead, Ftq_RF_Components} 31import xiangshan.mem.mdp.{LFST, SSIT, WaitTable} 32import xiangshan.ExceptionNO._ 33import xiangshan.backend.exu.ExuConfig 34import xiangshan.mem.{LsqEnqCtrl, LsqEnqIO} 35 36class CtrlToFtqIO(implicit p: Parameters) extends XSBundle { 37 def numRedirect = exuParameters.JmpCnt + exuParameters.AluCnt 38 val rob_commits = Vec(CommitWidth, Valid(new RobCommitInfo)) 39 val redirect = Valid(new Redirect) 40} 41 42class RedirectGenerator(implicit p: Parameters) extends XSModule 43 with HasCircularQueuePtrHelper { 44 45 class RedirectGeneratorIO(implicit p: Parameters) extends XSBundle { 46 def numRedirect = exuParameters.JmpCnt + exuParameters.AluCnt 47 val hartId = Input(UInt(8.W)) 48 val exuMispredict = Vec(numRedirect, Flipped(ValidIO(new ExuOutput))) 49 val loadReplay = Flipped(ValidIO(new Redirect)) 50 val flush = Input(Bool()) 51 val redirectPcRead = new FtqRead(UInt(VAddrBits.W)) 52 val stage2Redirect = ValidIO(new Redirect) 53 val stage3Redirect = ValidIO(new Redirect) 54 val memPredUpdate = Output(new MemPredUpdateReq) 55 val memPredPcRead = new FtqRead(UInt(VAddrBits.W)) // read req send form stage 2 56 } 57 val io = IO(new RedirectGeneratorIO) 58 /* 59 LoadQueue Jump ALU0 ALU1 ALU2 ALU3 exception Stage1 60 | | | | | | | 61 |============= reg & compare =====| | ======== 62 | | 63 | | 64 | | Stage2 65 | | 66 redirect (flush backend) | 67 | | 68 === reg === | ======== 69 | | 70 |----- mux (exception first) -----| Stage3 71 | 72 redirect (send to frontend) 73 */ 74 def selectOldestRedirect(xs: Seq[Valid[Redirect]]): Vec[Bool] = { 75 val compareVec = (0 until xs.length).map(i => (0 until i).map(j => isAfter(xs(j).bits.robIdx, xs(i).bits.robIdx))) 76 val resultOnehot = VecInit((0 until xs.length).map(i => Cat((0 until xs.length).map(j => 77 (if (j < i) !xs(j).valid || compareVec(i)(j) 78 else if (j == i) xs(i).valid 79 else !xs(j).valid || !compareVec(j)(i)) 80 )).andR)) 81 resultOnehot 82 } 83 84 def getRedirect(exuOut: Valid[ExuOutput]): ValidIO[Redirect] = { 85 val redirect = Wire(Valid(new Redirect)) 86 redirect.valid := exuOut.valid && exuOut.bits.redirect.cfiUpdate.isMisPred 87 redirect.bits := exuOut.bits.redirect 88 redirect 89 } 90 91 val jumpOut = io.exuMispredict.head 92 val allRedirect = VecInit(io.exuMispredict.map(x => getRedirect(x)) :+ io.loadReplay) 93 val oldestOneHot = selectOldestRedirect(allRedirect) 94 val needFlushVec = VecInit(allRedirect.map(_.bits.robIdx.needFlush(io.stage2Redirect) || io.flush)) 95 val oldestValid = VecInit(oldestOneHot.zip(needFlushVec).map{ case (v, f) => v && !f }).asUInt.orR 96 val oldestExuOutput = Mux1H(io.exuMispredict.indices.map(oldestOneHot), io.exuMispredict) 97 val oldestRedirect = Mux1H(oldestOneHot, allRedirect) 98 io.redirectPcRead.ptr := oldestRedirect.bits.ftqIdx 99 io.redirectPcRead.offset := oldestRedirect.bits.ftqOffset 