1*da0073e9SAndroid Build Coastguard Worker# Defines derivative formulas and Python signatures of methods on Variable 2*da0073e9SAndroid Build Coastguard Worker# 3*da0073e9SAndroid Build Coastguard Worker# Note about possibly confusing nomenclature: An 'output gradient' is the 4*da0073e9SAndroid Build Coastguard Worker# gradient of an output of a forward function. Output gradients are used as 5*da0073e9SAndroid Build Coastguard Worker# the inputs to backward functions. `grads` is a vector of output gradients, 6*da0073e9SAndroid Build Coastguard Worker# and `grad == grads[0]`, in all the derivative formulas in this file. 7*da0073e9SAndroid Build Coastguard Worker# An 'input gradient' is the gradient of an input to a forward function. 8*da0073e9SAndroid Build Coastguard Worker# Input gradients are the outputs of backward functions, corresponding to the 9*da0073e9SAndroid Build Coastguard Worker# input names included in the derivative formulas defined in this file. 10*da0073e9SAndroid Build Coastguard Worker# Also, every time we talk computing "gradient" we actually mean computing 11*da0073e9SAndroid Build Coastguard Worker# the vector jacobian product using the given 'output gradient' as the vector. 12*da0073e9SAndroid Build Coastguard Worker# 13*da0073e9SAndroid Build Coastguard Worker# Each entry consists of: 14*da0073e9SAndroid Build Coastguard Worker# - A 'name', which specifies the ATen name of the function you 15*da0073e9SAndroid Build Coastguard Worker# are defining derivatives for, and an argument specification. 16*da0073e9SAndroid Build Coastguard Worker# - An optional 'dispatch' entry which can be used to specify 17*da0073e9SAndroid Build Coastguard Worker# per-autograd dispatch key derivatives. If this entry is not 18*da0073e9SAndroid Build Coastguard Worker# specified, then the gradient entries will be taken as the 19*da0073e9SAndroid Build Coastguard Worker# default gradients (i.e. registered for every backward dispatch 20*da0073e9SAndroid Build Coastguard Worker# key). (see _test_autograd_multiple_dispatch for an example 21*da0073e9SAndroid Build Coastguard Worker# of how to register separate derivates for different dispatch keys). 22*da0073e9SAndroid Build Coastguard Worker# The list of allowed dispatch keys (in addition to 'Default' which 23*da0073e9SAndroid Build Coastguard Worker# represents the Autograd alias key) is torchgen/model.py:AUTOGRAD_KEYS. 24*da0073e9SAndroid Build Coastguard Worker# - One or more gradients entries, mapping differentiable input 25*da0073e9SAndroid Build Coastguard Worker# names to a formula specifying how to compute its gradient. 26*da0073e9SAndroid Build Coastguard Worker# Note that a single gradient entry can specify the gradient 27*da0073e9SAndroid Build Coastguard Worker# formula for multiple input names, by specifying a key 28*da0073e9SAndroid Build Coastguard Worker# "input1, input2" (see atan2 for an example). 29*da0073e9SAndroid Build Coastguard Worker# - An argument can be flagged as 'non_differentiable'. 30*da0073e9SAndroid Build Coastguard Worker# - Optional entry with key 'output_differentiability' and value a list of the 31*da0073e9SAndroid Build Coastguard Worker# same length as the number of outputs from the forward function. The list 32*da0073e9SAndroid Build Coastguard Worker# should contain only booleans, specifying whether each of the output Tensor 33*da0073e9SAndroid Build Coastguard Worker# is differentiable. 34*da0073e9SAndroid Build Coastguard Worker# If it is not specified for a function that returns multiple elements but 35*da0073e9SAndroid Build Coastguard Worker# uses `grad` instead of `grads[idx]`, then all but the first output will 36*da0073e9SAndroid Build Coastguard Worker# be marked as non-differentiable. 37*da0073e9SAndroid Build Coastguard Worker# If None of the output is differentiable, you can also add the function 38*da0073e9SAndroid Build Coastguard Worker# name to `gen_variable_type.py`'s `DONT_REQUIRE_DERIVATIVE` list. 39*da0073e9SAndroid Build Coastguard Worker# 40*da0073e9SAndroid Build Coastguard Worker# There are two cases for Tensor and TensorList arguments here: 41*da0073e9SAndroid Build Coastguard Worker# - If that argument is differentiable, in the sense that a gradient with respect 42*da0073e9SAndroid Build Coastguard Worker# to that argument could exist. You should either: 43*da0073e9SAndroid Build Coastguard Worker# - Specify the formula for that gradient 44*da0073e9SAndroid Build Coastguard Worker# - Specify not_implemented("function_name") as a formula to say that this is not 45*da0073e9SAndroid Build Coastguard Worker# implemented yet (but might be in the future and the user can request that on an issue) 46*da0073e9SAndroid Build Coastguard Worker# - If that argument is not differentiable, because it is not a floating point dtype or the 47*da0073e9SAndroid Build Coastguard Worker# function is not differentiable with respect to that argument for 48*da0073e9SAndroid Build Coastguard Worker# example. You should either: 49*da0073e9SAndroid Build Coastguard Worker# - Do not specify any formula for this argument 50*da0073e9SAndroid Build Coastguard Worker# - Specify explicitly that this argument is "non_differentiable". Note that in this case, 51*da0073e9SAndroid Build Coastguard Worker# we trust you that this argument will never have requires_grad=True and it will be silently 52*da0073e9SAndroid Build Coastguard Worker# ignored if it does. 53*da0073e9SAndroid Build Coastguard Worker# 54*da0073e9SAndroid Build Coastguard Worker# If a function has out-of-place and in-place variants, then the derivative 55*da0073e9SAndroid Build Coastguard Worker# definition for the in-place variant is optional. It will default to the 56*da0073e9SAndroid Build Coastguard Worker# definition for the out-of-place variant. Note that _out variants are never 57*da0073e9SAndroid Build Coastguard Worker# differentiable. 58*da0073e9SAndroid Build Coastguard Worker# 59*da0073e9SAndroid Build Coastguard Worker# Gradient expressions are standard C++ expressions operating on ATen 60*da0073e9SAndroid Build Coastguard Worker# variables. In a gradient expression, the following variables/functions 61*da0073e9SAndroid Build Coastguard Worker# are in scope: 62*da0073e9SAndroid Build Coastguard Worker# 63*da0073e9SAndroid Build Coastguard Worker# - 'grad', the gradient of the output (often spelled grad_output 64*da0073e9SAndroid Build Coastguard Worker# in Python) which we are going to left-multiply. 65*da0073e9SAndroid Build Coastguard Worker# 66*da0073e9SAndroid Build Coastguard Worker# When a function returns multiple *differentiable* outputs, 67*da0073e9SAndroid Build Coastguard Worker# you can refer to the gradients of each outputs using 'grads', 68*da0073e9SAndroid Build Coastguard Worker# e.g., 'grads[0]', 'grads[1]'. 69*da0073e9SAndroid Build Coastguard Worker# 70*da0073e9SAndroid Build Coastguard Worker# When a function returns multiple *differentiable* outputs that 71*da0073e9SAndroid Build Coastguard Worker# are named, you can refer to the gradients of each outputs using 72*da0073e9SAndroid Build Coastguard Worker# 'grad_{name}', e.g., 'grad_x', 'grad_y'. 73*da0073e9SAndroid Build Coastguard Worker# 74*da0073e9SAndroid Build Coastguard Worker# When a function returns *one* differentiable output (the 75*da0073e9SAndroid Build Coastguard Worker# first output) and some more nondifferentiable outputs, 76*da0073e9SAndroid Build Coastguard Worker# you MUST refer to the gradient of the differentiable output with 77*da0073e9SAndroid Build Coastguard Worker# 'grad' (this case is special-cased in our code generation). 78*da0073e9SAndroid Build Coastguard Worker# 79*da0073e9SAndroid Build Coastguard Worker# Note that the number of differentiable outputs can be modified by the 80*da0073e9SAndroid Build Coastguard Worker# 'output_differentiability' entry (see above). 81*da0073e9SAndroid Build Coastguard Worker# 82*da0073e9SAndroid Build Coastguard Worker# Across a differentiable function's derivatives set, it is not 83*da0073e9SAndroid Build Coastguard Worker# permitted to mix the use of "grad", "grads", and 84*da0073e9SAndroid Build Coastguard Worker# "grad_{name}". You must be consistent for that differentiable 85*da0073e9SAndroid Build Coastguard Worker# function. 86*da0073e9SAndroid Build Coastguard Worker# 87*da0073e9SAndroid Build Coastguard Worker# - Any of the input arguments, tensor or non-tensor, including 88*da0073e9SAndroid Build Coastguard Worker# argument names that only appear in Declarations.yaml, e.g. 'output'. 89*da0073e9SAndroid Build Coastguard Worker# 90*da0073e9SAndroid Build Coastguard Worker# - 'result', representing the result of evaluating the forward 91*da0073e9SAndroid Build Coastguard Worker# expression for ATen native function declarations. If the forward 92*da0073e9SAndroid Build Coastguard Worker# expression outputs a tuple, use 'resultX' instead to access the 93*da0073e9SAndroid Build Coastguard Worker# X-th entry 94*da0073e9SAndroid Build Coastguard Worker# 95*da0073e9SAndroid Build Coastguard Worker# - 'grad_input_mask', a std::array<bool, n>, specifies which input 96*da0073e9SAndroid Build Coastguard Worker# gradients are actually needed. For example, in the entry 97*da0073e9SAndroid Build Coastguard Worker# `input0, input1: foo(grad_input_mask)`, `grad_input_mask` is a size 98*da0073e9SAndroid Build Coastguard Worker# two array, where `grad_input_mask[0]` is true if `input0` requires 99*da0073e9SAndroid Build Coastguard Worker# grad, and `grad_input_mask[1]` is true if `input1` requires grad. 100*da0073e9SAndroid Build Coastguard Worker# 101*da0073e9SAndroid Build Coastguard Worker# (NB: if your function computes gradient for a list of tensors, 102*da0073e9SAndroid Build Coastguard Worker# the `grad_input_mask` will only have a single entry for the list 103*da0073e9SAndroid Build Coastguard Worker# specifying if either zero or at least one tensor from the list requires 104*da0073e9SAndroid Build Coastguard Worker# grad. If we want to support more fine-grained signalling, 105*da0073e9SAndroid Build Coastguard Worker# we'll need some alternate variable which is not a std::array) 106*da0073e9SAndroid Build Coastguard Worker# 107*da0073e9SAndroid Build Coastguard Worker# - 'retain_variables', a bool which is true if a user has specified 108*da0073e9SAndroid Build Coastguard Worker# that saved variables should be retained in case the backwards is 109*da0073e9SAndroid Build Coastguard Worker# run again later. This allows an optimization where we can 110*da0073e9SAndroid Build Coastguard Worker# destroy saved buffers if we know variables are not going to be retained, 111*da0073e9SAndroid Build Coastguard Worker# e.g., it is used by _cudnn_rnn 112*da0073e9SAndroid Build Coastguard Worker# 113*da0073e9SAndroid Build Coastguard Worker# - `wrap_opt_if`, is a 2-argument function that accepts a tensor 114*da0073e9SAndroid Build Coastguard Worker# variable and a boolean condition that dictates whether to save that 115*da0073e9SAndroid Build Coastguard Worker# variable in a graph. The result of this function is `c10::optional<Tensor>`, 116*da0073e9SAndroid Build Coastguard Worker# and it is `c10::nullopt` when the condition evalutes to `false`, 117*da0073e9SAndroid Build Coastguard Worker# otherwise it is the variable wrapped in `c10::optional<Tensor>`. 118*da0073e9SAndroid Build Coastguard Worker# For example, wrap_opt_if(var_0, grad_input_mask[1] || grad_input_mask[2]) 119*da0073e9SAndroid Build Coastguard Worker# would mean that `var_0` is saved as long as the second (grad_input_mask[1]) 120*da0073e9SAndroid Build Coastguard Worker# or the third (grad_input_mask[2]) argument requires gradients. 121*da0073e9SAndroid Build Coastguard Worker# Another interpretation of this expression would read as `var_0` is needed 122*da0073e9SAndroid Build Coastguard Worker# in the backward computation of the second or the third argument. 123*da0073e9SAndroid Build Coastguard Worker# NOTE: the usage of `var_i.requires_grad()` in the conditional expression 124*da0073e9SAndroid Build Coastguard Worker# is not supported, use `grad_input_mask[i]` instead. 125*da0073e9SAndroid Build Coastguard Worker# NOTE: `wrap_opt_if` could be used to prevent saving redundant variables 126*da0073e9SAndroid Build Coastguard Worker# with multi-output backward formulas. 127*da0073e9SAndroid Build Coastguard Worker# See https://github.com/pytorch/pytorch/issues/97575 for more details 128*da0073e9SAndroid Build Coastguard Worker# on the issue. 129*da0073e9SAndroid Build Coastguard Worker# 130*da0073e9SAndroid Build Coastguard Worker# If you need a complex expression, e.g., with local variables, 131*da0073e9SAndroid Build Coastguard Worker# write a _backward function in torch/csrc/autograd/FunctionsManual.cpp 132*da0073e9SAndroid Build Coastguard Worker# and invoke it from here. By the way, go read 133*da0073e9SAndroid Build Coastguard Worker# https://github.com/zdevito/ATen/issues/163; this describes an 134*da0073e9SAndroid Build Coastguard Worker# important hazard that occurs when porting backwards from Python to C++ 135*da0073e9SAndroid Build Coastguard Worker# 136*da0073e9SAndroid Build Coastguard Worker# Double backwards gradient expressions can be somewhat confusing; 137*da0073e9SAndroid Build Coastguard Worker# the most important thing to remember is: (1) you need to define a 138*da0073e9SAndroid Build Coastguard Worker# derivative formula for every input, including inputs named things 139*da0073e9SAndroid Build Coastguard Worker# like 'grad_output', and (2) the gradient to multiply with is always 140*da0073e9SAndroid Build Coastguard Worker# called 'grad' (even though it really is a grad-grad). 141*da0073e9SAndroid Build Coastguard Worker# 142*da0073e9SAndroid Build Coastguard Worker# You can also add forward derivative definition by defining a formula for 143*da0073e9SAndroid Build Coastguard Worker# a returned value (in general "result" if the name is not specified). This 144*da0073e9SAndroid Build Coastguard Worker# formula works the same way as the backward one and advanced implementations 145*da0073e9SAndroid Build Coastguard Worker# should also be placed in the FunctionsManual file. 146*da0073e9SAndroid Build Coastguard Worker# This formula should compute a single Jacobian vector product using the (primal) 147*da0073e9SAndroid Build Coastguard Worker# value of the argument "foo_p", its forward grad "foo_t" and the result of the 148*da0073e9SAndroid Build Coastguard Worker# function as "result". 149*da0073e9SAndroid Build Coastguard Worker# Note that the forward derivative can be automatically generated in two cases: 150*da0073e9SAndroid Build Coastguard Worker# - if your function is linear (NOT affine or multi-linear), then you can 151*da0073e9SAndroid Build Coastguard Worker# specify so by just using the string "auto_linear" for the formula. 152*da0073e9SAndroid Build Coastguard Worker# - if your function is applied element wise (and has a single input), you 153*da0073e9SAndroid Build Coastguard Worker# can specify so by just using the string "auto_element_wise" for the formula. 154*da0073e9SAndroid Build Coastguard Worker# 155*da0073e9SAndroid Build Coastguard Worker# Note that to avoid unpacking overhead, functions taking TensorList as inputs 156*da0073e9SAndroid Build Coastguard Worker# will always have their forward grad formula called. This function is responsible 157*da0073e9SAndroid Build Coastguard Worker# to check if any computation is needed and should return an undefined Tensor when 158*da0073e9SAndroid Build Coastguard Worker# there is nothing to do. You can check "cat_forward" for a full example. 159*da0073e9SAndroid Build Coastguard Worker# 160*da0073e9SAndroid Build Coastguard Worker# NB: There are a number of gradient definitions in here which are bogus 161*da0073e9SAndroid Build Coastguard Worker# (implemented using zeros_like). These gradients are (hopefully) not 162*da0073e9SAndroid Build Coastguard Worker# used by our frontend. You MUST check the frontend code; search for 163*da0073e9SAndroid Build Coastguard Worker# OpName.apply to see if it's still using a legacy Python style API. 164*da0073e9SAndroid Build Coastguard Worker# 165*da0073e9SAndroid Build Coastguard Worker# Note: Returning views. 166*da0073e9SAndroid Build Coastguard Worker# The following cases exist: 167*da0073e9SAndroid Build Coastguard Worker# - If a function returns no view, it can have arbitrary outputs. 168*da0073e9SAndroid Build Coastguard Worker# - If a function return at least one Tensor that is a differentiable view 169*da0073e9SAndroid Build Coastguard Worker# of one of its input: 170*da0073e9SAndroid Build Coastguard Worker# - If there is only one differentiable output, this Tensor is marked as a 171*da0073e9SAndroid Build Coastguard Worker# differentiable view. (alias or transpose for example) 172*da0073e9SAndroid Build Coastguard Worker# - If there are more than one differentiable output, by default all the views are 173*da0073e9SAndroid Build Coastguard Worker# marked as differentiable views and created with allow_rebase_history=false. 174*da0073e9SAndroid Build Coastguard Worker# Meaning that any inplace operation on it will raise an error. (unbind for example) 175*da0073e9SAndroid Build Coastguard Worker# 176*da0073e9SAndroid Build Coastguard Worker# Notes about undefined output gradients: 177*da0073e9SAndroid Build Coastguard Worker# All backward functions must support all combinations of undefined output 178*da0073e9SAndroid Build Coastguard Worker# gradient Tensors, where `grad[i].defined() == false`. Depending on the 179*da0073e9SAndroid Build Coastguard Worker# number of input and output grads your derivative formula uses, code 180*da0073e9SAndroid Build Coastguard Worker# generation may automatically add some level of undefined grad support, 181*da0073e9SAndroid Build Coastguard Worker# according to these three cases: 182*da0073e9SAndroid Build Coastguard Worker# 183*da0073e9SAndroid Build Coastguard Worker# * 1 input grad and 1 output grad: 184*da0073e9SAndroid Build Coastguard Worker# Complete undefined grad support is automatically added, so you 185*da0073e9SAndroid Build Coastguard Worker# shouldn't have to think about it, unless there is a bug in the code 186*da0073e9SAndroid Build Coastguard Worker# generation. 187*da0073e9SAndroid Build Coastguard Worker# 188*da0073e9SAndroid Build Coastguard Worker# * 1 input grad and multiple output grads: 189*da0073e9SAndroid Build Coastguard Worker# Undefined grad support is automatically added ONLY in the case where 190*da0073e9SAndroid Build Coastguard Worker# all output grads are undefined. You will have to add explicit support 191*da0073e9SAndroid Build Coastguard Worker# for cases where a subset of output grads is undefined. 192*da0073e9SAndroid Build Coastguard Worker# 193*da0073e9SAndroid Build Coastguard Worker# * multiple input grads: 194*da0073e9SAndroid Build Coastguard Worker# No automatic support, so you will need to add it. 195*da0073e9SAndroid Build Coastguard Worker# 196*da0073e9SAndroid Build Coastguard Worker# If your derivative formula uses more than one output grad, it is usually 197*da0073e9SAndroid Build Coastguard Worker# preferable to add undefined grad support in the backward function itself 198*da0073e9SAndroid Build Coastguard Worker# (if you're using one), rather than in the derivative formula in this file. 199*da0073e9SAndroid Build Coastguard Worker# 200*da0073e9SAndroid Build Coastguard Worker# Undefined Tensors are created with the default constructor `at::Tensor()`. 201*da0073e9SAndroid Build Coastguard Worker# It is an efficient way to represent a Tensor filled with zeros because 202*da0073e9SAndroid Build Coastguard Worker# the Tensor holds no sizing information and no Storage data is allocated. 203*da0073e9SAndroid Build Coastguard Worker# But consequentially, Tensor operations cannot be performed on them. 204*da0073e9SAndroid Build Coastguard Worker# Therefore, your backward function should treat an undefined output grad as 205*da0073e9SAndroid Build Coastguard Worker# a zero, and it needs to be a special case. 206*da0073e9SAndroid Build Coastguard Worker# 207*da0073e9SAndroid Build Coastguard Worker# If all output grads are undefined, then it should be correct for the 208*da0073e9SAndroid Build Coastguard Worker# backward function to return undefined input grads. Since we use the chain 209*da0073e9SAndroid Build Coastguard Worker# rule, output grads equal to zero should result in input grads equal to zero, 210*da0073e9SAndroid Build Coastguard Worker# unless there is some rare special case. 211*da0073e9SAndroid Build Coastguard Worker# 212*da0073e9SAndroid Build Coastguard Worker# If a subset of output grads is undefined, then it may be acceptable for 213*da0073e9SAndroid Build Coastguard Worker# the backward function to return undefined input grads--it depends on the 214*da0073e9SAndroid Build Coastguard Worker# specific function, so you'll have to determine that yourself. If returning 215*da0073e9SAndroid Build Coastguard Worker# an undefined Tensor is correct for a given input grad, it is also logically 216*da0073e9SAndroid Build Coastguard Worker# correct to return a defined grad full of zeros, but that would not be 217*da0073e9SAndroid Build Coastguard Worker# preferable since it would be less efficient. 218*da0073e9SAndroid Build Coastguard Worker# 219*da0073e9SAndroid Build Coastguard Worker# NB: The parameter names here MUST be consistent with the parameter names 220*da0073e9SAndroid Build Coastguard Worker# in native_functions.yaml 221*da0073e9SAndroid Build Coastguard Worker- name: abs(Tensor self) -> Tensor 222*da0073e9SAndroid Build Coastguard Worker self: grad * self.sgn() 223*da0073e9SAndroid Build Coastguard Worker result: handle_r_to_c(result.scalar_type(), self_t.conj() * self_p.sgn()) 224*da0073e9SAndroid Build Coastguard Worker 225*da0073e9SAndroid Build Coastguard Worker- name: acos(Tensor self) -> Tensor 226*da0073e9SAndroid Build Coastguard Worker self: grad * -((-self * self + 1).rsqrt()).conj() 227*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 228*da0073e9SAndroid Build Coastguard Worker 229*da0073e9SAndroid Build Coastguard Worker- name: add.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor 230*da0073e9SAndroid Build Coastguard Worker self: handle_r_to_c(self.scalar_type(), grad) 231*da0073e9SAndroid Build Coastguard Worker other: handle_r_to_c(other.scalar_type(), maybe_multiply(grad, alpha.conj())) 232*da0073e9SAndroid Build Coastguard Worker result: self_t + maybe_multiply(other_t, alpha) 233*da0073e9SAndroid Build Coastguard Worker 234*da0073e9SAndroid Build Coastguard Worker- name: add.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor 235*da0073e9SAndroid Build Coastguard Worker self: handle_r_to_c(self.scalar_type(), grad) 236*da0073e9SAndroid Build Coastguard Worker result: self_t.clone() 237*da0073e9SAndroid Build Coastguard Worker 238*da0073e9SAndroid Build Coastguard Worker- name: addbmm(Tensor self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1) -> Tensor 239*da0073e9SAndroid Build Coastguard Worker self: maybe_multiply(grad, beta.conj()) 240*da0073e9SAndroid Build Coastguard Worker batch1: maybe_multiply(grad.unsqueeze(0).expand_symint({ batch1.sym_size(0), batch1.sym_size(1), batch2.sym_size(2) }).bmm(batch2.transpose(1, 2).conj()), alpha.conj()) 241*da0073e9SAndroid Build Coastguard Worker batch2: maybe_multiply(batch1.transpose(1, 2).conj().bmm(grad.unsqueeze(0).expand_symint({ batch1.sym_size(0), batch1.sym_size(1), batch2.sym_size(2) })), alpha.conj()) 242*da0073e9SAndroid Build Coastguard Worker result: maybe_multiply(self_t, beta) + maybe_multiply(batch1_t.bmm(batch2_p).sum(0), alpha) + maybe_multiply(batch1_p.bmm(batch2_t).sum(0), alpha) 243*da0073e9SAndroid Build Coastguard Worker 244*da0073e9SAndroid Build Coastguard Worker- name: addcdiv(Tensor self, Tensor tensor1, Tensor tensor2, *, Scalar value=1) -> Tensor 245*da0073e9SAndroid Build Coastguard Worker self: handle_r_to_c(self.scalar_type(), grad) 246*da0073e9SAndroid Build Coastguard Worker tensor1: handle_r_to_c(tensor1.scalar_type(), grad * (value / tensor2).conj()) 247*da0073e9SAndroid Build Coastguard Worker tensor2: handle_r_to_c(tensor2.scalar_type(), -grad * (value * tensor1 / (tensor2 * tensor2)).conj()) 248*da0073e9SAndroid Build Coastguard Worker result: self_t + maybe_multiply(tensor1_t / tensor2_p, value) - maybe_multiply(tensor2_t * (tensor1_p / tensor2_p) / tensor2_p, value) 249*da0073e9SAndroid Build Coastguard Worker 250*da0073e9SAndroid Build Coastguard Worker- name: addcmul(Tensor self, Tensor tensor1, Tensor tensor2, *, Scalar value=1) -> Tensor 251*da0073e9SAndroid Build Coastguard Worker self: handle_r_to_c(self.scalar_type(), grad) 252*da0073e9SAndroid Build Coastguard Worker tensor1: handle_r_to_c(tensor1.scalar_type(), grad * (tensor2 * value).conj()) 253*da0073e9SAndroid Build Coastguard Worker tensor2: handle_r_to_c(tensor2.scalar_type(), grad * (tensor1 * value).conj()) 254*da0073e9SAndroid Build Coastguard Worker result: self_t + maybe_multiply(tensor1_t * tensor2_p, value) + maybe_multiply(tensor2_t * tensor1_p, value) 255*da0073e9SAndroid Build Coastguard Worker 256*da0073e9SAndroid Build Coastguard Worker- name: addmm(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> Tensor 257*da0073e9SAndroid Build Coastguard Worker self: maybe_multiply(grad, beta.conj()) 258*da0073e9SAndroid Build Coastguard Worker mat1: mm_mat1_backward(grad, mat2, mat1.sym_sizes(), mat1.sym_strides(), mat1.layout(), alpha) 259*da0073e9SAndroid Build Coastguard Worker mat2: mm_mat2_backward(grad, mat1, mat2.sym_sizes(), mat2.sym_strides(), mat2.layout(), alpha) 260*da0073e9SAndroid Build Coastguard Worker result: maybe_multiply(self_t, beta) + maybe_multiply(mat1_t.mm(mat2_p), alpha) + maybe_multiply(mat1_p.mm(mat2_t), alpha) 261*da0073e9SAndroid Build Coastguard Worker 262*da0073e9SAndroid Build Coastguard Worker- name: _sparse_addmm(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> Tensor 263*da0073e9SAndroid Build Coastguard Worker self: maybe_multiply(grad, beta) 264*da0073e9SAndroid Build Coastguard Worker mat1: mm_mat1_sparse_backward(grad, mat1, mat2, alpha) 265*da0073e9SAndroid Build Coastguard Worker mat2: mm_mat2_backward(grad, mat1, mat2.sym_sizes(), mat2.sym_strides(), mat2.layout(), alpha) 266*da0073e9SAndroid Build Coastguard Worker 267*da0073e9SAndroid Build Coastguard Worker- name: addmv(Tensor self, Tensor mat, Tensor vec, *, Scalar beta=1, Scalar alpha=1) -> Tensor 268*da0073e9SAndroid Build Coastguard Worker self: maybe_multiply(grad, beta.conj()) 269*da0073e9SAndroid Build Coastguard Worker mat: maybe_multiply(grad.ger(vec.conj()), alpha.conj()) 270*da0073e9SAndroid Build Coastguard Worker vec: maybe_multiply(mat.t().conj().mv(grad), alpha.conj()) 271*da0073e9SAndroid Build Coastguard Worker result: maybe_multiply(self_t, beta) + maybe_multiply(mat_t.mv(vec_p), alpha) + maybe_multiply(mat_p.mv(vec_t), alpha) 272*da0073e9SAndroid Build Coastguard Worker 273*da0073e9SAndroid Build Coastguard Worker- name: addr(Tensor self, Tensor vec1, Tensor vec2, *, Scalar beta=1, Scalar alpha=1) -> Tensor 274*da0073e9SAndroid Build Coastguard Worker self: maybe_multiply(grad, beta.conj()) 275*da0073e9SAndroid Build Coastguard Worker vec1: maybe_multiply(grad.mv(vec2.conj()), alpha.conj()) 276*da0073e9SAndroid Build Coastguard Worker vec2: maybe_multiply(grad.t().mv(vec1.conj()), alpha.conj()) 277*da0073e9SAndroid Build Coastguard Worker result: maybe_multiply(self_t, beta) + maybe_multiply(vec1_t.outer(vec2_p), alpha) + maybe_multiply(vec1_p.outer(vec2_t), alpha) 278*da0073e9SAndroid Build Coastguard Worker 279*da0073e9SAndroid Build Coastguard Worker- name: affine_grid_generator(Tensor theta, SymInt[] size, bool align_corners) -> Tensor 280*da0073e9SAndroid Build Coastguard Worker theta: affine_grid_generator_backward_symint(grad, size, align_corners) 281*da0073e9SAndroid Build Coastguard Worker 282*da0073e9SAndroid Build Coastguard Worker- name: alias(Tensor(a) self) -> Tensor(a) 283*da0073e9SAndroid Build Coastguard Worker self: grad 284*da0073e9SAndroid Build Coastguard Worker result: self_t 285*da0073e9SAndroid Build Coastguard Worker 286*da0073e9SAndroid Build Coastguard Worker- name: angle(Tensor self) -> Tensor 287*da0073e9SAndroid Build Coastguard Worker self: angle_backward(grad, self) 288*da0073e9SAndroid Build Coastguard Worker result: handle_r_to_c(result.scalar_type(), angle_backward(self_t.conj(), self_p).conj()) 289*da0073e9SAndroid Build Coastguard Worker 290*da0073e9SAndroid Build Coastguard Worker# The four items below are necessary because TensorIterator doesn't work on 291*da0073e9SAndroid Build Coastguard Worker# Variables (codegen does not unwrap the input Tensor for all() and any() ). 292*da0073e9SAndroid Build Coastguard Worker- name: any(Tensor self) -> Tensor 293*da0073e9SAndroid Build Coastguard Worker output_differentiability: [False] 294*da0073e9SAndroid Build Coastguard Worker 295*da0073e9SAndroid Build Coastguard Worker- name: any.dim(Tensor self, int dim, bool keepdim=False) -> Tensor 296*da0073e9SAndroid Build Coastguard Worker output_differentiability: [False] 297*da0073e9SAndroid Build Coastguard Worker 298*da0073e9SAndroid Build Coastguard Worker- name: any.dims(Tensor self, int[]? dim=None, bool keepdim=False) -> Tensor 299*da0073e9SAndroid Build Coastguard Worker output_differentiability: [False] 300*da0073e9SAndroid Build Coastguard Worker 301*da0073e9SAndroid Build Coastguard Worker- name: _is_all_true(Tensor self) -> Tensor 302*da0073e9SAndroid Build Coastguard Worker self: non_differentiable 303*da0073e9SAndroid Build Coastguard Worker 304*da0073e9SAndroid Build Coastguard Worker- name: _is_any_true(Tensor self) -> Tensor 305*da0073e9SAndroid Build Coastguard Worker self: non_differentiable 306*da0073e9SAndroid Build Coastguard Worker 307*da0073e9SAndroid Build Coastguard Worker- name: all(Tensor self) -> Tensor 308*da0073e9SAndroid Build Coastguard Worker output_differentiability: [False] 309*da0073e9SAndroid Build Coastguard Worker 310*da0073e9SAndroid Build Coastguard Worker- name: all.dim(Tensor self, int dim, bool keepdim=False) -> Tensor 311*da0073e9SAndroid Build Coastguard Worker output_differentiability: [False] 312*da0073e9SAndroid Build Coastguard Worker 313*da0073e9SAndroid Build Coastguard Worker- name: all.dims(Tensor self, int[]? dim=None, bool keepdim=False) -> Tensor 314*da0073e9SAndroid Build Coastguard Worker output_differentiability: [False] 315*da0073e9SAndroid Build Coastguard Worker 316*da0073e9SAndroid Build Coastguard Worker- name: acosh(Tensor self) -> Tensor 317*da0073e9SAndroid Build Coastguard Worker# Save one rsqrt in the real case by using that for x real and positive sqrt(x*y) = sqrt(x)*sqrt(y) (not true in the complex case) 318*da0073e9SAndroid Build Coastguard Worker self: "self.is_complex() ? grad * ((self + 1).rsqrt() * (self - 1).rsqrt()).conj() : grad * (self * self - 1).rsqrt()" 319*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 320*da0073e9SAndroid Build Coastguard Worker 321*da0073e9SAndroid Build Coastguard Worker- name: acosh_(Tensor(a!) self) -> Tensor(a!) 322*da0073e9SAndroid Build Coastguard Worker self: not_implemented("inplace version of acosh") 323*da0073e9SAndroid Build Coastguard Worker 324*da0073e9SAndroid Build Coastguard Worker- name: asinh(Tensor self) -> Tensor 325*da0073e9SAndroid Build Coastguard Worker self: grad * (self.pow(2) + 1).rsqrt().conj() 326*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 327*da0073e9SAndroid Build Coastguard Worker 328*da0073e9SAndroid Build Coastguard Worker- name: asinh_(Tensor(a!) self) -> Tensor(a!) 329*da0073e9SAndroid Build Coastguard Worker self: not_implemented("inplace version of asinh") 330*da0073e9SAndroid Build Coastguard Worker 331*da0073e9SAndroid Build Coastguard Worker- name: atanh(Tensor self) -> Tensor 332*da0073e9SAndroid Build Coastguard Worker self: grad * 1 / (1 - self.pow(2)).conj() 333*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 334*da0073e9SAndroid Build Coastguard Worker 335*da0073e9SAndroid Build Coastguard Worker- name: atanh_(Tensor(a!) self) -> Tensor(a!) 336*da0073e9SAndroid Build Coastguard Worker self: not_implemented("inplace version of atanh") 337*da0073e9SAndroid Build Coastguard Worker 338*da0073e9SAndroid Build Coastguard Worker- name: as_strided(Tensor(a) self, SymInt[] size, SymInt[] stride, SymInt? storage_offset=None) -> Tensor(a) 339*da0073e9SAndroid Build Coastguard Worker self: as_strided_backward(grad, TensorGeometry(self), size, stride, storage_offset) 340*da0073e9SAndroid Build Coastguard Worker result: auto_linear 341*da0073e9SAndroid Build Coastguard Worker 342*da0073e9SAndroid Build Coastguard Worker- name: as_strided_(Tensor(a!) self, SymInt[] size, SymInt[] stride, SymInt? storage_offset=None) -> Tensor(a!) 343*da0073e9SAndroid Build Coastguard Worker self: as_strided_backward(grad, TensorGeometry(self), size, stride, storage_offset) 344*da0073e9SAndroid Build Coastguard Worker result: auto_linear 345*da0073e9SAndroid Build Coastguard Worker 346*da0073e9SAndroid Build Coastguard Worker- name: asin(Tensor self) -> Tensor 347*da0073e9SAndroid Build Coastguard Worker self: grad * (-self * self + 1).rsqrt().conj() 348*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 349*da0073e9SAndroid Build Coastguard Worker 350*da0073e9SAndroid Build Coastguard Worker- name: atan(Tensor self) -> Tensor 351*da0073e9SAndroid Build Coastguard Worker self: grad / (self * self + 1).conj() 352*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 353*da0073e9SAndroid Build Coastguard Worker 354*da0073e9SAndroid Build Coastguard Worker- name: atan2(Tensor self, Tensor other) -> Tensor 355*da0073e9SAndroid Build Coastguard Worker self, other: atan2_backward(grad, self, other, grad_input_mask) 356*da0073e9SAndroid Build Coastguard Worker result: (-self_p * other_t + other_p * self_t) / (self_p.pow(2) + other_p.pow(2)) 357*da0073e9SAndroid Build Coastguard Worker 358*da0073e9SAndroid Build Coastguard Worker- name: baddbmm(Tensor self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1) -> Tensor 359*da0073e9SAndroid Build Coastguard Worker self: maybe_multiply(grad, beta.conj()) 360*da0073e9SAndroid Build Coastguard Worker batch1: maybe_multiply(grad.bmm(batch2.transpose(1, 2).conj()), alpha.conj()) 361*da0073e9SAndroid Build Coastguard Worker batch2: maybe_multiply(batch1.transpose(1, 2).conj().bmm(grad), alpha.conj()) 362*da0073e9SAndroid Build Coastguard Worker result: maybe_multiply(self_t, beta) + maybe_multiply(batch1_t.bmm(batch2_p), alpha) + maybe_multiply(batch1_p.bmm(batch2_t), alpha) 363*da0073e9SAndroid Build Coastguard Worker 364*da0073e9SAndroid Build Coastguard Worker- name: bernoulli(Tensor self, *, Generator? generator=None) -> Tensor 365*da0073e9SAndroid Build Coastguard Worker self: zeros_like(grad) 366*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 367*da0073e9SAndroid Build Coastguard Worker 368*da0073e9SAndroid Build Coastguard Worker- name: bernoulli_.Tensor(Tensor(a!) self, Tensor p, *, Generator? generator=None) -> Tensor(a!) 369*da0073e9SAndroid Build Coastguard Worker self: zeros_like(grad) 370*da0073e9SAndroid Build Coastguard Worker p: zeros_like(p) 371*da0073e9SAndroid Build Coastguard Worker result: self_t.zero_() 372*da0073e9SAndroid Build Coastguard Worker 373*da0073e9SAndroid Build Coastguard Worker- name: bernoulli_.float(Tensor(a!) self, float p=0.5, *, Generator? generator=None) -> Tensor(a!) 374*da0073e9SAndroid Build Coastguard Worker self: zeros_like(grad) 375*da0073e9SAndroid Build Coastguard Worker result: self_t.zero_() 376*da0073e9SAndroid Build Coastguard Worker 377*da0073e9SAndroid Build Coastguard Worker- name: bmm(Tensor self, Tensor mat2) -> Tensor 378*da0073e9SAndroid Build Coastguard Worker self: grad.bmm(mat2.transpose(1, 2).conj()) 379*da0073e9SAndroid Build Coastguard Worker mat2: self.transpose(1, 2).conj().bmm(grad) 380*da0073e9SAndroid Build Coastguard Worker result: self_t.bmm(mat2_p) + self_p.bmm(mat2_t) 381*da0073e9SAndroid Build Coastguard Worker 382*da0073e9SAndroid Build Coastguard Worker- name: matmul(Tensor self, Tensor other) -> Tensor 383*da0073e9SAndroid Build Coastguard Worker self, other: matmul_backward(grad, self, other, grad_input_mask) 384*da0073e9SAndroid Build Coastguard Worker 385*da0073e9SAndroid Build Coastguard Worker- name: cat(Tensor[] tensors, int dim=0) -> Tensor 386*da0073e9SAndroid Build Coastguard Worker tensors: cat_tensors_backward(grad, to_args_sizes_symint(tensors), to_args_scalartypes(tensors), dim) 387*da0073e9SAndroid Build Coastguard Worker result: cat_jvp(tensors, dim) 388*da0073e9SAndroid Build Coastguard Worker 389*da0073e9SAndroid Build Coastguard Worker- name: cauchy_(Tensor(a!) self, float median=0, float sigma=1, *, Generator? generator=None) -> Tensor(a!) 390*da0073e9SAndroid Build Coastguard Worker self: zeros_like(grad) 391*da0073e9SAndroid Build Coastguard Worker result: self_t.zero_() 392*da0073e9SAndroid Build Coastguard Worker 393*da0073e9SAndroid Build Coastguard Worker- name: ceil(Tensor self) -> Tensor 394*da0073e9SAndroid Build Coastguard Worker self: zeros_like(grad) 395*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 396*da0073e9SAndroid Build Coastguard Worker 397*da0073e9SAndroid Build Coastguard Worker- name: cholesky(Tensor self, bool upper=False) -> Tensor 398*da0073e9SAndroid Build Coastguard Worker self: cholesky_backward(grad, upper, result) 399*da0073e9SAndroid Build Coastguard Worker 400*da0073e9SAndroid Build Coastguard Worker- name: linalg_cholesky_ex(Tensor self, *, bool upper=False, bool check_errors=False) -> (Tensor L, Tensor info) 401*da0073e9SAndroid Build Coastguard Worker self: cholesky_backward(grad, upper, L) 402*da0073e9SAndroid Build Coastguard Worker L: cholesky_jvp(self_t, L, upper) 403*da0073e9SAndroid Build Coastguard Worker 404*da0073e9SAndroid Build Coastguard Worker- name: cholesky_solve(Tensor self, Tensor input2, bool upper=False) -> Tensor 405*da0073e9SAndroid Build Coastguard Worker self, input2: cholesky_solve_backward(grad, self, input2, result, upper, grad_input_mask) 406*da0073e9SAndroid Build Coastguard Worker result: cholesky_solve_jvp(result, input2_p, input2_t, self_t, upper) 407*da0073e9SAndroid Build Coastguard Worker 408*da0073e9SAndroid Build Coastguard Worker- name: cholesky_inverse(Tensor self, bool upper=False) -> Tensor 409*da0073e9SAndroid Build Coastguard Worker self: cholesky_inverse_backward(grad, self, upper, result) 410*da0073e9SAndroid Build Coastguard Worker result: cholesky_inverse_jvp(self_p, self_t, result, upper) 411*da0073e9SAndroid Build Coastguard Worker 412*da0073e9SAndroid Build Coastguard Worker# For clamp, gradient is not defined at the boundaries. But empirically it's helpful 413*da0073e9SAndroid Build Coastguard Worker# to be able to get gradient on min and max, so we return the subgradient 1 for these cases. 