xref: /aosp_15_r20/external/skia/src/sksl/SkSLAnalysis.h (revision c8dee2aa9b3f27cf6c858bd81872bdeb2c07ed17)
1 /*
2  * Copyright 2020 Google LLC
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkSLAnalysis_DEFINED
9 #define SkSLAnalysis_DEFINED
10 
11 #include "include/private/SkSLSampleUsage.h"
12 #include "include/private/base/SkTArray.h"
13 
14 #include <cstdint>
15 #include <memory>
16 #include <vector>
17 
18 namespace SkSL {
19 
20 class Context;
21 class ErrorReporter;
22 class Expression;
23 class FunctionDeclaration;
24 class FunctionDefinition;
25 class Position;
26 class ProgramElement;
27 class ProgramUsage;
28 class Statement;
29 class SymbolTable;
30 class Variable;
31 class VariableReference;
32 enum class VariableRefKind : int8_t;
33 struct ForLoopPositions;
34 struct LoopUnrollInfo;
35 struct Module;
36 struct Program;
37 
38 /**
39  * Provides utilities for analyzing SkSL statically before it's composed into a full program.
40  */
41 namespace Analysis {
42 
43 /**
44  * Determines how `program` samples `child`. By default, assumes that the sample coords might be
45  * modified, so `child.eval(sampleCoords)` is treated as Explicit. If writesToSampleCoords is false,
46  * treats that as PassThrough, instead. If elidedSampleCoordCount is provided, the pointed to value
47  * will be incremented by the number of sample calls where the above rewrite was performed.
48  */
49 SampleUsage GetSampleUsage(const Program& program,
50                            const Variable& child,
51                            bool writesToSampleCoords = true,
52                            int* elidedSampleCoordCount = nullptr);
53 
54 bool ReferencesBuiltin(const Program& program, int builtin);
55 
56 bool ReferencesSampleCoords(const Program& program);
57 bool ReferencesFragCoords(const Program& program);
58 
59 bool CallsSampleOutsideMain(const Program& program);
60 
61 bool CallsColorTransformIntrinsics(const Program& program);
62 
63 /**
64  * Determines if `function` always returns an opaque color (a vec4 where the last component is known
65  * to be 1). This is conservative, and based on constant expression analysis.
66  */
67 bool ReturnsOpaqueColor(const FunctionDefinition& function);
68 
69 /**
70  * Determines if `function` is a color filter which returns the alpha component of the input color
71  * unchanged. This is a very conservative analysis, and only supports returning a swizzle of the
72  * input color, or returning a constructor that ends with `input.a`.
73  */
74 bool ReturnsInputAlpha(const FunctionDefinition& function, const ProgramUsage& usage);
75 
76 /**
77  * Checks for recursion or overly-deep function-call chains, and rejects programs which have them.
78  */
79 bool CheckProgramStructure(const Program& program);
80 
81 /** Determines if `expr` contains a reference to the variable sk_RTAdjust. */
82 bool ContainsRTAdjust(const Expression& expr);
83 
84 /** Determines if `expr` contains a reference to variable `var`. */
85 bool ContainsVariable(const Expression& expr, const Variable& var);
86 
87 /** Determines if `expr` has any side effects. (Is the expression state-altering or pure?) */
88 bool HasSideEffects(const Expression& expr);
89 
90 /** Determines if `expr` is a compile-time constant (composed of just constructors and literals). */
91 bool IsCompileTimeConstant(const Expression& expr);
92 
93 /**
94  * Determines if `expr` is a dynamically-uniform expression; this returns true if the expression
95  * could be evaluated at compile time if uniform values were known.
96  */
97 bool IsDynamicallyUniformExpression(const Expression& expr);
98 
99 /**
100  * Detect an orphaned variable declaration outside of a scope, e.g. if (true) int a;. Returns
101  * true if an error was reported.
