1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * Copyright (C) 2018 Exceet Electronics GmbH
4 * Copyright (C) 2018 Bootlin
5 *
6 * Author:
7 * Peter Pan <[email protected]>
8 * Boris Brezillon <[email protected]>
9 */
10
11 #ifndef __LINUX_SPI_MEM_H
12 #define __LINUX_SPI_MEM_H
13
14 #include <linux/spi/spi.h>
15
16 #define SPI_MEM_OP_CMD(__opcode, __buswidth) \
17 { \
18 .nbytes = 1, \
19 .buswidth = __buswidth, \
20 .opcode = __opcode, \
21 }
22
23 #define SPI_MEM_DTR_OP_CMD(__opcode, __buswidth) \
24 { \
25 .nbytes = 1, \
26 .opcode = __opcode, \
27 .buswidth = __buswidth, \
28 .dtr = true, \
29 }
30
31 #define SPI_MEM_OP_ADDR(__nbytes, __val, __buswidth) \
32 { \
33 .nbytes = __nbytes, \
34 .buswidth = __buswidth, \
35 .val = __val, \
36 }
37
38 #define SPI_MEM_DTR_OP_ADDR(__nbytes, __val, __buswidth) \
39 { \
40 .nbytes = __nbytes, \
41 .val = __val, \
42 .buswidth = __buswidth, \
43 .dtr = true, \
44 }
45
46 #define SPI_MEM_OP_NO_ADDR { }
47
48 #define SPI_MEM_OP_DUMMY(__nbytes, __buswidth) \
49 { \
50 .nbytes = __nbytes, \
51 .buswidth = __buswidth, \
52 }
53
54 #define SPI_MEM_DTR_OP_DUMMY(__nbytes, __buswidth) \
55 { \
56 .nbytes = __nbytes, \
57 .buswidth = __buswidth, \
58 .dtr = true, \
59 }
60
61 #define SPI_MEM_OP_NO_DUMMY { }
62
63 #define SPI_MEM_OP_DATA_IN(__nbytes, __buf, __buswidth) \
64 { \
65 .buswidth = __buswidth, \
66 .dir = SPI_MEM_DATA_IN, \
67 .nbytes = __nbytes, \
68 .buf.in = __buf, \
69 }
70
71 #define SPI_MEM_DTR_OP_DATA_IN(__nbytes, __buf, __buswidth) \
72 { \
73 .dir = SPI_MEM_DATA_IN, \
74 .nbytes = __nbytes, \
75 .buf.in = __buf, \
76 .buswidth = __buswidth, \
77 .dtr = true, \
78 }
79
80 #define SPI_MEM_OP_DATA_OUT(__nbytes, __buf, __buswidth) \
81 { \
82 .buswidth = __buswidth, \
83 .dir = SPI_MEM_DATA_OUT, \
84 .nbytes = __nbytes, \
85 .buf.out = __buf, \
86 }
87
88 #define SPI_MEM_DTR_OP_DATA_OUT(__nbytes, __buf, __buswidth) \
89 { \
90 .dir = SPI_MEM_DATA_OUT, \
91 .nbytes = __nbytes, \
92 .buf.out = __buf, \
93 .buswidth = __buswidth, \
94 .dtr = true, \
95 }
96
97 #define SPI_MEM_OP_NO_DATA { }
98
99 /**
100 * enum spi_mem_data_dir - describes the direction of a SPI memory data
101 * transfer from the controller perspective
102 * @SPI_MEM_NO_DATA: no data transferred
103 * @SPI_MEM_DATA_IN: data coming from the SPI memory
104 * @SPI_MEM_DATA_OUT: data sent to the SPI memory
105 */
106 enum spi_mem_data_dir {
107 SPI_MEM_NO_DATA,
108 SPI_MEM_DATA_IN,
109 SPI_MEM_DATA_OUT,
110 };
111
112 #define SPI_MEM_OP_MAX_FREQ(__freq) \
113 .max_freq = __freq
114
115 /**
116 * struct spi_mem_op - describes a SPI memory operation
117 * @cmd.nbytes: number of opcode bytes (only 1 or 2 are valid). The opcode is
118 * sent MSB-first.
119 * @cmd.buswidth: number of IO lines used to transmit the command
120 * @cmd.opcode: operation opcode
121 * @cmd.dtr: whether the command opcode should be sent in DTR mode or not
122 * @addr.nbytes: number of address bytes to send. Can be zero if the operation
123 * does not need to send an address
124 * @addr.buswidth: number of IO lines used to transmit the address cycles
125 * @addr.dtr: whether the address should be sent in DTR mode or not
126 * @addr.val: address value. This value is always sent MSB first on the bus.