414*da0073e9SAndroid Build Coastguard Worker- name: clamp.Tensor(Tensor self, Tensor? min=None, Tensor? max=None) -> Tensor 415*da0073e9SAndroid Build Coastguard Worker self: clamp_backward(grad, self, min, max) 416*da0073e9SAndroid Build Coastguard Worker min, max: clamp_backward_min_max(grad, self, min, max, grad_input_mask) 417*da0073e9SAndroid Build Coastguard Worker result: clamp_jvp(self_p, self_t, min_p, min_t, max_p, max_t) 418*da0073e9SAndroid Build Coastguard Worker 419*da0073e9SAndroid Build Coastguard Worker- name: clamp(Tensor self, Scalar? min=None, Scalar? max=None) -> Tensor 420*da0073e9SAndroid Build Coastguard Worker self: clamp_backward(grad, self, min, max) 421*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 422*da0073e9SAndroid Build Coastguard Worker 423*da0073e9SAndroid Build Coastguard Worker- name: clamp_min(Tensor self, Scalar min) -> Tensor 424*da0073e9SAndroid Build Coastguard Worker self: where(self >= min, grad, at::scalar_tensor(0., grad.options())) 425*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 426*da0073e9SAndroid Build Coastguard Worker 427*da0073e9SAndroid Build Coastguard Worker- name: clamp_min.Tensor(Tensor self, Tensor min) -> Tensor 428*da0073e9SAndroid Build Coastguard Worker self: where(self >= min, grad, at::scalar_tensor(0., grad.options())) 429*da0073e9SAndroid Build Coastguard Worker min: where(self < min, grad, at::scalar_tensor(0., grad.options())) 430*da0073e9SAndroid Build Coastguard Worker result: where(self_p >= min_p, self_t, min_t) 431*da0073e9SAndroid Build Coastguard Worker 432*da0073e9SAndroid Build Coastguard Worker- name: clamp_max(Tensor self, Scalar max) -> Tensor 433*da0073e9SAndroid Build Coastguard Worker self: where(self <= max, grad, at::scalar_tensor(0., grad.options())) 434*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 435*da0073e9SAndroid Build Coastguard Worker 436*da0073e9SAndroid Build Coastguard Worker- name: clamp_max.Tensor(Tensor self, Tensor max) -> Tensor 437*da0073e9SAndroid Build Coastguard Worker self: where(self <= max, grad, at::scalar_tensor(0., grad.options())) 438*da0073e9SAndroid Build Coastguard Worker max: where(self > max, grad, at::scalar_tensor(0., grad.options())) 439*da0073e9SAndroid Build Coastguard Worker result: where(self_p <= max_p, self_t, max_t) 440*da0073e9SAndroid Build Coastguard Worker 441*da0073e9SAndroid Build Coastguard Worker- name: clone(Tensor self, *, MemoryFormat? memory_format=None) -> Tensor 442*da0073e9SAndroid Build Coastguard Worker self: grad 443*da0073e9SAndroid Build Coastguard Worker result: auto_linear 444*da0073e9SAndroid Build Coastguard Worker 445*da0073e9SAndroid Build Coastguard Worker- name: _lazy_clone(Tensor self) -> Tensor 446*da0073e9SAndroid Build Coastguard Worker self: grad 447*da0073e9SAndroid Build Coastguard Worker result: auto_linear 448*da0073e9SAndroid Build Coastguard Worker 449*da0073e9SAndroid Build Coastguard Worker- name: _to_copy(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, bool non_blocking=False, MemoryFormat? memory_format=None) -> Tensor 450*da0073e9SAndroid Build Coastguard Worker self: _to_copy_backward(grad, self.options()) 451*da0073e9SAndroid Build Coastguard Worker result: _to_copy(self_t, dtype, layout, device, pin_memory, non_blocking, memory_format) 452*da0073e9SAndroid Build Coastguard Worker # The condition is: if dtype is not nullopt, then isDifferentiableType(*dtype) 453*da0073e9SAndroid Build Coastguard Worker # (If dtype IS nullopt, we rely on the regular check that any input requires grad). 454*da0073e9SAndroid Build Coastguard Worker output_differentiability: ["!dtype || isDifferentiableType(*dtype)"] 455*da0073e9SAndroid Build Coastguard Worker 456*da0073e9SAndroid Build Coastguard Worker- name: _coalesce(Tensor self) -> Tensor 457*da0073e9SAndroid Build Coastguard Worker self: grad 458*da0073e9SAndroid Build Coastguard Worker 459*da0073e9SAndroid Build Coastguard Worker- name: complex(Tensor real, Tensor imag) -> Tensor 460*da0073e9SAndroid Build Coastguard Worker real: at::real(grad) 461*da0073e9SAndroid Build Coastguard Worker imag: at::imag(grad) 462*da0073e9SAndroid Build Coastguard Worker result: at::complex(real_t, imag_t) 463*da0073e9SAndroid Build Coastguard Worker 464*da0073e9SAndroid Build Coastguard Worker- name: polar(Tensor abs, Tensor angle) -> Tensor 465*da0073e9SAndroid Build Coastguard Worker abs, angle: polar_backward(grad, result) 466*da0073e9SAndroid Build Coastguard Worker result: at::complex(abs_t*angle_p.cos() - angle_t*abs_p*angle_p.sin(), abs_t*angle_p.sin() + angle_t*abs_p*angle_p.cos()) 467*da0073e9SAndroid Build Coastguard Worker 468*da0073e9SAndroid Build Coastguard Worker- name: _conj(Tensor(a) self) -> Tensor(a) 469*da0073e9SAndroid Build Coastguard Worker self: grad.conj() 470*da0073e9SAndroid Build Coastguard Worker result: self_t.conj() 471*da0073e9SAndroid Build Coastguard Worker 472*da0073e9SAndroid Build Coastguard Worker- name: _neg_view(Tensor(a) self) -> Tensor(a) 473*da0073e9SAndroid Build Coastguard Worker self: grad.neg() 474*da0073e9SAndroid Build Coastguard Worker result: self_t._neg_view() 475*da0073e9SAndroid Build Coastguard Worker 476*da0073e9SAndroid Build Coastguard Worker- name: _conj_physical(Tensor self) -> Tensor 477*da0073e9SAndroid Build Coastguard Worker self: grad.conj_physical() 478*da0073e9SAndroid Build Coastguard Worker result: self_t.conj_physical() 479*da0073e9SAndroid Build Coastguard Worker 480*da0073e9SAndroid Build Coastguard Worker- name: conj_physical_(Tensor(a!) self) -> Tensor(a!) 481*da0073e9SAndroid Build Coastguard Worker self: grad.conj_physical() 482*da0073e9SAndroid Build Coastguard Worker result: self_t.conj_physical_() 483*da0073e9SAndroid Build Coastguard Worker 484*da0073e9SAndroid Build Coastguard Worker- name: copysign.Tensor(Tensor self, Tensor other) -> Tensor 485*da0073e9SAndroid Build Coastguard Worker self: copysign_tensor_self_backward(grad, self, result) 486*da0073e9SAndroid Build Coastguard Worker other: zeros_like(other) 487*da0073e9SAndroid Build Coastguard Worker result: copysign_tensor_self_backward(self_t, self_p, result) 488*da0073e9SAndroid Build Coastguard Worker 489*da0073e9SAndroid Build Coastguard Worker- name: copysign.Scalar(Tensor self, Scalar other) -> Tensor 490*da0073e9SAndroid Build Coastguard Worker self: copysign_tensor_self_backward(grad, self, result) 491*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 492*da0073e9SAndroid Build Coastguard Worker 493*da0073e9SAndroid Build Coastguard Worker- name: cos(Tensor self) -> Tensor 494*da0073e9SAndroid Build Coastguard Worker self: grad * -self.sin().conj() 495*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 496*da0073e9SAndroid Build Coastguard Worker 497*da0073e9SAndroid Build Coastguard Worker- name: cosh(Tensor self) -> Tensor 498*da0073e9SAndroid Build Coastguard Worker self: grad * self.sinh().conj() 499*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 500*da0073e9SAndroid Build Coastguard Worker 501*da0073e9SAndroid Build Coastguard Worker- name: count_nonzero.dim_IntList(Tensor self, int[] dim) -> Tensor 502*da0073e9SAndroid Build Coastguard Worker output_differentiability: [False] 503*da0073e9SAndroid Build Coastguard Worker 504*da0073e9SAndroid Build Coastguard Worker- name: count_nonzero(Tensor self, int? dim=None) -> Tensor 505*da0073e9SAndroid Build Coastguard Worker output_differentiability: [False] 506*da0073e9SAndroid Build Coastguard Worker 507*da0073e9SAndroid Build Coastguard Worker- name: linalg_cross(Tensor self, Tensor other, *, int dim=-1) -> Tensor 508*da0073e9SAndroid Build Coastguard Worker self: at::linalg_cross(other.conj(), grad, dim) 509*da0073e9SAndroid Build Coastguard Worker other: at::linalg_cross(grad, self.conj(), dim) 510*da0073e9SAndroid Build Coastguard Worker result: "at::linalg_cross(self_t, other_p, dim) + at::linalg_cross(self_p, other_t, dim)" 511*da0073e9SAndroid Build Coastguard Worker 512*da0073e9SAndroid Build Coastguard Worker- name: logcumsumexp(Tensor self, int dim) -> Tensor 513*da0073e9SAndroid Build Coastguard Worker self: logcumsumexp_backward(grad, self, result, dim) 514*da0073e9SAndroid Build Coastguard Worker result: logcumsumexp_jvp(self_p, self_t, dim) 515*da0073e9SAndroid Build Coastguard Worker 516*da0073e9SAndroid Build Coastguard Worker- name: cumprod(Tensor self, int dim, *, ScalarType? dtype=None) -> Tensor 517*da0073e9SAndroid Build Coastguard Worker self: cumprod_backward(grad.to(self.scalar_type()), self, dim, result) 518*da0073e9SAndroid Build Coastguard Worker result: "cumprod_jvp(self_t, self_p, result, dim).to(dtype.has_value() ? *dtype : self_p.scalar_type())" 519*da0073e9SAndroid Build Coastguard Worker 520*da0073e9SAndroid Build Coastguard Worker- name: cumsum(Tensor self, int dim, *, ScalarType? dtype=None) -> Tensor 521*da0073e9SAndroid Build Coastguard Worker self: cumsum_backward(grad.to(self.scalar_type()), dim) 522*da0073e9SAndroid Build Coastguard Worker result: auto_linear 523*da0073e9SAndroid Build Coastguard Worker 524*da0073e9SAndroid Build Coastguard Worker- name: cummax(Tensor self, int dim) -> (Tensor values, Tensor indices) 525*da0073e9SAndroid Build Coastguard Worker self: cummaxmin_backward(grad, self, indices, dim) 526*da0073e9SAndroid Build Coastguard Worker values: self_t.gather(dim, indices) 527*da0073e9SAndroid Build Coastguard Worker 528*da0073e9SAndroid Build Coastguard Worker- name: cummin(Tensor self, int dim) -> (Tensor values, Tensor indices) 529*da0073e9SAndroid Build Coastguard Worker self: cummaxmin_backward(grad, self, indices, dim) 530*da0073e9SAndroid Build Coastguard Worker values: self_t.gather(dim, indices) 531*da0073e9SAndroid Build Coastguard Worker 532*da0073e9SAndroid Build Coastguard Worker- name: conv_tbc(Tensor self, Tensor weight, Tensor bias, int pad=0) -> Tensor 533*da0073e9SAndroid Build Coastguard Worker self, weight, bias: "grad.defined() ? conv_tbc_backward(grad, self, weight, bias, pad) : std::tuple<Tensor, Tensor, Tensor>()" 534*da0073e9SAndroid Build Coastguard Worker 535*da0073e9SAndroid Build Coastguard Worker- name: _ctc_loss(Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, int blank=0, bool zero_infinity=False) -> (Tensor, Tensor) 536*da0073e9SAndroid Build Coastguard Worker log_probs: _ctc_loss_backward(grad, log_probs, targets, input_lengths, target_lengths, result0, result1, blank, zero_infinity) 537*da0073e9SAndroid Build Coastguard Worker 538*da0073e9SAndroid Build Coastguard Worker- name: _ctc_loss.Tensor(Tensor log_probs, Tensor targets, Tensor input_lengths, Tensor target_lengths, int blank=0, bool zero_infinity=False) -> (Tensor, Tensor) 539*da0073e9SAndroid Build Coastguard Worker log_probs: _ctc_loss_backward(grad, log_probs, targets, input_lengths, target_lengths, result0, result1, blank, zero_infinity) 540*da0073e9SAndroid Build Coastguard Worker 541*da0073e9SAndroid Build Coastguard Worker- name: deg2rad(Tensor self) -> Tensor 542*da0073e9SAndroid Build Coastguard Worker self: deg2rad_backward(grad) 543*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 544*da0073e9SAndroid Build Coastguard Worker 545*da0073e9SAndroid Build Coastguard Worker- name: _linalg_det(Tensor A) -> (Tensor result, Tensor LU, Tensor pivots) 546*da0073e9SAndroid Build Coastguard Worker A: linalg_det_backward(grad, result, A, LU, pivots) 547*da0073e9SAndroid Build Coastguard Worker result: linalg_det_jvp(A_t, result, LU, pivots, A_p.is_contiguous() && !A_p.is_complex()) 548*da0073e9SAndroid Build Coastguard Worker output_differentiability: [True, False, False] 549*da0073e9SAndroid Build Coastguard Worker 550*da0073e9SAndroid Build Coastguard Worker- name: _linalg_slogdet(Tensor A) -> (Tensor sign, Tensor logabsdet, Tensor LU, Tensor pivots) 551*da0073e9SAndroid Build Coastguard Worker A: slogdet_backward(grad_sign, grad_logabsdet, A, sign, LU, pivots) 552*da0073e9SAndroid Build Coastguard Worker sign, logabsdet: slogdet_jvp(LU, pivots, A_t, sign, A_p.is_contiguous() && !A_p.is_complex()) 553*da0073e9SAndroid Build Coastguard Worker output_differentiability: [True, True, False, False] 554*da0073e9SAndroid Build Coastguard Worker 555*da0073e9SAndroid Build Coastguard Worker- name: block_diag(Tensor[] tensors) -> Tensor 556*da0073e9SAndroid Build Coastguard Worker tensors: block_diag_backward(grad, to_args_sizes(tensors), to_args_scalartypes(tensors)) 557*da0073e9SAndroid Build Coastguard Worker result: block_diag_jvp(tensors) 558*da0073e9SAndroid Build Coastguard Worker 559*da0073e9SAndroid Build Coastguard Worker- name: diag_embed(Tensor self, int offset=0, int dim1=-2, int dim2=-1) -> Tensor 560*da0073e9SAndroid Build Coastguard Worker self: grad.diagonal(offset, dim1, dim2) 561*da0073e9SAndroid Build Coastguard Worker result: auto_linear 562*da0073e9SAndroid Build Coastguard Worker 563*da0073e9SAndroid Build Coastguard Worker- name: diagonal(Tensor(a) self, int offset=0, int dim1=0, int dim2=1) -> Tensor(a) 564*da0073e9SAndroid Build Coastguard Worker self: diagonal_backward_symint(grad, self.sym_sizes(), offset, dim1, dim2) 565*da0073e9SAndroid Build Coastguard Worker result: auto_linear 566*da0073e9SAndroid Build Coastguard Worker 567*da0073e9SAndroid Build Coastguard Worker- name: diagonal_backward(Tensor grad_output, SymInt[] input_sizes, int offset, int dim1, int dim2) -> Tensor 568*da0073e9SAndroid Build Coastguard Worker grad_output: grad.diagonal(offset, dim1, dim2) 569*da0073e9SAndroid Build Coastguard Worker result: auto_linear 570*da0073e9SAndroid Build Coastguard Worker 571*da0073e9SAndroid Build Coastguard Worker- name: dist(Tensor self, Tensor other, Scalar p=2) -> Tensor 572*da0073e9SAndroid Build Coastguard Worker self: norm_backward(grad, self - other, p, result) 573*da0073e9SAndroid Build Coastguard Worker other: -norm_backward(grad, self - other, p, result) 574*da0073e9SAndroid Build Coastguard Worker result: norm_jvp(self_p - other_p, self_t - other_t, p, result, {}, false) 575*da0073e9SAndroid Build Coastguard Worker 576*da0073e9SAndroid Build Coastguard Worker# The backward formula is done in this order to improve numerical stability 577*da0073e9SAndroid Build Coastguard Worker# of the higher order derivatives, see https://github.com/pytorch/pytorch/issues/43414 578*da0073e9SAndroid Build Coastguard Worker# Note that we don't use "result" because saving it would be BC-breaking when it is used in an inplace operation later 579*da0073e9SAndroid Build Coastguard Worker- name: div.Tensor(Tensor self, Tensor other) -> Tensor 580*da0073e9SAndroid Build Coastguard Worker self: div_tensor_self_backward(grad, other, self.scalar_type()) 581*da0073e9SAndroid Build Coastguard Worker other: div_tensor_other_backward(grad, self, other) 582*da0073e9SAndroid Build Coastguard Worker result: (self_t - other_t * result) / other_p 583*da0073e9SAndroid Build Coastguard Worker 584*da0073e9SAndroid Build Coastguard Worker- name: div.Scalar(Tensor self, Scalar other) -> Tensor 585*da0073e9SAndroid Build Coastguard Worker self: div_tensor_self_backward(grad, other, self.scalar_type()) 586*da0073e9SAndroid Build Coastguard Worker result: self_t / other 587*da0073e9SAndroid Build Coastguard Worker 588*da0073e9SAndroid Build Coastguard Worker- name: div.Tensor_mode(Tensor self, Tensor other, *, str? rounding_mode) -> Tensor 589*da0073e9SAndroid Build Coastguard Worker self: div_tensor_self_backward(grad, other, self.scalar_type(), rounding_mode) 590*da0073e9SAndroid Build Coastguard Worker other: div_tensor_other_backward(grad, self, other, rounding_mode) 591*da0073e9SAndroid Build Coastguard Worker result: "rounding_mode.has_value() ? result.new_zeros_symint(result.sym_sizes()) : self_t / other_p - other_t * (self_p / other_p) / other_p" 592*da0073e9SAndroid Build Coastguard Worker 593*da0073e9SAndroid Build Coastguard Worker- name: div.Scalar_mode(Tensor self, Scalar other, *, str? rounding_mode) -> Tensor 594*da0073e9SAndroid Build Coastguard Worker self: div_tensor_self_backward(grad, other, self.scalar_type(), rounding_mode) 595*da0073e9SAndroid Build Coastguard Worker result: "rounding_mode.has_value() ? result.new_zeros_symint(result.sym_sizes()) : self_t / other" 596*da0073e9SAndroid Build Coastguard Worker 597*da0073e9SAndroid Build Coastguard Worker- name: dot(Tensor self, Tensor tensor) -> Tensor 598*da0073e9SAndroid Build Coastguard Worker self: grad * tensor.conj() 599*da0073e9SAndroid Build Coastguard Worker tensor: grad * self.conj() 600*da0073e9SAndroid Build Coastguard Worker result: at::dot(self_t, tensor_p) + at::dot(self_p, tensor_t) 601*da0073e9SAndroid Build Coastguard Worker 602*da0073e9SAndroid Build Coastguard Worker- name: vdot(Tensor self, Tensor other) -> Tensor 603*da0073e9SAndroid Build Coastguard Worker self: grad.conj() * other 604*da0073e9SAndroid Build Coastguard Worker other: grad * self 605*da0073e9SAndroid Build Coastguard Worker result: at::vdot(self_t, other_p) + at::vdot(self_p, other_t) 606*da0073e9SAndroid Build Coastguard Worker 607*da0073e9SAndroid Build Coastguard Worker- name: _fused_dropout(Tensor self, float p, Generator? generator=None) -> (Tensor, Tensor) 608*da0073e9SAndroid Build Coastguard Worker self: _fused_dropout_backward(grad, result1, p) 609*da0073e9SAndroid Build Coastguard Worker 610*da0073e9SAndroid Build Coastguard Worker- name: native_dropout(Tensor input, float p, bool? train) -> (Tensor, Tensor) 611*da0073e9SAndroid Build Coastguard Worker input: "GradMode::is_enabled() ? infinitely_differentiable_native_dropout_backward(grad, result1, (!train.has_value() || !train.value() ? 1 : (p == 1 ? 0.0 : 1.0 / (1.0 - p)))) : native_dropout_backward(grad, result1, (!train.has_value() || !train.value() ? 1 : (p == 1 ? 0.0 : 1.0 / (1.0 - p))))" 612*da0073e9SAndroid Build Coastguard Worker result0: "(!train.has_value() || train.value()) ? (p == 1 ? 0.0 : 1.0 / (1.0 - p)) * input_t * result1 : input_t" 613*da0073e9SAndroid Build Coastguard Worker 614*da0073e9SAndroid Build Coastguard Worker- name: native_dropout_backward(Tensor grad_output, Tensor mask, float scale) -> Tensor 615*da0073e9SAndroid Build Coastguard Worker grad_output: "native_dropout_double_backward(grad, grad_output, mask, scale)" 616*da0073e9SAndroid Build Coastguard Worker mask: 'not_implemented("native_dropout_backward: mask")' 617*da0073e9SAndroid Build Coastguard Worker 618*da0073e9SAndroid Build Coastguard Worker- name: eq_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) 619*da0073e9SAndroid Build Coastguard Worker self: zeros_like(self) 620*da0073e9SAndroid Build Coastguard Worker result: self_t.zero_() 621*da0073e9SAndroid Build Coastguard Worker 622*da0073e9SAndroid Build Coastguard Worker- name: eq_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) 623*da0073e9SAndroid Build Coastguard Worker self: zeros_like(self) 624*da0073e9SAndroid Build Coastguard Worker other: zeros_like(other) 625*da0073e9SAndroid Build Coastguard Worker result: self_t.zero_() 626*da0073e9SAndroid Build Coastguard Worker 627*da0073e9SAndroid Build Coastguard Worker- name: erf(Tensor self) -> Tensor 628*da0073e9SAndroid Build Coastguard Worker self: 2.0 / sqrt(M_PI) * exp(-(self.pow(2))) * grad 629*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 630*da0073e9SAndroid Build Coastguard Worker 631*da0073e9SAndroid Build Coastguard Worker- name: erfc(Tensor self) -> Tensor 632*da0073e9SAndroid Build Coastguard Worker self: -2.0 / sqrt(M_PI) * exp(-(self.pow(2))) * grad 633*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 634*da0073e9SAndroid Build Coastguard Worker 635*da0073e9SAndroid Build Coastguard Worker- name: special_erfcx(Tensor self) -> Tensor 636*da0073e9SAndroid Build Coastguard Worker self: (2.0 * self * result - 2.0 / sqrt(M_PI)) * grad 637*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 638*da0073e9SAndroid Build Coastguard Worker 639*da0073e9SAndroid Build Coastguard Worker- name: erfinv(Tensor self) -> Tensor 640*da0073e9SAndroid Build Coastguard Worker self: 0.5 * sqrt(M_PI) * exp(self.erfinv().pow(2)) * grad 641*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 642*da0073e9SAndroid Build Coastguard Worker 643*da0073e9SAndroid Build Coastguard Worker- name: exp(Tensor self) -> Tensor 644*da0073e9SAndroid Build Coastguard Worker self: grad * result.conj() 645*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 646*da0073e9SAndroid Build Coastguard Worker 647*da0073e9SAndroid Build Coastguard Worker- name: exp2(Tensor self) -> Tensor 648*da0073e9SAndroid Build Coastguard Worker self: grad * result.conj() * M_LN2 649*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 650*da0073e9SAndroid Build Coastguard Worker 651*da0073e9SAndroid Build Coastguard Worker- name: expm1(Tensor self) -> Tensor 652*da0073e9SAndroid Build Coastguard Worker self: grad * (result.conj() + 1) 653*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 654*da0073e9SAndroid Build Coastguard Worker 655*da0073e9SAndroid Build Coastguard Worker# TODO: this derivative is not SymInt safe, need sum_to support 656*da0073e9SAndroid Build Coastguard Worker- name: expand(Tensor(a) self, SymInt[] size, *, bool implicit=False) -> Tensor(a) 657*da0073e9SAndroid Build Coastguard Worker self: at::sum_to(grad, self.sym_sizes()) 658*da0073e9SAndroid Build Coastguard Worker result: auto_linear 659*da0073e9SAndroid Build Coastguard Worker 660*da0073e9SAndroid Build Coastguard Worker- name: exponential_(Tensor(a!) self, float lambd=1, *, Generator? generator=None) -> Tensor(a!) 661*da0073e9SAndroid Build Coastguard Worker self: zeros_like(grad) 662*da0073e9SAndroid Build Coastguard Worker result: self_t.zero_() 663*da0073e9SAndroid Build Coastguard Worker 664*da0073e9SAndroid Build Coastguard Worker- name: fake_quantize_per_tensor_affine_cachemask(Tensor self, float scale, int zero_point, int quant_min, int quant_max) -> (Tensor output, Tensor mask) 665*da0073e9SAndroid Build Coastguard Worker self: fake_quantize_per_tensor_affine_cachemask_backward(grad, mask) 666*da0073e9SAndroid Build Coastguard Worker 667*da0073e9SAndroid Build Coastguard Worker- name: _fake_quantize_per_tensor_affine_cachemask_tensor_qparams(Tensor self, Tensor scale, Tensor zero_point, Tensor fake_quant_enabled, int quant_min, int quant_max) -> (Tensor output, Tensor mask) 668*da0073e9SAndroid Build Coastguard Worker self: fake_quantize_per_tensor_affine_cachemask_backward(grad, mask) 669*da0073e9SAndroid Build Coastguard Worker 670*da0073e9SAndroid Build Coastguard Worker- name: _fake_quantize_learnable_per_tensor_affine(Tensor self, Tensor scale, Tensor zero_point, int quant_min, int quant_max, float grad_factor=1.0) -> Tensor 671*da0073e9SAndroid Build Coastguard Worker self, scale, zero_point: "grad.defined() ? _fake_quantize_learnable_per_tensor_affine_backward(grad, self, scale, zero_point, quant_min, quant_max, grad_factor) : std::tuple<Tensor, Tensor, Tensor>()" 672*da0073e9SAndroid Build Coastguard Worker 673*da0073e9SAndroid Build Coastguard Worker- name: fake_quantize_per_channel_affine_cachemask(Tensor self, Tensor scale, Tensor zero_point, int axis, int quant_min, int quant_max) -> (Tensor output, Tensor mask) 674*da0073e9SAndroid Build Coastguard Worker self: fake_quantize_per_channel_affine_cachemask_backward(grad, mask) 675*da0073e9SAndroid Build Coastguard Worker 676*da0073e9SAndroid Build Coastguard Worker- name: _fake_quantize_learnable_per_channel_affine(Tensor self, Tensor scale, Tensor zero_point, int axis, int quant_min, int quant_max, float grad_factor=1.0) -> Tensor 677*da0073e9SAndroid Build Coastguard Worker self, scale, zero_point: "grad.defined() ? _fake_quantize_learnable_per_channel_affine_backward(grad, self, scale, zero_point, axis, quant_min, quant_max, grad_factor) : std::tuple<Tensor, Tensor, Tensor>()" 678*da0073e9SAndroid Build Coastguard Worker 679*da0073e9SAndroid Build Coastguard Worker- name: _fused_moving_avg_obs_fq_helper(Tensor self, Tensor observer_on, Tensor fake_quant_on, Tensor(a!) running_min, Tensor(b!) running_max, Tensor(c!) scale, Tensor(d!) zero_point, float averaging_const, int quant_min, int quant_max, int ch_axis, bool per_row_fake_quant=False, bool symmetric_quant=False) -> (Tensor output, Tensor mask) 680*da0073e9SAndroid Build Coastguard Worker self: fake_quantize_per_tensor_affine_cachemask_backward(grad, mask) 681*da0073e9SAndroid Build Coastguard Worker 682*da0073e9SAndroid Build Coastguard Worker- name: fill.Scalar(Tensor self, Scalar value) -> Tensor 683*da0073e9SAndroid Build Coastguard Worker self: zeros_like(grad) 684*da0073e9SAndroid Build Coastguard Worker result: at::fill(self_t, 0) 685*da0073e9SAndroid Build Coastguard Worker 686*da0073e9SAndroid Build Coastguard Worker- name: fill.Tensor(Tensor self, Tensor value) -> Tensor 687*da0073e9SAndroid Build Coastguard Worker self: zeros_like(grad) 688*da0073e9SAndroid Build Coastguard Worker value: grad.sum() 689*da0073e9SAndroid Build Coastguard Worker result: at::fill(self_t, value_t) 690*da0073e9SAndroid Build Coastguard Worker 691*da0073e9SAndroid Build Coastguard Worker- name: fill_.Scalar(Tensor(a!) self, Scalar value) -> Tensor(a!) 692*da0073e9SAndroid Build Coastguard Worker self: zeros_like(grad) 693*da0073e9SAndroid Build Coastguard Worker result: self_t.fill_(0) 694*da0073e9SAndroid Build Coastguard Worker 695*da0073e9SAndroid Build Coastguard Worker- name: fill_.Tensor(Tensor(a!) self, Tensor value) -> Tensor(a!) 696*da0073e9SAndroid Build Coastguard Worker self: zeros_like(grad) 697*da0073e9SAndroid Build Coastguard Worker value: grad.sum() 698*da0073e9SAndroid Build Coastguard Worker result: self_t.fill_(value_t) 699*da0073e9SAndroid Build Coastguard Worker 700*da0073e9SAndroid Build Coastguard Worker- name: floor(Tensor self) -> Tensor 701*da0073e9SAndroid Build Coastguard Worker self: zeros_like(grad) 702*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 703*da0073e9SAndroid Build Coastguard Worker 704*da0073e9SAndroid Build Coastguard Worker- name: fmod.Scalar(Tensor self, Scalar other) -> Tensor 705*da0073e9SAndroid Build Coastguard Worker self: grad 706*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 707*da0073e9SAndroid Build Coastguard Worker 708*da0073e9SAndroid Build Coastguard Worker- name: fmod.Tensor(Tensor self, Tensor other) -> Tensor 709*da0073e9SAndroid Build Coastguard Worker self: grad 710*da0073e9SAndroid Build Coastguard Worker other: -grad * self.div(other, /*rounding_mode=*/"trunc") 711*da0073e9SAndroid Build Coastguard Worker result: self_t - other_t * self_p.div(other_p, /*rounding_mode=*/"trunc") 712*da0073e9SAndroid Build Coastguard Worker 713*da0073e9SAndroid Build Coastguard Worker- name: frac(Tensor self) -> Tensor 714*da0073e9SAndroid Build Coastguard Worker self: grad 715*da0073e9SAndroid Build Coastguard Worker result: self_t 716*da0073e9SAndroid Build Coastguard Worker 717*da0073e9SAndroid Build Coastguard Worker- name: frexp.Tensor(Tensor self) -> (Tensor mantissa, Tensor exponent) 718*da0073e9SAndroid Build Coastguard Worker self: grad / exponent.exp2() 719*da0073e9SAndroid Build Coastguard Worker mantissa: self_t / exponent.exp2() 720*da0073e9SAndroid Build Coastguard Worker 721*da0073e9SAndroid Build Coastguard Worker- name: gather(Tensor self, int dim, Tensor index, *, bool sparse_grad=False) -> Tensor 722*da0073e9SAndroid Build Coastguard Worker self: gather_backward(grad, self, dim, index, sparse_grad) 723*da0073e9SAndroid Build Coastguard Worker index: non_differentiable 724*da0073e9SAndroid Build Coastguard Worker result: auto_linear 725*da0073e9SAndroid Build Coastguard Worker 726*da0073e9SAndroid Build Coastguard Worker- name: ge_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) 727*da0073e9SAndroid Build Coastguard Worker self: zeros_like(self) 728*da0073e9SAndroid Build Coastguard Worker result: self_t.zero_() 729*da0073e9SAndroid Build Coastguard Worker 730*da0073e9SAndroid Build Coastguard Worker- name: ge_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) 731*da0073e9SAndroid Build Coastguard Worker self: zeros_like(self) 732*da0073e9SAndroid Build Coastguard Worker other: zeros_like(other) 733*da0073e9SAndroid Build Coastguard Worker result: self_t.zero_() 734*da0073e9SAndroid Build Coastguard Worker 735*da0073e9SAndroid Build Coastguard Worker- name: geometric_(Tensor(a!) self, float p, *, Generator? generator=None) -> Tensor(a!) 736*da0073e9SAndroid Build Coastguard Worker self: zeros_like(grad) 737*da0073e9SAndroid Build Coastguard Worker result: self_t.zero_() 738*da0073e9SAndroid Build Coastguard Worker 739*da0073e9SAndroid Build Coastguard Worker- name: geqrf(Tensor self) -> (Tensor a, Tensor tau) 740*da0073e9SAndroid Build Coastguard Worker self: not_implemented("geqrf") 741*da0073e9SAndroid Build Coastguard Worker 742*da0073e9SAndroid Build Coastguard Worker- name: indices(Tensor(a) self) -> Tensor(a) 743*da0073e9SAndroid Build Coastguard Worker output_differentiability: [False] 744*da0073e9SAndroid Build Coastguard Worker 745*da0073e9SAndroid Build Coastguard Worker- name: _indices(Tensor(a) self) -> Tensor(a) 746*da0073e9SAndroid Build Coastguard Worker output_differentiability: [False] 747*da0073e9SAndroid Build Coastguard Worker 748*da0073e9SAndroid Build Coastguard Worker- name: crow_indices(Tensor(a) self) -> Tensor(a) 749*da0073e9SAndroid Build Coastguard Worker output_differentiability: [False] 750*da0073e9SAndroid Build Coastguard Worker 751*da0073e9SAndroid Build Coastguard Worker- name: col_indices(Tensor(a) self) -> Tensor(a) 752*da0073e9SAndroid Build Coastguard Worker output_differentiability: [False] 753*da0073e9SAndroid Build Coastguard Worker 754*da0073e9SAndroid Build Coastguard Worker- name: ccol_indices(Tensor(a) self) -> Tensor(a) 755*da0073e9SAndroid Build Coastguard Worker output_differentiability: [False] 756*da0073e9SAndroid Build Coastguard Worker 757*da0073e9SAndroid Build Coastguard Worker- name: row_indices(Tensor(a) self) -> Tensor(a) 758*da0073e9SAndroid Build Coastguard Worker output_differentiability: [False] 759*da0073e9SAndroid Build Coastguard Worker 