1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.backend 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} 23import utility._ 24import utils._ 25import xiangshan.ExceptionNO._ 26import xiangshan._ 27import xiangshan.backend.ctrlblock.{MemCtrl, RedirectGenerator} 28import xiangshan.backend.decode.{DecodeStage, FusionDecoder} 29import xiangshan.backend.dispatch.{Dispatch, DispatchQueue} 30import xiangshan.backend.fu.PFEvent 31import xiangshan.backend.rename.{Rename, RenameTableWrapper} 32import xiangshan.backend.rob.{Rob, RobCSRIO, RobLsqIO} 33import xiangshan.frontend.{FtqRead, Ftq_RF_Components} 34import xiangshan.v2backend.Bundles.{DecodedInst, DynInst, ExceptionInfo, ExuOutput} 35import xiangshan.v2backend.{BackendParams, VAddrData} 36 37class CtrlToFtqIO(implicit p: Parameters) extends XSBundle { 38 def numRedirect = backendParams.numRedirect 39 val rob_commits = Vec(CommitWidth, Valid(new RobCommitInfo)) 40 val redirect = Valid(new Redirect) 41} 42 43class CtrlBlock(params: BackendParams)(implicit p: Parameters) extends LazyModule { 44 val rob = LazyModule(new Rob(params)) 45 46// override def addWritebackSink(source: Seq[HasWritebackSource], index: Option[Seq[Int]]): HasWritebackSink = { 47// rob.addWritebackSink(Seq(this), Some(Seq(writebackSinks.length))) 48// super.addWritebackSink(source, index) 49// } 50 51 lazy val module = new CtrlBlockImp(this)(p, params) 52 53} 54 55class CtrlBlockImp( 56 override val wrapper: CtrlBlock 57)(implicit 58 p: Parameters, 59 params: BackendParams 60) extends LazyModuleImp(wrapper) 61 with HasXSParameter 62 with HasCircularQueuePtrHelper 63 with HasPerfEvents 64{ 65 val pcMemRdIndexes = new NamedIndexes(Seq( 66 "exu" -> params.numPcReadPort, 67 "redirect" -> 1, 68 "memPred" -> 1, 69 "robFlush" -> 1, 70 "load" -> params.LduCnt, 71 )) 72 73 private val numPcMemReadForExu = params.numPcReadPort 74 private val numPcMemRead = pcMemRdIndexes.maxIdx 75 76 private val numTargetMemRead = numPcMemReadForExu 77 78 println(s"pcMem read num: $numPcMemRead") 79 println(s"pcMem read num for exu: $numPcMemReadForExu") 80 println(s"targetMem read num: $numTargetMemRead") 81 82 val io = IO(new CtrlBlockIO()) 83 84 val decode = Module(new DecodeStage) 85 val fusionDecoder = Module(new FusionDecoder) 86 val rat = Module(new RenameTableWrapper) 87 val rename = Module(new Rename) 88 val dispatch = Module(new Dispatch) 89 val intDq = Module(new DispatchQueue(dpParams.IntDqSize, RenameWidth, dpParams.IntDqDeqWidth)) 90 val fpDq = Module(new DispatchQueue(dpParams.FpDqSize, RenameWidth, dpParams.FpDqDeqWidth)) 91 val lsDq = Module(new DispatchQueue(dpParams.LsDqSize, RenameWidth, dpParams.LsDqDeqWidth)) 92 val redirectGen = Module(new RedirectGenerator) 93 private val pcMem = Module(new SyncDataModuleTemplate(new Ftq_RF_Components, FtqSize, numPcMemRead, 1, "BackendPC")) 94 private val targetMem = Module(new