1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 23import utils._ 24import utility._ 25import xiangshan._ 26import xiangshan.backend.decode.{DecodeStage, FusionDecoder, ImmUnion} 27import xiangshan.backend.dispatch.{Dispatch, Dispatch2Rs, DispatchQueue} 28import xiangshan.backend.fu.PFEvent 29import xiangshan.backend.rename.{Rename, RenameTableWrapper} 30import xiangshan.backend.rob.{DebugLSIO, LsTopdownInfo, Rob, RobCSRIO, RobLsqIO, RobPtr} 31import xiangshan.frontend.{FtqPtr, FtqRead, Ftq_RF_Components} 32import xiangshan.mem.mdp.{LFST, SSIT, WaitTable} 33import xiangshan.ExceptionNO._ 34import xiangshan.backend.exu.ExuConfig 35import xiangshan.mem.{LsqEnqCtrl, LsqEnqIO} 36 37class CtrlToFtqIO(implicit p: Parameters) extends XSBundle { 38 def numRedirect = exuParameters.JmpCnt + exuParameters.AluCnt 39 val rob_commits = Vec(CommitWidth, Valid(new RobCommitInfo)) 40 val redirect = Valid(new Redirect) 41} 42 43class RedirectGenerator(implicit p: Parameters) extends XSModule 44 with HasCircularQueuePtrHelper { 45 46 class RedirectGeneratorIO(implicit p: Parameters) extends XSBundle { 47 def numRedirect = exuParameters.JmpCnt + exuParameters.AluCnt 48 val hartId = Input(UInt(8.W)) 49 val exuMispredict = Vec(numRedirect, Flipped(ValidIO(new ExuOutput))) 50 val loadReplay = Flipped(ValidIO(new Redirect)) 51 val flush = Input(Bool()) 52 val redirectPcRead = new FtqRead(UInt(VAddrBits.W)) 53 val stage2Redirect = ValidIO(new Redirect) 54 val stage3Redirect = ValidIO(new Redirect) 55 val memPredUpdate = Output(new MemPredUpdateReq) 56 val memPredPcRead = new FtqRead(UInt(VAddrBits.W)) // read req send form stage 2 57 val isMisspreRedirect = Output(Bool()) 58 } 59 val io = IO(new RedirectGeneratorIO) 60 /* 61 LoadQueue Jump ALU0 ALU1 ALU2 ALU3 exception Stage1 62 | | | | | | | 63 |============= reg & compare =====| | ======== 64 | | 65 | | 66 | | Stage2 67 | | 68 redirect (flush backend) | 69 | | 70 === reg === | ======== 71 | | 72 |----- mux (exception first) -----| Stage3 73 | 74 redirect (send to frontend) 75 */ 76 def selectOldestRedirect(xs: Seq[Valid[Redirect]]): Vec[Bool] = { 77 val compareVec = (0 until xs.length).map(i => (0 until i).map(j => isAfter(xs(j).bits.robIdx, xs(i).bits.robIdx))) 78 val resultOnehot = VecInit((0 until xs.length).map(i => Cat((0 until xs.length).map(j => 79 (if (j < i) !xs(j).valid || compareVec(i)(j) 80 else if (j == i) xs(i).valid 81 else !xs(j).valid || !compareVec(j)(i)) 82 )).andR)) 83 resultOnehot 84 } 85 86 def getRedirect(exuOut: Valid[ExuOutput]): ValidIO[Redirect] = { 87 val redirect = Wire(Valid(new Redirect)) 88 redirect.valid := exuOut.valid && exuOut.bits.redirect.cfiUpdate.isMisPred 89 redirect.bits := exuOut.bits.redirect 90 redirect.bits.debugIsCtrl := true.B 91 redirect.bits.debugIsMemVio := false.B 92 redirect 93 } 94 95 val jumpOut = io.exuMispredict.head 96 val allRedirect = VecInit(io.exuMispredict.map(x => getRedirect(x)) :+ io.loadReplay) 97 val oldestOneHot = selectOldestRedirect(allRedirect) 98 val needFlushVec = VecInit(allRedirect.map(_.bits.robIdx.needFlush(io.stage2Redirect) || io.flush)) 99 val oldestValid = VecInit(oldestOneHot.zip(needFlushVec).map{ case (v, f) => v && !f }).asUInt.orR 100 val oldestExuOutput = Mux1H(io.exuMispredict.indices.map(oldestOneHot), io.exuMispredict) 101 val oldestRedirect = Mux1H(oldestOneHot, allRedirect) 102 io.isMisspreRedirect := VecInit(io.exuMispredict.map(x => getRedirect(x).valid)).asUInt.orR 103 io.redirectPcRead.ptr := oldestRedirect.bits.ftqIdx 104 io.redirectPcRead.offset := oldestRedirect.bits.ftqOffset 105 106 val s1_jumpTarget = RegEnable(jumpOut.bits.redirect.cfiUpdate.target, jumpOut.valid) 107 val s1_imm12_reg = RegNext(oldestExuOutput.bits.uop.ctrl.imm(11, 0)) 108 val s1_pd = RegNext(oldestExuOutput.bits.uop.cf.pd) 109 val s1_redirect_bits_reg = RegNext(oldestRedirect.bits) 110 val s1_redirect_valid_reg = RegNext(oldestValid) 111 val s1_redirect_onehot = RegNext(oldestOneHot) 112 113 // stage1 -> stage2 114 io.stage2Redirect.valid := s1_redirect_valid_reg && !io.flush 115 io.stage2Redirect.bits := s1_redirect_bits_reg 116 117 val s1_isReplay = s1_redirect_onehot.last 118 val s1_isJump = s1_redirect_onehot.head 119 val real_pc = io.redirectPcRead.data 120 val brTarget = real_pc + SignExt(ImmUnion.B.toImm32(s1_imm12_reg), XLEN) 121 val snpc = real_pc + Mux(s1_pd.isRVC, 2.U, 4.U) 122 val target = Mux(s1_isReplay, 123 real_pc, // replay from itself 124 Mux(s1_redirect_bits_reg.cfiUpdate.taken, 125 Mux(s1_isJump, s1_jumpTarget, brTarget), 126 snpc 127 ) 128 ) 129 130 val stage2CfiUpdate = io.stage2Redirect.bits.cfiUpdate 131 stage2CfiUpdate.pc := real_pc 132 stage2CfiUpdate.pd := s1_pd 133 // stage2CfiUpdate.predTaken := s1_redirect_bits_reg.cfiUpdate.predTaken 134 stage2CfiUpdate.target := target 135 // stage2CfiUpdate.taken := s1_redirect_bits_reg.cfiUpdate.taken 136 // stage2CfiUpdate.isMisPred := s1_redirect_bits_reg.cfiUpdate.isMisPred 137 138 val s2_target = RegEnable(target, s1_redirect_valid_reg) 139 val s2_pc = RegEnable(real_pc, s1_redirect_valid_reg) 140 val s2_redirect_bits_reg = RegEnable(s1_redirect_bits_reg, s1_redirect_valid_reg) 141 val s2_redirect_valid_reg = RegNext(s1_redirect_valid_reg && !io.flush, init = false.B) 142 143 io.stage3Redirect.valid := s2_redirect_valid_reg 144 io.stage3Redirect.bits := s2_redirect_bits_reg 145 146 // get pc from ftq 147 // valid only if redirect is caused by load violation 148 // store_pc is used to update store set 149 val store_pc = io.memPredPcRead(s1_redirect_bits_reg.stFtqIdx, s1_redirect_bits_reg.stFtqOffset) 150 151 // update load violation predictor if load violation redirect triggered 152 io.memPredUpdate.valid := RegNext(s1_isReplay && s1_redirect_valid_reg, init = false.B) 153 // update wait table 154 io.memPredUpdate.waddr := RegNext(XORFold(real_pc(VAddrBits-1, 1), MemPredPCWidth)) 155 io.memPredUpdate.wdata := true.B 156 // update store set 157 io.memPredUpdate.ldpc := RegNext(XORFold(real_pc(VAddrBits-1, 1), MemPredPCWidth)) 158 // store pc is ready 1 cycle after s1_isReplay is judged 159 io.memPredUpdate.stpc := XORFold(store_pc(VAddrBits-1, 1), MemPredPCWidth) 160 161 // // recover runahead checkpoint if redirect 162 // if (!env.FPGAPlatform) { 163 // val runahead_redirect = Module(new DifftestRunaheadRedirectEvent) 164 // runahead_redirect.io.clock := clock 