760*da0073e9SAndroid Build Coastguard Worker- name: grid_sampler_2d(Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners) -> Tensor 761*da0073e9SAndroid Build Coastguard Worker input, grid: "grad.defined() ? grid_sampler_2d_backward(grad, input, grid, interpolation_mode, padding_mode, align_corners, grad_input_mask) : std::tuple<Tensor, Tensor>()" 762*da0073e9SAndroid Build Coastguard Worker 763*da0073e9SAndroid Build Coastguard Worker- name: grid_sampler_3d(Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners) -> Tensor 764*da0073e9SAndroid Build Coastguard Worker input, grid: "grad.defined() ? grid_sampler_3d_backward(grad, input, grid, interpolation_mode, padding_mode, align_corners, grad_input_mask) : std::tuple<Tensor, Tensor>()" 765*da0073e9SAndroid Build Coastguard Worker 766*da0073e9SAndroid Build Coastguard Worker# See NOTE [ grid_sample CPU fallback ] 767*da0073e9SAndroid Build Coastguard Worker- name: _grid_sampler_2d_cpu_fallback(Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners) -> Tensor 768*da0073e9SAndroid Build Coastguard Worker input, grid: "grad.defined() ? _grid_sampler_2d_cpu_fallback_backward(grad, input, grid, interpolation_mode, padding_mode, align_corners) : std::tuple<Tensor, Tensor>()" 769*da0073e9SAndroid Build Coastguard Worker 770*da0073e9SAndroid Build Coastguard Worker- name: gt_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) 771*da0073e9SAndroid Build Coastguard Worker self: zeros_like(self) 772*da0073e9SAndroid Build Coastguard Worker result: self_t.zero_() 773*da0073e9SAndroid Build Coastguard Worker 774*da0073e9SAndroid Build Coastguard Worker- name: gt_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) 775*da0073e9SAndroid Build Coastguard Worker self: zeros_like(self) 776*da0073e9SAndroid Build Coastguard Worker other: zeros_like(other) 777*da0073e9SAndroid Build Coastguard Worker result: self_t.zero_() 778*da0073e9SAndroid Build Coastguard Worker 779*da0073e9SAndroid Build Coastguard Worker- name: hardsigmoid(Tensor self) -> Tensor 780*da0073e9SAndroid Build Coastguard Worker self: hardsigmoid_backward(grad, self) 781*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 782*da0073e9SAndroid Build Coastguard Worker 783*da0073e9SAndroid Build Coastguard Worker- name: histc(Tensor self, int bins=100, Scalar min=0, Scalar max=0) -> Tensor 784*da0073e9SAndroid Build Coastguard Worker output_differentiability: [False] 785*da0073e9SAndroid Build Coastguard Worker 786*da0073e9SAndroid Build Coastguard Worker- name: hardswish(Tensor self) -> Tensor 787*da0073e9SAndroid Build Coastguard Worker self: hardswish_backward(grad, self) 788*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 789*da0073e9SAndroid Build Coastguard Worker 790*da0073e9SAndroid Build Coastguard Worker- name: hardswish_backward(Tensor grad_output, Tensor self) -> Tensor 791*da0073e9SAndroid Build Coastguard Worker grad_output: hardswish_backward(grad, self) 792*da0073e9SAndroid Build Coastguard Worker self: at::where(at::logical_and(-3.0 < self, self < 3.0), grad * grad_output / 3.0, at::zeros({}, self.options())) 793*da0073e9SAndroid Build Coastguard Worker result: "hardswish_backward(grad_output_t, self_p) 794*da0073e9SAndroid Build Coastguard Worker + at::where(at::logical_and(-3.0 < self_p, self_p < 3.0), self_t * grad_output_p / 3.0, at::zeros({}, self_p.options()))" 795*da0073e9SAndroid Build Coastguard Worker 796*da0073e9SAndroid Build Coastguard Worker- name: hypot(Tensor self, Tensor other) -> Tensor 797*da0073e9SAndroid Build Coastguard Worker self: grad * self / result 798*da0073e9SAndroid Build Coastguard Worker other: grad * other / result 799*da0073e9SAndroid Build Coastguard Worker result: self_t * self_p / result + other_t * other_p / result 800*da0073e9SAndroid Build Coastguard Worker 801*da0073e9SAndroid Build Coastguard Worker- name: i0(Tensor self) -> Tensor 802*da0073e9SAndroid Build Coastguard Worker self: grad * at::special_i1(self) 803*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 804*da0073e9SAndroid Build Coastguard Worker 805*da0073e9SAndroid Build Coastguard Worker- name: special_i0e(Tensor self) -> Tensor 806*da0073e9SAndroid Build Coastguard Worker self: grad * (at::special_i1e(self) - self.sgn() * result) 807*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 808*da0073e9SAndroid Build Coastguard Worker 809*da0073e9SAndroid Build Coastguard Worker- name: special_i1(Tensor self) -> Tensor 810*da0073e9SAndroid Build Coastguard Worker self: i1_backward(grad, self, result) 811*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 812*da0073e9SAndroid Build Coastguard Worker 813*da0073e9SAndroid Build Coastguard Worker- name: special_i1e(Tensor self) -> Tensor 814*da0073e9SAndroid Build Coastguard Worker self: i1e_backward(grad, self, result) 815*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 816*da0073e9SAndroid Build Coastguard Worker 817*da0073e9SAndroid Build Coastguard Worker- name: igamma(Tensor self, Tensor other) -> Tensor 818*da0073e9SAndroid Build Coastguard Worker self: 'not_implemented("igamma: input")' 819*da0073e9SAndroid Build Coastguard Worker other: grad * exp((self - 1) * log(other) - other - lgamma(self)) 820*da0073e9SAndroid Build Coastguard Worker 821*da0073e9SAndroid Build Coastguard Worker- name: igammac(Tensor self, Tensor other) -> Tensor 822*da0073e9SAndroid Build Coastguard Worker self: 'not_implemented("igammac: input")' 823*da0073e9SAndroid Build Coastguard Worker other: -grad * exp((self - 1) * log(other) - other - lgamma(self)) 824*da0073e9SAndroid Build Coastguard Worker 825*da0073e9SAndroid Build Coastguard Worker- name: index.Tensor(Tensor self, Tensor?[] indices) -> Tensor 826*da0073e9SAndroid Build Coastguard Worker self: index_backward(grad.new_zeros_symint(self.sym_sizes(), self.options()), indices, grad) 827*da0073e9SAndroid Build Coastguard Worker result: auto_linear 828*da0073e9SAndroid Build Coastguard Worker 829*da0073e9SAndroid Build Coastguard Worker- name: _unsafe_index.Tensor(Tensor self, Tensor?[] indices) -> Tensor 830*da0073e9SAndroid Build Coastguard Worker self: at::_unsafe_index_put(grad.new_zeros_symint(self.sym_sizes(), self.options()), indices, grad, true) 831*da0073e9SAndroid Build Coastguard Worker result: auto_linear 832*da0073e9SAndroid Build Coastguard Worker 833*da0073e9SAndroid Build Coastguard Worker- name: index_add(Tensor self, int dim, Tensor index, Tensor source, *, Scalar alpha=1) -> Tensor 834*da0073e9SAndroid Build Coastguard Worker self: grad 835*da0073e9SAndroid Build Coastguard Worker # The case source.dim() == 0 is necessary to support scalar tensors of the form 836*da0073e9SAndroid Build Coastguard Worker # source.dim() == 0 and index.dim() == 1 and index.size() == (1,), 837*da0073e9SAndroid Build Coastguard Worker # This is because source is not broadcastable to index, as source.dim() < index.dim() 838*da0073e9SAndroid Build Coastguard Worker source: "maybe_multiply(source.dim() > 0 ? grad.index_select(dim, index).expand_as(source) : grad.index_select(dim, index.squeeze(0)), alpha)" 839*da0073e9SAndroid Build Coastguard Worker index: non_differentiable 840*da0073e9SAndroid Build Coastguard Worker result: at::index_add(self_t, dim, index, maybe_multiply(source_t, alpha)) 841*da0073e9SAndroid Build Coastguard Worker 842*da0073e9SAndroid Build Coastguard Worker- name: index_reduce(Tensor self, int dim, Tensor index, Tensor source, str reduce, *, bool include_self=True) -> Tensor 843*da0073e9SAndroid Build Coastguard Worker self, source: index_reduce_backward(grad, self, dim, index, source, reduce, include_self, result) 844*da0073e9SAndroid Build Coastguard Worker index: non_differentiable 845*da0073e9SAndroid Build Coastguard Worker 846*da0073e9SAndroid Build Coastguard Worker- name: index_copy(Tensor self, int dim, Tensor index, Tensor source) -> Tensor 847*da0073e9SAndroid Build Coastguard Worker self: grad.index_fill(dim, index, 0) 848*da0073e9SAndroid Build Coastguard Worker # The case source.dim() == 0 is necessary to support scalar tensors of the form 849*da0073e9SAndroid Build Coastguard Worker # source.dim() == 0 and index.dim() == 1 and index.size() == (1,), 850*da0073e9SAndroid Build Coastguard Worker # This is because source is not broadcastable to index, as source.dim() < index.dim() 851*da0073e9SAndroid Build Coastguard Worker source: "source.dim() > 0 ? grad.index_select(dim, index).expand_as(source) : grad.index_select(dim, index.squeeze(0))" 852*da0073e9SAndroid Build Coastguard Worker index: non_differentiable 853*da0073e9SAndroid Build Coastguard Worker result: self_t.index_copy(dim, index, source_t) 854*da0073e9SAndroid Build Coastguard Worker 855*da0073e9SAndroid Build Coastguard Worker- name: index_fill.int_Scalar(Tensor self, int dim, Tensor index, Scalar value) -> Tensor 856*da0073e9SAndroid Build Coastguard Worker self: grad.index_fill(dim, index, 0) 857*da0073e9SAndroid Build Coastguard Worker index: non_differentiable 858*da0073e9SAndroid Build Coastguard Worker result: self_t.index_fill(dim, index, 0) 859*da0073e9SAndroid Build Coastguard Worker 860*da0073e9SAndroid Build Coastguard Worker- name: index_fill.int_Tensor(Tensor self, int dim, Tensor index, Tensor value) -> Tensor 861*da0073e9SAndroid Build Coastguard Worker self: grad.index_fill(dim, index, 0) 862*da0073e9SAndroid Build Coastguard Worker value: grad.index_select(dim, std::get<0>(at::_unique(index, /*sorted=*/false))).sum() 863*da0073e9SAndroid Build Coastguard Worker index: non_differentiable 864*da0073e9SAndroid Build Coastguard Worker result: self_t.index_fill(dim, index, value_t) 865*da0073e9SAndroid Build Coastguard Worker 866*da0073e9SAndroid Build Coastguard Worker- name: index_put(Tensor self, Tensor?[] indices, Tensor values, bool accumulate=False) -> Tensor 867*da0073e9SAndroid Build Coastguard Worker self: "accumulate ? grad : grad.index_put(indices, zeros_like(values), false)" 868*da0073e9SAndroid Build Coastguard Worker values: grad.index(indices) 869*da0073e9SAndroid Build Coastguard Worker result: self_t.index_put(indices, values_t, accumulate) 870*da0073e9SAndroid Build Coastguard Worker 871*da0073e9SAndroid Build Coastguard Worker- name: _unsafe_index_put(Tensor self, Tensor?[] indices, Tensor values, bool accumulate=False) -> Tensor 872*da0073e9SAndroid Build Coastguard Worker self: "accumulate ? grad : at::_unsafe_index_put(grad, indices, zeros_like(values), false)" 873*da0073e9SAndroid Build Coastguard Worker values: at::_unsafe_index(grad, indices) 874*da0073e9SAndroid Build Coastguard Worker result: at::_unsafe_index_put(self_t, indices, values_t, accumulate) 875*da0073e9SAndroid Build Coastguard Worker 876*da0073e9SAndroid Build Coastguard Worker- name: _index_put_impl_(Tensor(a!) self, Tensor?[] indices, Tensor values, bool accumulate=False, bool unsafe=False) -> Tensor(a!) 877*da0073e9SAndroid Build Coastguard Worker self: "accumulate ? grad : grad.index_put(indices, zeros_like(values), false)" 878*da0073e9SAndroid Build Coastguard Worker values: grad.index(indices) 879*da0073e9SAndroid Build Coastguard Worker result: at::_index_put_impl_(self_t, indices, values_t, accumulate, unsafe) 880*da0073e9SAndroid Build Coastguard Worker 881*da0073e9SAndroid Build Coastguard Worker- name: index_select(Tensor self, int dim, Tensor index) -> Tensor 882*da0073e9SAndroid Build Coastguard Worker self: index_select_backward_symint(grad, self.sym_sizes(), dim, index) 883*da0073e9SAndroid Build Coastguard Worker index: non_differentiable 884*da0073e9SAndroid Build Coastguard Worker result: auto_linear 885*da0073e9SAndroid Build Coastguard Worker 886*da0073e9SAndroid Build Coastguard Worker- name: linalg_inv_ex(Tensor A, *, bool check_errors=False) -> (Tensor inverse, Tensor info) 887*da0073e9SAndroid Build Coastguard Worker A: -at::matmul(inverse.mH(), at::matmul(grad, inverse.mH())) 888*da0073e9SAndroid Build Coastguard Worker inverse: -at::matmul(at::matmul(inverse, A_t), inverse) 889*da0073e9SAndroid Build Coastguard Worker output_differentiability: [True, False] 890*da0073e9SAndroid Build Coastguard Worker 891*da0073e9SAndroid Build Coastguard Worker- name: linalg_pinv.atol_rtol_tensor(Tensor self, *, Tensor? atol=None, Tensor? rtol=None, bool hermitian=False) -> Tensor 892*da0073e9SAndroid Build Coastguard Worker self: pinv_backward(grad, result, self) 893*da0073e9SAndroid Build Coastguard Worker result: pinv_jvp(self_p, result, self_t) 894*da0073e9SAndroid Build Coastguard Worker 895*da0073e9SAndroid Build Coastguard Worker- name: isnan(Tensor self) -> Tensor 896*da0073e9SAndroid Build Coastguard Worker self: non_differentiable 897*da0073e9SAndroid Build Coastguard Worker 898*da0073e9SAndroid Build Coastguard Worker- name: kthvalue(Tensor self, int k, int dim=-1, bool keepdim=False) -> (Tensor values, Tensor indices) 899*da0073e9SAndroid Build Coastguard Worker self: value_selecting_reduction_backward_symint(grad, dim, indices, self.sym_sizes(), keepdim) 900*da0073e9SAndroid Build Coastguard Worker values: gather_with_keepdimed_indices(self_t, dim, indices, keepdim) 901*da0073e9SAndroid Build Coastguard Worker 902*da0073e9SAndroid Build Coastguard Worker- name: le_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) 903*da0073e9SAndroid Build Coastguard Worker self: zeros_like(self) 904*da0073e9SAndroid Build Coastguard Worker result: self_t.zero_() 905*da0073e9SAndroid Build Coastguard Worker 906*da0073e9SAndroid Build Coastguard Worker- name: le_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) 907*da0073e9SAndroid Build Coastguard Worker self: zeros_like(self) 908*da0073e9SAndroid Build Coastguard Worker other: zeros_like(other) 909*da0073e9SAndroid Build Coastguard Worker result: self_t.zero_() 910*da0073e9SAndroid Build Coastguard Worker 911*da0073e9SAndroid Build Coastguard Worker- name: lerp.Scalar(Tensor self, Tensor end, Scalar weight) -> Tensor 912*da0073e9SAndroid Build Coastguard Worker self: "weight.isComplex() ? grad * (1 - weight.conj().toComplexDouble()) : grad * (1 - weight.toDouble())" 913*da0073e9SAndroid Build Coastguard Worker end: grad * weight.conj() 914*da0073e9SAndroid Build Coastguard Worker result: at::lerp(self_t, end_t, weight) 915*da0073e9SAndroid Build Coastguard Worker 916*da0073e9SAndroid Build Coastguard Worker- name: lerp.Tensor(Tensor self, Tensor end, Tensor weight) -> Tensor 917*da0073e9SAndroid Build Coastguard Worker self: grad * (1 - weight).conj() 918*da0073e9SAndroid Build Coastguard Worker end: grad * weight.conj() 919*da0073e9SAndroid Build Coastguard Worker weight: grad * (end - self).conj() 920*da0073e9SAndroid Build Coastguard Worker result: at::lerp(self_t, end_t, weight_p) + weight_t * (end_p - self_p) 921*da0073e9SAndroid Build Coastguard Worker 922*da0073e9SAndroid Build Coastguard Worker- name: lgamma(Tensor self) -> Tensor 923*da0073e9SAndroid Build Coastguard Worker self: grad * digamma(self) 924*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 925*da0073e9SAndroid Build Coastguard Worker 926*da0073e9SAndroid Build Coastguard Worker- name: digamma(Tensor self) -> Tensor 927*da0073e9SAndroid Build Coastguard Worker self: grad * polygamma(1, self) 928*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 929*da0073e9SAndroid Build Coastguard Worker 930*da0073e9SAndroid Build Coastguard Worker- name: polygamma(int n, Tensor self) -> Tensor 931*da0073e9SAndroid Build Coastguard Worker self: grad * polygamma(n + 1, self) 932*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 933*da0073e9SAndroid Build Coastguard Worker 934*da0073e9SAndroid Build Coastguard Worker- name: polygamma_(Tensor(a!) self, int n) -> Tensor(a!) 935*da0073e9SAndroid Build Coastguard Worker self: grad * polygamma(n + 1, self) 936*da0073e9SAndroid Build Coastguard Worker result: self_t.mul_(polygamma(n + 1, original_self_p)) 937*da0073e9SAndroid Build Coastguard Worker 938*da0073e9SAndroid Build Coastguard Worker- name: log(Tensor self) -> Tensor 939*da0073e9SAndroid Build Coastguard Worker self: grad.div(self.conj()) 940*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 941*da0073e9SAndroid Build Coastguard Worker 942*da0073e9SAndroid Build Coastguard Worker- name: log10(Tensor self) -> Tensor 943*da0073e9SAndroid Build Coastguard Worker self: grad / (self.conj() * 2.3025850929940456) 944*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 945*da0073e9SAndroid Build Coastguard Worker 946*da0073e9SAndroid Build Coastguard Worker- name: log1p(Tensor self) -> Tensor 947*da0073e9SAndroid Build Coastguard Worker self: log1p_backward(grad, self) 948*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 949*da0073e9SAndroid Build Coastguard Worker 950*da0073e9SAndroid Build Coastguard Worker- name: log2(Tensor self) -> Tensor 951*da0073e9SAndroid Build Coastguard Worker self: grad / (self.conj() * 0.6931471805599453) 952*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 953*da0073e9SAndroid Build Coastguard Worker 954*da0073e9SAndroid Build Coastguard Worker- name: logaddexp(Tensor self, Tensor other) -> Tensor 955*da0073e9SAndroid Build Coastguard Worker self: grad / (1 + exp(other - self)).conj() 956*da0073e9SAndroid Build Coastguard Worker other: grad / (1 + exp(self - other)).conj() 957*da0073e9SAndroid Build Coastguard Worker result: self_t / (1 + exp(other_p - self_p)) + other_t / (1 + exp(self_p - other_p)) 958*da0073e9SAndroid Build Coastguard Worker 959*da0073e9SAndroid Build Coastguard Worker- name: logaddexp2(Tensor self, Tensor other) -> Tensor 960*da0073e9SAndroid Build Coastguard Worker self: grad / (1 + pow(2, other - self)) 961*da0073e9SAndroid Build Coastguard Worker other: grad / (1 + pow(2, self - other)) 962*da0073e9SAndroid Build Coastguard Worker result: self_t / (1 + pow(2, other_p - self_p)) + other_t / (1 + pow(2, self_p - other_p)) 963*da0073e9SAndroid Build Coastguard Worker 964*da0073e9SAndroid Build Coastguard Worker# Note [Gradient formula for xlogy at x = 0, y <= 0] 965*da0073e9SAndroid Build Coastguard Worker# x * log(y) is not defined at y <= 0, so we cannot even talk about differentiability 966*da0073e9SAndroid Build Coastguard Worker# Now, xlogy(0, y) = 0 by definition. 967*da0073e9SAndroid Build Coastguard Worker# This does not make it differentiable as it's not defined in a neighbourhood of a point 968*da0073e9SAndroid Build Coastguard Worker# (0, y) when y <= 0. 969*da0073e9SAndroid Build Coastguard Worker# Now, when a function is non-differentiable, sometimes we return "a relatively sensible value" 970*da0073e9SAndroid Build Coastguard Worker# In this case, as per the discussion in https://github.com/pytorch/pytorch/issues/80770, we choose 971*da0073e9SAndroid Build Coastguard Worker# this value to be zero, which is the directional derivative along the line {x = 0}. 972*da0073e9SAndroid Build Coastguard Worker- name: xlogy.Tensor(Tensor self, Tensor other) -> Tensor 973*da0073e9SAndroid Build Coastguard Worker self: at::xlogy(grad, other).masked_fill((self == 0.) & (other <= 0.), 0.) 974*da0073e9SAndroid Build Coastguard Worker other: grad * self / other 975*da0073e9SAndroid Build Coastguard Worker result: at::xlogy(self_t, other_p).masked_fill((self_p == 0.) & (other_p <= 0.), 0.) + other_t * self_p / other_p 976*da0073e9SAndroid Build Coastguard Worker 977*da0073e9SAndroid Build Coastguard Worker- name: xlogy.Scalar_Self(Scalar self, Tensor other) -> Tensor 978*da0073e9SAndroid Build Coastguard Worker other: grad * self / other 979*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 980*da0073e9SAndroid Build Coastguard Worker 981*da0073e9SAndroid Build Coastguard Worker- name: xlogy.Scalar_Other(Tensor self, Scalar other) -> Tensor 982*da0073e9SAndroid Build Coastguard Worker self: "other.toDouble() > 0. 983*da0073e9SAndroid Build Coastguard Worker ? at::xlogy(grad, other) 984*da0073e9SAndroid Build Coastguard Worker : at::xlogy(grad, other).masked_fill(self == 0., 0.)" 985*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 986*da0073e9SAndroid Build Coastguard Worker 987*da0073e9SAndroid Build Coastguard Worker# See Note [Gradient formula for xlogy at x = 0, y <= 0] 988*da0073e9SAndroid Build Coastguard Worker# Same here but with y <= -1 989*da0073e9SAndroid Build Coastguard Worker- name: special_xlog1py(Tensor self, Tensor other) -> Tensor 990*da0073e9SAndroid Build Coastguard Worker self: at::special_xlog1py(grad, other).masked_fill((self == 0.) & (other <= -1.), 0.) 991*da0073e9SAndroid Build Coastguard Worker other: grad * self / (other + 1) 992*da0073e9SAndroid Build Coastguard Worker result: at::special_xlog1py(self_t, other_p).masked_fill((self_p == 0.) & (other_p <= -1.), 0.) + other_t * self_p / (other_p + 1) 993*da0073e9SAndroid Build Coastguard Worker 994*da0073e9SAndroid Build Coastguard Worker- name: special_xlog1py.self_scalar(Scalar self, Tensor other) -> Tensor 995*da0073e9SAndroid Build Coastguard Worker other: grad * self / (other + 1) 996*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 997*da0073e9SAndroid Build Coastguard Worker 998*da0073e9SAndroid Build Coastguard Worker- name: special_xlog1py.other_scalar(Tensor self, Scalar other) -> Tensor 999*da0073e9SAndroid Build Coastguard Worker self: "other.toDouble() > -1. 1000*da0073e9SAndroid Build Coastguard Worker ? at::special_xlog1py(grad, other) 1001*da0073e9SAndroid Build Coastguard Worker : at::special_xlog1py(grad, other).masked_fill(self == 0., 0.)" 1002*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 1003*da0073e9SAndroid Build Coastguard Worker 1004*da0073e9SAndroid Build Coastguard Worker- name: special_zeta(Tensor self, Tensor other) -> Tensor 1005*da0073e9SAndroid Build Coastguard Worker self: not_implemented("zeta") 1006*da0073e9SAndroid Build Coastguard Worker other: grad * -self * special_zeta(self + 1., other) 1007*da0073e9SAndroid Build Coastguard Worker 1008*da0073e9SAndroid Build Coastguard Worker- name: special_zeta.self_scalar(Scalar self, Tensor other) -> Tensor 1009*da0073e9SAndroid Build Coastguard Worker other: grad * -self * special_zeta(self.toDouble() + 1., other) 1010*da0073e9SAndroid Build Coastguard Worker 1011*da0073e9SAndroid Build Coastguard Worker- name: special_zeta.other_scalar(Tensor self, Scalar other) -> Tensor 1012*da0073e9SAndroid Build Coastguard Worker self: not_implemented("zeta") 1013*da0073e9SAndroid Build Coastguard Worker 1014*da0073e9SAndroid Build Coastguard Worker- name: log_normal_(Tensor(a!) self, float mean=1, float std=2, *, Generator? generator=None) -> Tensor(a!) 1015*da0073e9SAndroid Build Coastguard Worker self: zeros_like(grad) 1016*da0073e9SAndroid Build Coastguard Worker result: self_t.zero_() 1017*da0073e9SAndroid Build Coastguard Worker 1018*da0073e9SAndroid Build Coastguard Worker- name: logsumexp(Tensor self, int[1] dim, bool keepdim=False) -> Tensor 1019*da0073e9SAndroid Build Coastguard Worker self: logsumexp_backward(grad, self, result, dim, keepdim) 1020*da0073e9SAndroid Build Coastguard Worker result: logsumexp_jvp(self_p, self_t, dim, keepdim) 1021*da0073e9SAndroid Build Coastguard Worker 1022*da0073e9SAndroid Build Coastguard Worker- name: linalg_lstsq(Tensor self, Tensor b, float? rcond=None, *, str? driver=None) -> (Tensor solution, Tensor residuals, Tensor rank, Tensor singular_values) 1023*da0073e9SAndroid Build Coastguard Worker self, b: linalg_lstsq_backward(grad, self, b, grad_input_mask) 1024*da0073e9SAndroid Build Coastguard Worker solution: linalg_lstsq_jvp(self_p, b_p, self_t, b_t) 1025*da0073e9SAndroid Build Coastguard Worker output_differentiability: [True, False, False, False] 1026*da0073e9SAndroid Build Coastguard Worker 1027*da0073e9SAndroid Build Coastguard Worker- name: lt_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) 1028*da0073e9SAndroid Build Coastguard Worker self: zeros_like(self) 1029*da0073e9SAndroid Build Coastguard Worker result: self_t.zero_() 1030*da0073e9SAndroid Build Coastguard Worker 1031*da0073e9SAndroid Build Coastguard Worker- name: lt_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) 1032*da0073e9SAndroid Build Coastguard Worker self: zeros_like(self) 1033*da0073e9SAndroid Build Coastguard Worker other: zeros_like(other) 1034*da0073e9SAndroid Build Coastguard Worker result: self_t.zero_() 1035*da0073e9SAndroid Build Coastguard Worker 1036*da0073e9SAndroid Build Coastguard Worker- name: linalg_lu_factor_ex(Tensor A, *, bool pivot=True, bool check_errors=False) -> (Tensor LU, Tensor pivots, Tensor info) 1037*da0073e9SAndroid Build Coastguard Worker A: lu_factor_ex_backward(grad, LU, pivots, pivot) 1038*da0073e9SAndroid Build Coastguard Worker LU: lu_factor_ex_jvp(A_t, LU, pivots, pivot) 1039*da0073e9SAndroid Build Coastguard Worker output_differentiability: [True, False, False] 1040*da0073e9SAndroid Build Coastguard Worker 1041*da0073e9SAndroid Build Coastguard Worker- name: linalg_lu(Tensor A, *, bool pivot=True) -> (Tensor P, Tensor L, Tensor U) 1042*da0073e9SAndroid Build Coastguard Worker A: linalg_lu_backward(grad_L, grad_U, P, L, U, pivot) 1043*da0073e9SAndroid Build Coastguard Worker L: std::get<0>(linalg_lu_jvp(A_t, P, L, U, pivot)) 1044*da0073e9SAndroid Build Coastguard Worker U: std::get<1>(linalg_lu_jvp(A_t, P, L, U, pivot)) 1045*da0073e9SAndroid Build Coastguard Worker output_differentiability: [False, True, True] 1046*da0073e9SAndroid Build Coastguard Worker 1047*da0073e9SAndroid Build Coastguard Worker- name: linalg_lu_solve(Tensor LU, Tensor pivots, Tensor B, *, bool left=True, bool adjoint=False) -> Tensor 1048*da0073e9SAndroid Build Coastguard Worker LU: linalg_lu_solve_LU(grad, LU, pivots, result, left, adjoint) 1049*da0073e9SAndroid Build Coastguard Worker B: "at::linalg_lu_solve(LU, pivots, grad, left, !adjoint)" 1050*da0073e9SAndroid Build Coastguard Worker result: linalg_lu_solve_jvp(result, LU_p, pivots, LU_t, B_t, left, adjoint) 1051*da0073e9SAndroid Build Coastguard Worker 1052*da0073e9SAndroid Build Coastguard Worker- name: lu_unpack(Tensor LU_data, Tensor LU_pivots, bool unpack_data=True, bool unpack_pivots=True) -> (Tensor P, Tensor L, Tensor U) 1053*da0073e9SAndroid Build Coastguard Worker LU_data: lu_unpack_backward(grad_L, grad_U, LU_data.sym_size(-2), LU_data.sym_size(-1)) 1054*da0073e9SAndroid Build Coastguard Worker LU_pivots: non_differentiable 1055*da0073e9SAndroid Build Coastguard Worker L: "LU_data_t.sym_size(-2) >= LU_data_t.sym_size(-1) ? LU_data_t.tril(-1) : LU_data_t.narrow_symint(-1, 0, LU_data_t.sym_size(-2)).tril(-1)" 1056*da0073e9SAndroid Build Coastguard Worker U: "LU_data_t.sym_size(-1) >= LU_data_t.sym_size(-2) ? LU_data_t.triu() : LU_data_t.narrow_symint(-2, 0, LU_data_t.sym_size(-1)).triu()" 1057*da0073e9SAndroid Build Coastguard Worker output_differentiability: [False, True, True] 1058*da0073e9SAndroid Build Coastguard Worker 1059*da0073e9SAndroid Build Coastguard Worker- name: masked_fill.Scalar(Tensor self, Tensor mask, Scalar value) -> Tensor 1060*da0073e9SAndroid Build Coastguard Worker self: grad.masked_fill(mask, 0) 1061*da0073e9SAndroid Build Coastguard Worker mask: non_differentiable 1062*da0073e9SAndroid Build Coastguard Worker result: self_t.masked_fill(mask, 0) 1063*da0073e9SAndroid Build Coastguard Worker 1064*da0073e9SAndroid Build Coastguard Worker- name: masked_fill.Tensor(Tensor self, Tensor mask, Tensor value) -> Tensor 1065*da0073e9SAndroid Build Coastguard Worker self: grad.masked_fill(mask, 0) 1066*da0073e9SAndroid Build Coastguard Worker value: masked_fill_backward(grad, mask) 1067*da0073e9SAndroid Build Coastguard Worker mask: non_differentiable 1068*da0073e9SAndroid Build Coastguard Worker result: self_t.masked_fill(mask, value_t) 1069*da0073e9SAndroid Build Coastguard Worker 1070*da0073e9SAndroid Build Coastguard Worker- name: masked_scatter(Tensor self, Tensor mask, Tensor source) -> Tensor 1071*da0073e9SAndroid Build Coastguard Worker self: grad.masked_fill(mask, 0) 1072*da0073e9SAndroid Build Coastguard Worker source: masked_scatter_backward_symint(grad, mask, source.sym_sizes()) 1073*da0073e9SAndroid Build Coastguard Worker mask: non_differentiable 1074*da0073e9SAndroid Build Coastguard Worker result: self_t.masked_scatter(mask, source_t) 1075*da0073e9SAndroid Build Coastguard Worker 1076*da0073e9SAndroid Build Coastguard Worker- name: masked_scatter_backward(Tensor grad_output, Tensor mask, SymInt[] sizes) -> Tensor 1077*da0073e9SAndroid Build Coastguard Worker grad_output: zeros_like(grad_output).masked_scatter(mask, grad) 1078*da0073e9SAndroid Build Coastguard Worker mask: non_differentiable 1079*da0073e9SAndroid Build Coastguard Worker result: masked_scatter_backward(grad_output_t, mask, grad_output_t.sizes()) 1080*da0073e9SAndroid Build Coastguard Worker 1081*da0073e9SAndroid Build Coastguard Worker- name: masked_select(Tensor self, Tensor mask) -> Tensor 1082*da0073e9SAndroid Build Coastguard Worker self: masked_select_backward(grad, self, mask) 1083*da0073e9SAndroid Build Coastguard Worker mask: non_differentiable 1084*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1085*da0073e9SAndroid Build Coastguard Worker 1086*da0073e9SAndroid Build Coastguard Worker- name: linalg_matrix_exp(Tensor self) -> Tensor 1087*da0073e9SAndroid Build Coastguard Worker self: linalg_matrix_exp_differential(self, grad, /*adjoint*/ true) 1088*da0073e9SAndroid Build Coastguard Worker result: linalg_matrix_exp_differential(self_p, self_t, /*adjoint*/ false) 1089*da0073e9SAndroid Build Coastguard Worker 1090*da0073e9SAndroid Build Coastguard Worker- name: max.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices) 1091*da0073e9SAndroid Build Coastguard Worker self: value_selecting_reduction_backward_symint(grad, dim, indices, self.sym_sizes(), keepdim) 1092*da0073e9SAndroid Build Coastguard Worker values: gather_with_keepdimed_indices(self_t, dim, indices, keepdim) 1093*da0073e9SAndroid Build Coastguard Worker 1094*da0073e9SAndroid Build Coastguard Worker- name: max(Tensor self) -> Tensor 1095*da0073e9SAndroid Build Coastguard Worker self: evenly_distribute_backward(grad, self, result) 1096*da0073e9SAndroid Build Coastguard Worker result: evenly_read_jvp(self_t, self_p, result) 1097*da0073e9SAndroid Build Coastguard Worker 1098*da0073e9SAndroid Build Coastguard Worker- name: maximum(Tensor self, Tensor other) -> Tensor 1099*da0073e9SAndroid Build Coastguard Worker self: at::where(self == other, grad / 2, grad).masked_fill_(self < other, 0) 1100*da0073e9SAndroid Build Coastguard Worker other: at::where(self == other, grad / 2, grad).masked_fill_(self > other, 0) 1101*da0073e9SAndroid Build Coastguard Worker result: other_t + at::where(self_p == other_p, at::scalar_tensor(0.5, result.options()), (self_p > other_p).to(result.scalar_type())) * (self_t - other_t) 1102*da0073e9SAndroid Build Coastguard Worker 1103*da0073e9SAndroid Build Coastguard Worker- name: fmax(Tensor self, Tensor other) -> Tensor 1104*da0073e9SAndroid Build Coastguard Worker self: grad.masked_fill((self >= other).logical_or_(other.isnan()).logical_not_(), 0) 1105*da0073e9SAndroid Build Coastguard Worker other: grad.masked_fill((self >= other).logical_or_(other.isnan()), 0) 1106*da0073e9SAndroid Build Coastguard Worker result: other_t + (self_p > other_p).logical_or_(other_p.isnan()) * (self_t - other_t) 1107*da0073e9SAndroid Build Coastguard Worker 1108*da0073e9SAndroid Build Coastguard Worker- name: mean(Tensor self, *, ScalarType? dtype=None) -> Tensor 1109*da0073e9SAndroid Build Coastguard Worker self: grad.expand_symint(self.sym_sizes()) / self.sym_numel() 1110*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1111*da0073e9SAndroid Build Coastguard Worker 1112*da0073e9SAndroid Build Coastguard Worker- name: mean.dim(Tensor self, int[1]? dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor 1113*da0073e9SAndroid Build Coastguard Worker self: mean_backward(grad, self.sym_sizes(), dim, self.sym_numel(), keepdim) 1114*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1115*da0073e9SAndroid Build Coastguard Worker 1116*da0073e9SAndroid Build Coastguard Worker- name: median(Tensor self) -> Tensor 1117*da0073e9SAndroid Build Coastguard Worker self: evenly_distribute_backward(grad, self, result) 1118*da0073e9SAndroid Build Coastguard Worker result: evenly_read_jvp(self_t, self_p, result) 1119*da0073e9SAndroid Build Coastguard Worker 1120*da0073e9SAndroid Build Coastguard Worker- name: nanmedian(Tensor self) -> Tensor 1121*da0073e9SAndroid Build Coastguard Worker self: evenly_distribute_backward(grad, self, result) 1122*da0073e9SAndroid Build Coastguard Worker result: evenly_read_jvp(self_t, self_p, result) 1123*da0073e9SAndroid Build Coastguard Worker 1124*da0073e9SAndroid Build Coastguard Worker# This is in theory incorrect in the following case: 1125*da0073e9SAndroid Build Coastguard Worker# sorted list: [..., a, b, b, ..., b, b, c, ...] with median = b and the value 1126*da0073e9SAndroid Build Coastguard Worker# | at middle position of the 1127*da0073e9SAndroid Build Coastguard Worker# | list between two `b`s. E.g., 1128*da0073e9SAndroid Build Coastguard Worker# | 1129*da0073e9SAndroid Build Coastguard Worker# ^the middle position 1130*da0073e9SAndroid Build Coastguard Worker# The gradient exists and is essentially 0 in this case. 1131*da0073e9SAndroid Build Coastguard Worker# 1132*da0073e9SAndroid Build Coastguard Worker# In case where the middle position is at the boundary of `b` range, e.g., 1133*da0073e9SAndroid Build Coastguard Worker# sorted list: [..., a, b, b, ..., b, b, c, ...] 1134*da0073e9SAndroid Build Coastguard Worker# | 1135*da0073e9SAndroid Build Coastguard Worker# ^the middle position 1136*da0073e9SAndroid Build Coastguard Worker# The backward implementation is correct in the sense that it returns the 1137*da0073e9SAndroid Build Coastguard Worker# subgradient on one side. 1138*da0073e9SAndroid Build Coastguard Worker- name: median.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices) 1139*da0073e9SAndroid Build Coastguard Worker self: value_selecting_reduction_backward_symint(grad, dim, indices, self.sym_sizes(), keepdim) 1140*da0073e9SAndroid Build Coastguard Worker values: gather_with_keepdimed_indices(self_t, dim, indices, keepdim) 1141*da0073e9SAndroid Build Coastguard Worker 1142*da0073e9SAndroid Build Coastguard Worker- name: nanmedian.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices) 1143*da0073e9SAndroid Build Coastguard Worker self: value_selecting_reduction_backward_symint(grad, dim, indices, self.sym_sizes(), keepdim) 1144*da0073e9SAndroid Build Coastguard Worker values: gather_with_keepdimed_indices(self_t, dim, indices, keepdim) 1145*da0073e9SAndroid Build Coastguard Worker 1146*da0073e9SAndroid Build Coastguard Worker- name: min.