SyncDataModuleTemplate(UInt(VAddrData().dataWidth.W), FtqSize, numTargetMemRead, 1)) 95 private val rob = wrapper.rob.module 96 private val memCtrl = Module(new MemCtrl(params)) 97 98 private val disableFusion = decode.io.csrCtrl.singlestep || !decode.io.csrCtrl.fusion_enable 99 100 private val s0_robFlushRedirect = rob.io.flushOut 101 private val s1_robFlushRedirect = Wire(Valid(new Redirect)) 102 s1_robFlushRedirect.valid := RegNext(s0_robFlushRedirect.valid) 103 s1_robFlushRedirect.bits := RegEnable(s0_robFlushRedirect.bits, s0_robFlushRedirect.valid) 104 105 pcMem.io.raddr(pcMemRdIndexes("robFlush").head) := s0_robFlushRedirect.bits.ftqIdx.value 106 private val s1_robFlushPc = pcMem.io.rdata(pcMemRdIndexes("robFlush").head).getPc(RegNext(s0_robFlushRedirect.bits.ftqOffset)) 107 private val s3_redirectGen = redirectGen.io.stage2Redirect 108 private val s1_s3_redirect = Mux(s1_robFlushRedirect.valid, s1_robFlushRedirect, s3_redirectGen) 109 private val s2_s4_pendingRedirectValid = RegInit(false.B) 110 when (s1_s3_redirect.valid) { 111 s2_s4_pendingRedirectValid := true.B 112 }.elsewhen (RegNext(io.frontend.toFtq.redirect.valid)) { 113 s2_s4_pendingRedirectValid := false.B 114 } 115 116 // Redirect will be RegNext at ExuBlocks and IssueBlocks 117 val s2_s4_redirect = RegNextWithEnable(s1_s3_redirect) 118 val s3_s5_redirect = RegNextWithEnable(s2_s4_redirect) 119 120 private val delayedNotFlushedWriteBack = io.fromWB.wbData.map(x => { 121 val valid = x.valid 122 val killedByOlder = x.bits.robIdx.needFlush(Seq(s1_s3_redirect, s2_s4_redirect, s3_s5_redirect)) 123 val delayed = Wire(Valid(new ExuOutput(x.bits.params))) 124 delayed.valid := RegNext(valid && !killedByOlder) 125 delayed.bits := RegEnable(x.bits, x.valid) 126 delayed 127 }) 128 129 private val exuPredecode = VecInit( 130 delayedNotFlushedWriteBack.filter(_.bits.redirect.nonEmpty).map(x => x.bits.predecodeInfo.get) 131 ) 132 133 private val exuRedirects: IndexedSeq[ValidIO[Redirect]] = delayedNotFlushedWriteBack.filter(_.bits.redirect.nonEmpty).map(x => { 134 val out = Wire(Valid(new Redirect())) 135 out.valid := x.valid && x.bits.redirect.get.valid 136 out.bits := x.bits.redirect.get.bits 137 out 138 }) 139 140 private val memViolation = io.fromMem.violation 141 val loadReplay = Wire(ValidIO(new Redirect)) 142 loadReplay.valid := RegNext(memViolation.valid && 143 !memViolation.bits.robIdx.needFlush(Seq(s1_s3_redirect, s2_s4_redirect)) 144 ) 145 loadReplay.bits := RegEnable(memViolation.bits, memViolation.valid) 146 147 // val isCommitWriteVconfigVec = rob.io.commits.commitValid.zip(rob.io.commits.info).map{case (valid, info) => valid && info.ldest === 32.U}.reverse 148// val isWalkWriteVconfigVec = rob.io.commits.walkValid.zip(rob.io.commits.info).map{case (valid, info) => valid && info.ldest === 32.U}.reverse 149 val pdestReverse = rob.io.commits.info.map(info => info.pdest).reverse 150// val commitSel = PriorityMux(isCommitWriteVconfigVec, pdestReverse) 151// val walkSel = PriorityMux(isWalkWriteVconfigVec, pdestReverse) 152// val vconfigAddr = Mux(rob.io.commits.isCommit, commitSel, walkSel) 153// decode.io.vconfig := io.vconfigReadPort.data 154// decode.io.isVsetFlushPipe := rob.io.isVsetFlushPipe 155 156 pcMem.io.raddr(pcMemRdIndexes("redirect").head) := redirectGen.io.redirectPcRead.ptr.value 157 redirectGen.io.redirectPcRead.data := pcMem.io.rdata(pcMemRdIndexes("redirect").head).getPc(RegNext(redirectGen.io.redirectPcRead.offset)) 158 pcMem.io.raddr(pcMemRdIndexes("memPred").head) := redirectGen.io.memPredPcRead.ptr.value 159 redirectGen.io.memPredPcRead.data := pcMem.io.rdata(pcMemRdIndexes("memPred").head).getPc(RegNext(redirectGen.io.memPredPcRead.offset)) 160 161 for ((pcMemIdx, i) <- pcMemRdIndexes("load").zipWithIndex) { 162 pcMem.io.raddr(pcMemIdx) := io.memLdPcRead(i).ptr.value 163 io.memLdPcRead(i).data := pcMem.io.rdata(pcMemIdx).getPc(RegNext(io.memLdPcRead(i).offset)) 164 } 165 166 redirectGen.io.hartId := io.fromTop.hartId 167 redirectGen.io.exuRedirect := exuRedirects 168 redirectGen.io.exuOutPredecode := exuPredecode // garded by exuRedirect.valid 169 redirectGen.io.loadReplay <> loadReplay 170 171 redirectGen.io.robFlush := s1_robFlushRedirect.valid 172 173 val s6_frontendFlushValid = DelayN(s1_robFlushRedirect.valid, 5) 174 val frontendFlushBits = RegEnable(s1_robFlushRedirect.bits, s1_robFlushRedirect.valid) // ?? 175 // When ROB commits an instruction with a flush, we notify the frontend of the flush without the commit. 176 // Flushes to frontend may be delayed by some cycles and commit before flush causes errors. 177 // Thus, we make all flush reasons to behave the same as exceptions for frontend. 178 for (i <- 0 until CommitWidth) { 179 // why flushOut: instructions with flushPipe are not commited to frontend 180 // If we commit them to frontend, it will cause flush after commit, which is not acceptable by frontend. 181 val s1_isCommit = rob.io.commits.commitValid(i) && rob.io.commits.isCommit && rob.io.commits.info(i).uopIdx.andR && !s0_robFlushRedirect.valid 182 io.frontend.toFtq.rob_commits(i).valid := RegNext(s1_isCommit) 183 io.frontend.toFtq.rob_commits(i).bits := RegEnable(rob.io.commits.info(i), s1_isCommit) 184 } 185 io.frontend.toFtq.redirect.valid := s6_frontendFlushValid || s3_redirectGen.valid 186 io.frontend.toFtq.redirect.bits := Mux(s6_frontendFlushValid, frontendFlushBits, s3_redirectGen.bits) 187 // Be careful here: 188 // T0: rob.io.flushOut, s0_robFlushRedirect 189 // T1: s1_robFlushRedirect, rob.io.exception.valid 190 // T2: csr.redirect.valid 191 // T3: csr.exception.valid 192 // T4: csr.trapTarget 193 // T5: ctrlBlock.trapTarget 194 // T6: io.frontend.toFtq.stage2Redirect.valid 195 val s2_robFlushPc = RegEnable(Mux(s1_robFlushRedirect.bits.flushItself(), 196 s1_robFlushPc, // replay inst 197 s1_robFlushPc + 4.U // flush