102  */
103 bool DetectVarDeclarationWithoutScope(const Statement& stmt, ErrorReporter* errors = nullptr);
104 
105 int NodeCountUpToLimit(const FunctionDefinition& function, int limit);
106 
107 /**
108  * Finds unconditional exits from a switch-case. Returns true if this statement unconditionally
109  * causes an exit from this switch (via continue, break or return).
110  */
111 bool SwitchCaseContainsUnconditionalExit(const Statement& stmt);
112 
113 /**
114  * Finds conditional exits from a switch-case. Returns true if this statement contains a
115  * conditional that wraps a potential exit from the switch (via continue, break or return).
116  */
117 bool SwitchCaseContainsConditionalExit(const Statement& stmt);
118 
119 std::unique_ptr<ProgramUsage> GetUsage(const Program& program);
120 std::unique_ptr<ProgramUsage> GetUsage(const Module& module);
121 
122 /** Returns true if the passed-in statement might alter `var`. */
123 bool StatementWritesToVariable(const Statement& stmt, const Variable& var);
124 
125 /**
126  * Detects if the passed-in block contains a `continue`, `break` or `return` that could directly
127  * affect its control flow. (A `continue` or `break` nested inside an inner loop/switch will not
128  * affect the loop, but a `return` will.)
129  */
130 struct LoopControlFlowInfo {
131     bool fHasContinue = false;
132     bool fHasBreak = false;
133     bool fHasReturn = false;
134 };
135 LoopControlFlowInfo GetLoopControlFlowInfo(const Statement& stmt);
136 
137 /**
138  * Returns true if the expression can be assigned-into. Pass `info` if you want to know the
139  * VariableReference that will be written to. Pass `errors` to report an error for expressions that
140  * are not actually writable.
141  */
142 struct AssignmentInfo {
143     VariableReference* fAssignedVar = nullptr;
144 };
145 bool IsAssignable(Expression& expr, AssignmentInfo* info = nullptr,
146                   ErrorReporter* errors = nullptr);
147 
148 /**
149  * Updates the `refKind` field of the VariableReference at the top level of `expr`.
150  * If `expr` can be assigned to (`IsAssignable`), true is returned and no errors are reported.
151  * If not, false is returned. and an error is reported if `errors` is non-null.
152  */
153 bool UpdateVariableRefKind(Expression* expr, VariableRefKind kind, ErrorReporter* errors = nullptr);
154 
155 /**
156  * A "trivial" expression is one where we'd feel comfortable cloning it multiple times in
157  * the code, without worrying about incurring a performance penalty. Examples:
158  * - true
159  * - 3.14159265
160  * - myIntVariable
161  * - myColor.rgb
162  * - myArray[123]
163  * - myStruct.myField
164  * - half4(0)
165  * - !myBoolean
166  * - +myValue
167  * - -myValue
168  * - ~myInteger
169  *
170  * Trivial-ness is stackable. Somewhat large expressions can occasionally make the cut:
171  * - half4(myColor.a)
172  * - myStruct.myArrayField[7].xzy
173  */
174 bool IsTrivialExpression(const Expression& expr);
175 
176 /**
177  * Returns true if both expression trees are the same. Used by the optimizer to look for self-
178  * assignment or self-comparison; won't necessarily catch complex cases. Rejects expressions
179  * that may cause side effects.
180  */
181 bool IsSameExpressionTree(const Expression& left, const Expression& right);
182 
183 /**
184  * Returns true if expr is a constant-expression, as defined by GLSL 1.0, section 5.10.