100 101 val s1_jumpTarget = RegEnable(jumpOut.bits.redirect.cfiUpdate.target, jumpOut.valid) 102 val s1_imm12_reg = RegNext(oldestExuOutput.bits.uop.ctrl.imm(11, 0)) 103 val s1_pd = RegNext(oldestExuOutput.bits.uop.cf.pd) 104 val s1_redirect_bits_reg = RegNext(oldestRedirect.bits) 105 val s1_redirect_valid_reg = RegNext(oldestValid) 106 val s1_redirect_onehot = RegNext(oldestOneHot) 107 108 // stage1 -> stage2 109 io.stage2Redirect.valid := s1_redirect_valid_reg && !io.flush 110 io.stage2Redirect.bits := s1_redirect_bits_reg 111 112 val s1_isReplay = s1_redirect_onehot.last 113 val s1_isJump = s1_redirect_onehot.head 114 val real_pc = io.redirectPcRead.data 115 val brTarget = real_pc + SignExt(ImmUnion.B.toImm32(s1_imm12_reg), XLEN) 116 val snpc = real_pc + Mux(s1_pd.isRVC, 2.U, 4.U) 117 val target = Mux(s1_isReplay, 118 real_pc, // replay from itself 119 Mux(s1_redirect_bits_reg.cfiUpdate.taken, 120 Mux(s1_isJump, s1_jumpTarget, brTarget), 121 snpc 122 ) 123 ) 124 125 val stage2CfiUpdate = io.stage2Redirect.bits.cfiUpdate 126 stage2CfiUpdate.pc := real_pc 127 stage2CfiUpdate.pd := s1_pd 128 // stage2CfiUpdate.predTaken := s1_redirect_bits_reg.cfiUpdate.predTaken 129 stage2CfiUpdate.target := target 130 // stage2CfiUpdate.taken := s1_redirect_bits_reg.cfiUpdate.taken 131 // stage2CfiUpdate.isMisPred := s1_redirect_bits_reg.cfiUpdate.isMisPred 132 133 val s2_target = RegEnable(target, s1_redirect_valid_reg) 134 val s2_pc = RegEnable(real_pc, s1_redirect_valid_reg) 135 val s2_redirect_bits_reg = RegEnable(s1_redirect_bits_reg, s1_redirect_valid_reg) 136 val s2_redirect_valid_reg = RegNext(s1_redirect_valid_reg && !io.flush, init = false.B) 137 138 io.stage3Redirect.valid := s2_redirect_valid_reg 139 io.stage3Redirect.bits := s2_redirect_bits_reg 140 141 // get pc from ftq 142 // valid only if redirect is caused by load violation 143 // store_pc is used to update store set 144 val store_pc = io.memPredPcRead(s1_redirect_bits_reg.stFtqIdx, s1_redirect_bits_reg.stFtqOffset) 145 146 // update load violation predictor if load violation redirect triggered 147 io.memPredUpdate.valid := RegNext(s1_isReplay && s1_redirect_valid_reg, init = false.B) 148 // update wait table 149 io.memPredUpdate.waddr := RegNext(XORFold(real_pc(VAddrBits-1, 1), MemPredPCWidth)) 150 io.memPredUpdate.wdata := true.B 151 // update store set 152 io.memPredUpdate.ldpc := RegNext(XORFold(real_pc(VAddrBits-1, 1), MemPredPCWidth)) 153 // store pc is ready 1 cycle after s1_isReplay is judged 154 io.memPredUpdate.stpc := XORFold(store_pc(VAddrBits-1, 1), MemPredPCWidth) 155 156 // // recover runahead checkpoint if redirect 157 // if (!env.FPGAPlatform) { 158 // val runahead_redirect = Module(new DifftestRunaheadRedirectEvent) 159 // runahead_redirect.io.clock := clock 160 // runahead_redirect.io.coreid := io.hartId 