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices) 1147*da0073e9SAndroid Build Coastguard Worker self: value_selecting_reduction_backward_symint(grad, dim, indices, self.sym_sizes(), keepdim) 1148*da0073e9SAndroid Build Coastguard Worker values: gather_with_keepdimed_indices(self_t, dim, indices, keepdim) 1149*da0073e9SAndroid Build Coastguard Worker 1150*da0073e9SAndroid Build Coastguard Worker- name: min(Tensor self) -> Tensor 1151*da0073e9SAndroid Build Coastguard Worker self: evenly_distribute_backward(grad, self, result) 1152*da0073e9SAndroid Build Coastguard Worker result: evenly_read_jvp(self_t, self_p, result) 1153*da0073e9SAndroid Build Coastguard Worker 1154*da0073e9SAndroid Build Coastguard Worker- name: minimum(Tensor self, Tensor other) -> Tensor 1155*da0073e9SAndroid Build Coastguard Worker self: at::where(self == other, grad / 2, grad).masked_fill_(self > other, 0) 1156*da0073e9SAndroid Build Coastguard Worker other: at::where(self == other, grad / 2, grad).masked_fill_(self < other, 0) 1157*da0073e9SAndroid Build Coastguard Worker result: other_t + at::where(self_p == other_p, at::scalar_tensor(0.5, result.options()), (self_p < other_p).to(result.scalar_type())) * (self_t - other_t) 1158*da0073e9SAndroid Build Coastguard Worker 1159*da0073e9SAndroid Build Coastguard Worker- name: fmin(Tensor self, Tensor other) -> Tensor 1160*da0073e9SAndroid Build Coastguard Worker self: grad.masked_fill((self <= other).logical_or_(other.isnan()).logical_not_(), 0) 1161*da0073e9SAndroid Build Coastguard Worker other: grad.masked_fill((self <= other).logical_or_(other.isnan()), 0) 1162*da0073e9SAndroid Build Coastguard Worker result: other_t + (self_p <= other_p).logical_or_(other_p.isnan()) * (self_t - other_t) 1163*da0073e9SAndroid Build Coastguard Worker 1164*da0073e9SAndroid Build Coastguard Worker- name: amax(Tensor self, int[1] dim=[], bool keepdim=False) -> Tensor 1165*da0073e9SAndroid Build Coastguard Worker self: scale_grad_by_count(restore_reduced_dims(grad, dim, keepdim), restore_reduced_dims(result, dim, keepdim) == self, dim) 1166*da0073e9SAndroid Build Coastguard Worker result: amaxamin_jvp(self_p, self_t, result, dim, keepdim) 1167*da0073e9SAndroid Build Coastguard Worker 1168*da0073e9SAndroid Build Coastguard Worker- name: amin(Tensor self, int[1] dim=[], bool keepdim=False) -> Tensor 1169*da0073e9SAndroid Build Coastguard Worker self: scale_grad_by_count(restore_reduced_dims(grad, dim, keepdim), restore_reduced_dims(result, dim, keepdim) == self, dim) 1170*da0073e9SAndroid Build Coastguard Worker result: amaxamin_jvp(self_p, self_t, result, dim, keepdim) 1171*da0073e9SAndroid Build Coastguard Worker 1172*da0073e9SAndroid Build Coastguard Worker- name: mm(Tensor self, Tensor mat2) -> Tensor 1173*da0073e9SAndroid Build Coastguard Worker self: mm_mat1_backward(grad, mat2, self.sym_sizes(), self.sym_strides(), self.layout(), 1) 1174*da0073e9SAndroid Build Coastguard Worker mat2: mm_mat2_backward(grad, self, mat2.sym_sizes(), mat2.sym_strides(), mat2.layout(), 1) 1175*da0073e9SAndroid Build Coastguard Worker result: at::mm(self_t, mat2_p) + at::mm(self_p, mat2_t) 1176*da0073e9SAndroid Build Coastguard Worker 1177*da0073e9SAndroid Build Coastguard Worker- name: mode(Tensor self, int dim=-1, bool keepdim=False) -> (Tensor values, Tensor indices) 1178*da0073e9SAndroid Build Coastguard Worker self: value_selecting_reduction_backward_symint(grad, dim, indices, self.sym_sizes(), keepdim) 1179*da0073e9SAndroid Build Coastguard Worker values: gather_with_keepdimed_indices(self_t, dim, indices, keepdim) 1180*da0073e9SAndroid Build Coastguard Worker 1181*da0073e9SAndroid Build Coastguard Worker- name: mul.Tensor(Tensor self, Tensor other) -> Tensor 1182*da0073e9SAndroid Build Coastguard Worker self: mul_tensor_backward(grad, other, self.scalar_type()) 1183*da0073e9SAndroid Build Coastguard Worker other: mul_tensor_backward(grad, self, other.scalar_type()) 1184*da0073e9SAndroid Build Coastguard Worker result: other_t * self_p + self_t * other_p 1185*da0073e9SAndroid Build Coastguard Worker 1186*da0073e9SAndroid Build Coastguard Worker- name: mul.Scalar(Tensor self, Scalar other) -> Tensor 1187*da0073e9SAndroid Build Coastguard Worker self: mul_tensor_backward(grad, other, self.scalar_type()) 1188*da0073e9SAndroid Build Coastguard Worker result: self_t * other 1189*da0073e9SAndroid Build Coastguard Worker 1190*da0073e9SAndroid Build Coastguard Worker- name: mv(Tensor self, Tensor vec) -> Tensor 1191*da0073e9SAndroid Build Coastguard Worker self: grad.ger(vec.conj()) 1192*da0073e9SAndroid Build Coastguard Worker vec: self.conj().t().mv(grad) 1193*da0073e9SAndroid Build Coastguard Worker result: mv(self_t, vec_p) + mv(self_p, vec_t) 1194*da0073e9SAndroid Build Coastguard Worker 1195*da0073e9SAndroid Build Coastguard Worker- name: mvlgamma(Tensor self, int p) -> Tensor 1196*da0073e9SAndroid Build Coastguard Worker self: mvlgamma_backward(grad, self, p) 1197*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 1198*da0073e9SAndroid Build Coastguard Worker 1199*da0073e9SAndroid Build Coastguard Worker- name: nan_to_num(Tensor self, float? nan=None, float? posinf=None, float? neginf=None) -> Tensor 1200*da0073e9SAndroid Build Coastguard Worker self: grad * at::isfinite(self) 1201*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 1202*da0073e9SAndroid Build Coastguard Worker 1203*da0073e9SAndroid Build Coastguard Worker- name: native_batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps) -> (Tensor, Tensor, Tensor) 1204*da0073e9SAndroid Build Coastguard Worker input, weight, bias: "grad.defined() ? native_batch_norm_backward(grad, input, weight, running_mean, running_var, result1, result2, training, eps, grad_input_mask) : std::tuple<Tensor, Tensor, Tensor>()" 1205*da0073e9SAndroid Build Coastguard Worker result0: batch_norm_jvp(input_p, input_t, weight_p, weight_t, bias_p, bias_t, running_mean, running_var, result1, result2, training, eps) 1206*da0073e9SAndroid Build Coastguard Worker 1207*da0073e9SAndroid Build Coastguard Worker- name: _native_batch_norm_legit(Tensor input, Tensor? weight, Tensor? bias, Tensor(a!) running_mean, Tensor(b!) running_var, bool training, float momentum, float eps) -> (Tensor, Tensor, Tensor) 1208*da0073e9SAndroid Build Coastguard Worker input, weight, bias: "grad.defined() ? native_batch_norm_backward(grad, input, weight, running_mean, running_var, result1, result2, training, eps, grad_input_mask) : std::tuple<Tensor, Tensor, Tensor>()" 1209*da0073e9SAndroid Build Coastguard Worker result0: batch_norm_jvp(input_p, input_t, weight_p, weight_t, bias_p, bias_t, running_mean, running_var, result1, result2, training, eps) 1210*da0073e9SAndroid Build Coastguard Worker 1211*da0073e9SAndroid Build Coastguard Worker- name: _native_batch_norm_legit_no_training(Tensor input, Tensor? weight, Tensor? bias, Tensor running_mean, Tensor running_var, float momentum, float eps) -> (Tensor, Tensor, Tensor) 1212*da0073e9SAndroid Build Coastguard Worker input, weight, bias: "grad.defined() ? native_batch_norm_backward(grad, input, weight, running_mean, running_var, result1, result2, /*training=*/false, eps, grad_input_mask) : std::tuple<Tensor, Tensor, Tensor>()" 1213*da0073e9SAndroid Build Coastguard Worker result0: batch_norm_jvp(input_p, input_t, weight_p, weight_t, bias_p, bias_t, running_mean, running_var, result1, result2, /*training=*/false, eps) 1214*da0073e9SAndroid Build Coastguard Worker 1215*da0073e9SAndroid Build Coastguard Worker- name: _native_batch_norm_legit.no_stats(Tensor input, Tensor? weight, Tensor? bias, bool training, float momentum, float eps) -> (Tensor, Tensor, Tensor) 1216*da0073e9SAndroid Build Coastguard Worker input, weight, bias: "grad.defined() ? native_batch_norm_backward(grad, input, weight, Tensor(), Tensor(), result1, result2, training, eps, grad_input_mask) : std::tuple<Tensor, Tensor, Tensor>()" 1217*da0073e9SAndroid Build Coastguard Worker result0: batch_norm_jvp(input_p, input_t, weight_p, weight_t, bias_p, bias_t, Tensor(), Tensor(), result1, result2, training, eps) 1218*da0073e9SAndroid Build Coastguard Worker 1219*da0073e9SAndroid Build Coastguard Worker- name: native_batch_norm_backward(Tensor grad_out, Tensor input, Tensor? weight, Tensor? running_mean, Tensor? running_var, Tensor? save_mean, Tensor? save_invstd, bool train, float eps, bool[3] output_mask) -> (Tensor, Tensor, Tensor) 1220*da0073e9SAndroid Build Coastguard Worker input, weight, grad_out: batchnorm_double_backward(input, weight, grads[0], grads[1], grads[2], grad_out, running_mean, running_var, train, eps, save_mean, save_invstd, grad_input_mask) 1221*da0073e9SAndroid Build Coastguard Worker save_mean: not_implemented("native_batch_norm_backward save_mean") 1222*da0073e9SAndroid Build Coastguard Worker save_invstd: not_implemented("native_batch_norm_backward save_invstd") 1223*da0073e9SAndroid Build Coastguard Worker 1224*da0073e9SAndroid Build Coastguard Worker- name: native_layer_norm(Tensor input, SymInt[] normalized_shape, Tensor? weight, Tensor? bias, float eps) -> (Tensor, Tensor, Tensor) 1225*da0073e9SAndroid Build Coastguard Worker input, weight, bias: "grad.defined() ? native_layer_norm_backward_symint(grad, input, normalized_shape, result1, result2, weight, bias, grad_input_mask) : std::tuple<Tensor, Tensor, Tensor>()" 1226*da0073e9SAndroid Build Coastguard Worker result0: layer_norm_jvp(input_p, input_t, weight_p, weight_t, bias_p, bias_t, result1, result2, normalized_shape) 1227*da0073e9SAndroid Build Coastguard Worker 1228*da0073e9SAndroid Build Coastguard Worker- name: native_layer_norm_backward(Tensor grad_out, Tensor input, SymInt[] normalized_shape, Tensor mean, Tensor rstd, Tensor? weight, Tensor? bias, bool[3] output_mask) -> (Tensor, Tensor, Tensor) 1229*da0073e9SAndroid Build Coastguard Worker input, weight, grad_out: layer_norm_double_backward(input, weight, grads[0], grads[1], grads[2], grad_out, mean, rstd, normalized_shape, grad_input_mask) 1230*da0073e9SAndroid Build Coastguard Worker bias: Tensor() 1231*da0073e9SAndroid Build Coastguard Worker mean: not_implemented("native_layer_norm_backward mean") 1232*da0073e9SAndroid Build Coastguard Worker rstd: not_implemented("native_layer_norm_backward rstd") 1233*da0073e9SAndroid Build Coastguard Worker 1234*da0073e9SAndroid Build Coastguard Worker- name: native_group_norm(Tensor input, Tensor? weight, Tensor? bias, SymInt N, SymInt C, SymInt HxW, int group, float eps) -> (Tensor, Tensor, Tensor) 1235*da0073e9SAndroid Build Coastguard Worker input, weight, bias: "GradMode::is_enabled() || grads[1].defined() || grads[2].defined() ? infinitely_differentiable_native_group_norm_backward(grads[0], grads[1], grads[2], input, result1, result2, weight, N, C, HxW, group, eps, grad_input_mask) : (grads[0].defined() ? native_group_norm_backward_symint(grads[0].device().is_xpu() ? grads[0] : grads[0].contiguous(grads[0].device().is_cpu() ? input.suggest_memory_format() : c10::MemoryFormat::Contiguous), input.device().is_xpu() ? input : input.contiguous(input.device().is_cpu() ? input.suggest_memory_format() : c10::MemoryFormat::Contiguous), result1, result2, weight, N, C, HxW, group, grad_input_mask) : std::tuple<Tensor, Tensor, Tensor>())" 1236*da0073e9SAndroid Build Coastguard Worker result0: group_norm_jvp(input_p, input_t, weight_p, weight_t, bias_p, bias_t, result1, result2, group) 1237*da0073e9SAndroid Build Coastguard Worker result1: group_norm_mean_jvp(input_t, result1, group) 1238*da0073e9SAndroid Build Coastguard Worker result2: group_norm_invstd_jvp(input_p, input_t, result1, result2, group) 1239*da0073e9SAndroid Build Coastguard Worker 1240*da0073e9SAndroid Build Coastguard Worker- name: ne_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!) 1241*da0073e9SAndroid Build Coastguard Worker self: zeros_like(self) 1242*da0073e9SAndroid Build Coastguard Worker result: self_t.zero_() 1243*da0073e9SAndroid Build Coastguard Worker 1244*da0073e9SAndroid Build Coastguard Worker- name: ne_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!) 1245*da0073e9SAndroid Build Coastguard Worker self: zeros_like(self) 1246*da0073e9SAndroid Build Coastguard Worker other: zeros_like(other) 1247*da0073e9SAndroid Build Coastguard Worker result: self_t.zero_() 1248*da0073e9SAndroid Build Coastguard Worker 1249*da0073e9SAndroid Build Coastguard Worker- name: neg(Tensor self) -> Tensor 1250*da0073e9SAndroid Build Coastguard Worker self: grad.neg() 1251*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 1252*da0073e9SAndroid Build Coastguard Worker 1253*da0073e9SAndroid Build Coastguard Worker- name: _batch_norm_with_update(Tensor input, Tensor? weight, Tensor? bias, Tensor(a!) running_mean, Tensor(b!) running_var, float momentum, float eps) -> (Tensor, Tensor, Tensor, Tensor) 1254*da0073e9SAndroid Build Coastguard Worker input, weight, bias: "grad.defined() ? batch_norm_backward(grad, input, weight, running_mean, running_var, result1, result2, /*update*/true, eps, grad_input_mask, retain_variables ? result3.clone() : result3) : std::tuple<Tensor, Tensor, Tensor>()" 1255*da0073e9SAndroid Build Coastguard Worker result0: batch_norm_jvp(input_p, input_t, weight_p, weight_t, bias_p, bias_t, running_mean, running_var, result1, result2, true, eps) 1256*da0073e9SAndroid Build Coastguard Worker 1257*da0073e9SAndroid Build Coastguard Worker- name: _batch_norm_no_update(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, float momentum, float eps) -> (Tensor, Tensor, Tensor, Tensor) 1258*da0073e9SAndroid Build Coastguard Worker input, weight, bias: "grad.defined() ? batch_norm_backward(grad, input, weight, running_mean, running_var, result1, result2, /*update*/false, eps, grad_input_mask, retain_variables ? result3.clone() : result3) : std::tuple<Tensor, Tensor, Tensor>()" 1259*da0073e9SAndroid Build Coastguard Worker result0: batch_norm_jvp(input_p, input_t, weight_p, weight_t, bias_p, bias_t, running_mean, running_var, result1, result2, false, eps) 1260*da0073e9SAndroid Build Coastguard Worker 1261*da0073e9SAndroid Build Coastguard Worker- name: batch_norm_backward(Tensor grad_out, Tensor input, Tensor weight, Tensor? running_mean, Tensor? running_var, Tensor? save_mean, Tensor? save_var, bool update, float eps, bool[3] output_mask, Tensor reserve) -> (Tensor, Tensor, Tensor) 1262*da0073e9SAndroid Build Coastguard Worker input, weight, grad_out: batchnorm_double_backward(input, weight, grads[0], grads[1], grads[2], grad_out, running_mean, running_var, update, eps, save_mean, save_var, grad_input_mask) 1263*da0073e9SAndroid Build Coastguard Worker save_mean: not_implemented("batch_norm_backward save_mean") 1264*da0073e9SAndroid Build Coastguard Worker save_var: not_implemented("batch_norm_backward save_var") 1265*da0073e9SAndroid Build Coastguard Worker reserve: not_implemented("batch_norm_backward reserve") 1266*da0073e9SAndroid Build Coastguard Worker 1267*da0073e9SAndroid Build Coastguard Worker- name: nextafter(Tensor self, Tensor other) -> Tensor 1268*da0073e9SAndroid Build Coastguard Worker self: not_implemented("nextafter") 1269*da0073e9SAndroid Build Coastguard Worker other: not_implemented("nextafter") 1270*da0073e9SAndroid Build Coastguard Worker 1271*da0073e9SAndroid Build Coastguard Worker- name: norm.Scalar(Tensor self, Scalar p=2) -> Tensor 1272*da0073e9SAndroid Build Coastguard Worker self: norm_backward(grad, self, p, result) 1273*da0073e9SAndroid Build Coastguard Worker result: norm_jvp(self_p, self_t, p, result) 1274*da0073e9SAndroid Build Coastguard Worker 1275*da0073e9SAndroid Build Coastguard Worker- name: norm.ScalarOpt_dim(Tensor self, Scalar? p, int[1] dim, bool keepdim=False) -> Tensor 1276*da0073e9SAndroid Build Coastguard Worker self: norm_backward(grad, self, p, result, dim, keepdim) 1277*da0073e9SAndroid Build Coastguard Worker result: norm_jvp(self_p, self_t, p, result, dim, keepdim) 1278*da0073e9SAndroid Build Coastguard Worker 1279*da0073e9SAndroid Build Coastguard Worker- name: norm.ScalarOpt_dtype(Tensor self, Scalar? p, *, ScalarType dtype) -> Tensor 1280*da0073e9SAndroid Build Coastguard Worker self: norm_backward(grad, self.to(grad.scalar_type()), p, result) 1281*da0073e9SAndroid Build Coastguard Worker result: norm_jvp(self_p, self_t, p, result) 1282*da0073e9SAndroid Build Coastguard Worker 1283*da0073e9SAndroid Build Coastguard Worker- name: norm.ScalarOpt_dim_dtype(Tensor self, Scalar? p, int[1] dim, bool keepdim, *, ScalarType dtype) -> Tensor 1284*da0073e9SAndroid Build Coastguard Worker self: norm_backward(grad, self.to(grad.scalar_type()), p, result, dim, keepdim) 1285*da0073e9SAndroid Build Coastguard Worker result: norm_jvp(self_p, self_t, p, result, dim, keepdim) 1286*da0073e9SAndroid Build Coastguard Worker 1287*da0073e9SAndroid Build Coastguard Worker- name: linalg_vector_norm(Tensor self, Scalar ord=2, int[1]? dim=None, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor 1288*da0073e9SAndroid Build Coastguard Worker self: linalg_vector_norm_backward(grad, self, ord, result, dim, keepdim) 1289*da0073e9SAndroid Build Coastguard Worker result: linalg_vector_norm_jvp(self_p, self_t, ord, result, dim, keepdim) 1290*da0073e9SAndroid Build Coastguard Worker 1291*da0073e9SAndroid Build Coastguard Worker- name: _pdist_forward(Tensor self, float p=2) -> Tensor 1292*da0073e9SAndroid Build Coastguard Worker self: _pdist_backward(grad, self, p, result) 1293*da0073e9SAndroid Build Coastguard Worker 1294*da0073e9SAndroid Build Coastguard Worker- name: _pdist_backward(Tensor grad, Tensor self, float p, Tensor pdist) -> Tensor 1295*da0073e9SAndroid Build Coastguard Worker grad: not_implemented("_pdist_backward") 1296*da0073e9SAndroid Build Coastguard Worker self: not_implemented("_pdist_backward") 1297*da0073e9SAndroid Build Coastguard Worker pdist: not_implemented("_pdist_backward") 1298*da0073e9SAndroid Build Coastguard Worker 1299*da0073e9SAndroid Build Coastguard Worker- name: _euclidean_dist(Tensor x1, Tensor x2) -> Tensor 1300*da0073e9SAndroid Build Coastguard Worker x1, x2: _euclidean_dist_backward(grad, x1, x2, result) 1301*da0073e9SAndroid Build Coastguard Worker 1302*da0073e9SAndroid Build Coastguard Worker- name: _cdist_forward(Tensor x1, Tensor x2, float p, int? compute_mode) -> Tensor 1303*da0073e9SAndroid Build Coastguard Worker x1: _cdist_backward(grad.contiguous(), x1, x2, p, result) 1304*da0073e9SAndroid Build Coastguard Worker x2: _cdist_backward(grad.mT().contiguous(), x2, x1, p, result.mT().contiguous()) 1305*da0073e9SAndroid Build Coastguard Worker 1306*da0073e9SAndroid Build Coastguard Worker- name: _cdist_backward(Tensor grad, Tensor x1, Tensor x2, float p, Tensor cdist) -> Tensor 1307*da0073e9SAndroid Build Coastguard Worker grad: not_implemented("_cdist_backward") 1308*da0073e9SAndroid Build Coastguard Worker x1: not_implemented("_cdist_backward") 1309*da0073e9SAndroid Build Coastguard Worker x2: not_implemented("_cdist_backward") 1310*da0073e9SAndroid Build Coastguard Worker cdist: not_implemented("_cdist_backward") 1311*da0073e9SAndroid Build Coastguard Worker 1312*da0073e9SAndroid Build Coastguard Worker- name: normal_(Tensor(a!) self, float mean=0, float std=1, *, Generator? generator=None) -> Tensor(a!) 1313*da0073e9SAndroid Build Coastguard Worker self: zeros_like(grad) 1314*da0073e9SAndroid Build Coastguard Worker result: self_t.zero_() 1315*da0073e9SAndroid Build Coastguard Worker 1316*da0073e9SAndroid Build Coastguard Worker- name: normal.Tensor_float(Tensor mean, float std=1, *, Generator? generator=None) -> Tensor 1317*da0073e9SAndroid Build Coastguard Worker mean: at::zeros_symint(mean.sym_sizes(), grad.options()) 1318*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 1319*da0073e9SAndroid Build Coastguard Worker 1320*da0073e9SAndroid Build Coastguard Worker- name: normal.float_Tensor(float mean, Tensor std, *, Generator? generator=None) -> Tensor 1321*da0073e9SAndroid Build Coastguard Worker std: at::zeros_symint(std.sym_sizes(), grad.options()) 1322*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 1323*da0073e9SAndroid Build Coastguard Worker 1324*da0073e9SAndroid Build Coastguard Worker- name: normal.Tensor_Tensor(Tensor mean, Tensor std, *, Generator? generator=None) -> Tensor 1325*da0073e9SAndroid Build Coastguard Worker mean: at::zeros_symint(mean.sym_sizes(), grad.options()) 1326*da0073e9SAndroid Build Coastguard Worker std: at::zeros_symint(std.sym_sizes(), grad.options()) 1327*da0073e9SAndroid Build Coastguard Worker result: zeros_like(mean_t) 1328*da0073e9SAndroid Build Coastguard Worker 1329*da0073e9SAndroid Build Coastguard Worker- name: linalg_householder_product(Tensor input, Tensor tau) -> Tensor 1330*da0073e9SAndroid Build Coastguard Worker input, tau: householder_product_backward(grad, result, input, tau) 1331*da0073e9SAndroid Build Coastguard Worker result: householder_product_jvp(input_t, tau_t, result, input_p, tau_p) 1332*da0073e9SAndroid Build Coastguard Worker 1333*da0073e9SAndroid Build Coastguard Worker- name: ormqr(Tensor self, Tensor input2, Tensor input3, bool left=True, bool transpose=False) -> Tensor 1334*da0073e9SAndroid Build Coastguard Worker self, input2, input3: ormqr_backward(grad, result, self, input2, input3, left, transpose, grad_input_mask) 1335*da0073e9SAndroid Build Coastguard Worker 1336*da0073e9SAndroid Build Coastguard Worker- name: permute(Tensor(a) self, int[] dims) -> Tensor(a) 1337*da0073e9SAndroid Build Coastguard Worker self: permute_backwards(grad, dims) 1338*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1339*da0073e9SAndroid Build Coastguard Worker 1340*da0073e9SAndroid Build Coastguard Worker- name: poisson(Tensor self, Generator? generator=None) -> Tensor 1341*da0073e9SAndroid Build Coastguard Worker self: zeros_like(self) 1342*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 1343*da0073e9SAndroid Build Coastguard Worker 1344*da0073e9SAndroid Build Coastguard Worker- name: pow.Tensor_Scalar(Tensor self, Scalar exponent) -> Tensor 1345*da0073e9SAndroid Build Coastguard Worker self: pow_backward(grad, self, exponent) 1346*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 1347*da0073e9SAndroid Build Coastguard Worker 1348*da0073e9SAndroid Build Coastguard Worker- name: pow.Tensor_Tensor(Tensor self, Tensor exponent) -> Tensor 1349*da0073e9SAndroid Build Coastguard Worker self: pow_backward_self(grad, self, exponent) 1350*da0073e9SAndroid Build Coastguard Worker exponent: pow_backward_exponent(grad, self, exponent, result) 1351*da0073e9SAndroid Build Coastguard Worker result: (pow_backward_self(self_t.conj(), self_p, exponent_p) + pow_backward_exponent(exponent_t.conj(), self_p, exponent_p, result)).conj() 1352*da0073e9SAndroid Build Coastguard Worker 1353*da0073e9SAndroid Build Coastguard Worker- name: pow.Scalar(Scalar self, Tensor exponent) -> Tensor 1354*da0073e9SAndroid Build Coastguard Worker exponent: pow_backward_exponent(grad, self, exponent, result) 1355*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 1356*da0073e9SAndroid Build Coastguard Worker 1357*da0073e9SAndroid Build Coastguard Worker- name: prod(Tensor self, *, ScalarType? dtype=None) -> Tensor 1358*da0073e9SAndroid Build Coastguard Worker self: prod_backward(grad, self.to(grad.scalar_type()), result) 1359*da0073e9SAndroid Build Coastguard Worker result: (prod_backward(at::ones({}, result.options()).expand_as(result), self_p.to(result.scalar_type()), result) * self_t.conj()).sum().conj() 1360*da0073e9SAndroid Build Coastguard Worker 1361*da0073e9SAndroid Build Coastguard Worker- name: prod.dim_int(Tensor self, int dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor 1362*da0073e9SAndroid Build Coastguard Worker self: prod_backward(grad, self.to(grad.scalar_type()), result, dim, keepdim) 1363*da0073e9SAndroid Build Coastguard Worker result: (prod_backward(at::ones({}, result.options()).expand_as(result), self_p.to(result.scalar_type()), result, dim, keepdim) * self_t.conj()).sum(dim, keepdim).conj() 1364*da0073e9SAndroid Build Coastguard Worker 1365*da0073e9SAndroid Build Coastguard Worker- name: put(Tensor self, Tensor index, Tensor source, bool accumulate=False) -> Tensor 1366*da0073e9SAndroid Build Coastguard Worker self: "accumulate ? grad : grad.put(index, zeros_like(source), false)" 1367*da0073e9SAndroid Build Coastguard Worker index: non_differentiable 1368*da0073e9SAndroid Build Coastguard Worker source: grad.take(index).reshape_as(source) 1369*da0073e9SAndroid Build Coastguard Worker result: self_t.put(index, source_t, accumulate) 1370*da0073e9SAndroid Build Coastguard Worker 1371*da0073e9SAndroid Build Coastguard Worker- name: linalg_qr(Tensor A, str mode='reduced') -> (Tensor Q, Tensor R) 1372*da0073e9SAndroid Build Coastguard Worker A: linalg_qr_backward(grad_Q, grad_R, Q, R, mode) 1373*da0073e9SAndroid Build Coastguard Worker Q, R: linalg_qr_jvp(A_t, Q, R, mode) 1374*da0073e9SAndroid Build Coastguard Worker 1375*da0073e9SAndroid Build Coastguard Worker- name: rad2deg(Tensor self) -> Tensor 1376*da0073e9SAndroid Build Coastguard Worker self: rad2deg_backward(grad) 1377*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 1378*da0073e9SAndroid Build Coastguard Worker 1379*da0073e9SAndroid Build Coastguard Worker- name: random_.from(Tensor(a!) self, int from, int? to, *, Generator? generator=None) -> Tensor(a!) 1380*da0073e9SAndroid Build Coastguard Worker self: zeros_like(grad) 1381*da0073e9SAndroid Build Coastguard Worker result: self_t.zero_() 1382*da0073e9SAndroid Build Coastguard Worker 1383*da0073e9SAndroid Build Coastguard Worker- name: random_.to(Tensor(a!) self, int to, *, Generator? generator=None) -> Tensor(a!) 1384*da0073e9SAndroid Build Coastguard Worker self: zeros_like(grad) 1385*da0073e9SAndroid Build Coastguard Worker result: self_t.zero_() 1386*da0073e9SAndroid Build Coastguard Worker 1387*da0073e9SAndroid Build Coastguard Worker- name: random_(Tensor(a!) self, *, Generator? generator=None) -> Tensor(a!) 1388*da0073e9SAndroid Build Coastguard Worker self: zeros_like(grad) 1389*da0073e9SAndroid Build Coastguard Worker result: self_t.zero_() 1390*da0073e9SAndroid Build Coastguard Worker 1391*da0073e9SAndroid Build Coastguard Worker- name: reciprocal(Tensor self) -> Tensor 1392*da0073e9SAndroid Build Coastguard Worker self: -grad * (result * result).conj() 1393*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 1394*da0073e9SAndroid Build Coastguard Worker 1395*da0073e9SAndroid Build Coastguard Worker- name: remainder.Scalar(Tensor self, Scalar other) -> Tensor 1396*da0073e9SAndroid Build Coastguard Worker self: grad 1397*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 1398*da0073e9SAndroid Build Coastguard Worker 1399*da0073e9SAndroid Build Coastguard Worker- name: remainder.Tensor(Tensor self, Tensor other) -> Tensor 1400*da0073e9SAndroid Build Coastguard Worker self: grad 1401*da0073e9SAndroid Build Coastguard Worker other: -grad * self.div(other, /*rounding_mode=*/"floor") 1402*da0073e9SAndroid Build Coastguard Worker result: self_t - other_t * self_p.div(other_p, /*rounding_mode=*/"floor") 1403*da0073e9SAndroid Build Coastguard Worker 1404*da0073e9SAndroid Build Coastguard Worker- name: renorm(Tensor self, Scalar p, int dim, Scalar maxnorm) -> Tensor 1405*da0073e9SAndroid Build Coastguard Worker self: renorm_backward(grad, self, p, dim, maxnorm) 1406*da0073e9SAndroid Build Coastguard Worker result: renorm_jvp(self_p, self_t, p, dim, maxnorm) 1407*da0073e9SAndroid Build Coastguard Worker 1408*da0073e9SAndroid Build Coastguard Worker- name: repeat(Tensor self, SymInt[] repeats) -> Tensor 1409*da0073e9SAndroid Build Coastguard Worker self: repeat_backward(grad, repeats, self.sym_sizes()) 1410*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1411*da0073e9SAndroid Build Coastguard Worker 1412*da0073e9SAndroid Build Coastguard Worker- name: special_entr(Tensor self) -> Tensor 1413*da0073e9SAndroid Build Coastguard Worker self: grad * (-(1 + self.log())) 1414*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 1415*da0073e9SAndroid Build Coastguard Worker 1416*da0073e9SAndroid Build Coastguard Worker- name: special_ndtri(Tensor self) -> Tensor 1417*da0073e9SAndroid Build Coastguard Worker self: grad * std::sqrt(2 * M_PI) * (result.square() / 2).exp() 1418*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 1419*da0073e9SAndroid Build Coastguard Worker 1420*da0073e9SAndroid Build Coastguard Worker- name: special_log_ndtr(Tensor self) -> Tensor 1421*da0073e9SAndroid Build Coastguard Worker self: grad / std::sqrt(2 * M_PI) * (result + self.pow(2) / 2).neg().exp() 1422*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 1423*da0073e9SAndroid Build Coastguard Worker 1424*da0073e9SAndroid Build Coastguard Worker# [Note: Sometimes view derivatives] 1425*da0073e9SAndroid Build Coastguard Worker# The following situation applies to other operations as well. 1426*da0073e9SAndroid Build Coastguard Worker# TODO: This note is only referenced by to_dense and to_sparse*. Make 1427*da0073e9SAndroid Build Coastguard Worker# this more generic if it's been referenced more than once. 1428*da0073e9SAndroid Build Coastguard Worker# 1429*da0073e9SAndroid Build Coastguard Worker# DO NOT define a backward for reshape! 1430*da0073e9SAndroid Build Coastguard Worker# reshape is special in that it sometimes returns a view, and sometimes not. 1431*da0073e9SAndroid Build Coastguard Worker# Defining a backward will make codegen spit out the forward call as 1432*da0073e9SAndroid Build Coastguard Worker# as_variable(baseType->reshape(self)), 1433*da0073e9SAndroid Build Coastguard Worker# making it impossible (hard) to detect when it is actually a view. 1434*da0073e9SAndroid Build Coastguard Worker# - name: reshape(Tensor self, IntArrayRef shape) 1435*da0073e9SAndroid Build Coastguard Worker 1436*da0073e9SAndroid Build Coastguard Worker- name: _reshape_alias(Tensor(a) self, SymInt[] size, SymInt[] stride) -> Tensor(a) 1437*da0073e9SAndroid Build Coastguard Worker self: grad.reshape_symint(self.sym_sizes()) 1438*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1439*da0073e9SAndroid Build Coastguard Worker 1440*da0073e9SAndroid Build Coastguard Worker- name: round(Tensor self) -> Tensor 1441*da0073e9SAndroid Build Coastguard Worker self: zeros_like(grad) 1442*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 1443*da0073e9SAndroid Build Coastguard Worker 1444*da0073e9SAndroid Build Coastguard Worker- name: round.decimals(Tensor self, *, int decimals) -> Tensor 1445*da0073e9SAndroid Build Coastguard Worker self: zeros_like(grad) 1446*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 1447*da0073e9SAndroid Build Coastguard Worker 1448*da0073e9SAndroid Build Coastguard Worker- name: rsqrt(Tensor self) -> Tensor 1449*da0073e9SAndroid Build Coastguard Worker self: -0.5 * grad * result.pow(3).conj() 1450*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 1451*da0073e9SAndroid Build Coastguard Worker 1452*da0073e9SAndroid Build Coastguard Worker- name: scatter.src(Tensor self, int dim, Tensor index, Tensor src) -> Tensor 1453*da0073e9SAndroid Build Coastguard Worker self: grad.scatter(dim, index, 0) 1454*da0073e9SAndroid Build Coastguard Worker index: non_differentiable 1455*da0073e9SAndroid Build Coastguard Worker src: grad.gather(dim, index) 1456*da0073e9SAndroid Build Coastguard Worker result: self_t.scatter(dim, index, src_t) 1457*da0073e9SAndroid Build Coastguard Worker 1458*da0073e9SAndroid Build Coastguard Worker- name: scatter.value(Tensor self, int dim, Tensor index, Scalar value) -> Tensor 1459*da0073e9SAndroid Build Coastguard Worker self: grad.scatter(dim, index, 0) 1460*da0073e9SAndroid Build Coastguard Worker index: non_differentiable 1461*da0073e9SAndroid Build Coastguard Worker result: self_t.scatter(dim, index, 0) 1462*da0073e9SAndroid Build Coastguard Worker 1463*da0073e9SAndroid Build Coastguard Worker- name: scatter_add(Tensor self, int dim, Tensor index, Tensor src) -> Tensor 1464*da0073e9SAndroid Build Coastguard Worker self: grad 1465*da0073e9SAndroid Build Coastguard Worker index: non_differentiable 1466*da0073e9SAndroid Build Coastguard Worker src: grad.gather(dim, index) 1467*da0073e9SAndroid Build Coastguard Worker result: scatter_add(self_t, dim, index, src_t) 1468*da0073e9SAndroid Build Coastguard Worker 1469*da0073e9SAndroid Build Coastguard Worker- name: select.int(Tensor(a) self, int dim, SymInt index) -> Tensor(a) 1470*da0073e9SAndroid Build Coastguard Worker dispatch: 1471*da0073e9SAndroid Build Coastguard Worker Default: 1472*da0073e9SAndroid Build Coastguard Worker self: select_backward_symint(grad, self.sym_sizes(), dim, index) 1473*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1474*da0073e9SAndroid Build Coastguard Worker AutogradNestedTensor: 1475*da0073e9SAndroid Build Coastguard Worker self: _nested_select_backward_symint(grad, self, dim, index) 1476*da0073e9SAndroid Build Coastguard Worker 1477*da0073e9SAndroid Build Coastguard Worker- name: select_backward(Tensor grad_output, SymInt[] input_sizes, int dim, SymInt index) -> Tensor 1478*da0073e9SAndroid Build Coastguard Worker grad_output: grad.select_symint(dim, index) 1479*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1480*da0073e9SAndroid Build Coastguard Worker 1481*da0073e9SAndroid Build Coastguard Worker- name: sigmoid(Tensor self) -> Tensor 1482*da0073e9SAndroid Build Coastguard Worker self: sigmoid_backward(grad, result) 1483*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 1484*da0073e9SAndroid Build Coastguard Worker 1485*da0073e9SAndroid Build Coastguard Worker- name: logit(Tensor self, float? eps=None) -> Tensor 1486*da0073e9SAndroid Build Coastguard Worker self: "GradMode::is_enabled() ? infinitely_differentiable_logit_backward(grad, self, eps) : logit_backward(grad, self, eps)" 1487*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 1488*da0073e9SAndroid Build Coastguard Worker 1489*da0073e9SAndroid Build Coastguard Worker- name: sign(Tensor self) -> Tensor 1490*da0073e9SAndroid Build Coastguard Worker self: zeros_like(grad) 1491*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 1492*da0073e9SAndroid Build Coastguard Worker 1493*da0073e9SAndroid Build Coastguard Worker- name: sgn(Tensor self) -> Tensor 1494*da0073e9SAndroid Build Coastguard Worker self: sgn_backward(self, grad, result) 1495*da0073e9SAndroid Build Coastguard Worker # Cannot use auto_element_wise here because the Jacobian is *not* Hermitian (in fact, it is symmetric) 