127 * Note that only @addr.nbytes are taken into account in this
128 * address value, so users should make sure the value fits in the
129 * assigned number of bytes.
130 * @dummy.nbytes: number of dummy bytes to send after an opcode or address. Can
131 * be zero if the operation does not require dummy bytes
132 * @dummy.buswidth: number of IO lanes used to transmit the dummy bytes
133 * @dummy.dtr: whether the dummy bytes should be sent in DTR mode or not
134 * @data.buswidth: number of IO lanes used to send/receive the data
135 * @data.dtr: whether the data should be sent in DTR mode or not
136 * @data.ecc: whether error correction is required or not
137 * @data.swap16: whether the byte order of 16-bit words is swapped when read
138 * or written in Octal DTR mode compared to STR mode.
139 * @data.dir: direction of the transfer
140 * @data.nbytes: number of data bytes to send/receive. Can be zero if the
141 * operation does not involve transferring data
142 * @data.buf.in: input buffer (must be DMA-able)
143 * @data.buf.out: output buffer (must be DMA-able)
144 * @max_freq: frequency limitation wrt this operation. 0 means there is no
145 * specific constraint and the highest achievable frequency can be
146 * attempted.
147 */
148 struct spi_mem_op {
149 struct {
150 u8 nbytes;
151 u8 buswidth;
152 u8 dtr : 1;
153 u8 __pad : 7;
154 u16 opcode;
155 } cmd;
156
157 struct {
158 u8 nbytes;
159 u8 buswidth;
160 u8 dtr : 1;
161 u8 __pad : 7;
162 u64 val;
163 } addr;
164
165 struct {
166 u8 nbytes;
167 u8 buswidth;
168 u8 dtr : 1;
169 u8 __pad : 7;
170 } dummy;
171
172 struct {
173 u8 buswidth;
174 u8 dtr : 1;
175 u8 ecc : 1;
176 u8 swap16 : 1;
177 u8 __pad : 5;
178 enum spi_mem_data_dir dir;
179 unsigned int nbytes;
180 union {
181 void *in;
182 const void *out;
183 } buf;
184 } data;
185
186 unsigned int max_freq;
187 };
188
189 #define SPI_MEM_OP(__cmd, __addr, __dummy, __data, ...) \
190 { \
191 .cmd = __cmd, \
192 .addr = __addr, \
193 .dummy = __dummy, \
194 .data = __data, \
195 __VA_ARGS__ \
196 }
197
198 /**
199 * struct spi_mem_dirmap_info - Direct mapping information
200 * @op_tmpl: operation template that should be used by the direct mapping when
201 * the memory device is accessed
202 * @offset: absolute offset this direct mapping is pointing to
203 * @length: length in byte of this direct mapping
204 *
205 * These information are used by the controller specific implementation to know
206 * the portion of memory that is directly mapped and the spi_mem_op that should
207 * be used to access the device.
208 * A direct mapping is only valid for one direction (read or write) and this
209 * direction is directly encoded in the ->op_tmpl.data.dir field.
210 */
211 struct spi_mem_dirmap_info {
212 struct spi_mem_op op_tmpl;
213 u64 offset;
214 u64 length;
215 };
216
217 /**
218 * struct spi_mem_dirmap_desc - Direct mapping descriptor
219 * @mem: the SPI memory device this direct mapping is attached to
220 * @info: information passed at direct mapping creation time
221 * @nodirmap: set to 1 if the SPI controller does not implement
222 * ->mem_ops->dirmap_create() or when this function returned an
223 * error. If @nodirmap is true, all spi_mem_dirmap_{read,write}()
224 * calls will use spi_mem_exec_op() to access the memory. This is a
225 * degraded mode that allows spi_mem drivers to use the same code
226 * no matter whether the controller supports direct mapping or not
227 * @priv: field pointing to controller specific data
228 *
229 * Common part of a direct mapping descriptor. This object is created by
230 * spi_mem_dirmap_create() and controller implementation of ->create_dirmap()
231 * can create/attach direct mapping resources to the descriptor in the ->priv
232 * field.
233 */
234 struct spi_mem_dirmap_desc {
235 struct spi_mem *mem;
236 struct spi_mem_dirmap_info info;
237 unsigned int nodirmap;
238 void *priv;
239 };
240
241 /**
242 * struct spi_mem - describes a SPI memory device
243 * @spi: the underlying SPI device
244 * @drvpriv: spi_mem_driver private data
245 * @name: name of the SPI memory device
246 *
247 * Extra information that describe the SPI memory device and may be needed by
248 * the controller to properly handle this device should be placed here.
