/aosp_15_r20/external/pytorch/aten/src/ATen/native/cuda/ |
H A D | Normalization.cu | 435 …l train, double momentum, double epsilon, Tensor& output, Tensor& save_mean, Tensor& save_invstd) { in batch_norm_cuda_out() argument 441 batch_norm_mean_var(self, save_mean, save_invstd); in batch_norm_cuda_out() 445 save_mean, save_invstd, *running_mean_opt, *running_var_opt, in batch_norm_cuda_out() 448 batch_norm_calc_invstd(save_invstd, save_invstd, epsilon); in batch_norm_cuda_out() 454 batch_norm_calc_invstd(save_invstd, running_var_opt.value(), epsilon); in batch_norm_cuda_out() 457 batch_norm_elementwise(output, self, weight_opt, bias_opt, save_mean, save_invstd); in batch_norm_cuda_out() 458 return std::tuple<Tensor&, Tensor&, Tensor&>(output, save_mean, save_invstd); in batch_norm_cuda_out() 467 auto save_invstd = at::empty({n_input}, options); in batch_norm_cuda() local 480 save_invstd); in batch_norm_cuda() 481 return std::make_tuple(output, save_mean, save_invstd); in batch_norm_cuda() [all …]
|
H A D | Normalization.cuh | 366 …onst GenericPackedTensorAccessor<const stat_accscalar_t, 1, DefaultPtrTraits, index_t> save_invstd, in batch_norm_backward_kernel() argument 376 invstd = save_invstd[plane]; in batch_norm_backward_kernel() 644 auto save_invstd = packed_accessor_or_dummy< in batch_norm_backward_cuda_template() local 645 const accscalar_t, 1, DefaultPtrTraits, index_t>(save_invstd_, "save_invstd"); in batch_norm_backward_cuda_template() 654 save_mean, save_invstd, train, epsilon); in batch_norm_backward_cuda_template() 764 auto save_invstd = get_packed_accessor< in batch_norm_gather_stats_cuda_template() local 765 accscalar_t, 1, RestrictPtrTraits, index_t>(save_invstd_, "save_invstd"); in batch_norm_gather_stats_cuda_template() 771 (mean, invstd, save_mean, save_invstd, running_mean, running_var, epsilon, momentum, counts); in batch_norm_gather_stats_cuda_template()
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/cpu/ |
H A D | batch_norm_kernel.cpp | 34 const Tensor& save_mean, const Tensor& save_invstd, in batch_norm_cpu_collect_linear_and_constant_terms() argument 41 auto save_invstd_a = conditional_accessor_1d<const param_t>(save_invstd); in batch_norm_cpu_collect_linear_and_constant_terms() 76 const Tensor& weight, const Tensor& bias, const Tensor& save_mean, const Tensor& save_invstd, in batch_norm_cpu_contiguous_impl() argument 91 save_mean, save_invstd, running_mean, running_var, train, eps); in batch_norm_cpu_contiguous_impl() 128 const Tensor& weight, const Tensor& bias, const Tensor& save_mean, const Tensor& save_invstd, in batch_norm_cpu_channels_last_impl() argument 143 save_mean, save_invstd, running_mean, running_var, train, eps); in batch_norm_cpu_channels_last_impl() 407 …ensor& running_mean, const Tensor& running_var, const Tensor& save_mean, const Tensor& save_invstd, in batch_norm_cpu_backward_contiguous_impl() argument 431 auto save_invstd_a = conditional_accessor_1d<const scalar_t>(save_invstd); in batch_norm_cpu_backward_contiguous_impl() 530 …ensor& running_mean, const Tensor& running_var, const Tensor& save_mean, const Tensor& save_invstd, in batch_norm_cpu_backward_channels_last_impl() argument 548 scalar_t* save_invstd_data = conditional_data_ptr<scalar_t>(save_invstd); in batch_norm_cpu_backward_channels_last_impl() [all …]
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/ |
H A D | Normalization.cpp | 137 const Tensor& save_mean /* optional */, const Tensor& save_invstd /* optional */, in batch_norm_cpu_transform_input_template() argument 152 save_mean, save_invstd, running_mean, running_var, train, eps); in batch_norm_cpu_transform_input_template() 154 return std::make_tuple(output, save_mean, save_invstd); in batch_norm_cpu_transform_input_template() 171 return save_invstd; in batch_norm_cpu_transform_input_template() 196 return std::make_tuple(output, save_mean, save_invstd); in batch_norm_cpu_transform_input_template() 305 …ensor& running_mean, const Tensor& running_var, const Tensor& save_mean, const Tensor& save_invstd, in batch_norm_backward_cpu_template() argument 337 grad_out_, input, weight, running_mean, running_var, save_mean, save_invstd, train, eps); in batch_norm_backward_cpu_template() 349 auto save_invstd_a = conditional_accessor_1d<const param_t>(save_invstd); in batch_norm_backward_cpu_template() 557 auto save_invstd = at::empty_symint(c10::SymIntArrayRef({std::move(num_features)}), options); in _batch_norm_impl_index() local 564 out, save_mean, save_invstd, reserve, 0); in _batch_norm_impl_index() [all …]