1496*da0073e9SAndroid Build Coastguard Worker # The function is not holomorphic, so there's no reason for its Jacobian to be Hermitian 1497*da0073e9SAndroid Build Coastguard Worker # auto_element_wise has a name that's a bit deceiving in the complex case 1498*da0073e9SAndroid Build Coastguard Worker result: sgn_backward(self_p, self_t, result) 1499*da0073e9SAndroid Build Coastguard Worker 1500*da0073e9SAndroid Build Coastguard Worker- name: sin(Tensor self) -> Tensor 1501*da0073e9SAndroid Build Coastguard Worker self: grad * self.cos().conj() 1502*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 1503*da0073e9SAndroid Build Coastguard Worker 1504*da0073e9SAndroid Build Coastguard Worker- name: sinc(Tensor self) -> Tensor 1505*da0073e9SAndroid Build Coastguard Worker self: sinc_backward(grad, self) 1506*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 1507*da0073e9SAndroid Build Coastguard Worker 1508*da0073e9SAndroid Build Coastguard Worker- name: sinh(Tensor self) -> Tensor 1509*da0073e9SAndroid Build Coastguard Worker self: grad * self.cosh().conj() 1510*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 1511*da0073e9SAndroid Build Coastguard Worker 1512*da0073e9SAndroid Build Coastguard Worker- name: slice.Tensor(Tensor(a) self, int dim=0, SymInt? start=None, SymInt? end=None, SymInt step=1) -> Tensor(a) 1513*da0073e9SAndroid Build Coastguard Worker self: slice_backward_wrapper(grad, self.sym_sizes(), dim, start, end, step) 1514*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1515*da0073e9SAndroid Build Coastguard Worker 1516*da0073e9SAndroid Build Coastguard Worker- name: slice_backward(Tensor grad_output, SymInt[] input_sizes, int dim, SymInt start, SymInt end, SymInt step) -> Tensor 1517*da0073e9SAndroid Build Coastguard Worker grad_output: grad.slice_symint(dim, start, end, step) 1518*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1519*da0073e9SAndroid Build Coastguard Worker 1520*da0073e9SAndroid Build Coastguard Worker- name: slice_inverse(Tensor(a) self, Tensor src, int dim=0, SymInt? start=None, SymInt? end=None, SymInt step=1) -> Tensor(a) 1521*da0073e9SAndroid Build Coastguard Worker self: grad.slice_symint(dim, start, end, step) 1522*da0073e9SAndroid Build Coastguard Worker src: slice_scatter_symint(grad, zeros_like(self), dim, start, end, step) 1523*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1524*da0073e9SAndroid Build Coastguard Worker 1525*da0073e9SAndroid Build Coastguard Worker- name: slice_scatter(Tensor self, Tensor src, int dim=0, SymInt? start=None, SymInt? end=None, SymInt step=1) -> Tensor 1526*da0073e9SAndroid Build Coastguard Worker self: slice_scatter_symint(grad, zeros_like(src), dim, start, end, step) 1527*da0073e9SAndroid Build Coastguard Worker src: grad.slice_symint(dim, start, end, step) 1528*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1529*da0073e9SAndroid Build Coastguard Worker 1530*da0073e9SAndroid Build Coastguard Worker- name: select_scatter(Tensor self, Tensor src, int dim, SymInt index) -> Tensor 1531*da0073e9SAndroid Build Coastguard Worker self: select_scatter_symint(grad, zeros_like(src), dim, index) 1532*da0073e9SAndroid Build Coastguard Worker src: grad.select_symint(dim, index) 1533*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1534*da0073e9SAndroid Build Coastguard Worker 1535*da0073e9SAndroid Build Coastguard Worker- name: diagonal_scatter(Tensor self, Tensor src, int offset=0, int dim1=0, int dim2=1) -> Tensor 1536*da0073e9SAndroid Build Coastguard Worker self: diagonal_scatter(grad, zeros_like(src), offset, dim1, dim2) 1537*da0073e9SAndroid Build Coastguard Worker src: grad.diagonal(offset, dim1, dim2) 1538*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1539*da0073e9SAndroid Build Coastguard Worker 1540*da0073e9SAndroid Build Coastguard Worker- name: as_strided_scatter(Tensor self, Tensor src, SymInt[] size, SymInt[] stride, SymInt? storage_offset=None) -> Tensor 1541*da0073e9SAndroid Build Coastguard Worker self: as_strided_scatter_backward(grad, TensorGeometry(self), TensorGeometry(src), size, stride, storage_offset) 1542*da0073e9SAndroid Build Coastguard Worker # See Note [as_strided_scatter backward support] 1543*da0073e9SAndroid Build Coastguard Worker src: grad.contiguous().as_strided_symint(size, stride, storage_offset) 1544*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1545*da0073e9SAndroid Build Coastguard Worker 1546*da0073e9SAndroid Build Coastguard Worker- name: _linalg_solve_ex(Tensor A, Tensor B, *, bool left=True, bool check_errors=False) -> (Tensor result, Tensor LU, Tensor pivots, Tensor info) 1547*da0073e9SAndroid Build Coastguard Worker A, B: linalg_solve_backward(grad, result, A, LU, pivots, left, grad_input_mask[1]) 1548*da0073e9SAndroid Build Coastguard Worker result: "linalg_solve_jvp(A_t, B_t, result, LU, pivots, left, A_p.is_contiguous() && !A_p.is_complex())" 1549*da0073e9SAndroid Build Coastguard Worker output_differentiability: [True, False, False, False] # LU is an auxiliary tensor not exposed to the user 1550*da0073e9SAndroid Build Coastguard Worker 1551*da0073e9SAndroid Build Coastguard Worker- name: sort(Tensor self, int dim=-1, bool descending=False) -> (Tensor values, Tensor indices) 1552*da0073e9SAndroid Build Coastguard Worker self: value_selecting_reduction_backward_symint(grad, dim, indices, self.sym_sizes(), true) 1553*da0073e9SAndroid Build Coastguard Worker output_differentiability: [True, False] 1554*da0073e9SAndroid Build Coastguard Worker values: gather_with_keepdimed_indices(self_t, dim, indices, true) 1555*da0073e9SAndroid Build Coastguard Worker 1556*da0073e9SAndroid Build Coastguard Worker- name: sort.stable(Tensor self, *, bool? stable, int dim=-1, bool descending=False) -> (Tensor values, Tensor indices) 1557*da0073e9SAndroid Build Coastguard Worker self: value_selecting_reduction_backward_symint(grad, dim, indices, self.sym_sizes(), true) 1558*da0073e9SAndroid Build Coastguard Worker output_differentiability: [True, False] 1559*da0073e9SAndroid Build Coastguard Worker values: gather_with_keepdimed_indices(self_t, dim, indices, true) 1560*da0073e9SAndroid Build Coastguard Worker 1561*da0073e9SAndroid Build Coastguard Worker- name: split.Tensor(Tensor(a -> *) self, SymInt split_size, int dim=0) -> Tensor(a)[] 1562*da0073e9SAndroid Build Coastguard Worker self: split_backward(grads, split_size, dim, self.sym_sizes(), self.options()) 1563*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1564*da0073e9SAndroid Build Coastguard Worker 1565*da0073e9SAndroid Build Coastguard Worker- name: unsafe_split.Tensor(Tensor self, SymInt split_size, int dim=0) -> Tensor[] 1566*da0073e9SAndroid Build Coastguard Worker self: split_backward(grads, split_size, dim, self.sym_sizes(), self.options()) 1567*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1568*da0073e9SAndroid Build Coastguard Worker 1569*da0073e9SAndroid Build Coastguard Worker- name: split_with_sizes(Tensor(a -> *) self, SymInt[] split_sizes, int dim=0) -> Tensor(a)[] 1570*da0073e9SAndroid Build Coastguard Worker dispatch: 1571*da0073e9SAndroid Build Coastguard Worker Default: 1572*da0073e9SAndroid Build Coastguard Worker self: split_with_sizes_backward(grads, split_sizes, dim, self.sym_sizes(), self.options()) 1573*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1574*da0073e9SAndroid Build Coastguard Worker AutogradNestedTensor: 1575*da0073e9SAndroid Build Coastguard Worker self: _nested_split_with_sizes_backward(grads, split_sizes, dim, at::native::get_nested_tensor_impl(self)->get_nested_sizes(), self.options()) 1576*da0073e9SAndroid Build Coastguard Worker 1577*da0073e9SAndroid Build Coastguard Worker- name: unsafe_split_with_sizes(Tensor self, SymInt[] split_sizes, int dim=0) -> Tensor[] 1578*da0073e9SAndroid Build Coastguard Worker self: split_with_sizes_backward(grads, split_sizes, dim, self.sym_sizes(), self.options()) 1579*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1580*da0073e9SAndroid Build Coastguard Worker 1581*da0073e9SAndroid Build Coastguard Worker- name: sqrt(Tensor self) -> Tensor 1582*da0073e9SAndroid Build Coastguard Worker self: grad / (2 * result.conj()) 1583*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 1584*da0073e9SAndroid Build Coastguard Worker 1585*da0073e9SAndroid Build Coastguard Worker- name: squeeze(Tensor(a) self) -> Tensor(a) 1586*da0073e9SAndroid Build Coastguard Worker self: unsqueeze_to(grad, self.sym_sizes()) 1587*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1588*da0073e9SAndroid Build Coastguard Worker 1589*da0073e9SAndroid Build Coastguard Worker- name: squeeze.dim(Tensor(a) self, int dim) -> Tensor(a) 1590*da0073e9SAndroid Build Coastguard Worker dispatch: 1591*da0073e9SAndroid Build Coastguard Worker Default: 1592*da0073e9SAndroid Build Coastguard Worker self: unsqueeze_to(grad, dim, self.sym_sizes()) 1593*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1594*da0073e9SAndroid Build Coastguard Worker AutogradNestedTensor: 1595*da0073e9SAndroid Build Coastguard Worker self: grad.unsqueeze(dim) 1596*da0073e9SAndroid Build Coastguard Worker 1597*da0073e9SAndroid Build Coastguard Worker- name: squeeze.dims(Tensor(a) self, int[] dim) -> Tensor(a) 1598*da0073e9SAndroid Build Coastguard Worker dispatch: 1599*da0073e9SAndroid Build Coastguard Worker Default: 1600*da0073e9SAndroid Build Coastguard Worker self: unsqueeze_to(grad, dim, self.sym_sizes()) 1601*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1602*da0073e9SAndroid Build Coastguard Worker AutogradNestedTensor: 1603*da0073e9SAndroid Build Coastguard Worker self: unsqueeze_multiple(grad, dim, self.dim()) 1604*da0073e9SAndroid Build Coastguard Worker 1605*da0073e9SAndroid Build Coastguard Worker- name: squeeze_(Tensor(a!) self) -> Tensor(a!) 1606*da0073e9SAndroid Build Coastguard Worker self: unsqueeze_to(grad, self.sym_sizes()) 1607*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1608*da0073e9SAndroid Build Coastguard Worker 1609*da0073e9SAndroid Build Coastguard Worker- name: squeeze_.dim(Tensor(a!) self, int dim) -> Tensor(a!) 1610*da0073e9SAndroid Build Coastguard Worker self: unsqueeze_to(grad, dim, self.sym_sizes()) 1611*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1612*da0073e9SAndroid Build Coastguard Worker 1613*da0073e9SAndroid Build Coastguard Worker- name: squeeze_.dims(Tensor(a!) self, int[] dim) -> Tensor(a!) 1614*da0073e9SAndroid Build Coastguard Worker self: unsqueeze_to(grad, dim, self.sym_sizes()) 1615*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1616*da0073e9SAndroid Build Coastguard Worker 1617*da0073e9SAndroid Build Coastguard Worker- name: std.correction(Tensor self, int[1]? dim=None, *, Scalar? correction=None, bool keepdim=False) -> Tensor 1618*da0073e9SAndroid Build Coastguard Worker self: std_backward(result, grad, self, dim, correction, keepdim) 1619*da0073e9SAndroid Build Coastguard Worker # pointwise (variance) + sum + sqrt 1620*da0073e9SAndroid Build Coastguard Worker result: (at::real(var_backward(self_t.conj(), self_p, dim, correction, true).sum(dim.value_or(IntArrayRef({})), keepdim)) / (2. * result)).masked_fill_(result == 0, 0) 1621*da0073e9SAndroid Build Coastguard Worker 1622*da0073e9SAndroid Build Coastguard Worker- name: std_mean.correction(Tensor self, int[1]? dim=None, *, Scalar? correction=None, bool keepdim=False) -> (Tensor, Tensor) 1623*da0073e9SAndroid Build Coastguard Worker self: std_mean_backward(grads[0], grads[1], self, result0, dim, correction, keepdim) 1624*da0073e9SAndroid Build Coastguard Worker result0: (at::real(var_backward(self_t.conj(), self_p, dim, correction, true).sum(dim.value_or(IntArrayRef({})), keepdim)) / (2. * result0)).masked_fill_(result0 == 0, 0) 1625*da0073e9SAndroid Build Coastguard Worker # linear 1626*da0073e9SAndroid Build Coastguard Worker result1: mean(self_t, dim.value_or(IntArrayRef({})), keepdim) 1627*da0073e9SAndroid Build Coastguard Worker 1628*da0073e9SAndroid Build Coastguard Worker- name: sub.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor 1629*da0073e9SAndroid Build Coastguard Worker self: handle_r_to_c(self.scalar_type(), grad) 1630*da0073e9SAndroid Build Coastguard Worker other: handle_r_to_c(other.scalar_type(), maybe_multiply(-grad, alpha.conj())) 1631*da0073e9SAndroid Build Coastguard Worker result: self_t - maybe_multiply(other_t, alpha) 1632*da0073e9SAndroid Build Coastguard Worker 1633*da0073e9SAndroid Build Coastguard Worker- name: sub.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor 1634*da0073e9SAndroid Build Coastguard Worker self: handle_r_to_c(self.scalar_type(), grad) 1635*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 1636*da0073e9SAndroid Build Coastguard Worker 1637*da0073e9SAndroid Build Coastguard Worker- name: rsub.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor 1638*da0073e9SAndroid Build Coastguard Worker self: handle_r_to_c(self.scalar_type(), maybe_multiply(-grad, alpha.conj())) 1639*da0073e9SAndroid Build Coastguard Worker other: handle_r_to_c(other.scalar_type(), grad) 1640*da0073e9SAndroid Build Coastguard Worker result: -maybe_multiply(self_t, alpha) + other_t 1641*da0073e9SAndroid Build Coastguard Worker 1642*da0073e9SAndroid Build Coastguard Worker- name: rsub.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor 1643*da0073e9SAndroid Build Coastguard Worker self: handle_r_to_c(self.scalar_type(), maybe_multiply(-grad, alpha.conj())) 1644*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 1645*da0073e9SAndroid Build Coastguard Worker 1646*da0073e9SAndroid Build Coastguard Worker- name: sum(Tensor self, *, ScalarType? dtype=None) -> Tensor 1647*da0073e9SAndroid Build Coastguard Worker self: grad.expand_symint(self.sym_sizes()) 1648*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1649*da0073e9SAndroid Build Coastguard Worker 1650*da0073e9SAndroid Build Coastguard Worker- name: sum.dim_IntList(Tensor self, int[1]? dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor 1651*da0073e9SAndroid Build Coastguard Worker dispatch: 1652*da0073e9SAndroid Build Coastguard Worker Default: 1653*da0073e9SAndroid Build Coastguard Worker self: sum_backward(grad, self.sym_sizes(), dim, keepdim) 1654*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1655*da0073e9SAndroid Build Coastguard Worker AutogradNestedTensor: 1656*da0073e9SAndroid Build Coastguard Worker # TODO: replace this function once semantics for nested tensor expand have been settled on 1657*da0073e9SAndroid Build Coastguard Worker self: _nested_sum_backward(grad, self, dim, keepdim) 1658*da0073e9SAndroid Build Coastguard Worker 1659*da0073e9SAndroid Build Coastguard Worker- name: nansum(Tensor self, int[1]? dim=None, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor 1660*da0073e9SAndroid Build Coastguard Worker self: nansum_backward(grad.to(self.scalar_type()), self, dim, keepdim) 1661*da0073e9SAndroid Build Coastguard Worker result: at::where(self_p.isnan(), 0, self_t).sum(dim, keepdim, dtype) 1662*da0073e9SAndroid Build Coastguard Worker 1663*da0073e9SAndroid Build Coastguard Worker# We never call _linalg_svd with compute_uv=False in an autograd context, so we don't even consider it here 1664*da0073e9SAndroid Build Coastguard Worker- name: _linalg_svd(Tensor A, bool full_matrices=False, bool compute_uv=True, *, str? driver=None) -> (Tensor U, Tensor S, Tensor Vh) 1665*da0073e9SAndroid Build Coastguard Worker A: "svd_backward(full_matrices && grad_U.defined() ? grad_U.narrow_symint(-1, 0, S.sym_size(-1)) : grad_U, 1666*da0073e9SAndroid Build Coastguard Worker grad_S, 1667*da0073e9SAndroid Build Coastguard Worker full_matrices && grad_Vh.defined() ? grad_Vh.narrow_symint(-2, 0, S.sym_size(-1)) : grad_Vh, 1668*da0073e9SAndroid Build Coastguard Worker full_matrices ? U.narrow_symint(-1, 0, S.sym_size(-1)) : U, 1669*da0073e9SAndroid Build Coastguard Worker S, 1670*da0073e9SAndroid Build Coastguard Worker full_matrices ? Vh.narrow_symint(-2, 0, S.sym_size(-1)) : Vh)" 1671*da0073e9SAndroid Build Coastguard Worker U, S, Vh: linalg_svd_jvp(A_t, U, S, Vh, full_matrices) 1672*da0073e9SAndroid Build Coastguard Worker 1673*da0073e9SAndroid Build Coastguard Worker- name: _linalg_eigh(Tensor A, str UPLO="L", bool compute_v=True) -> (Tensor eigenvalues, Tensor eigenvectors) 1674*da0073e9SAndroid Build Coastguard Worker A: linalg_eig_backward(grads[0], grads[1], eigenvalues, eigenvectors, /*is_hermitian=*/true) 1675*da0073e9SAndroid Build Coastguard Worker eigenvalues, eigenvectors: linalg_eig_jvp(A_t, eigenvalues, eigenvectors, /*is_hermitian=*/true) 1676*da0073e9SAndroid Build Coastguard Worker 1677*da0073e9SAndroid Build Coastguard Worker- name: linalg_eig(Tensor self) -> (Tensor eigenvalues, Tensor eigenvectors) 1678*da0073e9SAndroid Build Coastguard Worker self: handle_r_to_c(self.scalar_type(), linalg_eig_backward(grads[0], grads[1], eigenvalues, eigenvectors, /*is_hermitian=*/false)) 1679*da0073e9SAndroid Build Coastguard Worker eigenvalues, eigenvectors: linalg_eig_jvp(self_t, eigenvalues, eigenvectors, /*is_hermitian=*/false) 1680*da0073e9SAndroid Build Coastguard Worker 1681*da0073e9SAndroid Build Coastguard Worker- name: t(Tensor(a) self) -> Tensor(a) 1682*da0073e9SAndroid Build Coastguard Worker self: grad.t() 1683*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1684*da0073e9SAndroid Build Coastguard Worker 1685*da0073e9SAndroid Build Coastguard Worker- name: t_(Tensor(a!) self) -> Tensor(a!) 1686*da0073e9SAndroid Build Coastguard Worker self: grad.t() 1687*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1688*da0073e9SAndroid Build Coastguard Worker 1689*da0073e9SAndroid Build Coastguard Worker- name: one_hot(Tensor self, int num_classes=-1) -> Tensor 1690*da0073e9SAndroid Build Coastguard Worker self: non_differentiable 1691*da0073e9SAndroid Build Coastguard Worker 1692*da0073e9SAndroid Build Coastguard Worker- name: flip(Tensor self, int[] dims) -> Tensor 1693*da0073e9SAndroid Build Coastguard Worker self: grad.flip(dims) 1694*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1695*da0073e9SAndroid Build Coastguard Worker 1696*da0073e9SAndroid Build Coastguard Worker- name: roll(Tensor self, SymInt[1] shifts, int[1] dims=[]) -> Tensor 1697*da0073e9SAndroid Build Coastguard Worker self: grad.roll_symint(fmap(reverse_list_symint(shifts), [](c10::SymInt i){return -i;}), reverse_list(dims)) 1698*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1699*da0073e9SAndroid Build Coastguard Worker 1700*da0073e9SAndroid Build Coastguard Worker- name: rot90(Tensor self, int k=1, int[] dims=[0,1]) -> Tensor 1701*da0073e9SAndroid Build Coastguard Worker self: grad.rot90(-k, dims) 1702*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1703*da0073e9SAndroid Build Coastguard Worker 1704*da0073e9SAndroid Build Coastguard Worker- name: take(Tensor self, Tensor index) -> Tensor 1705*da0073e9SAndroid Build Coastguard Worker self: take_backward(grad, self, index) 1706*da0073e9SAndroid Build Coastguard Worker index: non_differentiable 1707*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1708*da0073e9SAndroid Build Coastguard Worker 1709*da0073e9SAndroid Build Coastguard Worker- name: tan(Tensor self) -> Tensor 1710*da0073e9SAndroid Build Coastguard Worker self: grad * (1 + result.pow(2)).conj() 1711*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 1712*da0073e9SAndroid Build Coastguard Worker 1713*da0073e9SAndroid Build Coastguard Worker- name: tanh(Tensor self) -> Tensor 1714*da0073e9SAndroid Build Coastguard Worker self: tanh_backward(grad, result) 1715*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 1716*da0073e9SAndroid Build Coastguard Worker 1717*da0073e9SAndroid Build Coastguard Worker- name: topk(Tensor self, SymInt k, int dim=-1, bool largest=True, bool sorted=True) -> (Tensor values, Tensor indices) 1718*da0073e9SAndroid Build Coastguard Worker self: value_selecting_reduction_backward_symint(grad, dim, indices, self.sym_sizes(), true) 1719*da0073e9SAndroid Build Coastguard Worker output_differentiability: [True, False] 1720*da0073e9SAndroid Build Coastguard Worker values: gather(self_t, dim, indices) 1721*da0073e9SAndroid Build Coastguard Worker 1722*da0073e9SAndroid Build Coastguard Worker- name: trace(Tensor self) -> Tensor 1723*da0073e9SAndroid Build Coastguard Worker self: trace_backward_symint(grad, self.sym_sizes()) 1724*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1725*da0073e9SAndroid Build Coastguard Worker 1726*da0073e9SAndroid Build Coastguard Worker- name: transpose.int(Tensor(a) self, int dim0, int dim1) -> Tensor(a) 1727*da0073e9SAndroid Build Coastguard Worker self: grad.transpose(dim0, dim1) 1728*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1729*da0073e9SAndroid Build Coastguard Worker 1730*da0073e9SAndroid Build Coastguard Worker- name: transpose_(Tensor(a!) self, int dim0, int dim1) -> Tensor(a!) 1731*da0073e9SAndroid Build Coastguard Worker self: grad.transpose(dim0, dim1) 1732*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1733*da0073e9SAndroid Build Coastguard Worker 1734*da0073e9SAndroid Build Coastguard Worker- name: triangular_solve(Tensor self, Tensor A, bool upper=True, bool transpose=False, bool unitriangular=False) -> (Tensor solution, Tensor cloned_coefficient) 1735*da0073e9SAndroid Build Coastguard Worker self, A: triangular_solve_backward(grad_solution, grad_cloned_coefficient, self, A, solution, upper, transpose, unitriangular, grad_input_mask) 1736*da0073e9SAndroid Build Coastguard Worker solution: triangular_solve_jvp(solution, A_p, A_t, self_t, upper, transpose, unitriangular) 1737*da0073e9SAndroid Build Coastguard Worker cloned_coefficient: A_t 1738*da0073e9SAndroid Build Coastguard Worker 1739*da0073e9SAndroid Build Coastguard Worker- name: linalg_solve_triangular(Tensor self, Tensor B, *, bool upper, bool left=True, bool unitriangular=False) -> Tensor 1740*da0073e9SAndroid Build Coastguard Worker self, B: linalg_solve_triangular_backward(grad, self, result, upper, left, unitriangular, grad_input_mask) 1741*da0073e9SAndroid Build Coastguard Worker result: linalg_solve_triangular_forward_AD(self_t, B_t, self_p, result, upper, left, unitriangular) 1742*da0073e9SAndroid Build Coastguard Worker 1743*da0073e9SAndroid Build Coastguard Worker- name: tril(Tensor self, int diagonal=0) -> Tensor 1744*da0073e9SAndroid Build Coastguard Worker self: grad.tril(diagonal) 1745*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1746*da0073e9SAndroid Build Coastguard Worker 1747*da0073e9SAndroid Build Coastguard Worker- name: triu(Tensor self, int diagonal=0) -> Tensor 1748*da0073e9SAndroid Build Coastguard Worker self: grad.triu(diagonal) 1749*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1750*da0073e9SAndroid Build Coastguard Worker 1751*da0073e9SAndroid Build Coastguard Worker- name: trunc(Tensor self) -> Tensor 1752*da0073e9SAndroid Build Coastguard Worker self: zeros_like(grad) 1753*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 1754*da0073e9SAndroid Build Coastguard Worker 1755*da0073e9SAndroid Build Coastguard Worker# DO NOT define a backward for to_dense 1756*da0073e9SAndroid Build Coastguard Worker# See [Note: Sometimes view derivatives] 1757*da0073e9SAndroid Build Coastguard Worker# - name: to_dense(Tensor self, ScalarType? dtype=None, *, bool? masked_grad=None) -> Tensor 1758*da0073e9SAndroid Build Coastguard Worker# 1759*da0073e9SAndroid Build Coastguard Worker- name: _to_dense(Tensor self, ScalarType? dtype=None, bool? masked_grad=None) -> Tensor 1760*da0073e9SAndroid Build Coastguard Worker self: to_dense_backward(grad, self, masked_grad) 1761*da0073e9SAndroid Build Coastguard Worker 1762*da0073e9SAndroid Build Coastguard Worker# DO NOT define a backward for to_sparse.sparse_dim 1763*da0073e9SAndroid Build Coastguard Worker# See [Note: Sometimes view derivatives] 1764*da0073e9SAndroid Build Coastguard Worker# - name: to_sparse.sparse_dim(Tensor self, int sparse_dim) -> Tensor 1765*da0073e9SAndroid Build Coastguard Worker# 1766*da0073e9SAndroid Build Coastguard Worker- name: _to_sparse.sparse_dim(Tensor self, int sparse_dim) -> Tensor 1767*da0073e9SAndroid Build Coastguard Worker self: to_sparse_backward(grad, self.layout(), self.sym_blocksize()) 1768*da0073e9SAndroid Build Coastguard Worker 1769*da0073e9SAndroid Build Coastguard Worker# DO NOT define a backward for to_sparse 1770*da0073e9SAndroid Build Coastguard Worker# See [Note: Sometimes view derivatives] 1771*da0073e9SAndroid Build Coastguard Worker# - name: to_sparse(Tensor self, *, Layout? layout=None, int[2]? blocksize=None, int? dense_dim=None) -> Tensor 1772*da0073e9SAndroid Build Coastguard Worker# 1773*da0073e9SAndroid Build Coastguard Worker- name: _to_sparse(Tensor self, *, Layout? layout=None, int[2]? blocksize=None, int? dense_dim=None) -> Tensor 1774*da0073e9SAndroid Build Coastguard Worker self: to_sparse_backward(grad, self.layout(), self.sym_blocksize()) 1775*da0073e9SAndroid Build Coastguard Worker 1776*da0073e9SAndroid Build Coastguard Worker# DO NOT define a backward for to_sparse_csr 1777*da0073e9SAndroid Build Coastguard Worker# See [Note: Sometimes view derivatives] 1778*da0073e9SAndroid Build Coastguard Worker# - name: to_sparse_csr(Tensor self, int? dense_dim=None) -> Tensor 1779*da0073e9SAndroid Build Coastguard Worker# 1780*da0073e9SAndroid Build Coastguard Worker- name: _to_sparse_csr(Tensor self, int? dense_dim=None) -> Tensor 1781*da0073e9SAndroid Build Coastguard Worker self: to_sparse_backward(grad, self.layout(), self.sym_blocksize()) 1782*da0073e9SAndroid Build Coastguard Worker 1783*da0073e9SAndroid Build Coastguard Worker# DO NOT define a backward for to_sparse_csc 1784*da0073e9SAndroid Build Coastguard Worker# See [Note: Sometimes view derivatives] 1785*da0073e9SAndroid Build Coastguard Worker# - name: to_sparse_csc(Tensor self, int? dense_dim=None) -> Tensor 1786*da0073e9SAndroid Build Coastguard Worker# 1787*da0073e9SAndroid Build Coastguard Worker- name: _to_sparse_csc(Tensor self, int? dense_dim=None) -> Tensor 1788*da0073e9SAndroid Build Coastguard Worker self: to_sparse_backward(grad, self.layout(), self.sym_blocksize()) 1789*da0073e9SAndroid Build Coastguard Worker 1790*da0073e9SAndroid Build Coastguard Worker# DO NOT define a backward for to_sparse_bsr 1791*da0073e9SAndroid Build Coastguard Worker# See [Note: Sometimes view derivatives] 1792*da0073e9SAndroid Build Coastguard Worker# - name: to_sparse_bsr(Tensor self, int[2] blocksize, int? dense_dim=None) -> Tensor 1793*da0073e9SAndroid Build Coastguard Worker# 1794*da0073e9SAndroid Build Coastguard Worker- name: _to_sparse_bsr(Tensor self, int[2] blocksize, int? dense_dim=None) -> Tensor 1795*da0073e9SAndroid Build Coastguard Worker self: to_sparse_backward(grad, self.layout(), self.sym_blocksize()) 1796*da0073e9SAndroid Build Coastguard Worker 1797*da0073e9SAndroid Build Coastguard Worker# DO NOT define a backward for to_sparse_bsc 1798*da0073e9SAndroid Build Coastguard Worker# See [Note: Sometimes view derivatives] 1799*da0073e9SAndroid Build Coastguard Worker# - name: to_sparse_bsc(Tensor self, int[2] blocksize, int? dense_dim=None) -> Tensor 1800*da0073e9SAndroid Build Coastguard Worker# 1801*da0073e9SAndroid Build Coastguard Worker- name: _to_sparse_bsc(Tensor self, int[2] blocksize, int? dense_dim=None) -> Tensor 1802*da0073e9SAndroid Build Coastguard Worker self: to_sparse_backward(grad, self.layout(), self.sym_blocksize()) 1803*da0073e9SAndroid Build Coastguard Worker 1804*da0073e9SAndroid Build Coastguard Worker- name: to_mkldnn(Tensor self, ScalarType? dtype=None) -> Tensor 1805*da0073e9SAndroid Build Coastguard Worker self: to_mkldnn_backward(grad, self) 1806*da0073e9SAndroid Build Coastguard Worker 1807*da0073e9SAndroid Build Coastguard Worker- name: unfold(Tensor(a) self, int dimension, int size, int step) -> Tensor(a) 1808*da0073e9SAndroid Build Coastguard Worker self: unfold_backward_symint(grad, self.sym_sizes(), dimension, size, step) 1809*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1810*da0073e9SAndroid Build Coastguard Worker 1811*da0073e9SAndroid Build Coastguard Worker- name: unfold_backward(Tensor grad_in, SymInt[] input_sizes, int dim, int size, int step) -> Tensor 1812*da0073e9SAndroid Build Coastguard Worker grad_in: grad.unfold(dim, size, step) 1813*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1814*da0073e9SAndroid Build Coastguard Worker 1815*da0073e9SAndroid Build Coastguard Worker- name: uniform_(Tensor(a!) self, float from=0, float to=1, *, Generator? generator=None) -> Tensor(a!) 1816*da0073e9SAndroid Build Coastguard Worker self: zeros_like(grad) 1817*da0073e9SAndroid Build Coastguard Worker result: self_t.zero_() 1818*da0073e9SAndroid Build Coastguard Worker 1819*da0073e9SAndroid Build Coastguard Worker- name: _unique(Tensor self, bool sorted=True, bool return_inverse=False) -> (Tensor, Tensor) 1820*da0073e9SAndroid Build Coastguard Worker output_differentiability: [True, False] 1821*da0073e9SAndroid Build Coastguard Worker self: not_implemented("_unique") 1822*da0073e9SAndroid Build Coastguard Worker 1823*da0073e9SAndroid Build Coastguard Worker- name: unique_dim(Tensor self, int dim, bool sorted=True, bool return_inverse=False, bool return_counts=False) -> (Tensor, Tensor, Tensor) 1824*da0073e9SAndroid Build Coastguard Worker output_differentiability: [True, False, False] 1825*da0073e9SAndroid Build Coastguard Worker self: not_implemented("unique_dim") 1826*da0073e9SAndroid Build Coastguard Worker 1827*da0073e9SAndroid Build Coastguard Worker- name: unique_consecutive(Tensor self, bool return_inverse=False, bool return_counts=False, int? dim=None) -> (Tensor, Tensor, Tensor) 1828*da0073e9SAndroid Build Coastguard Worker output_differentiability: [True, False, False] 1829*da0073e9SAndroid Build Coastguard Worker self: not_implemented("unique_consecutive") 1830*da0073e9SAndroid Build Coastguard Worker 1831*da0073e9SAndroid Build Coastguard Worker- name: unique_dim_consecutive(Tensor self, int dim, bool return_inverse=False, bool return_counts=False) -> (Tensor, Tensor, Tensor) 1832*da0073e9SAndroid Build Coastguard Worker output_differentiability: [True, False, False] 1833*da0073e9SAndroid Build Coastguard Worker self: not_implemented("unique_dim_consecutive") 1834*da0073e9SAndroid Build Coastguard Worker 1835*da0073e9SAndroid Build Coastguard Worker- name: _unique2(Tensor self, bool sorted=True, bool return_inverse=False, bool return_counts=False) -> (Tensor, Tensor, Tensor) 1836*da0073e9SAndroid Build Coastguard Worker output_differentiability: [True, False, False] 1837*da0073e9SAndroid Build Coastguard Worker self: not_implemented("_unique2") 1838*da0073e9SAndroid Build Coastguard Worker 1839*da0073e9SAndroid Build Coastguard Worker- name: _unsafe_view(Tensor self, SymInt[] size) -> Tensor 1840*da0073e9SAndroid Build Coastguard Worker self: grad.reshape_symint(self.sym_sizes()) 1841*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1842*da0073e9SAndroid Build Coastguard Worker 1843*da0073e9SAndroid Build Coastguard Worker- name: lift(Tensor self) -> Tensor 1844*da0073e9SAndroid Build Coastguard Worker self: grad 1845*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1846*da0073e9SAndroid Build Coastguard Worker 1847*da0073e9SAndroid Build Coastguard Worker- name: lift_fresh(Tensor(a) self) -> Tensor(a) 1848*da0073e9SAndroid Build Coastguard Worker self: grad 1849*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1850*da0073e9SAndroid Build Coastguard Worker 1851*da0073e9SAndroid Build Coastguard Worker- name: unsqueeze(Tensor(a) self, int dim) -> Tensor(a) 1852*da0073e9SAndroid Build Coastguard Worker self: grad.squeeze(dim) 1853*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1854*da0073e9SAndroid Build Coastguard Worker 1855*da0073e9SAndroid Build Coastguard Worker- name: unsqueeze_(Tensor(a!) self, int dim) -> Tensor(a!) 1856*da0073e9SAndroid Build Coastguard Worker self: grad.squeeze(dim) 1857*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1858*da0073e9SAndroid Build Coastguard Worker 1859*da0073e9SAndroid Build Coastguard Worker- name: var.correction(Tensor self, int[1]? dim=None, *, Scalar? correction=None, bool keepdim=False) -> Tensor 1860*da0073e9SAndroid Build Coastguard Worker self: var_backward(grad, self, dim, correction, keepdim) 1861*da0073e9SAndroid Build Coastguard Worker # pointwise + sum 1862*da0073e9SAndroid Build Coastguard Worker result: at::real(var_backward(self_t.conj(), self_p, dim, correction, true).sum(dim.value_or(IntArrayRef({})), keepdim)) 1863*da0073e9SAndroid Build Coastguard Worker 1864*da0073e9SAndroid Build Coastguard Worker- name: var_mean.correction(Tensor self, int[1]? dim=None, *, Scalar? correction=None, bool keepdim=False) -> (Tensor, Tensor) 1865*da0073e9SAndroid Build Coastguard Worker self: var_mean_backward(grads[0], grads[1], self, dim, correction, keepdim) 1866*da0073e9SAndroid Build Coastguard Worker result0: at::real(var_backward(self_t.conj(), self_p, dim, correction, true).sum(dim.value_or(IntArrayRef({})), keepdim)) 1867*da0073e9SAndroid Build Coastguard Worker # linear 1868*da0073e9SAndroid Build Coastguard Worker result1: mean(self_t, dim.value_or(IntArrayRef({})), keepdim) 1869*da0073e9SAndroid Build Coastguard Worker 1870*da0073e9SAndroid Build Coastguard Worker- name: view(Tensor(a) self, SymInt[] size) -> Tensor(a) 1871*da0073e9SAndroid Build Coastguard Worker dispatch: 1872*da0073e9SAndroid Build Coastguard Worker Default: 1873*da0073e9SAndroid Build Coastguard Worker self: grad.reshape_symint(self.sym_sizes()) 1874*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1875*da0073e9SAndroid Build Coastguard Worker AutogradNestedTensor: 1876*da0073e9SAndroid Build Coastguard Worker self: grad.reshape_as(self) 1877*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1878*da0073e9SAndroid Build Coastguard Worker 1879*da0073e9SAndroid Build Coastguard Worker- name: view.dtype(Tensor(a) self, ScalarType dtype) -> Tensor(a) 1880*da0073e9SAndroid Build Coastguard Worker output_differentiability: [False] 1881*da0073e9SAndroid Build Coastguard Worker 1882*da0073e9SAndroid Build Coastguard Worker- name: view_as_real(Tensor(a) self) -> Tensor(a) 1883*da0073e9SAndroid Build Coastguard Worker self: at::view_as_complex(grad.contiguous()) # gx0 + 1j * gx1 1884*da0073e9SAndroid Build Coastguard Worker result: at::view_as_real(self_t) 1885*da0073e9SAndroid Build Coastguard Worker 1886*da0073e9SAndroid Build Coastguard Worker- name: view_as_complex(Tensor(a) self) -> Tensor(a) 1887*da0073e9SAndroid Build Coastguard Worker self: at::view_as_real(grad.contiguous().resolve_conj()) # [gx, gy] 1888*da0073e9SAndroid Build Coastguard Worker result: at::view_as_complex(self_t) 1889*da0073e9SAndroid Build Coastguard Worker 1890*da0073e9SAndroid Build Coastguard Worker- name: where.self(Tensor condition, Tensor self, Tensor other) -> Tensor 1891*da0073e9SAndroid Build Coastguard Worker condition: non_differentiable 1892*da0073e9SAndroid Build Coastguard Worker self: where(condition, grad, 0) 1893*da0073e9SAndroid Build Coastguard Worker other: where(condition, 0, grad) 1894*da0073e9SAndroid Build Coastguard Worker result: where(condition, self_t, other_t) 1895*da0073e9SAndroid Build Coastguard Worker 1896*da0073e9SAndroid Build Coastguard Worker# weight_norm_cuda_interface_backward does not have an explicitly defined derivative, so if we do happen 1897*da0073e9SAndroid Build Coastguard Worker# to be running backward with create_graph=True, fall back to a backward function that uses 1898*da0073e9SAndroid Build Coastguard Worker# differentiable ops. 1899*da0073e9SAndroid Build Coastguard Worker- name: _weight_norm_interface(Tensor v, Tensor g, int dim=0) -> (Tensor, Tensor) 1900*da0073e9SAndroid Build Coastguard Worker v, g: "grad.defined() ? (GradMode::is_enabled() ? _weight_norm_differentiable_backward(grad.contiguous(), v, g, result1, dim) : _weight_norm_interface_backward(grad.contiguous(), v, g, result1, dim)) : std::tuple<Tensor, Tensor>()" 1901*da0073e9SAndroid Build Coastguard Worker 1902*da0073e9SAndroid Build Coastguard Worker- name: zero_(Tensor(a!) self) -> Tensor(a!) 1903*da0073e9SAndroid Build Coastguard Worker self: zeros_like(grad) 1904*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1905*da0073e9SAndroid Build Coastguard Worker 1906*da0073e9SAndroid Build Coastguard Worker- name: sparse_mask(Tensor self, Tensor mask) -> Tensor 1907*da0073e9SAndroid Build Coastguard Worker self: sparse_mask_backward(grad, mask, self.layout()) 1908*da0073e9SAndroid Build Coastguard Worker mask: non_differentiable 1909*da0073e9SAndroid Build Coastguard Worker 1910*da0073e9SAndroid Build Coastguard Worker- name: _sparse_coo_tensor_with_dims_and_tensors(int sparse_dim, int dense_dim, SymInt[] size, Tensor indices, Tensor values, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=False, bool? is_coalesced=None) -> Tensor 1911*da0073e9SAndroid Build Coastguard Worker indices: non_differentiable 1912*da0073e9SAndroid Build Coastguard Worker values: grad.sparse_mask(result)._values() 1913*da0073e9SAndroid Build Coastguard Worker 1914*da0073e9SAndroid Build Coastguard Worker- name: sparse_compressed_tensor.comp_plain_value_size(Tensor compressed_indices, Tensor plain_indices, Tensor values, SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=False) -> Tensor 1915*da0073e9SAndroid Build Coastguard Worker compressed_indices: non_differentiable 1916*da0073e9SAndroid Build Coastguard Worker plain_indices: non_differentiable 1917*da0073e9SAndroid Build Coastguard Worker # TODO: remove to_dense after gh-107381 is fixed 1918*da0073e9SAndroid Build Coastguard Worker values: grad.to_dense().sparse_mask(result).values() 1919*da0073e9SAndroid Build Coastguard Worker 1920*da0073e9SAndroid Build Coastguard Worker- name: _sparse_sum.dim(Tensor self, int[1] dim) -> Tensor 1921*da0073e9SAndroid Build Coastguard Worker self: at::_sparse_sum_backward(grad, self, dim) 1922*da0073e9SAndroid Build Coastguard Worker 1923*da0073e9SAndroid Build Coastguard Worker- name: _standard_gamma(Tensor self, Generator? generator=None) -> Tensor 1924*da0073e9SAndroid Build Coastguard Worker self: grad * _standard_gamma_grad(self, result) 1925*da0073e9SAndroid Build Coastguard Worker 1926*da0073e9SAndroid Build Coastguard Worker- name: _standard_gamma_grad(Tensor self, Tensor output) -> Tensor 1927*da0073e9SAndroid Build Coastguard Worker self: not_implemented("_standard_gamma_grad") 1928*da0073e9SAndroid Build Coastguard Worker 1929*da0073e9SAndroid Build Coastguard Worker- name: values(Tensor(a) self) -> Tensor(a) 1930*da0073e9SAndroid Build Coastguard Worker dispatch: 1931*da0073e9SAndroid Build Coastguard Worker Default: 1932*da0073e9SAndroid Build Coastguard Worker self: values_backward(grad, self) 1933*da0073e9SAndroid Build Coastguard Worker AutogradNestedTensor: 1934*da0073e9SAndroid Build Coastguard Worker self: at::_nested_view_from_buffer(grad.contiguous(), self._nested_tensor_size(), self._nested_tensor_strides(), self._nested_tensor_storage_offsets()) 1935*da0073e9SAndroid Build Coastguard Worker 1936*da0073e9SAndroid Build Coastguard Worker# Why is _values() not differentiable? 