165 // runahead_redirect.io.coreid := io.hartId 166 // runahead_redirect.io.valid := io.stage3Redirect.valid 167 // runahead_redirect.io.pc := s2_pc // for debug only 168 // runahead_redirect.io.target_pc := s2_target // for debug only 169 // runahead_redirect.io.checkpoint_id := io.stage3Redirect.bits.debug_runahead_checkpoint_id // make sure it is right 170 // } 171} 172 173class CtrlBlock(dpExuConfigs: Seq[Seq[Seq[ExuConfig]]])(implicit p: Parameters) extends LazyModule 174 with HasWritebackSink with HasWritebackSource { 175 val rob = LazyModule(new Rob) 176 177 override def addWritebackSink(source: Seq[HasWritebackSource], index: Option[Seq[Int]]): HasWritebackSink = { 178 rob.addWritebackSink(Seq(this), Some(Seq(writebackSinks.length))) 179 super.addWritebackSink(source, index) 180 } 181 182 // duplicated dispatch2 here to avoid cross-module timing path loop. 183 val dispatch2 = dpExuConfigs.map(c => LazyModule(new Dispatch2Rs(c))) 184 lazy val module = new CtrlBlockImp(this) 185 186 override lazy val writebackSourceParams: Seq[WritebackSourceParams] = { 187 writebackSinksParams 188 } 189 override lazy val writebackSourceImp: HasWritebackSourceImp = module 190 191 override def generateWritebackIO( 192 thisMod: Option[HasWritebackSource] = None, 193 thisModImp: Option[HasWritebackSourceImp] = None 194 ): Unit = { 195 module.io.writeback.zip(writebackSinksImp(thisMod, thisModImp)).foreach(x => x._1 := x._2) 196 } 197} 198 199class CtrlBlockImp(outer: CtrlBlock)(implicit p: Parameters) extends LazyModuleImp(outer) 200 with HasXSParameter 201 with HasCircularQueuePtrHelper 202 with HasWritebackSourceImp 203 with HasPerfEvents 204{ 205 val writebackLengths = outer.writebackSinksParams.map(_.length) 206 207 val io = IO(new Bundle { 208 val hartId = Input(UInt(8.W)) 209 val cpu_halt = Output(Bool()) 210 val frontend = Flipped(new FrontendToCtrlIO) 211 // to exu blocks 212 val allocPregs = Vec(RenameWidth, Output(new ResetPregStateReq)) 213 val dispatch = Vec(3*dpParams.IntDqDeqWidth, DecoupledIO(new MicroOp)) 214 val rsReady = Vec(outer.dispatch2.map(_.module.io.out.length).sum, Input(Bool())) 215 val enqLsq = Flipped(new LsqEnqIO) 216 val lqCancelCnt = Input(UInt(log2Up(VirtualLoadQueueSize + 1).W)) 217 val sqCancelCnt = Input(UInt(log2Up(StoreQueueSize + 1).W)) 218 val lqDeq = Input(UInt(log2Up(CommitWidth + 1).W)) 219 val sqDeq = Input(UInt(log2Ceil(EnsbufferWidth + 1).W)) 220 val sqCanAccept = Input(Bool()) 221 val lqCanAccept = Input(Bool()) 222 val ld_pc_read = Vec(exuParameters.LduCnt, Flipped(new FtqRead(UInt(VAddrBits.W)))) 223 // from int block 224 val exuRedirect = Vec(exuParameters.AluCnt + exuParameters.JmpCnt, Flipped(ValidIO(new ExuOutput))) 225 val stIn = Vec(exuParameters.StuCnt, Flipped(ValidIO(new ExuInput))) 226 val memoryViolation = Flipped(ValidIO(new Redirect)) 227 val jumpPc = Output(UInt(VAddrBits.W)) 228 val jalr_target = Output(UInt(VAddrBits.W)) 229 val robio = new Bundle { 230 // to int block 231 val toCSR = new RobCSRIO 232 val exception = ValidIO(new ExceptionInfo) 233 // to mem block 234 val lsq = new RobLsqIO 235 // debug 236 val debug_ls = Flipped(new DebugLSIO) 237 val lsTopdownInfo = Vec(exuParameters.LduCnt, Input(new LsTopdownInfo)) 238 } 239 val csrCtrl = Input(new CustomCSRCtrlIO) 240 val perfInfo = Output(new Bundle{ 241 val ctrlInfo = new Bundle { 242 val robFull = Input(Bool()) 243 val intdqFull = Input(Bool()) 244 val fpdqFull = Input(Bool()) 245 val lsdqFull = Input(Bool()) 246 } 247 }) 248 val writeback = MixedVec(writebackLengths.map(num => Vec(num, Flipped(ValidIO(new ExuOutput))))) 249 // redirect out 250 val redirect = ValidIO(new Redirect) 251 // debug 252 val debug_int_rat = Vec(32, Output(UInt(PhyRegIdxWidth.W))) 253 val debug_fp_rat = Vec(32, Output(UInt(PhyRegIdxWidth.W))) 254 val robDeqPtr = Output(new RobPtr) 255 val robHeadLsIssue = Input(Bool()) 256 }) 257 258 override def writebackSource: Option[Seq[Seq[Valid[ExuOutput]]]] = { 259 Some(io.writeback.map(writeback => { 260 val exuOutput = WireInit(writeback) 261 val timer = GTimer() 262 for ((wb_next, wb) <- exuOutput.zip(writeback)) { 263 wb_next.valid := RegNext(wb.valid && !wb.bits.uop.robIdx.needFlush(Seq(stage2Redirect, redirectForExu))) 264 wb_next.bits := RegNext(wb.bits) 265 wb_next.bits.uop.debugInfo.writebackTime := timer 266 } 267 exuOutput 268 })) 269 } 270 271 val decode = Module(new DecodeStage) 272 val fusionDecoder = Module(new FusionDecoder) 273 val rat = Module(new RenameTableWrapper) 274 val ssit = Module(new SSIT) 275 val waittable = Module(new WaitTable) 276 val rename = Module(new Rename) 277 val dispatch = Module(new Dispatch) 278 val intDq = Module(new DispatchQueue(dpParams.IntDqSize, RenameWidth, dpParams.IntDqDeqWidth)) 279 val fpDq = Module(new DispatchQueue(dpParams.FpDqSize, RenameWidth, dpParams.FpDqDeqWidth)) 280 val lsDq = Module(new DispatchQueue(dpParams.LsDqSize, RenameWidth, dpParams.LsDqDeqWidth)) 281 val redirectGen = Module(new RedirectGenerator) 282 val rob = outer.rob.module 283 284 // jumpPc (2) + redirects (1) + loadPredUpdate (1) + jalr_target (1) + [ld pc (LduCnt)] + robWriteback (sum(writebackLengths)) + robFlush (1) 285 val PCMEMIDX_LD = 5 286 val pcMem = Module(new SyncDataModuleTemplate( 287 new Ftq_RF_Components, FtqSize, 288 6 + exuParameters.LduCnt, 1, "CtrlPcMem") 289 ) 290 pcMem.io.wen.head := RegNext(io.frontend.fromFtq.pc_mem_wen) 291 pcMem.io.waddr.head := RegNext(io.frontend.fromFtq.pc_mem_waddr) 292 pcMem.io.wdata.head := RegNext(io.frontend.fromFtq.pc_mem_wdata) 293 294 pcMem.io.raddr.last := rob.io.flushOut.bits.ftqIdx.value 295 val flushPC = pcMem.io.rdata.last.getPc(RegNext(rob.io.flushOut.bits.ftqOffset)) 296 297 val flushRedirect = Wire(Valid(new Redirect)) 298 flushRedirect.valid := RegNext(rob.io.flushOut.valid) 299 flushRedirect.bits := RegEnable(rob.io.flushOut.bits, rob.io.flushOut.valid) 300 flushRedirect.bits.debugIsCtrl := false.B 301 flushRedirect.bits.debugIsMemVio := false.B 302 303 val flushRedirectReg = Wire(Valid(new Redirect)) 304 flushRedirectReg.valid := RegNext(flushRedirect.valid, init = false.B) 305 flushRedirectReg.bits := RegEnable(flushRedirect.bits, flushRedirect.valid) 306 307 val stage2Redirect = Mux(flushRedirect.valid, flushRedirect, redirectGen.io.stage2Redirect) 308 // Redirect will be RegNext at ExuBlocks. 