249 *
250 * One example would be the device size since some controller expose their SPI
251 * mem devices through a io-mapped region.
252 */
253 struct spi_mem {
254 struct spi_device *spi;
255 void *drvpriv;
256 const char *name;
257 };
258
259 /**
260 * struct spi_mem_set_drvdata() - attach driver private data to a SPI mem
261 * device
262 * @mem: memory device
263 * @data: data to attach to the memory device
264 */
spi_mem_set_drvdata(struct spi_mem * mem,void * data)265 static inline void spi_mem_set_drvdata(struct spi_mem *mem, void *data)
266 {
267 mem->drvpriv = data;
268 }
269
270 /**
271 * struct spi_mem_get_drvdata() - get driver private data attached to a SPI mem
272 * device
273 * @mem: memory device
274 *
275 * Return: the data attached to the mem device.
276 */
spi_mem_get_drvdata(struct spi_mem * mem)277 static inline void *spi_mem_get_drvdata(struct spi_mem *mem)
278 {
279 return mem->drvpriv;
280 }
281
282 /**
283 * struct spi_controller_mem_ops - SPI memory operations
284 * @adjust_op_size: shrink the data xfer of an operation to match controller's
285 * limitations (can be alignment or max RX/TX size
286 * limitations)
287 * @supports_op: check if an operation is supported by the controller
288 * @exec_op: execute a SPI memory operation
289 * not all driver provides supports_op(), so it can return -EOPNOTSUPP
290 * if the op is not supported by the driver/controller
291 * @get_name: get a custom name for the SPI mem device from the controller.
292 * This might be needed if the controller driver has been ported
293 * to use the SPI mem layer and a custom name is used to keep
294 * mtdparts compatible.
295 * Note that if the implementation of this function allocates memory
296 * dynamically, then it should do so with devm_xxx(), as we don't
297 * have a ->free_name() function.
298 * @dirmap_create: create a direct mapping descriptor that can later be used to
299 * access the memory device. This method is optional
300 * @dirmap_destroy: destroy a memory descriptor previous created by
301 * ->dirmap_create()
302 * @dirmap_read: read data from the memory device using the direct mapping
303 * created by ->dirmap_create(). The function can return less
304 * data than requested (for example when the request is crossing
305 * the currently mapped area), and the caller of
306 * spi_mem_dirmap_read() is responsible for calling it again in
307 * this case.
308 * @dirmap_write: write data to the memory device using the direct mapping
309 * created by ->dirmap_create(). The function can return less
310 * data than requested (for example when the request is crossing
311 * the currently mapped area), and the caller of
312 * spi_mem_dirmap_write() is responsible for calling it again in
313 * this case.
314 * @poll_status: poll memory device status until (status & mask) == match or
315 * when the timeout has expired. It fills the data buffer with
316 * the last status value.
317 *
318 * This interface should be implemented by SPI controllers providing an
319 * high-level interface to execute SPI memory operation, which is usually the
320 * case for QSPI controllers.
321 *
322 * Note on ->dirmap_{read,write}(): drivers should avoid accessing the direct
323 * mapping from the CPU because doing that can stall the CPU waiting for the
324 * SPI mem transaction to finish, and this will make real-time maintainers
325 * unhappy and might make your system less reactive. Instead, drivers should
326 * use DMA to access this direct mapping.
327 */
328 struct spi_controller_mem_ops {
329 int (*adjust_op_size)(struct spi_mem *mem, struct spi_mem_op *op);
330 bool (*supports_op)(struct spi_mem *mem,
331 const struct spi_mem_op *op);
332 int (*exec_op)(struct spi_mem *mem,
333 const struct spi_mem_op *op);
334 const char *(*get_name)(struct spi_mem *mem);
335 int (*dirmap_create)(struct spi_mem_dirmap_desc *desc);
336 void (*dirmap_destroy)(struct spi_mem_dirmap_desc *desc);
337 ssize_t (*dirmap_read)(struct spi_mem_dirmap_desc *desc,
338 u64 offs, size_t len, void *buf);
339 ssize_t (*dirmap_write)(struct spi_mem_dirmap_desc *desc,
340 u64 offs, size_t len, const void *buf);
341 int (*poll_status)(struct spi_mem *mem,
342 const struct spi_mem_op *op,
343 u16 mask, u16 match,
344 unsigned long initial_delay_us,
345 unsigned long polling_rate_us,
346 unsigned long timeout_ms);
347 };
348
349 /**
350 * struct spi_controller_mem_caps - SPI memory controller capabilities
351 * @dtr: Supports DTR operations
352 * @ecc: Supports operations with error correction
353 * @swap16: Supports swapping bytes on a 16 bit boundary when configured in
354 * Octal DTR
355 * @per_op_freq: Supports per operation frequency switching
356 */
357 struct spi_controller_mem_caps {
358 bool dtr;
359 bool ecc;
360 bool swap16;
361 bool per_op_freq;
362 };
363
364 #define spi_mem_controller_is_capable(ctlr, cap) \
365 ((ctlr)->mem_caps && (ctlr)->mem_caps->cap)
366
367 /**
368 * struct spi_mem_driver - SPI memory driver
369 * @spidrv: inherit from a SPI driver
370 * @probe: probe a SPI memory. Usually where detection/initialization takes
371 * place
372 * @remove: remove a SPI memory
373 * @shutdown: take appropriate action when the system is shutdown
374 *
375 * This is just a thin wrapper around a spi_driver. The core takes care of
376 * allocating the spi_mem object and forwarding the probe/remove/shutdown
377 * request to the spi_mem_driver. The reason we use this wrapper is because
378 * we might have to stuff more information into the spi_mem struct to let
379 * SPI controllers know more about the SPI memory they interact with, and
380 * having this intermediate layer allows us to do that without adding more
381 * useless fields to the spi_device object.