|
H A D | native_functions.yaml | 4296 …mentum, float eps, *, Tensor(a!) out, Tensor(b!) save_mean, Tensor(c!) save_invstd) -> (Tensor(a!)… 4321 …mentum, float eps, *, Tensor(d!) out, Tensor(e!) save_mean, Tensor(f!) save_invstd) -> (Tensor(d!)… 4335 …mentum, float eps, *, Tensor(a!) out, Tensor(b!) save_mean, Tensor(c!) save_invstd) -> (Tensor(a!)… 4365 … Tensor? running_mean, Tensor? running_var, Tensor? save_mean, Tensor? save_invstd, bool train, fl… 6590 …mentum, float eps, *, Tensor(d!) out, Tensor(e!) save_mean, Tensor(f!) save_invstd, Tensor(g!) res…
|
/aosp_15_r20/external/pytorch/torch/_decomp/ |
H A D | decompositions_for_jvp.py | 223 save_invstd: Optional[Tensor], 235 invstd = save_invstd 238 save_mean is not None and save_invstd is not None 239 ), "when train=True, save_mean and save_invstd are required"
|
H A D | decompositions.py | 1875 @out_wrapper("out", "save_mean", "save_invstd") 2251 save_invstd: Optional[Tensor], 2264 save_invstd, 2279 save_invstd: Optional[Tensor], 2307 save_invstd, 2380 save_invstd: Optional[Tensor], 2396 save_invstd,
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/mkldnn/ |
H A D | Normalization.cpp | 257 const Tensor& save_invstd = c10::value_or_else(save_invstd_opt, [] {return Tensor();}); in mkldnn_batch_norm_backward() local 264 ideep::tensor& v = itensor_from_mkldnn(save_invstd); in mkldnn_batch_norm_backward()
|
/aosp_15_r20/external/pytorch/torch/csrc/autograd/ |
H A D | FunctionsManual.h | 719 const std::optional<Tensor>& save_invstd, 813 const Tensor& save_invstd,
|
H A D | FunctionsManual.cpp | 4662 const std::optional<Tensor>& save_invstd, in batchnorm_double_backward() argument 4686 // for half inputs, save_mean, save_invstd are float (ideally, we would cast in batchnorm_double_backward() 4694 training ? toNonOptTensor(save_invstd).to(input.scalar_type()) in batchnorm_double_backward() 4813 auto save_invstd = save_invstd_t.reshape({M, 1}); in layer_norm_double_backward() local 4836 // for half inputs, save_mean, save_invstd are float in layer_norm_double_backward() 4840 auto sigma2_eps_neg_1_2 = save_invstd.to(input.scalar_type()); in layer_norm_double_backward()
|
/aosp_15_r20/external/pytorch/torch/csrc/utils/ |
H A D | schema_info.cpp | 288 …mentum, float eps, *, Tensor(a!) out, Tensor(b!) save_mean, Tensor(c!) save_invstd) -> (Tensor(a!)… in getTrainingOps()
|
/aosp_15_r20/external/pytorch/torch/csrc/lazy/core/ |
H A D | shape_inference.h | 64 …:optional<at::Tensor> & save_mean, const ::std::optional<at::Tensor> & save_invstd, bool train, do…
|
H A D | shape_inference.cpp | 577 const ::std::optional<at::Tensor>& save_invstd, in compute_shape_native_batch_norm_backward()
|
/aosp_15_r20/external/pytorch/test/ |
H A D | test_meta.py | 1497 …save_invstd = torch.zeros((sample.input.shape[1], ), device=device, dtype=dtype) if train else None 1500 save_mean, save_invstd, train, sample.kwargs.get("eps", 1e-5)]
|
/aosp_15_r20/external/pytorch/tools/autograd/ |
H A D | derivatives.yaml | 1219 … Tensor? running_mean, Tensor? running_var, Tensor? save_mean, Tensor? save_invstd, bool train, fl… 1220 … grads[2], grad_out, running_mean, running_var, train, eps, save_mean, save_invstd, grad_input_mas… 1222 save_invstd: not_implemented("native_batch_norm_backward save_invstd")
|
/aosp_15_r20/external/pytorch/test/cpp/jit/ |
H A D | test_misc.cpp | 277 // save_invstd, bool train, float eps, bool[3] output_mask) -> (Tensor, in TEST()
|