309 val redirectForExu = RegNextWithEnable(stage2Redirect) 310 311 val exuRedirect = io.exuRedirect.map(x => { 312 val valid = x.valid && x.bits.redirectValid 313 val killedByOlder = x.bits.uop.robIdx.needFlush(Seq(stage2Redirect, redirectForExu)) 314 val delayed = Wire(Valid(new ExuOutput)) 315 delayed.valid := RegNext(valid && !killedByOlder, init = false.B) 316 delayed.bits := RegEnable(x.bits, x.valid) 317 delayed 318 }) 319 val loadReplay = Wire(Valid(new Redirect)) 320 loadReplay.valid := RegNext(io.memoryViolation.valid && 321 !io.memoryViolation.bits.robIdx.needFlush(Seq(stage2Redirect, redirectForExu)), 322 init = false.B 323 ) 324 val memVioBits = WireDefault(io.memoryViolation.bits) 325 memVioBits.debugIsCtrl := false.B 326 memVioBits.debugIsMemVio := true.B 327 loadReplay.bits := RegEnable(memVioBits, io.memoryViolation.valid) 328 pcMem.io.raddr(2) := redirectGen.io.redirectPcRead.ptr.value 329 redirectGen.io.redirectPcRead.data := pcMem.io.rdata(2).getPc(RegNext(redirectGen.io.redirectPcRead.offset)) 330 pcMem.io.raddr(3) := redirectGen.io.memPredPcRead.ptr.value 331 redirectGen.io.memPredPcRead.data := pcMem.io.rdata(3).getPc(RegNext(redirectGen.io.memPredPcRead.offset)) 332 redirectGen.io.hartId := io.hartId 333 redirectGen.io.exuMispredict <> exuRedirect 334 redirectGen.io.loadReplay <> loadReplay 335 redirectGen.io.flush := flushRedirect.valid 336 337 val frontendFlushValid = DelayN(flushRedirect.valid, 5) 338 val frontendFlushBits = RegEnable(flushRedirect.bits, flushRedirect.valid) 339 // When ROB commits an instruction with a flush, we notify the frontend of the flush without the commit. 340 // Flushes to frontend may be delayed by some cycles and commit before flush causes errors. 341 // Thus, we make all flush reasons to behave the same as exceptions for frontend. 342 for (i <- 0 until CommitWidth) { 343 // why flushOut: instructions with flushPipe are not commited to frontend 344 // If we commit them to frontend, it will cause flush after commit, which is not acceptable by frontend. 345 val is_commit = rob.io.commits.commitValid(i) && rob.io.commits.isCommit && !rob.io.flushOut.valid 346 io.frontend.toFtq.rob_commits(i).valid := RegNext(is_commit) 347 io.frontend.toFtq.rob_commits(i).bits := RegEnable(rob.io.commits.info(i), is_commit) 348 } 349 io.frontend.toFtq.redirect.valid := frontendFlushValid || redirectGen.io.stage2Redirect.valid 350 io.frontend.toFtq.redirect.bits := Mux(frontendFlushValid, frontendFlushBits, redirectGen.io.stage2Redirect.bits) 351 // Be careful here: 352 // T0: flushRedirect.valid, exception.valid 353 // T1: csr.redirect.valid 354 // T2: csr.exception.valid 355 // T3: csr.trapTarget 356 // T4: ctrlBlock.trapTarget 357 // T5: io.frontend.toFtq.stage2Redirect.valid 358 val pc_from_csr = io.robio.toCSR.isXRet || DelayN(rob.io.exception.valid, 4) 359 val rob_flush_pc = RegEnable(Mux(flushRedirect.bits.flushItself(), 360 flushPC, // replay inst 361 flushPC + Mux(flushRedirect.bits.isRVC, 2.U, 4.U) // flush pipe 362 ), flushRedirect.valid) 363 val flushTarget = Mux(pc_from_csr, io.robio.toCSR.trapTarget, rob_flush_pc) 364 when (frontendFlushValid) { 365 io.frontend.toFtq.redirect.bits.level := RedirectLevel.flush 366 io.frontend.toFtq.redirect.bits.cfiUpdate.target := RegNext(flushTarget) 367 } 368 369 370 val pendingRedirect = RegInit(false.B) 371 when (stage2Redirect.valid) { 372 pendingRedirect := true.B 373 }.elsewhen (RegNext(io.frontend.toFtq.redirect.valid)) { 374 pendingRedirect := false.B 375 } 376 377 decode.io.in <> io.frontend.cfVec 378 decode.io.stallReason.in <> io.frontend.stallReason 379 decode.io.csrCtrl := RegNext(io.csrCtrl) 380 decode.io.intRat <> rat.io.intReadPorts 381 decode.io.fpRat <> rat.io.fpReadPorts 382 383 // memory dependency predict 384 // when decode, send fold pc to mdp 385 for (i <- 0 until DecodeWidth) { 386 val mdp_foldpc = Mux( 387 decode.io.out(i).fire, 388 decode.io.in(i).bits.foldpc, 389 rename.io.in(i).bits.cf.foldpc 390 ) 391 ssit.io.raddr(i) := mdp_foldpc 392 waittable.io.raddr(i) := mdp_foldpc 393 } 394 // currently, we only update mdp info when isReplay 395 ssit.io.update <> RegNext(redirectGen.io.memPredUpdate) 396 ssit.io.csrCtrl := RegNext(io.csrCtrl) 397 waittable.io.update <> RegNext(redirectGen.io.memPredUpdate) 398 waittable.io.csrCtrl := RegNext(io.csrCtrl) 399 400 // LFST lookup and update 401 dispatch.io.lfst := DontCare 402 if (LFSTEnable) { 403 val lfst = Module(new LFST) 404 lfst.io.redirect <> RegNext(io.redirect) 405 lfst.io.storeIssue <> RegNext(io.stIn) 406 lfst.io.csrCtrl <> RegNext(io.csrCtrl) 407 lfst.io.dispatch <> dispatch.io.lfst 408 } 409 410 411 rat.io.redirect := stage2Redirect.valid 412 rat.io.robCommits := rob.io.commits 413 rat.io.intRenamePorts := rename.io.intRenamePorts 414 rat.io.fpRenamePorts := rename.io.fpRenamePorts 415 rat.io.debug_int_rat <> io.debug_int_rat 416 rat.io.debug_fp_rat <> io.debug_fp_rat 417 418 // pipeline between decode and rename 419 for (i <- 0 until RenameWidth) { 420 // fusion decoder 421 val decodeHasException = io.frontend.cfVec(i).bits.exceptionVec(instrPageFault) || io.frontend.cfVec(i).bits.exceptionVec(instrAccessFault) 422 val disableFusion = decode.io.csrCtrl.singlestep || !decode.io.csrCtrl.fusion_enable 423 fusionDecoder.io.in(i).valid := io.frontend.cfVec(i).valid && !(decodeHasException || disableFusion) 424 fusionDecoder.io.in(i).bits := io.frontend.cfVec(i).bits.instr 425 if (i > 0) { 426 fusionDecoder.io.inReady(i - 1) := decode.io.out(i).ready 427 } 428 429 // Pipeline 430 val renamePipe = PipelineNext(decode.io.out(i), rename.io.in(i).ready, 431 stage2Redirect.valid || pendingRedirect) 432 renamePipe.ready := rename.io.in(i).ready 433 rename.io.in(i).valid := renamePipe.valid && !fusionDecoder.io.clear(i) 434 rename.io.in(i).bits := renamePipe.bits 435 rename.io.intReadPorts(i) := rat.io.intReadPorts(i).map(_.data) 436 rename.io.fpReadPorts(i) := rat.io.fpReadPorts(i).map(_.data) 437 rename.io.waittable(i) := RegEnable(waittable.io.rdata(i), decode.io.out(i).fire) 438 439 if (i < RenameWidth - 1) { 440 // fusion decoder sees the raw decode info 441 fusionDecoder.io.dec(i) := renamePipe.bits.ctrl 442 rename.io.fusionInfo(i) := fusionDecoder.io.info(i) 443 444 // update the first RenameWidth - 1 instructions 445 decode.io.fusion(i) := fusionDecoder.io.out(i).valid && rename.io.out(i).fire 