382 */
383 struct spi_mem_driver {
384 struct spi_driver spidrv;
385 int (*probe)(struct spi_mem *mem);
386 int (*remove)(struct spi_mem *mem);
387 void (*shutdown)(struct spi_mem *mem);
388 };
389
390 #if IS_ENABLED(CONFIG_SPI_MEM)
391 int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
392 const struct spi_mem_op *op,
393 struct sg_table *sg);
394
395 void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
396 const struct spi_mem_op *op,
397 struct sg_table *sg);
398
399 bool spi_mem_default_supports_op(struct spi_mem *mem,
400 const struct spi_mem_op *op);
401 #else
402 static inline int
spi_controller_dma_map_mem_op_data(struct spi_controller * ctlr,const struct spi_mem_op * op,struct sg_table * sg)403 spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
404 const struct spi_mem_op *op,
405 struct sg_table *sg)
406 {
407 return -ENOTSUPP;
408 }
409
410 static inline void
spi_controller_dma_unmap_mem_op_data(struct spi_controller * ctlr,const struct spi_mem_op * op,struct sg_table * sg)411 spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
412 const struct spi_mem_op *op,
413 struct sg_table *sg)
414 {
415 }
416
417 static inline
spi_mem_default_supports_op(struct spi_mem * mem,const struct spi_mem_op * op)418 bool spi_mem_default_supports_op(struct spi_mem *mem,
419 const struct spi_mem_op *op)
420 {
421 return false;
422 }
423 #endif /* CONFIG_SPI_MEM */
424
425 int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op);
426 void spi_mem_adjust_op_freq(struct spi_mem *mem, struct spi_mem_op *op);
427 u64 spi_mem_calc_op_duration(struct spi_mem_op *op);
428
429 bool spi_mem_supports_op(struct spi_mem *mem,
430 const struct spi_mem_op *op);
431
432 int spi_mem_exec_op(struct spi_mem *mem,
433 const struct spi_mem_op *op);
434
435 const char *spi_mem_get_name(struct spi_mem *mem);
436
437 struct spi_mem_dirmap_desc *
438 spi_mem_dirmap_create(struct spi_mem *mem,
439 const struct spi_mem_dirmap_info *info);
440 void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc);
441 ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc,
442 u64 offs, size_t len, void *buf);
443 ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc,
444 u64 offs, size_t len, const void *buf);
445 struct spi_mem_dirmap_desc *
446 devm_spi_mem_dirmap_create(struct device *dev, struct spi_mem *mem,
447 const struct spi_mem_dirmap_info *info);
448 void devm_spi_mem_dirmap_destroy(struct device *dev,
449 struct spi_mem_dirmap_desc *desc);
450
451 int spi_mem_poll_status(struct spi_mem *mem,
452 const struct spi_mem_op *op,
453 u16 mask, u16 match,
454 unsigned long initial_delay_us,
455 unsigned long polling_delay_us,
456 u16 timeout_ms);
457
458 int spi_mem_driver_register_with_owner(struct spi_mem_driver *drv,
459 struct module *owner);
460
461 void spi_mem_driver_unregister(struct spi_mem_driver *drv);
462
463 #define spi_mem_driver_register(__drv) \
464 spi_mem_driver_register_with_owner(__drv, THIS_MODULE)
465
466 #define module_spi_mem_driver(__drv) \
467 module_driver(__drv, spi_mem_driver_register, \
468 spi_mem_driver_unregister)
469
470 #endif /* __LINUX_SPI_MEM_H */
471