161 // runahead_redirect.io.valid := io.stage3Redirect.valid 162 // runahead_redirect.io.pc := s2_pc // for debug only 163 // runahead_redirect.io.target_pc := s2_target // for debug only 164 // runahead_redirect.io.checkpoint_id := io.stage3Redirect.bits.debug_runahead_checkpoint_id // make sure it is right 165 // } 166} 167 168class CtrlBlock(dpExuConfigs: Seq[Seq[Seq[ExuConfig]]])(implicit p: Parameters) extends LazyModule 169 with HasWritebackSink with HasWritebackSource { 170 val rob = LazyModule(new Rob) 171 172 override def addWritebackSink(source: Seq[HasWritebackSource], index: Option[Seq[Int]]): HasWritebackSink = { 173 rob.addWritebackSink(Seq(this), Some(Seq(writebackSinks.length))) 174 super.addWritebackSink(source, index) 175 } 176 177 // duplicated dispatch2 here to avoid cross-module timing path loop. 178 val dispatch2 = dpExuConfigs.map(c => LazyModule(new Dispatch2Rs(c))) 179 lazy val module = new CtrlBlockImp(this) 180 181 override lazy val writebackSourceParams: Seq[WritebackSourceParams] = { 182 writebackSinksParams 183 } 184 override lazy val writebackSourceImp: HasWritebackSourceImp = module 185 186 override def generateWritebackIO( 187 thisMod: Option[HasWritebackSource] = None, 188 thisModImp: Option[HasWritebackSourceImp] = None 189 ): Unit = { 190 module.io.writeback.zip(writebackSinksImp(thisMod, thisModImp)).foreach(x => x._1 := x._2) 191 } 192} 193 194class CtrlBlockImp(outer: CtrlBlock)(implicit p: Parameters) extends LazyModuleImp(outer) 195 with HasXSParameter 196 with HasCircularQueuePtrHelper 197 with HasWritebackSourceImp 198 with HasPerfEvents 199{ 200 val writebackLengths = outer.writebackSinksParams.map(_.length) 201 202 val io = IO(new Bundle { 203 val hartId = Input(UInt(8.W)) 204 val cpu_halt = Output(Bool()) 205 val frontend = Flipped(new FrontendToCtrlIO) 206 // to exu blocks 207 val allocPregs = Vec(RenameWidth, Output(new ResetPregStateReq)) 208 val dispatch = Vec(3*dpParams.IntDqDeqWidth, DecoupledIO(new MicroOp)) 209 val rsReady = Vec(outer.dispatch2.map(_.module.io.out.length).sum, Input(Bool())) 210 val enqLsq = Flipped(new LsqEnqIO) 211 val lqCancelCnt = Input(UInt(log2Up(LoadQueueSize + 1).W)) 212 val sqCancelCnt = Input(UInt(log2Up(StoreQueueSize + 1).W)) 213 val sqDeq = Input(UInt(log2Ceil(EnsbufferWidth + 1).W)) 214 // from int block 215 val exuRedirect = Vec(exuParameters.AluCnt + exuParameters.JmpCnt, Flipped(ValidIO(new ExuOutput))) 216 val stIn = Vec(exuParameters.StuCnt, Flipped(ValidIO(new ExuInput))) 217 val memoryViolation = Flipped(ValidIO(new Redirect)) 218 val jumpPc = Output(UInt(VAddrBits.W)) 219 val jalr_target = Output(UInt(VAddrBits.W)) 220 val robio = new Bundle { 221 // to int block 222 val toCSR = new RobCSRIO 223 val exception = ValidIO(new ExceptionInfo) 224 // to mem block 225 val lsq = new RobLsqIO 226 } 227 val csrCtrl = Input(new CustomCSRCtrlIO) 228 val perfInfo = Output(new Bundle{ 229 val ctrlInfo = new Bundle { 230 val robFull = Input(Bool()) 231 val intdqFull = Input(Bool()) 232 val fpdqFull = Input(Bool()) 233 val lsdqFull = Input(Bool()) 234 } 235 }) 236 val writeback = MixedVec(writebackLengths.map(num => Vec(num, Flipped(ValidIO(new ExuOutput))))) 237 // redirect out 238 val redirect = ValidIO(new Redirect) 239 val debug_int_rat = Vec(32, Output(UInt(PhyRegIdxWidth.W))) 240 val debug_fp_rat = Vec(32, Output(UInt(PhyRegIdxWidth.W))) 241 }) 242 243 override def writebackSource: Option[Seq[Seq[Valid[ExuOutput]]]] = { 244 Some(io.writeback.map(writeback => { 245 val exuOutput = WireInit(writeback) 246 val timer = GTimer() 247 for ((wb_next, wb) <- exuOutput.zip(writeback)) { 248 wb_next.valid := RegNext(wb.valid && !wb.bits.uop.robIdx.needFlush(Seq(stage2Redirect, redirectForExu))) 249 wb_next.bits := RegNext(wb.bits) 250 wb_next.bits.uop.debugInfo.writebackTime := timer 251 } 252 exuOutput 253 })) 254 } 255 256 val decode = Module(new DecodeStage) 257 val fusionDecoder = Module(new FusionDecoder) 258 val rat = Module(new RenameTableWrapper) 259 val ssit = Module(new SSIT) 260 val waittable = Module(new WaitTable) 261 val rename = Module(new Rename) 262 val dispatch = Module(new Dispatch) 263 val intDq = Module(new DispatchQueue(dpParams.IntDqSize, RenameWidth, dpParams.IntDqDeqWidth)) 264 val fpDq = Module(new DispatchQueue(dpParams.FpDqSize, RenameWidth, dpParams.FpDqDeqWidth)) 265 val lsDq = Module(new DispatchQueue(dpParams.LsDqSize, RenameWidth, dpParams.LsDqDeqWidth)) 266 val redirectGen = Module(new RedirectGenerator) 267 // jumpPc (2) + redirects (1) + loadPredUpdate (1) + jalr_target (1) + robFlush (1) 268 val pcMem = Module(new SyncDataModuleTemplate(new Ftq_RF_Components, FtqSize, 6, 1, "BackendPC")) 269 val rob = outer.rob.module 270 271 pcMem.io.wen.head := RegNext(io.frontend.fromFtq.pc_mem_wen) 272 pcMem.io.waddr.head := RegNext(io.frontend.fromFtq.pc_mem_waddr) 273 pcMem.io.wdata.head := RegNext(io.frontend.fromFtq.pc_mem_wdata) 274 275 276 pcMem.io.raddr.last := rob.io.flushOut.bits.ftqIdx.value 277 val flushPC = pcMem.io.rdata.last.getPc(RegNext(rob.io.flushOut.bits.ftqOffset)) 278 279 val flushRedirect = Wire(Valid(new Redirect)) 280 flushRedirect.valid := RegNext(rob.io.flushOut.valid) 281 flushRedirect.bits := RegEnable(rob.io.flushOut.bits, rob.io.flushOut.valid) 282 283 val flushRedirectReg = Wire(Valid(new Redirect)) 284 flushRedirectReg.valid := RegNext(flushRedirect.valid, init = false.B) 285 flushRedirectReg.bits := RegEnable(flushRedirect.bits, flushRedirect.valid) 286 287 val stage2Redirect = Mux(flushRedirect.valid, flushRedirect, redirectGen.io.stage2Redirect) 288 // Redirect will be RegNext at ExuBlocks. 