1937*da0073e9SAndroid Build Coastguard Worker# See NOTE [ Sparse: autograd and API ] 1938*da0073e9SAndroid Build Coastguard Worker- name: _values(Tensor(a) self) -> Tensor(a) 1939*da0073e9SAndroid Build Coastguard Worker output_differentiability: [False] 1940*da0073e9SAndroid Build Coastguard Worker 1941*da0073e9SAndroid Build Coastguard Worker# NN 1942*da0073e9SAndroid Build Coastguard Worker- name: _trilinear(Tensor i1, Tensor i2, Tensor i3, int[] expand1, int[] expand2, int[] expand3, int[] sumdim, int unroll_dim=1) -> Tensor 1943*da0073e9SAndroid Build Coastguard Worker i1, i2, i3: "_trilinear_backward(grad, 1944*da0073e9SAndroid Build Coastguard Worker wrap_opt_if(i1, grad_input_mask[1] || grad_input_mask[2]), 1945*da0073e9SAndroid Build Coastguard Worker wrap_opt_if(i2, grad_input_mask[0] || grad_input_mask[2]), 1946*da0073e9SAndroid Build Coastguard Worker wrap_opt_if(i3, grad_input_mask[0] || grad_input_mask[1]), 1947*da0073e9SAndroid Build Coastguard Worker expand1, expand2, expand3, sumdim, grad_input_mask)" 1948*da0073e9SAndroid Build Coastguard Worker result: "_trilinear(i1_t, i2_p, i3_p, expand1, expand2, expand3, sumdim, unroll_dim) + 1949*da0073e9SAndroid Build Coastguard Worker _trilinear(i1_p, i2_t, i3_p, expand1, expand2, expand3, sumdim, unroll_dim) + 1950*da0073e9SAndroid Build Coastguard Worker _trilinear(i1_p, i2_p, i3_t, expand1, expand2, expand3, sumdim, unroll_dim)" 1951*da0073e9SAndroid Build Coastguard Worker 1952*da0073e9SAndroid Build Coastguard Worker- name: constant_pad_nd(Tensor self, SymInt[] pad, Scalar value=0) -> Tensor 1953*da0073e9SAndroid Build Coastguard Worker self: constant_pad_nd_backward(grad, pad) 1954*da0073e9SAndroid Build Coastguard Worker result: constant_pad_nd_symint(self_t, pad, 0) 1955*da0073e9SAndroid Build Coastguard Worker 1956*da0073e9SAndroid Build Coastguard Worker- name: binary_cross_entropy(Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean) -> Tensor 1957*da0073e9SAndroid Build Coastguard Worker self: binary_cross_entropy_backward(grad, self, target, weight, reduction) 1958*da0073e9SAndroid Build Coastguard Worker target: binary_cross_entropy_target_backward(grad, self, target, weight, reduction) 1959*da0073e9SAndroid Build Coastguard Worker result: "apply_loss_reduction( 1960*da0073e9SAndroid Build Coastguard Worker binary_cross_entropy_backward(self_t, self_p, target_p, weight, at::Reduction::None) 1961*da0073e9SAndroid Build Coastguard Worker + binary_cross_entropy_target_backward(target_t, self_p, target_p, weight, at::Reduction::None), 1962*da0073e9SAndroid Build Coastguard Worker reduction)" 1963*da0073e9SAndroid Build Coastguard Worker 1964*da0073e9SAndroid Build Coastguard Worker- name: binary_cross_entropy_backward(Tensor grad_output, Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean) -> Tensor 1965*da0073e9SAndroid Build Coastguard Worker self: binary_cross_entropy_double_backward(grad_output, grad, self, target, weight, reduction) 1966*da0073e9SAndroid Build Coastguard Worker target: binary_cross_entropy_double_backward_target(grad, grad_output, self, target, weight, reduction) 1967*da0073e9SAndroid Build Coastguard Worker grad_output: binary_cross_entropy_double_backward_grad_output(grad, self, target, weight, reduction) 1968*da0073e9SAndroid Build Coastguard Worker result: " binary_cross_entropy_double_backward(grad_output_p, self_t, self_p, target_p, weight, reduction) 1969*da0073e9SAndroid Build Coastguard Worker + binary_cross_entropy_double_backward_target(target_t, grad_output_p, self_p, target_p, weight, reduction) 1970*da0073e9SAndroid Build Coastguard Worker + binary_cross_entropy_double_backward_grad_output(grad_output_t, self_p, target_p, weight, reduction)" 1971*da0073e9SAndroid Build Coastguard Worker 1972*da0073e9SAndroid Build Coastguard Worker- name: binary_cross_entropy_with_logits(Tensor self, Tensor target, Tensor? weight=None, Tensor? pos_weight=None, int reduction=Mean) -> Tensor 1973*da0073e9SAndroid Build Coastguard Worker self: binary_cross_entropy_with_logits_backward(grad, self, target, weight, pos_weight, reduction) 1974*da0073e9SAndroid Build Coastguard Worker target: binary_cross_entropy_with_logits_target_backward(grad, self, target, weight, pos_weight, reduction) 1975*da0073e9SAndroid Build Coastguard Worker result: "apply_loss_reduction( 1976*da0073e9SAndroid Build Coastguard Worker binary_cross_entropy_with_logits_backward(self_t, self_p, target_p, weight, pos_weight, at::Reduction::None) 1977*da0073e9SAndroid Build Coastguard Worker + binary_cross_entropy_with_logits_target_backward(target_t, self_p, target_p, weight, pos_weight, at::Reduction::None), 1978*da0073e9SAndroid Build Coastguard Worker reduction)" 1979*da0073e9SAndroid Build Coastguard Worker 1980*da0073e9SAndroid Build Coastguard Worker- name: embedding(Tensor weight, Tensor indices, SymInt padding_idx=-1, bool scale_grad_by_freq=False, bool sparse=False) -> Tensor 1981*da0073e9SAndroid Build Coastguard Worker indices: non_differentiable 1982*da0073e9SAndroid Build Coastguard Worker weight: embedding_backward_symint(grad, indices, weight.sym_size(0), padding_idx, scale_grad_by_freq, sparse) 1983*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1984*da0073e9SAndroid Build Coastguard Worker 1985*da0073e9SAndroid Build Coastguard Worker- name: embedding_dense_backward(Tensor grad_output, Tensor indices, SymInt num_weights, SymInt padding_idx, bool scale_grad_by_freq) -> Tensor 1986*da0073e9SAndroid Build Coastguard Worker grad_output: embedding_dense_double_backward_symint(grad, indices, padding_idx) 1987*da0073e9SAndroid Build Coastguard Worker indices: non_differentiable 1988*da0073e9SAndroid Build Coastguard Worker result: auto_linear 1989*da0073e9SAndroid Build Coastguard Worker 1990*da0073e9SAndroid Build Coastguard Worker- name: _embedding_bag(Tensor weight, Tensor indices, Tensor offsets, bool scale_grad_by_freq=False, int mode=0, bool sparse=False, Tensor? per_sample_weights=None, bool include_last_offset=False, int padding_idx=-1) -> (Tensor, Tensor, Tensor, Tensor) 1991*da0073e9SAndroid Build Coastguard Worker indices: non_differentiable 1992*da0073e9SAndroid Build Coastguard Worker offsets: non_differentiable 1993*da0073e9SAndroid Build Coastguard Worker weight: _embedding_bag_backward_symint(grad, indices, offsets, result1, result2, result3, weight.sym_size(0), scale_grad_by_freq, mode, sparse, per_sample_weights, padding_idx) 1994*da0073e9SAndroid Build Coastguard Worker per_sample_weights: _embedding_bag_per_sample_weights_backward(grad, weight, indices, offsets, result1, mode, padding_idx) 1995*da0073e9SAndroid Build Coastguard Worker 1996*da0073e9SAndroid Build Coastguard Worker- name: _embedding_bag_dense_backward(Tensor grad, Tensor indices, Tensor offset2bag, Tensor bag_size, Tensor maximum_indices, SymInt num_weights, bool scale_grad_by_freq, int mode, Tensor? per_sample_weights, int padding_idx=-1) -> Tensor 1997*da0073e9SAndroid Build Coastguard Worker indices: non_differentiable 1998*da0073e9SAndroid Build Coastguard Worker offset2bag: non_differentiable 1999*da0073e9SAndroid Build Coastguard Worker bag_size: non_differentiable 2000*da0073e9SAndroid Build Coastguard Worker maximum_indices: non_differentiable 2001*da0073e9SAndroid Build Coastguard Worker 2002*da0073e9SAndroid Build Coastguard Worker- name: embedding_renorm_(Tensor(a!) self, Tensor indices, float max_norm, float norm_type) -> Tensor(a!) 2003*da0073e9SAndroid Build Coastguard Worker indices: non_differentiable 2004*da0073e9SAndroid Build Coastguard Worker self: not_implemented("embedding_renorm") 2005*da0073e9SAndroid Build Coastguard Worker 2006*da0073e9SAndroid Build Coastguard Worker- name: mse_loss(Tensor self, Tensor target, int reduction=Mean) -> Tensor 2007*da0073e9SAndroid Build Coastguard Worker self: mse_loss_backward(grad, self, target, reduction) 2008*da0073e9SAndroid Build Coastguard Worker target: mse_loss_backward(grad, target, self, reduction) 2009*da0073e9SAndroid Build Coastguard Worker result: apply_loss_reduction(mse_loss_backward(self_t.conj(), self_p, target_p, at::Reduction::None).conj() + mse_loss_backward(target_t.conj(), target_p, self_p, at::Reduction::None).conj(), reduction) 2010*da0073e9SAndroid Build Coastguard Worker 2011*da0073e9SAndroid Build Coastguard Worker- name: multi_margin_loss(Tensor self, Tensor target, Scalar p=1, Scalar margin=1, Tensor? weight=None, int reduction=Mean) -> Tensor 2012*da0073e9SAndroid Build Coastguard Worker self: multi_margin_loss_backward(grad, self, target, p, margin, weight, reduction) 2013*da0073e9SAndroid Build Coastguard Worker target: non_differentiable 2014*da0073e9SAndroid Build Coastguard Worker 2015*da0073e9SAndroid Build Coastguard Worker- name: multilabel_margin_loss_forward(Tensor self, Tensor target, int reduction) -> (Tensor output, Tensor is_target) 2016*da0073e9SAndroid Build Coastguard Worker self: multilabel_margin_loss_backward(grad, self, target, reduction, is_target) 2017*da0073e9SAndroid Build Coastguard Worker target: non_differentiable 2018*da0073e9SAndroid Build Coastguard Worker 2019*da0073e9SAndroid Build Coastguard Worker- name: nll_loss_forward(Tensor self, Tensor target, Tensor? weight, int reduction, SymInt ignore_index) -> (Tensor output, Tensor total_weight) 2020*da0073e9SAndroid Build Coastguard Worker self: nll_loss_backward_symint(grad, self, target, weight, reduction, ignore_index, total_weight) 2021*da0073e9SAndroid Build Coastguard Worker target: non_differentiable 2022*da0073e9SAndroid Build Coastguard Worker output: std::get<0>(nll_loss_forward_symint(self_t, target, weight, reduction, ignore_index)) 2023*da0073e9SAndroid Build Coastguard Worker 2024*da0073e9SAndroid Build Coastguard Worker- name: nll_loss2d_forward(Tensor self, Tensor target, Tensor? weight, int reduction, SymInt ignore_index) -> (Tensor output, Tensor total_weight) 2025*da0073e9SAndroid Build Coastguard Worker self: nll_loss2d_backward_symint(grad, self, target, weight, reduction, ignore_index, total_weight) 2026*da0073e9SAndroid Build Coastguard Worker target: non_differentiable 2027*da0073e9SAndroid Build Coastguard Worker output: std::get<0>(nll_loss2d_forward_symint(self_t, target, weight, reduction, ignore_index)) 2028*da0073e9SAndroid Build Coastguard Worker 2029*da0073e9SAndroid Build Coastguard Worker- name: smooth_l1_loss(Tensor self, Tensor target, int reduction=Mean, float beta=1.0) -> Tensor 2030*da0073e9SAndroid Build Coastguard Worker self: smooth_l1_loss_backward(grad, self, target, reduction, beta) 2031*da0073e9SAndroid Build Coastguard Worker target: smooth_l1_loss_backward(grad, target, self, reduction, beta) 2032*da0073e9SAndroid Build Coastguard Worker result: apply_loss_reduction(smooth_l1_loss_backward(self_t.conj(), self_p, target_p, at::Reduction::None, beta).conj() + smooth_l1_loss_backward(target_t.conj(), target_p, self_p, at::Reduction::None, beta).conj(), reduction) 2033*da0073e9SAndroid Build Coastguard Worker 2034*da0073e9SAndroid Build Coastguard Worker- name: huber_loss(Tensor self, Tensor target, int reduction=Mean, float delta=1.0) -> Tensor 2035*da0073e9SAndroid Build Coastguard Worker self: huber_loss_backward(grad, self, target, reduction, delta) 2036*da0073e9SAndroid Build Coastguard Worker target: huber_loss_backward(grad, target, self, reduction, delta) 2037*da0073e9SAndroid Build Coastguard Worker result: apply_loss_reduction(huber_loss_backward(self_t.conj(), self_p, target_p, at::Reduction::None, delta).conj() + huber_loss_backward(target_t.conj(), target_p, self_p, at::Reduction::None, delta).conj(), reduction) 2038*da0073e9SAndroid Build Coastguard Worker 2039*da0073e9SAndroid Build Coastguard Worker- name: soft_margin_loss(Tensor self, Tensor target, int reduction=Mean) -> Tensor 2040*da0073e9SAndroid Build Coastguard Worker self: soft_margin_loss_backward(grad, self, target, reduction) 2041*da0073e9SAndroid Build Coastguard Worker result: apply_loss_reduction(soft_margin_loss_backward(self_t.conj(), self_p, target, at::Reduction::None).conj(), reduction) 2042*da0073e9SAndroid Build Coastguard Worker 2043*da0073e9SAndroid Build Coastguard Worker- name: relu(Tensor self) -> Tensor 2044*da0073e9SAndroid Build Coastguard Worker self: threshold_backward(grad, result, 0) 2045*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 2046*da0073e9SAndroid Build Coastguard Worker 2047*da0073e9SAndroid Build Coastguard Worker- name: silu(Tensor self) -> Tensor 2048*da0073e9SAndroid Build Coastguard Worker self: "GradMode::is_enabled() ? infinitely_differentiable_silu_backward(grad, self) : silu_backward(grad, self)" 2049*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 2050*da0073e9SAndroid Build Coastguard Worker 2051*da0073e9SAndroid Build Coastguard Worker- name: mish(Tensor self) -> Tensor 2052*da0073e9SAndroid Build Coastguard Worker self: "GradMode::is_enabled() ? infinitely_differentiable_mish_backward(grad, self) : mish_backward(grad, self)" 2053*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 2054*da0073e9SAndroid Build Coastguard Worker 2055*da0073e9SAndroid Build Coastguard Worker- name: elu(Tensor self, Scalar alpha=1, Scalar scale=1, Scalar input_scale=1) -> Tensor 2056*da0073e9SAndroid Build Coastguard Worker self: elu_backward(grad, alpha, scale, input_scale, /* is_result */ false, self) 2057*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 2058*da0073e9SAndroid Build Coastguard Worker 2059*da0073e9SAndroid Build Coastguard Worker- name: elu_(Tensor(a!) self, Scalar alpha=1, Scalar scale=1, Scalar input_scale=1) -> Tensor(a!) 2060*da0073e9SAndroid Build Coastguard Worker self: elu_backward(grad, alpha, scale, input_scale, /* is_result */ true, result) 2061*da0073e9SAndroid Build Coastguard Worker result: self_t.copy_(elu_backward(original_self_t, alpha, scale, input_scale, /* is_result */ true, result)) 2062*da0073e9SAndroid Build Coastguard Worker 2063*da0073e9SAndroid Build Coastguard Worker- name: celu(Tensor self, Scalar alpha=1.0) -> Tensor 2064*da0073e9SAndroid Build Coastguard Worker self: elu_backward(grad, alpha, 1, 1.0/alpha.toFloat(), /* is_result */ false, self) 2065*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 2066*da0073e9SAndroid Build Coastguard Worker 2067*da0073e9SAndroid Build Coastguard Worker- name: celu_(Tensor(a!) self, Scalar alpha=1.0) -> Tensor(a!) 2068*da0073e9SAndroid Build Coastguard Worker self: elu_backward(grad, alpha, 1, 1.0/alpha.toFloat(), /* is_result */ true, result) 2069*da0073e9SAndroid Build Coastguard Worker result: self_t.copy_(elu_backward(original_self_t, alpha, 1, 1.0/alpha.toFloat(), /* is_result */ true, result)) 2070*da0073e9SAndroid Build Coastguard Worker 2071*da0073e9SAndroid Build Coastguard Worker- name: gelu(Tensor self, *, str approximate='none') -> Tensor 2072*da0073e9SAndroid Build Coastguard Worker self: gelu_backward(grad, self, approximate) 2073*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 2074*da0073e9SAndroid Build Coastguard Worker 2075*da0073e9SAndroid Build Coastguard Worker- name: gelu_backward(Tensor grad_output, Tensor self, *, str approximate='none') -> Tensor 2076*da0073e9SAndroid Build Coastguard Worker grad_output: gelu_backward(grad, self, approximate) 2077*da0073e9SAndroid Build Coastguard Worker self: gelu_double_backward(grad, grad_output, self, approximate) 2078*da0073e9SAndroid Build Coastguard Worker result: gelu_backward(grad_output_t, self_p, approximate) + gelu_double_backward(self_t, grad_output_p, self_p, approximate) 2079*da0073e9SAndroid Build Coastguard Worker 2080*da0073e9SAndroid Build Coastguard Worker- name: glu(Tensor self, int dim=-1) -> Tensor 2081*da0073e9SAndroid Build Coastguard Worker # TODO: glu_backward can benefit from forward result, 2082*da0073e9SAndroid Build Coastguard Worker # and forward ad/forward over reverse ad for that matter 2083*da0073e9SAndroid Build Coastguard Worker self: glu_backward(grad, self, dim) 2084*da0073e9SAndroid Build Coastguard Worker result: glu_jvp(result, self_p, self_t, dim) 2085*da0073e9SAndroid Build Coastguard Worker 2086*da0073e9SAndroid Build Coastguard Worker- name: hardshrink(Tensor self, Scalar lambd=0.5) -> Tensor 2087*da0073e9SAndroid Build Coastguard Worker self: hardshrink_backward(grad, self, lambd) 2088*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 2089*da0073e9SAndroid Build Coastguard Worker 2090*da0073e9SAndroid Build Coastguard Worker- name: hardshrink_backward(Tensor grad_out, Tensor self, Scalar lambd) -> Tensor 2091*da0073e9SAndroid Build Coastguard Worker grad_out: hardshrink_backward(grad, self, lambd) 2092*da0073e9SAndroid Build Coastguard Worker self: zeros_like(grad) 2093*da0073e9SAndroid Build Coastguard Worker result: at::where((self_p > lambd).logical_or(self_p < -lambd), grad_out_t, at::zeros({}, result.options()).expand_as(result)) 2094*da0073e9SAndroid Build Coastguard Worker 2095*da0073e9SAndroid Build Coastguard Worker- name: hardtanh(Tensor self, Scalar min_val=-1, Scalar max_val=1) -> Tensor 2096*da0073e9SAndroid Build Coastguard Worker self: hardtanh_backward(grad, self, min_val, max_val) 2097*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 2098*da0073e9SAndroid Build Coastguard Worker 2099*da0073e9SAndroid Build Coastguard Worker- name: leaky_relu(Tensor self, Scalar negative_slope=0.01) -> Tensor 2100*da0073e9SAndroid Build Coastguard Worker self: leaky_relu_backward(grad, self, negative_slope, false) 2101*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 2102*da0073e9SAndroid Build Coastguard Worker 2103*da0073e9SAndroid Build Coastguard Worker- name: leaky_relu_(Tensor(a!) self, Scalar negative_slope=0.01) -> Tensor(a!) 2104*da0073e9SAndroid Build Coastguard Worker self: leaky_relu_backward(grad, result, negative_slope, true) 2105*da0073e9SAndroid Build Coastguard Worker result: self_t.copy_(leaky_relu_backward(original_self_t.conj(), result, negative_slope, true).conj()) 2106*da0073e9SAndroid Build Coastguard Worker 2107*da0073e9SAndroid Build Coastguard Worker- name: log_sigmoid_forward(Tensor self) -> (Tensor output, Tensor buffer) 2108*da0073e9SAndroid Build Coastguard Worker self: log_sigmoid_backward(grad, self, buffer) 2109*da0073e9SAndroid Build Coastguard Worker output: log_sigmoid_backward(self_t.conj(), self_p, buffer).conj() 2110*da0073e9SAndroid Build Coastguard Worker output_differentiability: [True, False] 2111*da0073e9SAndroid Build Coastguard Worker 2112*da0073e9SAndroid Build Coastguard Worker- name: _log_softmax(Tensor self, int dim, bool half_to_float) -> Tensor 2113*da0073e9SAndroid Build Coastguard Worker self: _log_softmax_backward_data(grad, result, dim, self.scalar_type()) 2114*da0073e9SAndroid Build Coastguard Worker result: self_t - logsumexp_jvp(self_p, self_t, {dim}, true) 2115*da0073e9SAndroid Build Coastguard Worker 2116*da0073e9SAndroid Build Coastguard Worker- name: _sparse_log_softmax(Tensor self, int dim, bool half_to_float) -> Tensor 2117*da0073e9SAndroid Build Coastguard Worker self: _sparse_log_softmax_backward_data(grad, result, dim, self) 2118*da0073e9SAndroid Build Coastguard Worker 2119*da0073e9SAndroid Build Coastguard Worker- name: _masked_softmax(Tensor self, Tensor mask, int? dim=None, int? mask_type=None) -> Tensor 2120*da0073e9SAndroid Build Coastguard Worker self: _masked_softmax_backward(grad, result, mask, dim) 2121*da0073e9SAndroid Build Coastguard Worker mask: non_differentiable 2122*da0073e9SAndroid Build Coastguard Worker 2123*da0073e9SAndroid Build Coastguard Worker- name: _prelu_kernel(Tensor self, Tensor weight) -> Tensor 2124*da0073e9SAndroid Build Coastguard Worker self, weight: "grad.defined() ? _prelu_kernel_backward(grad, self, weight) : std::tuple<Tensor, Tensor>()" 2125*da0073e9SAndroid Build Coastguard Worker result: at::where(self_p >= 0, self_t, weight_p * self_t + weight_t * self_p) 2126*da0073e9SAndroid Build Coastguard Worker 2127*da0073e9SAndroid Build Coastguard Worker- name: _prelu_kernel_backward(Tensor grad_output, Tensor self, Tensor weight) -> (Tensor, Tensor) 2128*da0073e9SAndroid Build Coastguard Worker grad_output: "grads[0].defined() ? 2129*da0073e9SAndroid Build Coastguard Worker (grads[1].defined() ? at::where(self >= 0, grads[0], grads[0] * weight + grads[1] * self) 2130*da0073e9SAndroid Build Coastguard Worker : at::where(self >= 0, grads[0], grads[0] * weight)) 2131*da0073e9SAndroid Build Coastguard Worker : at::where(self >= 0, at::zeros({}, grad_output.options()), grads[1] * self)" 2132*da0073e9SAndroid Build Coastguard Worker self: "grads[1].defined() ? at::where(self >= 0, at::zeros({}, self.options()), grad_output * grads[1]) : zeros_like(self)" 2133*da0073e9SAndroid Build Coastguard Worker weight: "grads[0].defined() ? at::where(self >= 0, at::zeros({}, weight.options()), grad_output * grads[0]) : zeros_like(self)" 2134*da0073e9SAndroid Build Coastguard Worker result0: at::where(self_p >= 0, grad_output_t, grad_output_t * weight_p + grad_output_p * weight_t) 2135*da0073e9SAndroid Build Coastguard Worker result1: at::where(self_p >= 0, at::zeros({}, self_p.options()), grad_output_p * self_t + grad_output_t * self_p) 2136*da0073e9SAndroid Build Coastguard Worker 2137*da0073e9SAndroid Build Coastguard Worker- name: rrelu_with_noise(Tensor self, Tensor noise, Scalar lower=0.125, Scalar upper=0.3333333333333333, bool training=False, Generator? generator=None) -> Tensor 2138*da0073e9SAndroid Build Coastguard Worker self: rrelu_with_noise_backward(grad, self, noise, lower, upper, training, false) 2139*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 2140*da0073e9SAndroid Build Coastguard Worker 2141*da0073e9SAndroid Build Coastguard Worker- name: rrelu_with_noise_(Tensor(a!) self, Tensor noise, Scalar lower=0.125, Scalar upper=0.3333333333333333, bool training=False, Generator? generator=None) -> Tensor(a!) 2142*da0073e9SAndroid Build Coastguard Worker self: rrelu_with_noise_backward(grad, result, noise, lower, upper, training, true) 2143*da0073e9SAndroid Build Coastguard Worker 2144*da0073e9SAndroid Build Coastguard Worker- name: _softmax(Tensor self, int dim, bool half_to_float) -> Tensor 2145*da0073e9SAndroid Build Coastguard Worker self: _softmax_backward_data(grad, result, dim, self.scalar_type()) 2146*da0073e9SAndroid Build Coastguard Worker result: result * (self_t - logsumexp_jvp(self_p, self_t, {dim}, true)) 2147*da0073e9SAndroid Build Coastguard Worker 2148*da0073e9SAndroid Build Coastguard Worker- name: _sparse_softmax(Tensor self, int dim, bool half_to_float) -> Tensor 2149*da0073e9SAndroid Build Coastguard Worker self: _sparse_softmax_backward_data(grad, result, dim, self) 2150*da0073e9SAndroid Build Coastguard Worker 2151*da0073e9SAndroid Build Coastguard Worker- name: _sparse_sparse_matmul(Tensor self, Tensor other) -> Tensor 2152*da0073e9SAndroid Build Coastguard Worker self: sparse_sparse_matmul_backward(grad, self, other, 0) 2153*da0073e9SAndroid Build Coastguard Worker other: sparse_sparse_matmul_backward(grad, self, other, 1) 2154*da0073e9SAndroid Build Coastguard Worker 2155*da0073e9SAndroid Build Coastguard Worker- name: softplus(Tensor self, Scalar beta=1, Scalar threshold=20) -> Tensor 2156*da0073e9SAndroid Build Coastguard Worker self: softplus_backward(grad, self, beta, threshold) 2157*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 2158*da0073e9SAndroid Build Coastguard Worker 2159*da0073e9SAndroid Build Coastguard Worker- name: softshrink(Tensor self, Scalar lambd=0.5) -> Tensor 2160*da0073e9SAndroid Build Coastguard Worker self: softshrink_backward(grad, self, lambd) 2161*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 2162*da0073e9SAndroid Build Coastguard Worker 2163*da0073e9SAndroid Build Coastguard Worker- name: threshold(Tensor self, Scalar threshold, Scalar value) -> Tensor 2164*da0073e9SAndroid Build Coastguard Worker self: threshold_backward(grad, self, threshold) 2165*da0073e9SAndroid Build Coastguard Worker result: auto_element_wise 2166*da0073e9SAndroid Build Coastguard Worker 2167*da0073e9SAndroid Build Coastguard Worker- name: threshold_(Tensor(a!) self, Scalar threshold, Scalar value) -> Tensor(a!) 2168*da0073e9SAndroid Build Coastguard Worker self: threshold_backward(grad, self, threshold) 2169*da0073e9SAndroid Build Coastguard Worker result: self_t.copy_(threshold_backward(self_t.conj(), original_self_p, threshold).conj()) 2170*da0073e9SAndroid Build Coastguard Worker 2171*da0073e9SAndroid Build Coastguard Worker- name: reflection_pad1d(Tensor self, SymInt[2] padding) -> Tensor 2172*da0073e9SAndroid Build Coastguard Worker self: reflection_pad1d_backward_symint(grad, self, padding) 2173*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2174*da0073e9SAndroid Build Coastguard Worker 2175*da0073e9SAndroid Build Coastguard Worker- name: reflection_pad2d(Tensor self, SymInt[4] padding) -> Tensor 2176*da0073e9SAndroid Build Coastguard Worker self: reflection_pad2d_backward_symint(grad, self, padding) 2177*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2178*da0073e9SAndroid Build Coastguard Worker 2179*da0073e9SAndroid Build Coastguard Worker- name: reflection_pad3d(Tensor self, SymInt[6] padding) -> Tensor 2180*da0073e9SAndroid Build Coastguard Worker self: reflection_pad3d_backward_symint(grad, self, padding) 2181*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2182*da0073e9SAndroid Build Coastguard Worker 2183*da0073e9SAndroid Build Coastguard Worker- name: replication_pad1d(Tensor self, SymInt[2] padding) -> Tensor 2184*da0073e9SAndroid Build Coastguard Worker self: replication_pad1d_backward_symint(grad, self, padding) 2185*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2186*da0073e9SAndroid Build Coastguard Worker 2187*da0073e9SAndroid Build Coastguard Worker- name: replication_pad2d(Tensor self, SymInt[4] padding) -> Tensor 2188*da0073e9SAndroid Build Coastguard Worker self: replication_pad2d_backward_symint(grad, self, padding) 2189*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2190*da0073e9SAndroid Build Coastguard Worker 2191*da0073e9SAndroid Build Coastguard Worker- name: replication_pad3d(Tensor self, SymInt[6] padding) -> Tensor 2192*da0073e9SAndroid Build Coastguard Worker self: replication_pad3d_backward_symint(grad, self, padding) 2193*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2194*da0073e9SAndroid Build Coastguard Worker 2195*da0073e9SAndroid Build Coastguard Worker- name: upsample_linear1d(Tensor self, SymInt[1] output_size, bool align_corners, float? scales=None) -> Tensor 2196*da0073e9SAndroid Build Coastguard Worker self: upsample_linear1d_backward_symint(grad, output_size, self.sym_sizes(), align_corners, scales) 2197*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2198*da0073e9SAndroid Build Coastguard Worker 2199*da0073e9SAndroid Build Coastguard Worker- name: upsample_bilinear2d(Tensor self, SymInt[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor 2200*da0073e9SAndroid Build Coastguard Worker self: upsample_bilinear2d_backward_symint(grad, output_size, self.sym_sizes(), align_corners, scales_h, scales_w) 2201*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2202*da0073e9SAndroid Build Coastguard Worker 2203*da0073e9SAndroid Build Coastguard Worker- name: _upsample_bilinear2d_aa(Tensor self, SymInt[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor 2204*da0073e9SAndroid Build Coastguard Worker self: _upsample_bilinear2d_aa_backward_symint(grad, output_size, self.sym_sizes(), align_corners, scales_h, scales_w) 2205*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2206*da0073e9SAndroid Build Coastguard Worker 2207*da0073e9SAndroid Build Coastguard Worker- name: upsample_bicubic2d(Tensor self, SymInt[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor 2208*da0073e9SAndroid Build Coastguard Worker self: upsample_bicubic2d_backward_symint(grad, output_size, self.sym_sizes(), align_corners, scales_h, scales_w) 2209*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2210*da0073e9SAndroid Build Coastguard Worker 2211*da0073e9SAndroid Build Coastguard Worker- name: _upsample_bicubic2d_aa(Tensor self, SymInt[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor 2212*da0073e9SAndroid Build Coastguard Worker self: _upsample_bicubic2d_aa_backward_symint(grad, output_size, self.sym_sizes(), align_corners, scales_h, scales_w) 2213*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2214*da0073e9SAndroid Build Coastguard Worker 2215*da0073e9SAndroid Build Coastguard Worker- name: upsample_trilinear3d(Tensor self, SymInt[3] output_size, bool align_corners, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> Tensor 2216*da0073e9SAndroid Build Coastguard Worker self: upsample_trilinear3d_backward_symint(grad, output_size, self.sym_sizes(), align_corners, scales_d, scales_h, scales_w) 2217*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2218*da0073e9SAndroid Build Coastguard Worker 2219*da0073e9SAndroid Build Coastguard Worker- name: upsample_nearest1d(Tensor self, SymInt[1] output_size, float? scales=None) -> Tensor 2220*da0073e9SAndroid Build Coastguard Worker self: upsample_nearest1d_backward_symint(grad, output_size, self.sym_sizes(), scales) 2221*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2222*da0073e9SAndroid Build Coastguard Worker 2223*da0073e9SAndroid Build Coastguard Worker- name: _upsample_nearest_exact1d(Tensor self, SymInt[1] output_size, float? scales=None) -> Tensor 2224*da0073e9SAndroid Build Coastguard Worker self: _upsample_nearest_exact1d_backward_symint(grad, output_size, self.sym_sizes(), scales) 2225*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2226*da0073e9SAndroid Build Coastguard Worker 2227*da0073e9SAndroid Build Coastguard Worker- name: upsample_nearest2d(Tensor self, SymInt[2] output_size, float? scales_h=None, float? scales_w=None) -> Tensor 2228*da0073e9SAndroid Build Coastguard Worker self: upsample_nearest2d_backward_symint(grad, output_size, self.sym_sizes(), scales_h, scales_w) 