446 when (fusionDecoder.io.out(i).valid) { 447 fusionDecoder.io.out(i).bits.update(rename.io.in(i).bits.ctrl) 448 // TODO: remove this dirty code for ftq update 449 val sameFtqPtr = rename.io.in(i).bits.cf.ftqPtr.value === rename.io.in(i + 1).bits.cf.ftqPtr.value 450 val ftqOffset0 = rename.io.in(i).bits.cf.ftqOffset 451 val ftqOffset1 = rename.io.in(i + 1).bits.cf.ftqOffset 452 val ftqOffsetDiff = ftqOffset1 - ftqOffset0 453 val cond1 = sameFtqPtr && ftqOffsetDiff === 1.U 454 val cond2 = sameFtqPtr && ftqOffsetDiff === 2.U 455 val cond3 = !sameFtqPtr && ftqOffset1 === 0.U 456 val cond4 = !sameFtqPtr && ftqOffset1 === 1.U 457 rename.io.in(i).bits.ctrl.commitType := Mux(cond1, 4.U, Mux(cond2, 5.U, Mux(cond3, 6.U, 7.U))) 458 XSError(!cond1 && !cond2 && !cond3 && !cond4, p"new condition $sameFtqPtr $ftqOffset0 $ftqOffset1\n") 459 } 460 } 461 } 462 463 rename.io.redirect := stage2Redirect 464 rename.io.robCommits <> rob.io.commits 465 rename.io.ssit <> ssit.io.rdata 466 rename.io.int_need_free := rat.io.int_need_free 467 rename.io.int_old_pdest := rat.io.int_old_pdest 468 rename.io.fp_old_pdest := rat.io.fp_old_pdest 469 rename.io.debug_int_rat <> rat.io.debug_int_rat 470 rename.io.debug_fp_rat <> rat.io.debug_fp_rat 471 rename.io.stallReason.in <> decode.io.stallReason.out 472 473 // pipeline between rename and dispatch 474 for (i <- 0 until RenameWidth) { 475 PipelineConnect(rename.io.out(i), dispatch.io.fromRename(i), dispatch.io.recv(i), stage2Redirect.valid) 476 } 477 478 dispatch.io.hartId := io.hartId 479 dispatch.io.redirect := stage2Redirect 480 dispatch.io.enqRob <> rob.io.enq 481 dispatch.io.toIntDq <> intDq.io.enq 482 dispatch.io.toFpDq <> fpDq.io.enq 483 dispatch.io.toLsDq <> lsDq.io.enq 484 dispatch.io.allocPregs <> io.allocPregs 485 dispatch.io.robHead := rob.io.debugRobHead 486 dispatch.io.stallReason <> rename.io.stallReason.out 487 dispatch.io.lqCanAccept := io.lqCanAccept 488 dispatch.io.sqCanAccept := io.sqCanAccept 489 dispatch.io.robHeadNotReady := rob.io.headNotReady 490 dispatch.io.robFull := rob.io.robFull 491 dispatch.io.singleStep := RegNext(io.csrCtrl.singlestep) 492 493 intDq.io.redirect <> redirectForExu 494 fpDq.io.redirect <> redirectForExu 495 lsDq.io.redirect <> redirectForExu 496 497 val dpqOut = intDq.io.deq ++ lsDq.io.deq ++ fpDq.io.deq 498 io.dispatch <> dpqOut 499 500 for (dp2 <- outer.dispatch2.map(_.module.io)) { 501 dp2.redirect := redirectForExu 502 if (dp2.readFpState.isDefined) { 503 dp2.readFpState.get := DontCare 504 } 505 if (dp2.readIntState.isDefined) { 506 dp2.readIntState.get := DontCare 507 } 508 if (dp2.enqLsq.isDefined) { 509 val lsqCtrl = Module(new LsqEnqCtrl) 510 lsqCtrl.io.redirect <> redirectForExu 511 lsqCtrl.io.enq <> dp2.enqLsq.get 512 lsqCtrl.io.lcommit := io.lqDeq 513 lsqCtrl.io.scommit := io.sqDeq 514 lsqCtrl.io.lqCancelCnt := io.lqCancelCnt 515 lsqCtrl.io.sqCancelCnt := io.sqCancelCnt 516 io.enqLsq <> lsqCtrl.io.enqLsq 517 rob.io.debugEnqLsq := io.enqLsq 518 } 519 } 520 for ((dp2In, i) <- outer.dispatch2.flatMap(_.module.io.in).zipWithIndex) { 521 dp2In.valid := dpqOut(i).valid 522 dp2In.bits := dpqOut(i).bits 523 // override ready here to avoid cross-module