289 val redirectForExu = RegNextWithEnable(stage2Redirect) 290 291 val exuRedirect = io.exuRedirect.map(x => { 292 val valid = x.valid && x.bits.redirectValid 293 val killedByOlder = x.bits.uop.robIdx.needFlush(Seq(stage2Redirect, redirectForExu)) 294 val delayed = Wire(Valid(new ExuOutput)) 295 delayed.valid := RegNext(valid && !killedByOlder, init = false.B) 296 delayed.bits := RegEnable(x.bits, x.valid) 297 delayed 298 }) 299 val loadReplay = Wire(Valid(new Redirect)) 300 loadReplay.valid := RegNext(io.memoryViolation.valid && 301 !io.memoryViolation.bits.robIdx.needFlush(Seq(stage2Redirect, redirectForExu)), 302 init = false.B 303 ) 304 loadReplay.bits := RegEnable(io.memoryViolation.bits, io.memoryViolation.valid) 305 pcMem.io.raddr(2) := redirectGen.io.redirectPcRead.ptr.value 306 redirectGen.io.redirectPcRead.data := pcMem.io.rdata(2).getPc(RegNext(redirectGen.io.redirectPcRead.offset)) 307 pcMem.io.raddr(3) := redirectGen.io.memPredPcRead.ptr.value 308 redirectGen.io.memPredPcRead.data := pcMem.io.rdata(3).getPc(RegNext(redirectGen.io.memPredPcRead.offset)) 309 redirectGen.io.hartId := io.hartId 310 redirectGen.io.exuMispredict <> exuRedirect 311 redirectGen.io.loadReplay <> loadReplay 312 redirectGen.io.flush := flushRedirect.valid 313 314 val frontendFlushValid = DelayN(flushRedirect.valid, 5) 315 val frontendFlushBits = RegEnable(flushRedirect.bits, flushRedirect.valid) 316 // When ROB commits an instruction with a flush, we notify the frontend of the flush without the commit. 317 // Flushes to frontend may be delayed by some cycles and commit before flush causes errors. 318 // Thus, we make all flush reasons to behave the same as exceptions for frontend. 319 for (i <- 0 until CommitWidth) { 320 // why flushOut: instructions with flushPipe are not commited to frontend 321 // If we commit them to frontend, it will cause flush after commit, which is not acceptable by frontend. 322 val is_commit = rob.io.commits.commitValid(i) && rob.io.commits.isCommit && !rob.io.flushOut.valid 323 io.frontend.toFtq.rob_commits(i).valid := RegNext(is_commit) 324 io.frontend.toFtq.rob_commits(i).bits := RegEnable(rob.io.commits.info(i), is_commit) 325 } 326 io.frontend.toFtq.redirect.valid := frontendFlushValid || redirectGen.io.stage2Redirect.valid 327 io.frontend.toFtq.redirect.bits := Mux(frontendFlushValid, frontendFlushBits, redirectGen.io.stage2Redirect.bits) 328 // Be careful here: 329 // T0: flushRedirect.valid, exception.valid 330 // T1: csr.redirect.valid 331 // T2: csr.exception.valid 332 // T3: csr.trapTarget 333 // T4: ctrlBlock.trapTarget 334 // T5: io.frontend.toFtq.stage2Redirect.valid 335 val pc_from_csr = io.robio.toCSR.isXRet || DelayN(rob.io.exception.valid, 4) 336 val rob_flush_pc = RegEnable(Mux(flushRedirect.bits.flushItself(), 337 flushPC, // replay inst 338 flushPC + 4.U // flush pipe 339 ), flushRedirect.valid) 340 val flushTarget = Mux(pc_from_csr, io.robio.toCSR.trapTarget, rob_flush_pc) 341 when (frontendFlushValid) { 342 io.frontend.toFtq.redirect.bits.level := RedirectLevel.flush 343 io.frontend.toFtq.redirect.bits.cfiUpdate.target := RegNext(flushTarget) 344 } 345 346 347 val pendingRedirect = RegInit(false.B) 348 when (stage2Redirect.valid) { 349 pendingRedirect := true.B 350 }.elsewhen (RegNext(io.frontend.toFtq.redirect.valid)) { 351 pendingRedirect := false.B 352 } 353 354 decode.io.in <> io.frontend.cfVec 355 decode.io.csrCtrl := RegNext(io.csrCtrl) 356 decode.io.intRat <> rat.io.intReadPorts 357 decode.io.fpRat <> rat.io.fpReadPorts 358 359 // memory dependency predict 360 // when decode, send fold pc to mdp 361 for (i <- 0 until DecodeWidth) { 362 val mdp_foldpc = Mux( 363 decode.io.out(i).fire, 364 decode.io.in(i).bits.foldpc, 365 rename.io.in(i).bits.cf.foldpc 366 ) 367 ssit.io.raddr(i) := mdp_foldpc 368 waittable.io.raddr(i) := mdp_foldpc 369 } 370 // currently, we only update mdp info when isReplay 371 ssit.io.update <> RegNext(redirectGen.io.memPredUpdate) 372 ssit.io.csrCtrl := RegNext(io.csrCtrl) 373 waittable.io.update <> RegNext(redirectGen.io.memPredUpdate) 374 waittable.io.csrCtrl := RegNext(io.csrCtrl) 375 376 // LFST lookup and update 377 val lfst = Module(new LFST) 378 lfst.io.redirect <> RegNext(io.redirect) 379 lfst.io.storeIssue <> RegNext(io.stIn) 380 lfst.io.csrCtrl <> RegNext(io.csrCtrl) 381 lfst.io.dispatch <> dispatch.io.lfst 382 383 rat.io.redirect := stage2Redirect.valid 384 rat.io.robCommits := rob.io.commits 385 rat.io.intRenamePorts := rename.io.intRenamePorts 386 rat.io.fpRenamePorts := rename.io.fpRenamePorts 387 rat.io.debug_int_rat <> io.debug_int_rat 388 rat.io.debug_fp_rat <> io.debug_fp_rat 389 390 // pipeline between decode and rename 391 for (i <- 0 until RenameWidth) { 392 // fusion decoder 393 val decodeHasException = io.frontend.cfVec(i).bits.exceptionVec(instrPageFault) || io.frontend.cfVec(i).bits.exceptionVec(instrAccessFault) 394 val disableFusion = decode.io.csrCtrl.singlestep || !decode.io.csrCtrl.fusion_enable 395 fusionDecoder.io.in(i).valid := io.frontend.cfVec(i).valid && !(decodeHasException || disableFusion) 396 fusionDecoder.io.in(i).bits := io.frontend.cfVec(i).bits.instr 397 if (i > 0) { 398 fusionDecoder.io.inReady(i - 1) := decode.io.out(i).ready 399 } 400 401 // Pipeline 402 val renamePipe = PipelineNext(decode.io.out(i), rename.io.in(i).ready, 403 stage2Redirect.valid || pendingRedirect) 404 renamePipe.ready := rename.io.in(i).ready 405 rename.io.in(i).valid := renamePipe.valid && !fusionDecoder.io.clear(i) 406 rename.io.in(i).bits := renamePipe.bits 407 rename.io.intReadPorts(i) := rat.io.intReadPorts(i).map(_.data) 408 rename.io.fpReadPorts(i) := rat.io.fpReadPorts(i).map(_.data) 409 rename.io.waittable(i) := RegEnable(waittable.io.rdata(i), decode.io.out(i).fire) 