2229*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2230*da0073e9SAndroid Build Coastguard Worker 2231*da0073e9SAndroid Build Coastguard Worker- name: _upsample_nearest_exact2d(Tensor self, SymInt[2] output_size, float? scales_h=None, float? scales_w=None) -> Tensor 2232*da0073e9SAndroid Build Coastguard Worker self: _upsample_nearest_exact2d_backward_symint(grad, output_size, self.sym_sizes(), scales_h, scales_w) 2233*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2234*da0073e9SAndroid Build Coastguard Worker 2235*da0073e9SAndroid Build Coastguard Worker- name: upsample_nearest3d(Tensor self, SymInt[3] output_size, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> Tensor 2236*da0073e9SAndroid Build Coastguard Worker self: upsample_nearest3d_backward_symint(grad, output_size, self.sym_sizes(), scales_d, scales_h, scales_w) 2237*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2238*da0073e9SAndroid Build Coastguard Worker 2239*da0073e9SAndroid Build Coastguard Worker- name: _upsample_nearest_exact3d(Tensor self, SymInt[3] output_size, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> Tensor 2240*da0073e9SAndroid Build Coastguard Worker self: _upsample_nearest_exact3d_backward_symint(grad, output_size, self.sym_sizes(), scales_d, scales_h, scales_w) 2241*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2242*da0073e9SAndroid Build Coastguard Worker 2243*da0073e9SAndroid Build Coastguard Worker- name: pixel_shuffle(Tensor self, int upscale_factor) -> Tensor 2244*da0073e9SAndroid Build Coastguard Worker self: pixel_unshuffle(grad, upscale_factor) 2245*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2246*da0073e9SAndroid Build Coastguard Worker 2247*da0073e9SAndroid Build Coastguard Worker- name: pixel_unshuffle(Tensor self, int downscale_factor) -> Tensor 2248*da0073e9SAndroid Build Coastguard Worker self: pixel_shuffle(grad, downscale_factor) 2249*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2250*da0073e9SAndroid Build Coastguard Worker 2251*da0073e9SAndroid Build Coastguard Worker- name: _adaptive_avg_pool2d(Tensor self, SymInt[2] output_size) -> Tensor 2252*da0073e9SAndroid Build Coastguard Worker self: _adaptive_avg_pool2d_backward(grad, self) 2253*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2254*da0073e9SAndroid Build Coastguard Worker 2255*da0073e9SAndroid Build Coastguard Worker- name: _adaptive_avg_pool3d(Tensor self, SymInt[3] output_size) -> Tensor 2256*da0073e9SAndroid Build Coastguard Worker self: _adaptive_avg_pool3d_backward(grad, self) 2257*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2258*da0073e9SAndroid Build Coastguard Worker 2259*da0073e9SAndroid Build Coastguard Worker- name: adaptive_max_pool2d(Tensor self, int[2] output_size) -> (Tensor, Tensor) 2260*da0073e9SAndroid Build Coastguard Worker self: adaptive_max_pool2d_backward(grad, self, result1) 2261*da0073e9SAndroid Build Coastguard Worker result0: gather(self_t.flatten(-2), -1, result1.flatten(-2)).view_as(result1) 2262*da0073e9SAndroid Build Coastguard Worker output_differentiability: [True, False] 2263*da0073e9SAndroid Build Coastguard Worker 2264*da0073e9SAndroid Build Coastguard Worker- name: adaptive_max_pool3d(Tensor self, int[3] output_size) -> (Tensor, Tensor) 2265*da0073e9SAndroid Build Coastguard Worker self: adaptive_max_pool3d_backward(grad, self, result1) 2266*da0073e9SAndroid Build Coastguard Worker result0: gather(self_t.flatten(-3), -1, result1.flatten(-3)).view_as(result1) 2267*da0073e9SAndroid Build Coastguard Worker output_differentiability: [True, False] 2268*da0073e9SAndroid Build Coastguard Worker 2269*da0073e9SAndroid Build Coastguard Worker- name: avg_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, bool ceil_mode=False, bool count_include_pad=True, int? divisor_override=None) -> Tensor 2270*da0073e9SAndroid Build Coastguard Worker self: avg_pool2d_backward(grad, self, kernel_size, stride, padding, ceil_mode, count_include_pad, divisor_override) 2271*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2272*da0073e9SAndroid Build Coastguard Worker 2273*da0073e9SAndroid Build Coastguard Worker- name: avg_pool3d(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=0, bool ceil_mode=False, bool count_include_pad=True, int? divisor_override=None) -> Tensor 2274*da0073e9SAndroid Build Coastguard Worker self: avg_pool3d_backward(grad, self, kernel_size, stride, padding, ceil_mode, count_include_pad, divisor_override) 2275*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2276*da0073e9SAndroid Build Coastguard Worker 2277*da0073e9SAndroid Build Coastguard Worker- name: fractional_max_pool2d(Tensor self, int[2] kernel_size, int[2] output_size, Tensor random_samples) -> (Tensor, Tensor) 2278*da0073e9SAndroid Build Coastguard Worker self: fractional_max_pool2d_backward(grad, self, kernel_size, output_size, result1) 2279*da0073e9SAndroid Build Coastguard Worker result0: gather(self_t.flatten(-2), -1, result1.flatten(-2)).view_as(result1) 2280*da0073e9SAndroid Build Coastguard Worker output_differentiability: [True, False] 2281*da0073e9SAndroid Build Coastguard Worker 2282*da0073e9SAndroid Build Coastguard Worker- name: fractional_max_pool3d(Tensor self, int[3] kernel_size, int[3] output_size, Tensor random_samples) -> (Tensor, Tensor) 2283*da0073e9SAndroid Build Coastguard Worker self: fractional_max_pool3d_backward(grad, self, kernel_size, output_size, result1) 2284*da0073e9SAndroid Build Coastguard Worker result0: gather(self_t.flatten(-3), -1, result1.flatten(-3)).view_as(result1) 2285*da0073e9SAndroid Build Coastguard Worker output_differentiability: [True, False] 2286*da0073e9SAndroid Build Coastguard Worker 2287*da0073e9SAndroid Build Coastguard Worker- name: linear(Tensor input, Tensor weight, Tensor? bias=None) -> Tensor 2288*da0073e9SAndroid Build Coastguard Worker input, weight, bias: "grad.defined() ? linear_backward(input, grad, weight, grad_input_mask) : std::tuple<Tensor, Tensor, Tensor>()" 2289*da0073e9SAndroid Build Coastguard Worker 2290*da0073e9SAndroid Build Coastguard Worker- name: linear_backward(Tensor self, Tensor grad_output, Tensor weight, bool[3] output_mask) -> (Tensor, Tensor, Tensor) 2291*da0073e9SAndroid Build Coastguard Worker self, grad_output, weight: linear_double_backward(grads, self, grad_output, weight) 2292*da0073e9SAndroid Build Coastguard Worker 2293*da0073e9SAndroid Build Coastguard Worker#mps 2294*da0073e9SAndroid Build Coastguard Worker- name: max_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False) -> Tensor 2295*da0073e9SAndroid Build Coastguard Worker self: max_pool2d_backward(grad, self, kernel_size, stride, padding, dilation, ceil_mode) 2296*da0073e9SAndroid Build Coastguard Worker 2297*da0073e9SAndroid Build Coastguard Worker- name: _mps_convolution(Tensor self, Tensor weight, Tensor? bias, SymInt[] padding, SymInt[] stride, SymInt[] dilation, SymInt groups) -> Tensor 2298*da0073e9SAndroid Build Coastguard Worker self, weight, bias: "grad.defined() ? mps_convolution_backward_symint(self, grad, weight, padding, stride, dilation, groups, grad_input_mask) : std::tuple<Tensor, Tensor, Tensor>()" 2299*da0073e9SAndroid Build Coastguard Worker 2300*da0073e9SAndroid Build Coastguard Worker- name: mps_convolution_backward(Tensor self, Tensor grad_output, Tensor weight, SymInt[] padding, SymInt[] stride, SymInt[] dilation, SymInt groups, bool[3] output_mask) -> (Tensor, Tensor, Tensor) 2301*da0073e9SAndroid Build Coastguard Worker grad_output, self, weight: _convolution_double_backward_symint(grads[0], grads[1], grads[2], grad_output, weight, self, stride, padding, dilation, false, std::vector<c10::SymInt>(padding.size(), 0), groups, grad_input_mask) 2302*da0073e9SAndroid Build Coastguard Worker 2303*da0073e9SAndroid Build Coastguard Worker- name: max_pool2d_with_indices(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False) -> (Tensor, Tensor) 2304*da0073e9SAndroid Build Coastguard Worker self: max_pool2d_with_indices_backward(grad, self, kernel_size, stride, padding, dilation, ceil_mode, result1) 2305*da0073e9SAndroid Build Coastguard Worker result0: gather(self_t.flatten(-2), -1, result1.flatten(-2)).view_as(result1) 2306*da0073e9SAndroid Build Coastguard Worker output_differentiability: [True, False] 2307*da0073e9SAndroid Build Coastguard Worker 2308*da0073e9SAndroid Build Coastguard Worker- name: max_pool3d_with_indices(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=0, int[3] dilation=1, bool ceil_mode=False) -> (Tensor, Tensor) 2309*da0073e9SAndroid Build Coastguard Worker self: max_pool3d_with_indices_backward(grad, self, kernel_size, stride, padding, dilation, ceil_mode, result1) 2310*da0073e9SAndroid Build Coastguard Worker result0: gather(self_t.flatten(-3), -1, result1.flatten(-3)).view_as(result1) 2311*da0073e9SAndroid Build Coastguard Worker output_differentiability: [True, False] 2312*da0073e9SAndroid Build Coastguard Worker 2313*da0073e9SAndroid Build Coastguard Worker- name: max_unpool2d(Tensor self, Tensor indices, SymInt[2] output_size) -> Tensor 2314*da0073e9SAndroid Build Coastguard Worker self: max_pool_double_backward(grad, indices, 2) 2315*da0073e9SAndroid Build Coastguard Worker indices: non_differentiable 2316*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2317*da0073e9SAndroid Build Coastguard Worker 2318*da0073e9SAndroid Build Coastguard Worker- name: max_unpool3d(Tensor self, Tensor indices, SymInt[3] output_size, int[3] stride, int[3] padding) -> Tensor 2319*da0073e9SAndroid Build Coastguard Worker self: max_pool_double_backward(grad, indices, 3) 2320*da0073e9SAndroid Build Coastguard Worker indices: non_differentiable 2321*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2322*da0073e9SAndroid Build Coastguard Worker 2323*da0073e9SAndroid Build Coastguard Worker- name: convolution(Tensor input, Tensor weight, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups) -> Tensor 2324*da0073e9SAndroid Build Coastguard Worker input, weight, bias: "grad.defined() ? convolution_backward_symint(grad, input, weight, bias->sym_sizes(), stride, padding, dilation, transposed, output_padding, groups, grad_input_mask) : std::tuple<Tensor, Tensor, Tensor>()" 2325*da0073e9SAndroid Build Coastguard Worker result: convolution_jvp(input_p, input_t, weight_p, weight_t, bias_p, bias_t, stride, padding, dilation, transposed, output_padding, groups) 2326*da0073e9SAndroid Build Coastguard Worker 2327*da0073e9SAndroid Build Coastguard Worker# TorchScript serializes calls to _convolution so this entry is present until that is changed to use convolution. 2328*da0073e9SAndroid Build Coastguard Worker# Note that the benchmark, deterministic, cudnn_enabled, and allow_tf32 flags are queried from the global context 2329*da0073e9SAndroid Build Coastguard Worker# by convolution_backward instead of being passed along from the forward pass. 2330*da0073e9SAndroid Build Coastguard Worker- name: _convolution(Tensor input, Tensor weight, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups, bool benchmark, bool deterministic, bool cudnn_enabled, bool allow_tf32) -> Tensor 2331*da0073e9SAndroid Build Coastguard Worker input, weight, bias: "grad.defined() ? convolution_backward_symint(grad, input, weight, bias->sym_sizes(), stride, padding, dilation, transposed, output_padding, groups, grad_input_mask) : std::tuple<Tensor, Tensor, Tensor>()" 2332*da0073e9SAndroid Build Coastguard Worker result: _convolution_jvp(input_p, input_t, weight_p, weight_t, bias_p, bias_t, stride, padding, dilation, transposed, output_padding, groups, benchmark, deterministic, cudnn_enabled, allow_tf32) 2333*da0073e9SAndroid Build Coastguard Worker 2334*da0073e9SAndroid Build Coastguard Worker- name: convolution_backward(Tensor grad_output, Tensor input, Tensor weight, SymInt[]? bias_sizes, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups, bool[3] output_mask) -> (Tensor, Tensor, Tensor) 2335*da0073e9SAndroid Build Coastguard Worker grad_output, input, weight: _convolution_double_backward_symint(grads[0], grads[1], grads[2], grad_output, weight, input, stride, padding, dilation, transposed, output_padding, groups, grad_input_mask) 2336*da0073e9SAndroid Build Coastguard Worker result0: std::get<0>(convolution_backward_symint(grad_output_p, input_p, weight_t, bias_sizes, stride, padding, dilation, transposed, output_padding, groups, {true, false, false})) + std::get<0>(convolution_backward_symint(grad_output_t, input_p, weight_p, bias_sizes, stride, padding, dilation, transposed, output_padding, groups, {true, false, false})) 2337*da0073e9SAndroid Build Coastguard Worker result1: std::get<1>(convolution_backward_symint(grad_output_p, input_t, weight_p, bias_sizes, stride, padding, dilation, transposed, output_padding, groups, {false, true, false})) + std::get<1>(convolution_backward_symint(grad_output_t, input_p, weight_p, bias_sizes, stride, padding, dilation, transposed, output_padding, groups, {false, true, false})) 2338*da0073e9SAndroid Build Coastguard Worker result2: convolution_backward_jvp_grad_bias(grad_output_t, result2) 2339*da0073e9SAndroid Build Coastguard Worker 2340*da0073e9SAndroid Build Coastguard Worker- name: convolution_overrideable(Tensor input, Tensor weight, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups) -> Tensor 2341*da0073e9SAndroid Build Coastguard Worker input, weight, bias: "grad.defined() ? convolution_backward_overrideable_symint(grad, input, weight, stride, padding, dilation, transposed, output_padding, groups, grad_input_mask) : std::tuple<Tensor, Tensor, Tensor>()" 2342*da0073e9SAndroid Build Coastguard Worker 2343*da0073e9SAndroid Build Coastguard Worker- name: convolution_backward_overrideable(Tensor grad_output, Tensor input, Tensor weight, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups, bool[3] output_mask) -> (Tensor grad_input, Tensor grad_weight, Tensor grad_bias) 2344*da0073e9SAndroid Build Coastguard Worker grad_output, input, weight: _convolution_double_backward_symint(grads[0], grads[1], grads[2], grad_output, weight, input, stride, padding, dilation, transposed, output_padding, groups, grad_input_mask) 2345*da0073e9SAndroid Build Coastguard Worker 2346*da0073e9SAndroid Build Coastguard Worker- name: slow_conv_transpose2d(Tensor self, Tensor weight, SymInt[2] kernel_size, Tensor? bias=None, SymInt[2] stride=1, SymInt[2] padding=0, SymInt[2] output_padding=0, SymInt[2] dilation=1) -> Tensor 2347*da0073e9SAndroid Build Coastguard Worker self, weight, bias: "grad.defined() ? convolution_backward_symint(grad, self, weight, bias->sym_sizes(), stride, padding, dilation, true, output_padding, 1, grad_input_mask) : std::tuple<Tensor, Tensor, Tensor>()" 2348*da0073e9SAndroid Build Coastguard Worker 2349*da0073e9SAndroid Build Coastguard Worker- name: slow_conv_transpose3d(Tensor self, Tensor weight, SymInt[3] kernel_size, Tensor? bias=None, SymInt[3] stride=1, SymInt[3] padding=0, SymInt[3] output_padding=0, SymInt[3] dilation=1) -> Tensor 2350*da0073e9SAndroid Build Coastguard Worker self, weight, bias: "grad.defined() ? convolution_backward_symint(grad, self, weight, bias->sym_sizes(), stride, padding, dilation, true, output_padding, 1, grad_input_mask) : std::tuple<Tensor, Tensor, Tensor>()" 2351*da0073e9SAndroid Build Coastguard Worker 2352*da0073e9SAndroid Build Coastguard Worker- name: _slow_conv2d_forward(Tensor self, Tensor weight, SymInt[2] kernel_size, Tensor? bias, SymInt[2] stride, SymInt[2] padding) -> Tensor 2353*da0073e9SAndroid Build Coastguard Worker self, weight, bias: "grad.defined() ? _slow_conv2d_backward_symint(grad, self, weight, kernel_size, stride, padding, grad_input_mask) : std::tuple<Tensor, Tensor, Tensor>()" 2354*da0073e9SAndroid Build Coastguard Worker 2355*da0073e9SAndroid Build Coastguard Worker- name: _slow_conv2d_backward.output_mask(Tensor grad_output, Tensor self, Tensor weight, SymInt[2] kernel_size, SymInt[2] stride, SymInt[2] padding, bool[3] output_mask) -> (Tensor grad_input, Tensor grad_weight, Tensor grad_bias) 2356*da0073e9SAndroid Build Coastguard Worker grad_output, self, weight: _convolution_double_backward_symint(grads[0], grads[1], grads[2], grad_output, weight, self, stride, padding, {{1, 1}}, false, {{0, 0}}, 1, grad_input_mask) 2357*da0073e9SAndroid Build Coastguard Worker 2358*da0073e9SAndroid Build Coastguard Worker- name: _conv_depthwise2d(Tensor self, Tensor weight, SymInt[2] kernel_size, Tensor? bias, SymInt[2] stride, SymInt[2] padding, SymInt[2] dilation) -> Tensor 2359*da0073e9SAndroid Build Coastguard Worker self, weight, bias: "grad.defined() ? convolution_backward_symint(grad.contiguous(), self, weight, bias->sym_sizes(), stride, padding, dilation, /*transposed=*/ false, /*output_padding=*/ {{0, 0}}, /*groups=*/ 1, grad_input_mask) : std::tuple<Tensor, Tensor, Tensor>()" 2360*da0073e9SAndroid Build Coastguard Worker 2361*da0073e9SAndroid Build Coastguard Worker- name: conv_depthwise3d(Tensor self, Tensor weight, SymInt[3] kernel_size, Tensor? bias, SymInt[3] stride, SymInt[3] padding, SymInt[3] dilation) -> Tensor 2362*da0073e9SAndroid Build Coastguard Worker self, weight, bias: "grad.defined() ? convolution_backward_symint(grad.contiguous(), self, weight, bias->sym_sizes(), stride, padding, dilation, /*transposed=*/ false, /*output_padding=*/ {{0, 0, 0}}, /*groups=*/ 1, grad_input_mask) : std::tuple<Tensor, Tensor, Tensor>()" 2363*da0073e9SAndroid Build Coastguard Worker 2364*da0073e9SAndroid Build Coastguard Worker- name: slow_conv3d_forward(Tensor self, Tensor weight, SymInt[3] kernel_size, Tensor? bias, SymInt[3] stride, SymInt[3] padding) -> Tensor 2365*da0073e9SAndroid Build Coastguard Worker self, weight, bias: "grad.defined() ? convolution_backward_symint(grad, self, weight, bias->sym_sizes(), stride, padding, /*dilation=*/ {{1, 1, 1}}, false, /*output_padding=*/ {{0, 0, 0}}, 1, grad_input_mask) : std::tuple<Tensor, Tensor, Tensor>()" 2366*da0073e9SAndroid Build Coastguard Worker 2367*da0073e9SAndroid Build Coastguard Worker- name: slow_conv_dilated2d(Tensor self, Tensor weight, SymInt[2] kernel_size, Tensor? bias=None, SymInt[2] stride=1, SymInt[2] padding=0, SymInt[2] dilation=1) -> Tensor 2368*da0073e9SAndroid Build Coastguard Worker self, weight, bias: "grad.defined() ? convolution_backward_symint(grad, self, weight, bias->sym_sizes(), stride, padding, dilation, false, std::vector<c10::SymInt>(padding.size(), 0), 1, grad_input_mask) : std::tuple<Tensor, Tensor, Tensor>()" 2369*da0073e9SAndroid Build Coastguard Worker 2370*da0073e9SAndroid Build Coastguard Worker- name: slow_conv_dilated3d(Tensor self, Tensor weight, SymInt[3] kernel_size, Tensor? bias=None, SymInt[3] stride=1, SymInt[3] padding=0, SymInt[3] dilation=1) -> Tensor 2371*da0073e9SAndroid Build Coastguard Worker self, weight, bias: "grad.defined() ? convolution_backward_symint(grad, self, weight, bias->sym_sizes(), stride, padding, dilation, false, std::vector<c10::SymInt>(padding.size(), 0), 1, grad_input_mask) : std::tuple<Tensor, Tensor, Tensor>()" 2372*da0073e9SAndroid Build Coastguard Worker 2373*da0073e9SAndroid Build Coastguard Worker- name: col2im(Tensor self, SymInt[2] output_size, int[2] kernel_size, int[2] dilation, int[2] padding, int[2] stride) -> Tensor 2374*da0073e9SAndroid Build Coastguard Worker self: im2col(grad, kernel_size, dilation, padding, stride) 2375*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2376*da0073e9SAndroid Build Coastguard Worker 2377*da0073e9SAndroid Build Coastguard Worker- name: im2col(Tensor self, int[2] kernel_size, int[2] dilation, int[2] padding, int[2] stride) -> Tensor 2378*da0073e9SAndroid Build Coastguard Worker self: col2im_symint(grad, {self.sym_size(-2), self.sym_size(-1)}, kernel_size, dilation, padding, stride) 2379*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2380*da0073e9SAndroid Build Coastguard Worker 2381*da0073e9SAndroid Build Coastguard Worker- name: _adaptive_avg_pool2d_backward(Tensor grad_output, Tensor self) -> Tensor 2382*da0073e9SAndroid Build Coastguard Worker grad_output: _adaptive_avg_pool2d_symint(grad, {grad_output.sym_size(-2), grad_output.sym_size(-1)}) 2383*da0073e9SAndroid Build Coastguard Worker self: zeros_like(self) 2384*da0073e9SAndroid Build Coastguard Worker result: _adaptive_avg_pool2d_backward(grad_output_t, self_p) 2385*da0073e9SAndroid Build Coastguard Worker 2386*da0073e9SAndroid Build Coastguard Worker- name: _adaptive_avg_pool3d_backward(Tensor grad_output, Tensor self) -> Tensor 2387*da0073e9SAndroid Build Coastguard Worker grad_output: _adaptive_avg_pool3d_symint(grad, { grad_output.sym_size(-3), grad_output.sym_size(-2), grad_output.sym_size(-1) }) 2388*da0073e9SAndroid Build Coastguard Worker self: zeros_like(self) 2389*da0073e9SAndroid Build Coastguard Worker result: _adaptive_avg_pool3d_backward(grad_output_t, self_p) 2390*da0073e9SAndroid Build Coastguard Worker 2391*da0073e9SAndroid Build Coastguard Worker- name: adaptive_max_pool2d_backward(Tensor grad_output, Tensor self, Tensor indices) -> Tensor 2392*da0073e9SAndroid Build Coastguard Worker grad_output: max_pool_double_backward(grad, indices, 2) 2393*da0073e9SAndroid Build Coastguard Worker self: zeros_like(self) 2394*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2395*da0073e9SAndroid Build Coastguard Worker 2396*da0073e9SAndroid Build Coastguard Worker- name: adaptive_max_pool3d_backward(Tensor grad_output, Tensor self, Tensor indices) -> Tensor 2397*da0073e9SAndroid Build Coastguard Worker grad_output: max_pool_double_backward(grad, indices, 3) 2398*da0073e9SAndroid Build Coastguard Worker self: zeros_like(self) 2399*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2400*da0073e9SAndroid Build Coastguard Worker 2401*da0073e9SAndroid Build Coastguard Worker- name: avg_pool2d_backward(Tensor grad_output, Tensor self, int[2] kernel_size, int[2] stride, int[2] padding, bool ceil_mode, bool count_include_pad, int? divisor_override) -> Tensor 2402*da0073e9SAndroid Build Coastguard Worker grad_output: avg_pool2d(grad, kernel_size, stride, padding, ceil_mode, count_include_pad, divisor_override) 2403*da0073e9SAndroid Build Coastguard Worker self: zeros_like(self) 2404*da0073e9SAndroid Build Coastguard Worker result: avg_pool2d_backward(grad_output_t, self_p, kernel_size, stride, padding, ceil_mode, count_include_pad, divisor_override) 2405*da0073e9SAndroid Build Coastguard Worker 2406*da0073e9SAndroid Build Coastguard Worker- name: avg_pool3d_backward(Tensor grad_output, Tensor self, int[3] kernel_size, int[3] stride, int[3] padding, bool ceil_mode, bool count_include_pad, int? divisor_override) -> Tensor 2407*da0073e9SAndroid Build Coastguard Worker grad_output: avg_pool3d(grad, kernel_size, stride, padding, ceil_mode, count_include_pad, divisor_override) 2408*da0073e9SAndroid Build Coastguard Worker self: zeros_like(self) 2409*da0073e9SAndroid Build Coastguard Worker result: avg_pool3d_backward(grad_output_t, self_p, kernel_size, stride, padding, ceil_mode, count_include_pad, divisor_override) 2410*da0073e9SAndroid Build Coastguard Worker 2411*da0073e9SAndroid Build Coastguard Worker- name: elu_backward(Tensor grad_output, Scalar alpha, Scalar scale, Scalar input_scale, bool is_result, Tensor self_or_result) -> Tensor 2412*da0073e9SAndroid Build Coastguard Worker grad_output: elu_backward(grad, alpha, scale, input_scale, is_result, self_or_result) 2413*da0073e9SAndroid Build Coastguard Worker self_or_result: elu_double_backward(grad, grad_output, alpha, scale, input_scale, is_result, self_or_result) 2414*da0073e9SAndroid Build Coastguard Worker result: elu_backward(grad_output_t, alpha, scale, input_scale, is_result, self_or_result_p) + elu_double_backward(self_or_result_t, grad_output_p, alpha, scale, input_scale, is_result, self_or_result_p) 2415*da0073e9SAndroid Build Coastguard Worker 2416*da0073e9SAndroid Build Coastguard Worker- name: fractional_max_pool2d_backward(Tensor grad_output, Tensor self, int[2] kernel_size, int[2] output_size, Tensor indices) -> Tensor 2417*da0073e9SAndroid Build Coastguard Worker grad_output: max_pool_double_backward(grad, indices, 2) 2418*da0073e9SAndroid Build Coastguard Worker self: zeros_like(self) 2419*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2420*da0073e9SAndroid Build Coastguard Worker 2421*da0073e9SAndroid Build Coastguard Worker- name: fractional_max_pool3d_backward(Tensor grad_output, Tensor self, int[3] kernel_size, int[3] output_size, Tensor indices) -> Tensor 2422*da0073e9SAndroid Build Coastguard Worker grad_output: max_pool_double_backward(grad, indices, 3) 2423*da0073e9SAndroid Build Coastguard Worker self: zeros_like(self) 2424*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2425*da0073e9SAndroid Build Coastguard Worker 2426*da0073e9SAndroid Build Coastguard Worker- name: glu_backward(Tensor grad_output, Tensor self, int dim) -> Tensor 2427*da0073e9SAndroid Build Coastguard Worker grad_output: glu_double_backward_grad_output(grad, self, dim) 2428*da0073e9SAndroid Build Coastguard Worker self: glu_double_backward(grad, grad_output, self, dim) 2429*da0073e9SAndroid Build Coastguard Worker result: glu_backward_jvp(result, grad_output_p, self_p, grad_output_t, self_t, dim) 2430*da0073e9SAndroid Build Coastguard Worker 2431*da0073e9SAndroid Build Coastguard Worker- name: hardtanh_backward(Tensor grad_output, Tensor self, Scalar min_val, Scalar max_val) -> Tensor 2432*da0073e9SAndroid Build Coastguard Worker grad_output: hardtanh_backward(grad, self, min_val, max_val) 2433*da0073e9SAndroid Build Coastguard Worker self: zeros_like(grad) 2434*da0073e9SAndroid Build Coastguard Worker result: at::where((self_p > min_val).logical_and(self_p < max_val), grad_output_t, at::zeros({}, result.options()).expand_as(result)) 2435*da0073e9SAndroid Build Coastguard Worker 2436*da0073e9SAndroid Build Coastguard Worker- name: log_sigmoid_backward(Tensor grad_output, Tensor self, Tensor buffer) -> Tensor 2437*da0073e9SAndroid Build Coastguard Worker grad_output: log_sigmoid_backward(grad, self, buffer) 2438*da0073e9SAndroid Build Coastguard Worker self: log_sigmoid_double_backward(grad * grad_output, self) 2439*da0073e9SAndroid Build Coastguard Worker result: log_sigmoid_backward(grad_output_t, self_p, buffer) + log_sigmoid_double_backward(self_t * grad_output_p, self_p) 2440*da0073e9SAndroid Build Coastguard Worker 2441*da0073e9SAndroid Build Coastguard Worker- name: _log_softmax_backward_data(Tensor grad_output, Tensor output, int dim, ScalarType input_dtype) -> Tensor 2442*da0073e9SAndroid Build Coastguard Worker grad_output: grad.to(output.dtype()) - (grad.to(output.dtype()) * output.exp()).sum(dim, true) 2443*da0073e9SAndroid Build Coastguard Worker output: (-grad_output.sum(dim, true) * output.exp() * grad.to(output.dtype())).to(output.dtype()) 2444*da0073e9SAndroid Build Coastguard Worker 2445*da0073e9SAndroid Build Coastguard Worker- name: leaky_relu_backward(Tensor grad_output, Tensor self, Scalar negative_slope, bool self_is_result) -> Tensor 2446*da0073e9SAndroid Build Coastguard Worker # self_is_result is always false here since double backward call is an out-of-place call, self is input itself 2447*da0073e9SAndroid Build Coastguard Worker grad_output: leaky_relu_backward(grad, self, negative_slope, false) 2448*da0073e9SAndroid Build Coastguard Worker self: zeros_like(grad) 2449*da0073e9SAndroid Build Coastguard Worker # leaky_relu_backward(grad_output, self, negative_slope, false) 2450*da0073e9SAndroid Build Coastguard Worker # computes grad_output * at::where(self_p > 0, 1, negative_slope) 2451*da0073e9SAndroid Build Coastguard Worker # so the jvp formula is the following: 2452*da0073e9SAndroid Build Coastguard Worker # grad_output_t * at::where(self_p > 0, self_p.new_ones([]), negative_slope); 2453*da0073e9SAndroid Build Coastguard Worker # 2454*da0073e9SAndroid Build Coastguard Worker # leaky_relu_backward(grad_output, result, negative_slope, true) 2455*da0073e9SAndroid Build Coastguard Worker # computes grad_output * at::where(result > 0, 1, negative_slope) 2456*da0073e9SAndroid Build Coastguard Worker # under the assumption that `negative_slope` is positive (otherwise, 2457*da0073e9SAndroid Build Coastguard Worker # it is not possible to compute the gradient). 2458*da0073e9SAndroid Build Coastguard Worker # 2459*da0073e9SAndroid Build Coastguard Worker # so the jvp formula is the following: 2460*da0073e9SAndroid Build Coastguard Worker # grad_output_t * at::where(result_p > 0, result_p.new_ones([]), negative_slope); 2461*da0073e9SAndroid Build Coastguard Worker # with the assumption that negative_slope is positive. 2462*da0073e9SAndroid Build Coastguard Worker # 2463*da0073e9SAndroid Build Coastguard Worker # Combined together that results in the following optimized kernel which 2464*da0073e9SAndroid Build Coastguard Worker # also checks the assumption that negative_slope is positive when self_is_result 2465*da0073e9SAndroid Build Coastguard Worker # is True: 2466*da0073e9SAndroid Build Coastguard Worker result: leaky_relu_backward(grad_output_t, self_p, negative_slope, self_is_result) 2467*da0073e9SAndroid Build Coastguard Worker 2468*da0073e9SAndroid Build Coastguard Worker# This derivative is mps-only, and `error_for_max_pool2d_double_backward` just raises an error. 2469*da0073e9SAndroid Build Coastguard Worker- name: max_pool2d_backward(Tensor grad_output, Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False) -> Tensor 2470*da0073e9SAndroid Build Coastguard Worker grad_output: error_for_max_pool2d_double_backward() 2471*da0073e9SAndroid Build Coastguard Worker self: zeros_like(self) 2472*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2473*da0073e9SAndroid Build Coastguard Worker 2474*da0073e9SAndroid Build Coastguard Worker- name: max_pool2d_with_indices_backward(Tensor grad_output, Tensor self, int[2] kernel_size, int[2] stride, int[2] padding, int[2] dilation, bool ceil_mode, Tensor indices) -> Tensor 2475*da0073e9SAndroid Build Coastguard Worker grad_output: max_pool_double_backward(grad, indices, 2) 2476*da0073e9SAndroid Build Coastguard Worker self: zeros_like(self) 2477*da0073e9SAndroid Build Coastguard Worker indices: non_differentiable 2478*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2479*da0073e9SAndroid Build Coastguard Worker 2480*da0073e9SAndroid Build Coastguard Worker- name: max_pool3d_with_indices_backward(Tensor grad_output, Tensor self, int[3] kernel_size, int[3] stride, int[3] padding, int[3] dilation, bool ceil_mode, Tensor indices) -> Tensor 2481*da0073e9SAndroid Build Coastguard Worker grad_output: max_pool_double_backward(grad, indices, 3) 2482*da0073e9SAndroid Build Coastguard Worker self: zeros_like(self) 2483*da0073e9SAndroid Build Coastguard Worker indices: non_differentiable 2484*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2485*da0073e9SAndroid Build Coastguard Worker 2486*da0073e9SAndroid Build Coastguard Worker- name: mse_loss_backward(Tensor grad_output, Tensor self, Tensor target, int reduction) -> Tensor 2487*da0073e9SAndroid Build Coastguard Worker grad_output: mse_loss_backward(grad, self, target, reduction) 2488*da0073e9SAndroid Build Coastguard Worker self: mse_loss_double_backward(grad * grad_output, self, reduction) 2489*da0073e9SAndroid Build Coastguard Worker target: -mse_loss_double_backward(grad * grad_output, target, reduction) 2490*da0073e9SAndroid Build Coastguard Worker result: " mse_loss_double_backward(self_t * grad_output_p, self_p, reduction) 2491*da0073e9SAndroid Build Coastguard Worker - mse_loss_double_backward(target_t * grad_output_p, target_p, reduction) 2492*da0073e9SAndroid Build Coastguard Worker + mse_loss_backward(grad_output_t, self_p, target_p, reduction) 2493*da0073e9SAndroid Build Coastguard Worker " 2494*da0073e9SAndroid Build Coastguard Worker 2495*da0073e9SAndroid Build Coastguard Worker- name: nll_loss_backward(Tensor grad_output, Tensor self, Tensor target, Tensor? weight, int reduction, SymInt ignore_index, Tensor total_weight) -> Tensor 2496*da0073e9SAndroid Build Coastguard Worker grad_output: nll_loss_symint(grad, target, weight, reduction, ignore_index) 2497*da0073e9SAndroid Build Coastguard Worker self: zeros_like(grad) 2498*da0073e9SAndroid Build Coastguard Worker target: non_differentiable 2499*da0073e9SAndroid Build Coastguard Worker 2500*da0073e9SAndroid Build Coastguard Worker- name: nll_loss2d_backward(Tensor grad_output, Tensor self, Tensor target, Tensor? weight, int reduction, SymInt ignore_index, Tensor total_weight) -> Tensor 2501*da0073e9SAndroid Build Coastguard Worker grad_output: nll_loss2d_symint(grad, target, weight, reduction, ignore_index) 2502*da0073e9SAndroid Build Coastguard Worker self: zeros_like(grad) 2503*da0073e9SAndroid Build Coastguard Worker target: non_differentiable 2504*da0073e9SAndroid Build Coastguard Worker 2505*da0073e9SAndroid Build Coastguard Worker- name: rrelu_with_noise_backward(Tensor grad_output, Tensor self, Tensor noise, Scalar lower, Scalar upper, bool training, bool self_is_result) -> Tensor 2506*da0073e9SAndroid Build Coastguard Worker # self_is_result is always false here since double backward call is an out-of-place call, self is input itself 2507*da0073e9SAndroid Build Coastguard Worker grad_output: rrelu_with_noise_backward(grad, self, noise, lower, upper, training, false) 2508*da0073e9SAndroid Build Coastguard Worker self: zeros_like(grad) 2509*da0073e9SAndroid Build Coastguard Worker result: rrelu_with_noise_backward(grad_output_t, self_p, noise, lower, upper, training, false) 2510*da0073e9SAndroid Build Coastguard Worker 2511*da0073e9SAndroid Build Coastguard Worker- name: reflection_pad1d_backward(Tensor grad_output, Tensor self, SymInt[2] padding) -> Tensor 2512*da0073e9SAndroid Build Coastguard Worker grad_output: reflection_pad1d_symint(grad, padding) 2513*da0073e9SAndroid Build Coastguard Worker self: zeros_like(self) 2514*da0073e9SAndroid Build Coastguard Worker result: reflection_pad1d_backward_symint(grad_output_t, self_p, padding) 2515*da0073e9SAndroid Build Coastguard Worker 2516*da0073e9SAndroid Build Coastguard Worker- name: reflection_pad2d_backward(Tensor grad_output, Tensor self, SymInt[4] padding) -> Tensor 2517*da0073e9SAndroid Build Coastguard Worker grad_output: reflection_pad2d_symint(grad, padding) 2518*da0073e9SAndroid Build Coastguard Worker self: zeros_like(self) 2519*da0073e9SAndroid Build Coastguard Worker result: reflection_pad2d_backward_symint(grad_output_t, self_p, padding) 2520*da0073e9SAndroid Build Coastguard Worker 2521*da0073e9SAndroid Build Coastguard