185  * A constant expression is one of:
186  * - A literal value
187  * - A global or local variable qualified as 'const', excluding function parameters
188  * - An expression formed by an operator on operands that are constant expressions, including
189  *   getting an element of a constant vector or a constant matrix, or a field of a constant
190  *   structure
191  * - A constructor whose arguments are all constant expressions
192  * - A built-in function call whose arguments are all constant expressions, with the exception
193  *   of the texture lookup functions
194  */
195 bool IsConstantExpression(const Expression& expr);
196 
197 /**
198  * Ensures that any index-expressions inside of for-loops qualify as 'constant-index-expressions' as
199  * defined by GLSL 1.0, Appendix A, Section 5. A constant-index-expression is:
200  * - A constant-expression
201  * - Loop indices (as defined in Appendix A, Section 4)
202  * - Expressions composed of both of the above
203  */
204 void ValidateIndexingForES2(const ProgramElement& pe, ErrorReporter& errors);
205 
206 /**
207  * Emits an internal error if a VarDeclaration exists without a matching entry in the nearest
208  * SymbolTable.
209  */
210 void CheckSymbolTableCorrectness(const Program& program);
211 
212 /**
213  * Ensures that a for-loop meets the strict requirements of The OpenGL ES Shading Language 1.00,
214  * Appendix A, Section 4.
215  * If the requirements are met, information about the loop's structure is returned.
216  * If the requirements are not met, the problem is reported via `errors` (if not nullptr), and
217  * null is returned.
218  * The loop test-expression may be altered by this check. For example, a loop like this:
219  *     for (float x = 1.0; x != 0.0; x -= 0.01) {...}
220  * appears to be ES2-safe, but due to floating-point rounding error, it may not actually terminate.
221  * We rewrite the test condition to `x > 0.0` in order to ensure loop termination.
222  */
223 std::unique_ptr<LoopUnrollInfo> GetLoopUnrollInfo(const Context& context,
224                                                   Position pos,
225                                                   const ForLoopPositions& positions,
226                                                   const Statement* loopInitializer,
227                                                   std::unique_ptr<Expression>* loopTestPtr,
228                                                   const Expression* loopNext,
229                                                   const Statement* loopStatement,
230                                                   ErrorReporter* errors);
231 
232 /** Detects functions that fail to return a value on at least one path. */
233 bool CanExitWithoutReturningValue(const FunctionDeclaration& funcDecl, const Statement& body);
234 
235 /** Determines if a given function has multiple and/or early returns. */
236 enum class ReturnComplexity {
237     kSingleSafeReturn,
238     kScopedReturns,
239     kEarlyReturns,
240 };
241 ReturnComplexity GetReturnComplexity(const FunctionDefinition& funcDef);
242 
243 /**
244  * Runs at finalization time to perform any last-minute correctness checks:
245  * - Reports dangling FunctionReference or TypeReference expressions
246  * - Reports function `out` params which are never written to (structs are currently exempt)
247  */
248 void DoFinalizationChecks(const Program& program);
249 
250 /**
251  * Error checks compute shader in/outs and returns a vector containing them ordered by location.
252  */
253 skia_private::TArray<const SkSL::Variable*> GetComputeShaderMainParams(const Context& context,
254                                                                        const Program& program);
255 
256 /**
257  * Tracks the symbol table stack, in conjunction with a ProgramVisitor. Inside `visitStatement`,
258  * pass the current statement and a symbol-table vector to a SymbolTableStackBuilder and the symbol
259  * table stack will be maintained automatically.
260  */
261 class SymbolTableStackBuilder {
262 public:
263     // If the passed-in statement holds a symbol table, adds it to the stack.
264     SymbolTableStackBuilder(const Statement* stmt, std::vector<SymbolTable*>* stack);
265 
266     // If a symbol table was added to the stack earlier, removes it from the stack.
267     ~SymbolTableStackBuilder();
268 
269     // Returns true if an entry was added to the symbol-table stack.
foundSymbolTable()270     bool foundSymbolTable() {
271         return fStackToPop != nullptr;
272     }
273 
274 private:
275     std::vector<SymbolTable*>* fStackToPop = nullptr;
276 };
277 
278 }  // namespace Analysis
279 }  // namespace SkSL
280 
281 #endif
282