410 411 if (i < RenameWidth - 1) { 412 // fusion decoder sees the raw decode info 413 fusionDecoder.io.dec(i) := renamePipe.bits.ctrl 414 rename.io.fusionInfo(i) := fusionDecoder.io.info(i) 415 416 // update the first RenameWidth - 1 instructions 417 decode.io.fusion(i) := fusionDecoder.io.out(i).valid && rename.io.out(i).fire 418 when (fusionDecoder.io.out(i).valid) { 419 fusionDecoder.io.out(i).bits.update(rename.io.in(i).bits.ctrl) 420 // TODO: remove this dirty code for ftq update 421 val sameFtqPtr = rename.io.in(i).bits.cf.ftqPtr.value === rename.io.in(i + 1).bits.cf.ftqPtr.value 422 val ftqOffset0 = rename.io.in(i).bits.cf.ftqOffset 423 val ftqOffset1 = rename.io.in(i + 1).bits.cf.ftqOffset 424 val ftqOffsetDiff = ftqOffset1 - ftqOffset0 425 val cond1 = sameFtqPtr && ftqOffsetDiff === 1.U 426 val cond2 = sameFtqPtr && ftqOffsetDiff === 2.U 427 val cond3 = !sameFtqPtr && ftqOffset1 === 0.U 428 val cond4 = !sameFtqPtr && ftqOffset1 === 1.U 429 rename.io.in(i).bits.ctrl.commitType := Mux(cond1, 4.U, Mux(cond2, 5.U, Mux(cond3, 6.U, 7.U))) 430 XSError(!cond1 && !cond2 && !cond3 && !cond4, p"new condition $sameFtqPtr $ftqOffset0 $ftqOffset1\n") 431 } 432 } 433 } 434 435 rename.io.redirect <> stage2Redirect 436 rename.io.robCommits <> rob.io.commits 437 rename.io.ssit <> ssit.io.rdata 438 rename.io.debug_int_rat <> rat.io.debug_int_rat 439 rename.io.debug_fp_rat <> rat.io.debug_fp_rat 440 441 // pipeline between rename and dispatch 442 for (i <- 0 until RenameWidth) { 443 PipelineConnect(rename.io.out(i), dispatch.io.fromRename(i), dispatch.io.recv(i), stage2Redirect.valid) 444 } 445 446 dispatch.io.hartId := io.hartId 447 dispatch.io.redirect <> stage2Redirect 448 dispatch.io.enqRob <> rob.io.enq 449 dispatch.io.toIntDq <> intDq.io.enq 450 dispatch.io.toFpDq <> fpDq.io.enq 451 dispatch.io.toLsDq <> lsDq.io.enq 452 dispatch.io.allocPregs <> io.allocPregs 453 dispatch.io.singleStep := RegNext(io.csrCtrl.singlestep) 454 455 intDq.io.redirect <> redirectForExu 456 fpDq.io.redirect <> redirectForExu 457 lsDq.io.redirect <> redirectForExu 458 459 val dpqOut = intDq.io.deq ++ lsDq.io.deq ++ fpDq.io.deq 460 io.dispatch <> dpqOut 461 462 for (dp2 <- outer.dispatch2.map(_.module.io)) { 463 dp2.redirect := redirectForExu 464 if (dp2.readFpState.isDefined) { 465 dp2.readFpState.get := DontCare 466 } 467 if (dp2.readIntState.isDefined) { 468 dp2.readIntState.get := DontCare 469 } 470 if (dp2.enqLsq.isDefined) { 471 val lsqCtrl = Module(new LsqEnqCtrl) 472 lsqCtrl.io.redirect <> redirectForExu 473 lsqCtrl.io.enq <> dp2.enqLsq.get 474 lsqCtrl.io.lcommit := rob.io.lsq.lcommit 475 lsqCtrl.io.scommit := io.sqDeq 476 lsqCtrl.io.lqCancelCnt := io.lqCancelCnt 477 lsqCtrl.io.sqCancelCnt := io.sqCancelCnt 478 io.enqLsq <> lsqCtrl.io.enqLsq 479 } 480 } 481 for ((dp2In, i) <- outer.dispatch2.flatMap(_.module.io.in).zipWithIndex) { 