loop path 524 dpqOut(i).ready := dp2In.ready 525 } 526 for ((dp2Out, i) <- outer.dispatch2.flatMap(_.module.io.out).zipWithIndex) { 527 dp2Out.ready := io.rsReady(i) 528 } 529 530 val pingpong = RegInit(false.B) 531 pingpong := !pingpong 532 pcMem.io.raddr(0) := intDq.io.deqNext(0).cf.ftqPtr.value 533 pcMem.io.raddr(1) := intDq.io.deqNext(2).cf.ftqPtr.value 534 val jumpPcRead0 = pcMem.io.rdata(0).getPc(RegNext(intDq.io.deqNext(0).cf.ftqOffset)) 535 val jumpPcRead1 = pcMem.io.rdata(1).getPc(RegNext(intDq.io.deqNext(2).cf.ftqOffset)) 536 io.jumpPc := Mux(pingpong && (exuParameters.AluCnt > 2).B, jumpPcRead1, jumpPcRead0) 537 val jalrTargetReadPtr = Mux(pingpong && (exuParameters.AluCnt > 2).B, 538 io.dispatch(2).bits.cf.ftqPtr, 539 io.dispatch(0).bits.cf.ftqPtr) 540 pcMem.io.raddr(4) := (jalrTargetReadPtr + 1.U).value 541 val jalrTargetRead = pcMem.io.rdata(4).startAddr 542 val read_from_newest_entry = RegNext(jalrTargetReadPtr) === RegNext(io.frontend.fromFtq.newest_entry_ptr) 543 io.jalr_target := Mux(read_from_newest_entry, RegNext(io.frontend.fromFtq.newest_entry_target), jalrTargetRead) 544 for(i <- 0 until exuParameters.LduCnt){ 545 // load s0 -> get rdata (s1) -> reg next (s2) -> output (s2) 546 pcMem.io.raddr(i + PCMEMIDX_LD) := io.ld_pc_read(i).ptr.value 547 io.ld_pc_read(i).data := pcMem.io.rdata(i + 5).getPc(RegNext(io.ld_pc_read(i).offset)) 548 } 549 550 rob.io.hartId := io.hartId 551 io.cpu_halt := DelayN(rob.io.cpu_halt, 5) 552 rob.io.redirect := stage2Redirect 553 outer.rob.generateWritebackIO(Some(outer), Some(this)) 554 555 io.redirect := stage2Redirect 556 557 // rob to int block 558 io.robio.toCSR <> rob.io.csr 559 // When wfi is disabled, it will not block ROB commit. 560 rob.io.csr.wfiEvent := io.robio.toCSR.wfiEvent 561 rob.io.wfi_enable := decode.io.csrCtrl.wfi_enable 562 io.robio.toCSR.perfinfo.retiredInstr <> RegNext(rob.io.csr.perfinfo.retiredInstr) 563 io.robio.exception := rob.io.exception 564 io.robio.exception.bits.uop.cf.pc := flushPC 565 566 // rob to mem block 567 io.robio.lsq <> rob.io.lsq 568 569 rob.io.debug_ls := io.robio.debug_ls 570 rob.io.debugHeadLsIssue := io.robHeadLsIssue 571 rob.io.lsTopdownInfo := io.robio.lsTopdownInfo 572 io.robDeqPtr := rob.io.robDeqPtr 573 574 io.perfInfo.ctrlInfo.robFull := RegNext(rob.io.robFull) 575 io.perfInfo.ctrlInfo.intdqFull := RegNext(intDq.io.dqFull) 576 io.perfInfo.ctrlInfo.fpdqFull := RegNext(fpDq.io.dqFull) 577 io.perfInfo.ctrlInfo.lsdqFull := RegNext(lsDq.io.dqFull) 578 579 val pfevent = Module(new PFEvent) 580 pfevent.io.distribute_csr := RegNext(io.csrCtrl.distribute_csr) 581 val csrevents = pfevent.io.hpmevent.slice(8,16) 582 583 val perfinfo = IO(new Bundle(){ 584 val perfEventsRs = Input(Vec(NumRs, new PerfEvent)) 585 val perfEventsEu0 = Input(Vec(6, new PerfEvent)) 586 val perfEventsEu1 = Input(Vec(6, new PerfEvent)) 587 }) 588 589 val allPerfEvents = Seq(decode, rename, dispatch, intDq, fpDq, lsDq, rob).flatMap(_.getPerf) 590 val hpmEvents = allPerfEvents ++ perfinfo.perfEventsEu0 ++ perfinfo.perfEventsEu1 ++ perfinfo.perfEventsRs 591 val perfEvents = HPerfMonitor(csrevents, hpmEvents).getPerfEvents 592 generatePerfEvent() 593} 594