pipe 198 ), s1_robFlushRedirect.valid) 199 private val s2_csrIsXRet = io.robio.csr.isXRet 200 private val s5_csrIsTrap = DelayN(rob.io.exception.valid, 4) 201 private val s2_s5_trapTargetFromCsr = io.robio.csr.trapTarget 202 203 val flushTarget = Mux(s2_csrIsXRet || s5_csrIsTrap, s2_s5_trapTargetFromCsr, s2_robFlushPc) 204 when (s6_frontendFlushValid) { 205 io.frontend.toFtq.redirect.bits.level := RedirectLevel.flush 206 io.frontend.toFtq.redirect.bits.cfiUpdate.target := RegNext(flushTarget) 207 } 208 209 if (env.EnableTopDown) { 210 val stage2Redirect_valid_when_pending = s2_s4_pendingRedirectValid && s1_s3_redirect.valid 211 212 val stage2_redirect_cycles = RegInit(false.B) // frontend_bound->fetch_lantency->stage2_redirect 213 val MissPredPending = RegInit(false.B); val branch_resteers_cycles = RegInit(false.B) // frontend_bound->fetch_lantency->stage2_redirect->branch_resteers 214 val RobFlushPending = RegInit(false.B); val robFlush_bubble_cycles = RegInit(false.B) // frontend_bound->fetch_lantency->stage2_redirect->robflush_bubble 215 val LdReplayPending = RegInit(false.B); val ldReplay_bubble_cycles = RegInit(false.B) // frontend_bound->fetch_lantency->stage2_redirect->ldReplay_bubble 216 217 when(redirectGen.io.isMisspreRedirect) { MissPredPending := true.B } 218 when(s1_robFlushRedirect.valid) { RobFlushPending := true.B } 219 when(redirectGen.io.loadReplay.valid) { LdReplayPending := true.B } 220 221 when (RegNext(io.frontend.toFtq.redirect.valid)) { 222 when(s2_s4_pendingRedirectValid) { stage2_redirect_cycles := true.B } 223 when(MissPredPending) { MissPredPending := false.B; branch_resteers_cycles := true.B } 224 when(RobFlushPending) { RobFlushPending := false.B; robFlush_bubble_cycles := true.B } 225 when(LdReplayPending) { LdReplayPending := false.B; ldReplay_bubble_cycles := true.B } 226 } 227 228 when(VecInit(decode.io.out.map(x => x.valid)).asUInt.orR){ 229 when(stage2_redirect_cycles) { stage2_redirect_cycles := false.B } 230 when(branch_resteers_cycles) { branch_resteers_cycles := false.B } 231 when(robFlush_bubble_cycles) { robFlush_bubble_cycles := false.B } 232 when(ldReplay_bubble_cycles) { ldReplay_bubble_cycles := false.B } 233 } 234 235 XSPerfAccumulate("stage2_redirect_cycles", stage2_redirect_cycles) 236 XSPerfAccumulate("branch_resteers_cycles", branch_resteers_cycles) 237 XSPerfAccumulate("robFlush_bubble_cycles", robFlush_bubble_cycles) 238 XSPerfAccumulate("ldReplay_bubble_cycles", ldReplay_bubble_cycles) 239 XSPerfAccumulate("s2Redirect_pend_cycles", stage2Redirect_valid_when_pending) 240 } 241 242 decode.io.in.zip(io.frontend.cfVec).foreach { case (decodeIn, frontendCf) => 243 decodeIn.valid := frontendCf.valid 244 frontendCf.ready := decodeIn.ready 245 decodeIn.bits.connectCtrlFlow(frontendCf.bits) 246 } 247 decode.io.csrCtrl := RegNext(io.csrCtrl) 248 decode.io.intRat <> rat.io.intReadPorts 249 decode.io.fpRat <> rat.io.fpReadPorts 250 decode.io.vecRat <> rat.io.vecReadPorts 251 decode.io.fusion := 0.U.asTypeOf(decode.io.fusion) // Todo 252// decode.io.isRedirect <> stage2Redirect.valid 253// decode.io.robCommits <> rob.io.commits 254 255 val decodeHasException = decode.io.out.map(x => x.bits.exceptionVec(instrPageFault) || x.bits.exceptionVec(instrAccessFault)) 256 // fusion decoder 257 for (i <- 0 until DecodeWidth) { 258 fusionDecoder.io.in(i).valid := decode.io.out(i).valid && !(decodeHasException(i) || disableFusion) 259 fusionDecoder.io.in(i).bits := decode.io.out(i).bits.instr 260 if (i > 0) { 261 fusionDecoder.io.inReady(i - 1) := decode.io.out(i).ready 262 } 263 } 264 265 private val decodePipeRename = Wire(Vec(RenameWidth, DecoupledIO(new DecodedInst))) 266 267 for (i <- 0 until RenameWidth) { 268 PipelineConnect(decode.io.out(i), decodePipeRename(i), rename.io.in(i).ready, 269 s1_s3_redirect.valid || s2_s4_pendingRedirectValid, moduleName = Some("decodePipeRenameModule")) 270 271 decodePipeRename(i).ready := rename.io.in(i).ready 272 rename.io.in(i).valid := decodePipeRename(i).valid && !fusionDecoder.io.clear(i) 273 rename.io.in(i).bits := decodePipeRename(i).bits 274 } 275 276 for (i <- 0 until RenameWidth - 1) { 277 fusionDecoder.io.dec(i) := decodePipeRename(i).bits 278 rename.io.fusionInfo(i) := fusionDecoder.io.info(i) 279 280 // update the first RenameWidth - 1 instructions 281 decode.io.fusion(i) := fusionDecoder.io.out(i).valid && rename.io.out(i).fire 282 when (fusionDecoder.io.out(i).valid) { 283 fusionDecoder.io.out(i).bits.update(rename.io.in(i).bits) 284 // TODO: remove this dirty code for ftq update 285 val sameFtqPtr = rename.io.in(i).bits.ftqPtr.value === rename.io.in(i + 1).bits.ftqPtr.value 286 val ftqOffset0 = rename.io.in(i).bits.ftqOffset 287 val ftqOffset1 = rename.io.in(i + 1).bits.ftqOffset 288 val ftqOffsetDiff = ftqOffset1 - ftqOffset0 289 val cond1 = sameFtqPtr && ftqOffsetDiff === 1.U 290 val cond2 = sameFtqPtr && ftqOffsetDiff === 2.U 291 val cond3 = !sameFtqPtr && ftqOffset1 === 0.U 292 val cond4 = !sameFtqPtr && ftqOffset1 === 1.U 293 rename.io.in(i).bits.commitType := Mux(cond1, 4.U, Mux(cond2, 5.U, Mux(cond3, 6.U, 7.U))) 294 XSError(!cond1 && !cond2 && !cond3 && !cond4, p"new condition $sameFtqPtr $ftqOffset0 $ftqOffset1\n") 295 } 296 297 } 298 299 // memory dependency predict 300 // when decode, send fold pc to mdp 301 private val mdpFlodPcVec = Wire(Vec(DecodeWidth, UInt(MemPredPCWidth.W))) 302 for (i <- 0 until DecodeWidth) { 303 mdpFlodPcVec(i) := Mux( 304 decode.io.out(i).fire, 305 decode.io.in(i).bits.foldpc, 306 rename.io.in(i).bits.foldpc 307 ) 308 } 309 310 // currently, we only update mdp info when isReplay 311 memCtrl.io.redirect <> s1_s3_redirect 312 memCtrl.io.csrCtrl := io.csrCtrl // RegNext in memCtrl 313 memCtrl.io.stIn := io.fromMem.stIn // RegNext in memCtrl 314 memCtrl.io.memPredUpdate := redirectGen.io.memPredUpdate // RegNext in memCtrl 315 memCtrl.io.mdpFlodPcVec := mdpFlodPcVec 316 memCtrl.io.dispatchLFSTio <> dispatch.io.lfst 317 318 rat.io.redirect := s1_s3_redirect.valid 319 rat.io.robCommits := rob.io.commits 320 rat.io.intRenamePorts := rename.io.intRenamePorts 321 rat.io.fpRenamePorts := rename.io.fpRenamePorts 322 rat.io.vecRenamePorts := rename.io.vecRenamePorts 323 324 rename.io.redirect := s1_s3_redirect 325 rename.io.robCommits <> rob.io.commits 326 rename.io.waittable := (memCtrl.io.waitTable2Rename zip decode.io.out).map{ case(waittable2rename, decodeOut) => 327 RegEnable(waittable2rename, decodeOut.fire) 328 } 329 rename.io.ssit := memCtrl.io.ssit2Rename 330 rename.io.intReadPorts := VecInit(rat.io.intReadPorts.map(x => VecInit(x.map(_.data)))) 331 rename.io.fpReadPorts := VecInit(rat.io.fpReadPorts.map(x => VecInit(x.map(_.data)))) 332 rename.io.vecReadPorts := VecInit(rat.io.vecReadPorts.map(x => VecInit(x.map(_.data)))) 333 rename.io.debug_int_rat := rat.io.debug_int_rat 334 rename.io.debug_fp_rat := rat.io.debug_fp_rat 335 rename.io.debug_vconfig_rat := rat.io.debug_vconfig_rat 336 rename.io.debug_vec_rat := rat.io.debug_vec_rat 337 338 // pipeline between rename and dispatch 339 for (i <- 0 until RenameWidth) { 340 PipelineConnect(rename.io.out(i), dispatch.io.fromRename(i), dispatch.io.recv(i), s1_s3_redirect.valid) 341 } 342 343 dispatch.io.hartId := io.fromTop.hartId 344 dispatch.io.redirect <> s1_s3_redirect 345 dispatch.io.enqRob <> rob.io.enq 346 dispatch.io.singleStep := RegNext(io.csrCtrl.singlestep) 347 348 intDq.io.enq <> dispatch.io.toIntDq 349 intDq.io.redirect <> s2_s4_redirect 350 351 fpDq.io.enq <> dispatch.io.toFpDq 352 fpDq.io.redirect <> s2_s4_redirect 353 354 lsDq.io.enq <> dispatch.io.toLsDq 355 lsDq.io.redirect <> s2_s4_redirect 356 357 io.toIssueBlock.intUops <> intDq.io.deq 358 io.toIssueBlock.vfUops <> fpDq.io.deq 359 io.toIssueBlock.memUops <> lsDq.io.deq 360 io.toIssueBlock.allocPregs <> dispatch.io.allocPregs 361 io.toIssueBlock.flush <> s2_s4_redirect 362 363 pcMem.io.wen.head := RegNext(io.frontend.fromFtq.pc_mem_wen) 364 pcMem.io.waddr.head := RegNext(io.frontend.fromFtq.pc_mem_waddr) 365 pcMem.io.wdata.head := RegNext(io.frontend.fromFtq.pc_mem_wdata) 366 targetMem.io.wen.head := RegNext(io.frontend.fromFtq.pc_mem_wen) 367 targetMem.io.waddr.head := RegNext(io.frontend.fromFtq.pc_mem_waddr) 368 targetMem.io.wdata.head := RegNext(io.frontend.fromFtq.pc_mem_wdata.startAddr) 369 370 private val jumpPcVec : Vec[UInt] = Wire(Vec(params.numPcReadPort, UInt(VAddrData().dataWidth.W))) 371 private val jumpTargetReadVec : Vec[UInt] = Wire(Vec(params.numPcReadPort, UInt(VAddrData().dataWidth.W))) 372 private val jumpTargetVec : Vec[UInt] = Wire(Vec(params.numPcReadPort, UInt(VAddrData().dataWidth.W))) 373 io.toIssueBlock.pcVec := jumpPcVec 374 io.toIssueBlock.targetVec := jumpTargetVec 375 376 io.toDataPath.flush := s2_s4_redirect 377 io.toExuBlock.flush := s2_s4_redirect 378 379 for ((pcMemIdx, i) <- pcMemRdIndexes("exu").zipWithIndex) { 380 pcMem.io.raddr(pcMemIdx) := intDq.io.deqNext(i).ftqPtr.value 381 jumpPcVec(i) := pcMem.io.rdata(pcMemIdx).getPc(RegNext(intDq.io.deqNext(i).ftqOffset)) 382 } 383 384 val dqOuts = Seq(io.toIssueBlock.intUops) ++ Seq(io.toIssueBlock.vfUops) ++ Seq(io.toIssueBlock.memUops) 385 dqOuts.zipWithIndex.foreach { case (dqOut, dqIdx) => 386 dqOut.map(_.bits.pc).zipWithIndex.map{ case (pc, portIdx) => 387 if(params.allSchdParams(dqIdx).numPcReadPort > 0){ 388 val realJumpPcVec = jumpPcVec.drop(params.allSchdParams.take(dqIdx).map(_.numPcReadPort).sum).take(params.allSchdParams(dqIdx).numPcReadPort) 389 pc := realJumpPcVec(portIdx) 390 } 391 } 392 } 393 394 private val newestTarget: UInt = io.frontend.fromFtq.newest_entry_target 395 for (i <- 0 until numTargetMemRead) { 396 val targetPtr = intDq.io.deqNext(i).ftqPtr 397 // target pc stored in next entry 398 targetMem.io.raddr(i) := (targetPtr + 1.U).value 399 jumpTargetReadVec(i) := targetMem.io.rdata(i) 400 val needNewestTarget = RegNext(targetPtr === io.frontend.fromFtq.newest_entry_ptr) 401 jumpTargetVec(i) := Mux( 402 needNewestTarget, 403 RegNext(newestTarget), 404 jumpTargetReadVec(i) 405 ) 406 } 407 408 rob.io.hartId := io.fromTop.hartId 409 rob.io.redirect <> s1_s3_redirect 410 rob.io.writeback := delayedNotFlushedWriteBack 411 412 io.redirect <> s1_s3_redirect 413 414 // rob to int block 415 io.robio.csr <> rob.io.csr 416 // When wfi is disabled, it will not block ROB commit. 417 rob.io.csr.wfiEvent := io.robio.csr.wfiEvent 418 rob.io.wfi_enable := decode.io.csrCtrl.wfi_enable 419 420 io.toTop.cpuHalt := DelayN(rob.io.cpu_halt, 5) 421 422 io.robio.csr.perfinfo.retiredInstr <> RegNext(rob.io.csr.perfinfo.retiredInstr) 423 io.robio.exception := rob.io.exception 424 io.robio.exception.bits.pc := s1_robFlushPc 425 426// io.robio.csr.vcsrFlag := RegNext(rob.io.commits.isCommit && Cat(isCommitWriteVconfigVec).orR) 427 428 // rob to mem block 429 io.robio.lsq <> rob.io.lsq 430 431 io.debug_int_rat := rat.io.debug_int_rat 432 io.debug_fp_rat := rat.io.debug_fp_rat 433 io.debug_vec_rat := rat.io.debug_vec_rat 434 io.debug_vconfig_rat := rat.io.debug_vconfig_rat 435 436 io.perfInfo.ctrlInfo.robFull := RegNext(rob.io.robFull) 437 io.perfInfo.ctrlInfo.intdqFull := RegNext(intDq.io.dqFull) 438 io.perfInfo.ctrlInfo.fpdqFull := RegNext(fpDq.io.dqFull) 439 io.perfInfo.ctrlInfo.lsdqFull := RegNext(lsDq.io.dqFull) 440 441 val pfevent = Module(new PFEvent) 442 pfevent.io.distribute_csr := RegNext(io.csrCtrl.distribute_csr) 443 val csrevents = pfevent.io.hpmevent.slice(8,16) 444 445 val perfinfo = IO(new Bundle(){ 446 val perfEventsRs = Input(Vec(params.IqCnt, new PerfEvent)) 447 val perfEventsEu0 = Input(Vec(6, new PerfEvent)) 448 val perfEventsEu1 = Input(Vec(6, new PerfEvent)) 449 }) 450 451 val