482 dp2In.valid := dpqOut(i).valid 483 dp2In.bits := dpqOut(i).bits 484 // override ready here to avoid cross-module loop path 485 dpqOut(i).ready := dp2In.ready 486 } 487 for ((dp2Out, i) <- outer.dispatch2.flatMap(_.module.io.out).zipWithIndex) { 488 dp2Out.ready := io.rsReady(i) 489 } 490 491 val pingpong = RegInit(false.B) 492 pingpong := !pingpong 493 pcMem.io.raddr(0) := intDq.io.deqNext(0).cf.ftqPtr.value 494 pcMem.io.raddr(1) := intDq.io.deqNext(2).cf.ftqPtr.value 495 val jumpPcRead0 = pcMem.io.rdata(0).getPc(RegNext(intDq.io.deqNext(0).cf.ftqOffset)) 496 val jumpPcRead1 = pcMem.io.rdata(1).getPc(RegNext(intDq.io.deqNext(2).cf.ftqOffset)) 497 io.jumpPc := Mux(pingpong && (exuParameters.AluCnt > 2).B, jumpPcRead1, jumpPcRead0) 498 val jalrTargetReadPtr = Mux(pingpong && (exuParameters.AluCnt > 2).B, 499 io.dispatch(2).bits.cf.ftqPtr, 500 io.dispatch(0).bits.cf.ftqPtr) 501 pcMem.io.raddr(4) := (jalrTargetReadPtr + 1.U).value 502 val jalrTargetRead = pcMem.io.rdata(4).startAddr 503 val read_from_newest_entry = RegNext(jalrTargetReadPtr) === RegNext(io.frontend.fromFtq.newest_entry_ptr) 504 io.jalr_target := Mux(read_from_newest_entry, RegNext(io.frontend.fromFtq.newest_entry_target), jalrTargetRead) 505 506 rob.io.hartId := io.hartId 507 io.cpu_halt := DelayN(rob.io.cpu_halt, 5) 508 rob.io.redirect <> stage2Redirect 509 outer.rob.generateWritebackIO(Some(outer), Some(this)) 510 511 io.redirect <> stage2Redirect 512 513 // rob to int block 514 io.robio.toCSR <> rob.io.csr 515 // When wfi is disabled, it will not block ROB commit. 516 rob.io.csr.wfiEvent := io.robio.toCSR.wfiEvent || !decode.io.csrCtrl.wfi_enable 517 io.robio.toCSR.perfinfo.retiredInstr <> RegNext(rob.io.csr.perfinfo.retiredInstr) 518 io.robio.exception := rob.io.exception 519 io.robio.exception.bits.uop.cf.pc := flushPC 520 521 // rob to mem block 522 io.robio.lsq <> rob.io.lsq 523 524 io.perfInfo.ctrlInfo.robFull := RegNext(rob.io.robFull) 525 io.perfInfo.ctrlInfo.intdqFull := RegNext(intDq.io.dqFull) 526 io.perfInfo.ctrlInfo.fpdqFull := RegNext(fpDq.io.dqFull) 527 io.perfInfo.ctrlInfo.lsdqFull := RegNext(lsDq.io.dqFull) 528 529 val pfevent = Module(new PFEvent) 530 pfevent.io.distribute_csr := RegNext(io.csrCtrl.distribute_csr) 531 val csrevents = pfevent.io.hpmevent.slice(8,16) 532 533 val perfinfo = IO(new Bundle(){ 534 val perfEventsRs = Input(Vec(NumRs, new PerfEvent)) 535 val perfEventsEu0 = Input(Vec(6, new PerfEvent)) 536 val perfEventsEu1 = Input(Vec(6, new PerfEvent)) 537 }) 538 539 val allPerfEvents = Seq(decode, rename, dispatch, intDq, fpDq, lsDq, rob).flatMap(_.getPerf) 540 val hpmEvents = allPerfEvents ++ perfinfo.perfEventsEu0 ++ perfinfo.perfEventsEu1 ++ perfinfo.perfEventsRs 541 val perfEvents = HPerfMonitor(csrevents, hpmEvents).getPerfEvents 542 generatePerfEvent() 543} 544