allPerfEvents = Seq(decode, rename, dispatch, intDq, fpDq, lsDq, rob).flatMap(_.getPerf) 452 val hpmEvents = allPerfEvents ++ perfinfo.perfEventsEu0 ++ perfinfo.perfEventsEu1 ++ perfinfo.perfEventsRs 453 val perfEvents = HPerfMonitor(csrevents, hpmEvents).getPerfEvents 454 generatePerfEvent() 455} 456 457class CtrlBlockIO()(implicit p: Parameters, params: BackendParams) extends XSBundle { 458 val fromTop = new Bundle { 459 val hartId = Input(UInt(8.W)) 460 } 461 val toTop = new Bundle { 462 val cpuHalt = Output(Bool()) 463 } 464 val frontend = Flipped(new FrontendToCtrlIO()) 465 val toIssueBlock = new Bundle { 466 val flush = ValidIO(new Redirect) 467 val allocPregs = Vec(RenameWidth, Output(new ResetPregStateReq)) 468 val intUops = Vec(dpParams.IntDqDeqWidth, DecoupledIO(new DynInst)) 469 val vfUops = Vec(dpParams.FpDqDeqWidth, DecoupledIO(new DynInst)) 470 val memUops = Vec(dpParams.LsDqDeqWidth, DecoupledIO(new DynInst)) 471 val pcVec = Output(Vec(params.numPcReadPort, UInt(VAddrData().dataWidth.W))) 472 val targetVec = Output(Vec(params.numPcReadPort, UInt(VAddrData().dataWidth.W))) 473 } 474 val toDataPath = new Bundle { 475 val flush = ValidIO(new Redirect) 476 } 477 val toExuBlock = new Bundle { 478 val flush = ValidIO(new Redirect) 479 } 480 val fromWB = new Bundle { 481 val wbData = Flipped(MixedVec(params.genWrite2CtrlBundles)) 482 } 483 val redirect = ValidIO(new Redirect) 484 val fromMem = new Bundle { 485 val stIn = Vec(params.StaCnt, Flipped(ValidIO(new DynInst))) // use storeSetHit, ssid, robIdx 486 val violation = Flipped(ValidIO(new Redirect)) 487 } 488 val memLdPcRead = Vec(params.LduCnt, Flipped(new FtqRead(UInt(VAddrBits.W)))) 489 val csrCtrl = Input(new CustomCSRCtrlIO) 490 val robio = new Bundle { 491 val csr = new RobCSRIO 492 val exception = ValidIO(new ExceptionInfo) 493 val lsq = new RobLsqIO 494 } 495 496 val perfInfo = Output(new Bundle{ 497 val ctrlInfo = new Bundle { 498 val robFull = Bool() 499 val intdqFull = Bool() 500 val fpdqFull = Bool() 501 val lsdqFull = Bool() 502 } 503 }) 504 val debug_int_rat = Vec(32, Output(UInt(PhyRegIdxWidth.W))) 505 val debug_fp_rat = Vec(32, Output(UInt(PhyRegIdxWidth.W))) 506 val debug_vec_rat = Vec(32, Output(UInt(PhyRegIdxWidth.W))) // TODO: use me 507 val debug_vconfig_rat = Output(UInt(PhyRegIdxWidth.W)) // TODO: use me 508 509} 510 511class NamedIndexes(namedCnt: Seq[(String, Int)]) { 512 require(namedCnt.map(_._1).distinct.size == namedCnt.size, "namedCnt should not have the same name") 513 514 val maxIdx = namedCnt.map(_._2).sum 515 val nameRangeMap: Map[String, (Int, Int)] = namedCnt.indices.map { i => 516 val begin = namedCnt.slice(0, i).map(_._2).sum 517 val end = begin + namedCnt(i)._2 518 (namedCnt(i)._1, (begin, end)) 519 }.toMap 520 521 def apply(name: String): Seq[Int] = { 522 require(nameRangeMap.contains(name)) 523 nameRangeMap(name)._1 until nameRangeMap(name)._2 524 } 525} 526