Worker- name: reflection_pad3d_backward(Tensor grad_output, Tensor self, SymInt[6] padding) -> Tensor 2522*da0073e9SAndroid Build Coastguard Worker grad_output: reflection_pad3d_symint(grad, padding) 2523*da0073e9SAndroid Build Coastguard Worker self: zeros_like(self) 2524*da0073e9SAndroid Build Coastguard Worker result: reflection_pad3d_backward_symint(grad_output_t, self_p, padding) 2525*da0073e9SAndroid Build Coastguard Worker 2526*da0073e9SAndroid Build Coastguard Worker- name: replication_pad1d_backward(Tensor grad_output, Tensor self, SymInt[2] padding) -> Tensor 2527*da0073e9SAndroid Build Coastguard Worker grad_output: replication_pad1d_symint(grad, padding) 2528*da0073e9SAndroid Build Coastguard Worker self: zeros_like(self) 2529*da0073e9SAndroid Build Coastguard Worker result: replication_pad1d_backward_symint(grad_output_t, self_p, padding) 2530*da0073e9SAndroid Build Coastguard Worker 2531*da0073e9SAndroid Build Coastguard Worker- name: replication_pad2d_backward(Tensor grad_output, Tensor self, SymInt[4] padding) -> Tensor 2532*da0073e9SAndroid Build Coastguard Worker grad_output: replication_pad2d_symint(grad, padding) 2533*da0073e9SAndroid Build Coastguard Worker self: zeros_like(self) 2534*da0073e9SAndroid Build Coastguard Worker result: replication_pad2d_backward_symint(grad_output_t, self_p, padding) 2535*da0073e9SAndroid Build Coastguard Worker 2536*da0073e9SAndroid Build Coastguard Worker- name: replication_pad3d_backward(Tensor grad_output, Tensor self, SymInt[6] padding) -> Tensor 2537*da0073e9SAndroid Build Coastguard Worker grad_output: replication_pad3d_symint(grad, padding) 2538*da0073e9SAndroid Build Coastguard Worker self: zeros_like(self) 2539*da0073e9SAndroid Build Coastguard Worker result: replication_pad3d_backward_symint(grad_output_t, self_p, padding) 2540*da0073e9SAndroid Build Coastguard Worker 2541*da0073e9SAndroid Build Coastguard Worker- name: sparse_sampled_addmm(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> Tensor 2542*da0073e9SAndroid Build Coastguard Worker self, mat1, mat2: "sparse_sampled_addmm_backward(grad, 2543*da0073e9SAndroid Build Coastguard Worker self, 2544*da0073e9SAndroid Build Coastguard Worker wrap_opt_if(mat1, grad_input_mask[2]), 2545*da0073e9SAndroid Build Coastguard Worker wrap_opt_if(mat2, grad_input_mask[1]), 2546*da0073e9SAndroid Build Coastguard Worker alpha, beta, grad_input_mask)" 2547*da0073e9SAndroid Build Coastguard Worker 2548*da0073e9SAndroid Build Coastguard Worker- name: _sparse_mm_reduce_impl(Tensor self, Tensor other, str reduce) -> (Tensor, Tensor) 2549*da0073e9SAndroid Build Coastguard Worker output_differentiability: [True, False] 2550*da0073e9SAndroid Build Coastguard Worker self, other: "grad.defined() ? _sparse_mm_reduce_impl_backward(self, grad, other, reduce, result1, grad_input_mask) : std::tuple<Tensor, Tensor>()" 2551*da0073e9SAndroid Build Coastguard Worker 2552*da0073e9SAndroid Build Coastguard Worker- name: smooth_l1_loss_backward(Tensor grad_output, Tensor self, Tensor target, int reduction, float beta) -> Tensor 2553*da0073e9SAndroid Build Coastguard Worker grad_output: smooth_l1_loss_backward(grad, self, target, reduction, beta) 2554*da0073e9SAndroid Build Coastguard Worker self: smooth_l1_loss_double_backward(grad * grad_output, self, target, reduction, beta) 2555*da0073e9SAndroid Build Coastguard Worker target: -smooth_l1_loss_double_backward(grad * grad_output, self, target, reduction, beta) 2556*da0073e9SAndroid Build Coastguard Worker result: " smooth_l1_loss_double_backward(self_t * grad_output_p, self_p, target_p, reduction, beta) 2557*da0073e9SAndroid Build Coastguard Worker - smooth_l1_loss_double_backward(target_t * grad_output_p, self_p, target_p, reduction, beta) 2558*da0073e9SAndroid Build Coastguard Worker + smooth_l1_loss_backward(grad_output_t, self_p, target_p, reduction, beta) 2559*da0073e9SAndroid Build Coastguard Worker " 2560*da0073e9SAndroid Build Coastguard Worker 2561*da0073e9SAndroid Build Coastguard Worker- name: huber_loss_backward(Tensor grad_output, Tensor self, Tensor target, int reduction, float delta) -> Tensor 2562*da0073e9SAndroid Build Coastguard Worker grad_output: huber_loss_double_backward_grad_output(grad, grad_output, self, target, reduction, delta) 2563*da0073e9SAndroid Build Coastguard Worker self: huber_loss_double_backward(grad * grad_output, self, target, reduction, delta) 2564*da0073e9SAndroid Build Coastguard Worker target: -huber_loss_double_backward(grad * grad_output, self, target, reduction, delta) 2565*da0073e9SAndroid Build Coastguard Worker 2566*da0073e9SAndroid Build Coastguard Worker- name: softplus_backward(Tensor grad_output, Tensor self, Scalar beta, Scalar threshold) -> Tensor 2567*da0073e9SAndroid Build Coastguard Worker grad_output: softplus_backward(grad, self, beta, threshold) 2568*da0073e9SAndroid Build Coastguard Worker self: softplus_double_backward(grad * grad_output, self, beta, threshold) 2569*da0073e9SAndroid Build Coastguard Worker result: "softplus_backward(grad_output_t, self_p, beta, threshold) 2570*da0073e9SAndroid Build Coastguard Worker + softplus_double_backward(self_t * grad_output_p, self_p, beta, threshold)" 2571*da0073e9SAndroid Build Coastguard Worker 2572*da0073e9SAndroid Build Coastguard Worker- name: _softmax_backward_data(Tensor grad_output, Tensor output, int dim, ScalarType input_dtype) -> Tensor 2573*da0073e9SAndroid Build Coastguard Worker grad_output: _softmax_backward_data(grad.to(output.dtype()), output, dim, input_dtype) 2574*da0073e9SAndroid Build Coastguard Worker output: softmax_double_backward(grad.to(output.dtype()), grad_output, dim, output).to(output.dtype()) 2575*da0073e9SAndroid Build Coastguard Worker 2576*da0073e9SAndroid Build Coastguard Worker- name: soft_margin_loss_backward(Tensor grad_output, Tensor self, Tensor target, int reduction) -> Tensor 2577*da0073e9SAndroid Build Coastguard Worker grad_output: soft_margin_loss_double_backward_grad_output(grad, grad_output, self, target, reduction) 2578*da0073e9SAndroid Build Coastguard Worker self: soft_margin_loss_double_backward(grad * grad_output, self, target, reduction) 2579*da0073e9SAndroid Build Coastguard Worker 2580*da0073e9SAndroid Build Coastguard Worker- name: softshrink_backward(Tensor grad_output, Tensor self, Scalar lambd) -> Tensor 2581*da0073e9SAndroid Build Coastguard Worker grad_output: softshrink_backward(grad, self, lambd) 2582*da0073e9SAndroid Build Coastguard Worker self: zeros_like(grad) 2583*da0073e9SAndroid Build Coastguard Worker result: at::where((self_p > lambd).logical_or(self_p < -lambd), grad_output_t, at::zeros({}, result.options()).expand_as(result)) 2584*da0073e9SAndroid Build Coastguard Worker 2585*da0073e9SAndroid Build Coastguard Worker- name: threshold_backward(Tensor grad_output, Tensor self, Scalar threshold) -> Tensor 2586*da0073e9SAndroid Build Coastguard Worker grad_output: threshold_backward(grad, self, threshold) 2587*da0073e9SAndroid Build Coastguard Worker self: zeros_like(grad) 2588*da0073e9SAndroid Build Coastguard Worker result: zeros_like(self_t) + threshold_backward(grad_output_t, self_p, threshold) 2589*da0073e9SAndroid Build Coastguard Worker 2590*da0073e9SAndroid Build Coastguard Worker- name: upsample_linear1d_backward(Tensor grad_output, SymInt[1] output_size, SymInt[3] input_size, bool align_corners, float? scales=None) -> Tensor 2591*da0073e9SAndroid Build Coastguard Worker grad_output: upsample_linear1d_symint(grad, output_size, align_corners, scales) 2592*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2593*da0073e9SAndroid Build Coastguard Worker 2594*da0073e9SAndroid Build Coastguard Worker- name: upsample_bilinear2d_backward(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor 2595*da0073e9SAndroid Build Coastguard Worker grad_output: upsample_bilinear2d_symint(grad, output_size, align_corners, scales_h, scales_w) 2596*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2597*da0073e9SAndroid Build Coastguard Worker 2598*da0073e9SAndroid Build Coastguard Worker- name: _upsample_bilinear2d_aa_backward(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor 2599*da0073e9SAndroid Build Coastguard Worker grad_output: _upsample_bilinear2d_aa_symint(grad, output_size, align_corners, scales_h, scales_w) 2600*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2601*da0073e9SAndroid Build Coastguard Worker 2602*da0073e9SAndroid Build Coastguard Worker- name: upsample_bicubic2d_backward(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor 2603*da0073e9SAndroid Build Coastguard Worker grad_output: upsample_bicubic2d_symint(grad, output_size, align_corners, scales_h, scales_w) 2604*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2605*da0073e9SAndroid Build Coastguard Worker 2606*da0073e9SAndroid Build Coastguard Worker- name: _upsample_bicubic2d_aa_backward(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor 2607*da0073e9SAndroid Build Coastguard Worker grad_output: _upsample_bicubic2d_aa_symint(grad, output_size, align_corners, scales_h, scales_w) 2608*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2609*da0073e9SAndroid Build Coastguard Worker 2610*da0073e9SAndroid Build Coastguard Worker- name: upsample_trilinear3d_backward(Tensor grad_output, SymInt[3] output_size, SymInt[5] input_size, bool align_corners, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> Tensor 2611*da0073e9SAndroid Build Coastguard Worker grad_output: upsample_trilinear3d_symint(grad, output_size, align_corners, scales_d, scales_h, scales_w) 2612*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2613*da0073e9SAndroid Build Coastguard Worker 2614*da0073e9SAndroid Build Coastguard Worker- name: upsample_nearest1d_backward(Tensor grad_output, SymInt[1] output_size, SymInt[3] input_size, float? scales=None) -> Tensor 2615*da0073e9SAndroid Build Coastguard Worker grad_output: upsample_nearest1d_symint(grad, output_size, scales) 2616*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2617*da0073e9SAndroid Build Coastguard Worker 2618*da0073e9SAndroid Build Coastguard Worker- name: _upsample_nearest_exact1d_backward(Tensor grad_output, SymInt[1] output_size, SymInt[3] input_size, float? scales=None) -> Tensor 2619*da0073e9SAndroid Build Coastguard Worker grad_output: _upsample_nearest_exact1d_symint(grad, output_size, scales) 2620*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2621*da0073e9SAndroid Build Coastguard Worker 2622*da0073e9SAndroid Build Coastguard Worker- name: upsample_nearest2d_backward(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, float? scales_h=None, float? scales_w=None) -> Tensor 2623*da0073e9SAndroid Build Coastguard Worker grad_output: upsample_nearest2d_symint(grad, output_size, scales_h, scales_w) 2624*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2625*da0073e9SAndroid Build Coastguard Worker 2626*da0073e9SAndroid Build Coastguard Worker- name: _upsample_nearest_exact2d_backward(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, float? scales_h=None, float? scales_w=None) -> Tensor 2627*da0073e9SAndroid Build Coastguard Worker grad_output: _upsample_nearest_exact2d_symint(grad, output_size, scales_h, scales_w) 2628*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2629*da0073e9SAndroid Build Coastguard Worker 2630*da0073e9SAndroid Build Coastguard Worker- name: upsample_nearest3d_backward(Tensor grad_output, SymInt[3] output_size, SymInt[5] input_size, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> Tensor 2631*da0073e9SAndroid Build Coastguard Worker grad_output: upsample_nearest3d_symint(grad, output_size, scales_d, scales_h, scales_w) 2632*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2633*da0073e9SAndroid Build Coastguard Worker 2634*da0073e9SAndroid Build Coastguard Worker- name: _upsample_nearest_exact3d_backward(Tensor grad_output, SymInt[3] output_size, SymInt[5] input_size, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> Tensor 2635*da0073e9SAndroid Build Coastguard Worker grad_output: _upsample_nearest_exact3d_symint(grad, output_size, scales_d, scales_h, scales_w) 2636*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2637*da0073e9SAndroid Build Coastguard Worker 2638*da0073e9SAndroid Build Coastguard Worker- name: sigmoid_backward(Tensor grad_output, Tensor output) -> Tensor 2639*da0073e9SAndroid Build Coastguard Worker grad_output: sigmoid_backward(grad, output.conj()) 2640*da0073e9SAndroid Build Coastguard Worker output: grad.conj() * grad_output * (-2 * output.conj() + 1) 2641*da0073e9SAndroid Build Coastguard Worker result: sigmoid_backward(grad_output_t, output_p) + output_t.conj() * grad_output_p * (-2 * output_p.conj() + 1) 2642*da0073e9SAndroid Build Coastguard Worker 2643*da0073e9SAndroid Build Coastguard Worker- name: tanh_backward(Tensor grad_output, Tensor output) -> Tensor 2644*da0073e9SAndroid Build Coastguard Worker grad_output: tanh_backward(grad, output.conj()) 2645*da0073e9SAndroid Build Coastguard Worker output: grad.conj() * (-2 * output.conj() * grad_output) 2646*da0073e9SAndroid Build Coastguard Worker result: tanh_backward(grad_output_t, output_p) + output_t.conj() * (-2 * output_p.conj() * grad_output_p) 2647*da0073e9SAndroid Build Coastguard Worker 2648*da0073e9SAndroid Build Coastguard Worker# cudnn 2649*da0073e9SAndroid Build Coastguard Worker- name: _cudnn_ctc_loss(Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, int blank, bool deterministic, bool zero_infinity) -> (Tensor, Tensor) 2650*da0073e9SAndroid Build Coastguard Worker log_probs: _cudnn_ctc_loss_backward(grad, result0, result1, zero_infinity) 2651*da0073e9SAndroid Build Coastguard Worker 2652*da0073e9SAndroid Build Coastguard Worker- name: _cudnn_ctc_loss.Tensor(Tensor log_probs, Tensor targets, Tensor input_lengths, Tensor target_lengths, int blank, bool deterministic, bool zero_infinity) -> (Tensor, Tensor) 2653*da0073e9SAndroid Build Coastguard Worker log_probs: _cudnn_ctc_loss_backward(grad, result0, result1, zero_infinity) 2654*da0073e9SAndroid Build Coastguard Worker 2655*da0073e9SAndroid Build Coastguard Worker- name: cudnn_convolution_transpose(Tensor self, Tensor weight, SymInt[] padding, SymInt[] output_padding, SymInt[] stride, SymInt[] dilation, SymInt groups, bool benchmark, bool deterministic, bool allow_tf32) -> Tensor 2656*da0073e9SAndroid Build Coastguard Worker self, weight: "_cudnn_convolution_backward(self, grad, weight, padding, output_padding, stride, dilation, true, groups, {grad_input_mask[0], grad_input_mask[1]})" 2657*da0073e9SAndroid Build Coastguard Worker 2658*da0073e9SAndroid Build Coastguard Worker- name: _mps_convolution_transpose(Tensor self, Tensor weight, SymInt[] padding, SymInt[] output_padding, SymInt[] stride, SymInt[] dilation, SymInt groups) -> Tensor 2659*da0073e9SAndroid Build Coastguard Worker self, weight: "grad.defined() ? mps_convolution_transpose_backward_symint(self, grad, weight, padding, output_padding, stride, dilation, groups, grad_input_mask) : std::tuple<Tensor, Tensor>()" 2660*da0073e9SAndroid Build Coastguard Worker 2661*da0073e9SAndroid Build Coastguard Worker- name: cudnn_convolution(Tensor self, Tensor weight, SymInt[] padding, SymInt[] stride, SymInt[] dilation, SymInt groups, bool benchmark, bool deterministic, bool allow_tf32) -> Tensor 2662*da0073e9SAndroid Build Coastguard Worker self, weight: "_cudnn_convolution_backward(self, grad, weight, padding, std::vector<c10::SymInt>(padding.size(), 0), stride, dilation, false, groups, {grad_input_mask[0], grad_input_mask[1]})" 2663*da0073e9SAndroid Build Coastguard Worker 2664*da0073e9SAndroid Build Coastguard Worker- name: cudnn_grid_sampler(Tensor self, Tensor grid) -> Tensor output 2665*da0073e9SAndroid Build Coastguard Worker self, grid: "grad.defined() ? cudnn_grid_sampler_backward(self, grid, grad) : std::tuple<Tensor, Tensor>()" 2666*da0073e9SAndroid Build Coastguard Worker 2667*da0073e9SAndroid Build Coastguard Worker- name: cudnn_affine_grid_generator(Tensor theta, int N, int C, int H, int W) -> Tensor grid 2668*da0073e9SAndroid Build Coastguard Worker theta: cudnn_affine_grid_generator_backward(grad, N, C, H, W) 2669*da0073e9SAndroid Build Coastguard Worker 2670*da0073e9SAndroid Build Coastguard Worker# NB: Why is the backwards here so complicated? CuDNN cannot be used to compute 2671*da0073e9SAndroid Build Coastguard Worker# backward in evaluation mode, because the math for backward in evaluation mode 2672*da0073e9SAndroid Build Coastguard Worker# is different (since the forward math is different), and CuDNN does not support 2673*da0073e9SAndroid Build Coastguard Worker# it. And in any case, you shouldn't be using this bn in evaluation mode, 2674*da0073e9SAndroid Build Coastguard Worker# because it should be merged into the previous convolution (left for future 2675*da0073e9SAndroid Build Coastguard Worker# work.) 2676*da0073e9SAndroid Build Coastguard Worker# NB2: The quotes around the gradient are needed to appease YAML parsing rules. 2677*da0073e9SAndroid Build Coastguard Worker- name: cudnn_batch_norm(Tensor input, Tensor weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float exponential_average_factor, float epsilon) -> (Tensor, Tensor, Tensor, Tensor) 2678*da0073e9SAndroid Build Coastguard Worker input, weight, bias: "grad.defined() ? (training ? cudnn_batch_norm_backward(input, grad.contiguous(input.suggest_memory_format()), weight, running_mean, running_var, result1, result2, epsilon, retain_variables ? result3.clone() : result3) : native_batch_norm_backward(grad, input, weight, running_mean, running_var, result1, result2, training, epsilon, grad_input_mask)) : std::tuple<Tensor, Tensor, Tensor>()" 2679*da0073e9SAndroid Build Coastguard Worker result0: batch_norm_jvp(input_p, input_t, weight_p, weight_t, bias_p, bias_t, running_mean, running_var, result1, result2, training, epsilon) 2680*da0073e9SAndroid Build Coastguard Worker 2681*da0073e9SAndroid Build Coastguard Worker# HACK: save_mean and save_var are going to be passed in as 2682*da0073e9SAndroid Build Coastguard Worker# requires_grad variables (even though we'll never backprop through 2683*da0073e9SAndroid Build Coastguard Worker# them) so we need to prevent the unpacking from triggering an error. 2684*da0073e9SAndroid Build Coastguard Worker- name: cudnn_batch_norm_backward(Tensor input, Tensor grad_output, Tensor weight, Tensor? running_mean, Tensor? running_var, Tensor? save_mean, Tensor? save_var, float epsilon, Tensor reserveSpace) -> (Tensor, Tensor, Tensor) 2685*da0073e9SAndroid Build Coastguard Worker save_mean: not_implemented("cudnn_batch_norm_backward save_mean") 2686*da0073e9SAndroid Build Coastguard Worker save_var: not_implemented("cudnn_batch_norm_backward save_var") 2687*da0073e9SAndroid Build Coastguard Worker reserveSpace: not_implemented("cudnn_batch_norm_backward reserveSpace") 2688*da0073e9SAndroid Build Coastguard Worker input, weight, grad_output: batchnorm_double_backward(input, weight, grads[0], grads[1], grads[2], grad_output, running_mean, running_var, true, epsilon, save_mean, save_var, grad_input_mask) 2689*da0073e9SAndroid Build Coastguard Worker 2690*da0073e9SAndroid Build Coastguard Worker# nnpack 2691*da0073e9SAndroid Build Coastguard Worker 2692*da0073e9SAndroid Build Coastguard Worker- name: _nnpack_spatial_convolution(Tensor input, Tensor weight, Tensor? bias, SymInt[2] padding, SymInt[2] stride=1) -> Tensor 2693*da0073e9SAndroid Build Coastguard Worker # NNPACK does not support strided convolutions in the backwards path, which is the reason why we are using the closest available function that does here. 2694*da0073e9SAndroid Build Coastguard Worker input, weight, bias: "grad.defined() ? convolution_backward_symint(grad, input, weight, bias->sym_sizes(), stride, padding, std::vector<c10::SymInt>(padding.size(), 1), false, std::vector<c10::SymInt>(padding.size(), 0), 1, grad_input_mask) : std::tuple<Tensor, Tensor, Tensor>()" 2695*da0073e9SAndroid Build Coastguard Worker 2696*da0073e9SAndroid Build Coastguard Worker#LSTM MPS 2697*da0073e9SAndroid Build Coastguard Worker- name: _lstm_mps(Tensor input, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor) 2698*da0073e9SAndroid Build Coastguard Worker output_differentiability: [True, True, True, False, False, False] 2699*da0073e9SAndroid Build Coastguard Worker input, hx, params: "lstm_mps_backward(grads[0], grads[1], grads[2], result3, result4, input, result5, hx, params, has_biases, num_layers, dropout, train, bidirectional, batch_first)" 2700*da0073e9SAndroid Build Coastguard Worker 2701*da0073e9SAndroid Build Coastguard Worker- name: lstm_mps_backward(Tensor? grad_y, Tensor? grad_hy, Tensor? grad_cy, Tensor z_state, Tensor cell_state_fwd, Tensor input, Tensor layersOutputs, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor[], Tensor[]) 2702*da0073e9SAndroid Build Coastguard Worker 2703*da0073e9SAndroid Build Coastguard Worker 2704*da0073e9SAndroid Build Coastguard Worker 2705*da0073e9SAndroid Build Coastguard Worker# Only frst three of _cudnn_rnn outputs can have gradients. 2706*da0073e9SAndroid Build Coastguard Worker# _cudnn_rnn outputs: (output, hy, cy, reserve, weight_buf) 2707*da0073e9SAndroid Build Coastguard Worker- name: _cudnn_rnn(Tensor input, Tensor[] weight, int weight_stride0, Tensor? weight_buf, Tensor hx, Tensor? cx, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, SymInt[] batch_sizes, Tensor? dropout_state) -> (Tensor, Tensor, Tensor, Tensor, Tensor) 2708*da0073e9SAndroid Build Coastguard Worker dropout_state: non_differentiable 2709*da0073e9SAndroid Build Coastguard Worker output_differentiability: [True, True, True, False, False] 2710*da0073e9SAndroid Build Coastguard Worker input, hx, cx, weight: "_cudnn_rnn_backward_symint(input, weight, weight_stride0, result4, hx, cx, result0, grads[0], grads[1], grads[2], mode, hidden_size, proj_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state, retain_variables ? result3.clone() : result3, grad_input_mask)" 2711*da0073e9SAndroid Build Coastguard Worker 2712*da0073e9SAndroid Build Coastguard Worker- name: _cudnn_rnn_backward(Tensor input, Tensor[] weight, int weight_stride0, Tensor weight_buf, Tensor hx, Tensor? cx, Tensor output, Tensor? grad_output, Tensor? grad_hy, Tensor? grad_cy, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, SymInt[] batch_sizes, Tensor? dropout_state, Tensor reserve, bool[4] output_mask) -> (Tensor, Tensor, Tensor, Tensor[]) 2713*da0073e9SAndroid Build Coastguard Worker dropout_state: non_differentiable 2714*da0073e9SAndroid Build Coastguard Worker input: not_implemented("_cudnn_rnn_backward", kCudnnDoubleBackwardMsg) 2715*da0073e9SAndroid Build Coastguard Worker weight: not_implemented_list("_cudnn_rnn_backward", kCudnnDoubleBackwardMsg) 2716*da0073e9SAndroid Build Coastguard Worker hx: not_implemented("_cudnn_rnn_backward", kCudnnDoubleBackwardMsg) 2717*da0073e9SAndroid Build Coastguard Worker cx: not_implemented("_cudnn_rnn_backward", kCudnnDoubleBackwardMsg) 2718*da0073e9SAndroid Build Coastguard Worker output: not_implemented("_cudnn_rnn_backward", kCudnnDoubleBackwardMsg) 2719*da0073e9SAndroid Build Coastguard Worker grad_output: not_implemented("_cudnn_rnn_backward", kCudnnDoubleBackwardMsg) 2720*da0073e9SAndroid Build Coastguard Worker grad_hy: not_implemented("_cudnn_rnn_backward", kCudnnDoubleBackwardMsg) 2721*da0073e9SAndroid Build Coastguard Worker grad_cy: not_implemented("_cudnn_rnn_backward", kCudnnDoubleBackwardMsg) 2722*da0073e9SAndroid Build Coastguard Worker 2723*da0073e9SAndroid Build Coastguard Worker# miopen 2724*da0073e9SAndroid Build Coastguard Worker 2725*da0073e9SAndroid Build Coastguard Worker- name: miopen_convolution_transpose(Tensor self, Tensor weight, Tensor? bias, SymInt[] padding, SymInt[] output_padding, SymInt[] stride, SymInt[] dilation, SymInt groups, bool benchmark, bool deterministic) -> Tensor 2726*da0073e9SAndroid Build Coastguard Worker self, weight, bias: "grad.defined() ? convolution_backward_symint(grad, self, weight, bias->sym_sizes(), stride, padding, dilation, true, output_padding, groups, grad_input_mask) : std::tuple<Tensor, Tensor, Tensor>()" 2727*da0073e9SAndroid Build Coastguard Worker 2728*da0073e9SAndroid Build Coastguard Worker- name: miopen_convolution(Tensor self, Tensor weight, Tensor? bias, SymInt[] padding, SymInt[] stride, SymInt[] dilation, SymInt groups, bool benchmark, bool deterministic) -> Tensor 2729*da0073e9SAndroid Build Coastguard Worker self, weight, bias: "grad.defined() ? convolution_backward_symint(grad, self, weight, bias->sym_sizes(), stride, padding, dilation, false, std::vector<c10::SymInt>(padding.size(), 0), groups, grad_input_mask) : std::tuple<Tensor, Tensor, Tensor>()" 2730*da0073e9SAndroid Build Coastguard Worker 2731*da0073e9SAndroid Build Coastguard Worker- name: miopen_depthwise_convolution(Tensor self, Tensor weight, Tensor? bias, SymInt[] padding, SymInt[] stride, SymInt[] dilation, SymInt groups, bool benchmark, bool deterministic) -> Tensor 2732*da0073e9SAndroid Build Coastguard Worker self, weight, bias: "grad.defined() ? convolution_backward_symint(grad, self, weight, bias->sym_sizes(), stride, padding, dilation, false, std::vector<c10::SymInt>(padding.size(), 0), groups, grad_input_mask) : std::tuple<Tensor, Tensor, Tensor>()" 2733*da0073e9SAndroid Build Coastguard Worker 2734*da0073e9SAndroid Build Coastguard Worker- name: miopen_batch_norm(Tensor input, Tensor weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float exponential_average_factor, float epsilon) -> (Tensor, Tensor, Tensor) 2735*da0073e9SAndroid Build Coastguard Worker input, weight, bias: "grad.defined() ? (training ? miopen_batch_norm_backward(input, grad.contiguous(), weight, running_mean, running_var, result1, result2, epsilon) : native_batch_norm_backward(grad, input, weight, running_mean, running_var, result1, result2, training, epsilon, grad_input_mask)) : std::tuple<Tensor, Tensor, Tensor>()" 2736*da0073e9SAndroid Build Coastguard Worker result0: batch_norm_jvp(input_p, input_t, weight_p, weight_t, bias_p, bias_t, running_mean, running_var, result1, result2, training, epsilon) 2737*da0073e9SAndroid Build Coastguard Worker 2738*da0073e9SAndroid Build Coastguard Worker- name: miopen_batch_norm_backward(Tensor input, Tensor grad_output, Tensor weight, Tensor? running_mean, Tensor? running_var, Tensor? save_mean, Tensor? save_var, float epsilon) -> (Tensor, Tensor, Tensor) 2739*da0073e9SAndroid Build Coastguard Worker save_mean: not_implemented("miopen_batch_norm_backward save_mean") 2740*da0073e9SAndroid Build Coastguard Worker save_var: not_implemented("miopen_batch_norm_backward save_var") 2741*da0073e9SAndroid Build Coastguard Worker input, weight, grad_output: batchnorm_double_backward(input, weight, grads[0], grads[1], grads[2], grad_output, running_mean, running_var, true, epsilon, save_mean, save_var, grad_input_mask) 2742*da0073e9SAndroid Build Coastguard Worker 2743*da0073e9SAndroid Build Coastguard Worker- name: miopen_rnn(Tensor input, Tensor[] weight, int weight_stride0, Tensor hx, Tensor? cx, int mode, int hidden_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, int[] batch_sizes, Tensor? dropout_state) -> (Tensor, Tensor, Tensor, Tensor, Tensor) 2744*da0073e9SAndroid Build Coastguard Worker dropout_state: non_differentiable 2745*da0073e9SAndroid Build Coastguard Worker output_differentiability: [True, True, True, False, False] 2746*da0073e9SAndroid Build Coastguard Worker input, hx, cx, weight: "miopen_rnn_backward(input, weight, weight_stride0, result4, hx, cx, result0, grads[0], grads[1], grads[2], mode, hidden_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state, retain_variables ? result3.clone() : result3, grad_input_mask)" 2747*da0073e9SAndroid Build Coastguard Worker 2748*da0073e9SAndroid Build Coastguard Worker- name: miopen_rnn_backward(Tensor input, Tensor[] weight, int weight_stride0, Tensor weight_buf, Tensor hx, Tensor? cx, Tensor output, Tensor? grad_output, Tensor? grad_hy, Tensor? grad_cy, int mode, int hidden_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, int[] batch_sizes, Tensor? dropout_state, Tensor reserve, bool[4] output_mask) -> (Tensor, Tensor, Tensor, Tensor[]) 2749*da0073e9SAndroid Build Coastguard Worker dropout_state: non_differentiable 2750*da0073e9SAndroid Build Coastguard Worker 2751*da0073e9SAndroid Build Coastguard Worker- name: mkldnn_rnn_layer(Tensor input, Tensor weight0, Tensor weight1, Tensor weight2, Tensor weight3, Tensor hx_, Tensor cx_, bool reverse, int[] batch_sizes, int mode, int hidden_size, int num_layers, bool has_biases, bool bidirectional, bool batch_first, bool train) -> (Tensor, Tensor, Tensor, Tensor) 2752*da0073e9SAndroid Build Coastguard Worker output_differentiability: [True, True, True, False] 2753*da0073e9SAndroid Build Coastguard Worker input, weight0, weight1, weight2, weight3, hx_, cx_: "GradMode::is_enabled() ? mkldnn_rnn_layer_differentiable_backward(input, weight0, weight1, weight2, weight3, hx_, cx_, result0, result1, result2, grads[0], grads[1], grads[2], reverse, mode, hidden_size, num_layers, has_biases, train, bidirectional, batch_sizes, batch_first, result3) : mkldnn_rnn_layer_backward(input, weight0, weight1, weight2, weight3, hx_, cx_, result0, result1, result2, grads[0], grads[1], grads[2], reverse, mode, hidden_size, num_layers, has_biases, train, bidirectional, batch_sizes, batch_first, result3)" 2754*da0073e9SAndroid Build Coastguard Worker 2755*da0073e9SAndroid Build Coastguard Worker- name: mkldnn_rnn_layer_backward(Tensor input, Tensor weight1, Tensor weight2, Tensor weight3, Tensor weight4, Tensor hx_, Tensor cx_tmp, Tensor output, Tensor hy_, Tensor cy_, Tensor? grad_output, Tensor? grad_hy, Tensor? grad_cy, bool reverse, int mode, int hidden_size, int num_layers, bool has_biases, bool train, bool bidirectional, int[] batch_sizes, bool batch_first, Tensor workspace) -> (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor) 2756*da0073e9SAndroid Build Coastguard Worker 2757*da0073e9SAndroid Build Coastguard Worker# mkldnn 2758*da0073e9SAndroid Build Coastguard Worker- name: mkldnn_convolution(Tensor self, Tensor weight, Tensor? bias, SymInt[] padding, SymInt[] stride, SymInt[] dilation, SymInt groups) -> Tensor 2759*da0073e9SAndroid Build Coastguard Worker self, weight, bias: "grad.defined() ? convolution_backward_symint(grad, self, weight, bias->sym_sizes(), stride, padding, dilation, /*transposed=*/ false, /*output_padding=*/ std::vector<c10::SymInt>(padding.size(), 0), groups, grad_input_mask) : std::tuple<Tensor, Tensor, Tensor>()" 2760*da0073e9SAndroid Build Coastguard Worker 2761*da0073e9SAndroid Build Coastguard Worker- name: mkldnn_linear(Tensor self, Tensor weight, Tensor? bias=None) -> Tensor 2762*da0073e9SAndroid Build Coastguard Worker self, weight, bias: mkldnn_linear_backward(self, grad, weight, grad_input_mask) 2763*da0073e9SAndroid Build Coastguard Worker 2764*da0073e9SAndroid Build Coastguard Worker- name: mkldnn_max_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False) -> Tensor 2765*da0073e9SAndroid Build Coastguard Worker self: mkldnn_max_pool2d_backward(grad, result, self, kernel_size, stride, padding, dilation, ceil_mode) 2766*da0073e9SAndroid Build Coastguard Worker 2767*da0073e9SAndroid Build Coastguard Worker- name: mkldnn_max_pool3d(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=0, int[3] dilation=1, bool ceil_mode=False) -> Tensor 2768*da0073e9SAndroid Build Coastguard Worker self: mkldnn_max_pool3d_backward(grad, result, self, kernel_size, stride, padding, dilation, ceil_mode) 2769*da0073e9SAndroid Build Coastguard Worker 2770*da0073e9SAndroid Build Coastguard Worker- name: mkldnn_adaptive_avg_pool2d(Tensor self, int[2] output_size) -> Tensor 2771*da0073e9SAndroid Build Coastguard Worker self: mkldnn_adaptive_avg_pool2d_backward(grad, self) 2772*da0073e9SAndroid Build Coastguard Worker 2773*da0073e9SAndroid Build Coastguard Worker- name: _mkldnn_reshape(Tensor self, int[] shape) -> Tensor 2774*da0073e9SAndroid Build Coastguard Worker self: grad.reshape_symint(self.sym_sizes()) 2775*da0073e9SAndroid Build Coastguard Worker 2776*da0073e9SAndroid Build Coastguard Worker# NestedTensor 2777*da0073e9SAndroid Build Coastguard Worker- name: _nested_tensor_from_tensor_list(Tensor[] list, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor 2778*da0073e9SAndroid Build Coastguard Worker list: "grad.defined()? at::unbind(grad) : std::vector<Tensor>(list.size())" 2779*da0073e9SAndroid Build Coastguard Worker 2780*da0073e9SAndroid Build Coastguard Worker- name: _nested_tensor_from_mask(Tensor t, Tensor mask, bool mask_check=True) -> Tensor 2781*da0073e9SAndroid Build Coastguard Worker t: grad.to_padded_tensor_symint(0, t.sym_sizes()) 2782*da0073e9SAndroid Build Coastguard Worker mask: non_differentiable 2783*da0073e9SAndroid Build Coastguard Worker 2784*da0073e9SAndroid Build Coastguard Worker- name: _nested_from_padded(Tensor padded, Tensor cpu_nested_shape_example, bool fuse_transform_0213=False) -> Tensor 2785*da0073e9SAndroid Build Coastguard Worker padded: _nested_from_padded_backward(grad, padded, fuse_transform_0213) 2786*da0073e9SAndroid Build Coastguard Worker cpu_nested_shape_example: non_differentiable 2787*da0073e9SAndroid Build Coastguard Worker 2788*da0073e9SAndroid Build Coastguard Worker- name: to_padded_tensor(Tensor self, float padding, SymInt[]? output_size=None) -> Tensor 2789*da0073e9SAndroid Build Coastguard Worker self: at::_nested_from_padded(grad, self._nested_tensor_size()) 2790*da0073e9SAndroid Build Coastguard Worker padding: non_differentiable 2791*da0073e9SAndroid Build Coastguard Worker 2792*da0073e9SAndroid Build Coastguard Worker- name: _nested_view_from_buffer(Tensor(a) self, Tensor nested_size, Tensor nested_strides, Tensor offsets) -> Tensor(a) 2793*da0073e9SAndroid Build Coastguard Worker self: grad.values() 2794*da0073e9SAndroid Build Coastguard Worker nested_size: non_differentiable 2795*da0073e9SAndroid Build Coastguard Worker nested_strides: non_differentiable 2796*da0073e9SAndroid Build Coastguard Worker 2797*da0073e9SAndroid Build Coastguard Worker- name: _nested_view_from_jagged(Tensor(a) self, Tensor offsets, Tensor dummy, Tensor? lengths=None, int ragged_idx=1) -> Tensor(a) 2798*da0073e9SAndroid Build Coastguard Worker self: grad.values() 2799*da0073e9SAndroid Build Coastguard Worker offsets: non_differentiable 2800*da0073e9SAndroid Build Coastguard Worker lengths: non_differentiable 2801*da0073e9SAndroid Build Coastguard Worker dummy: non_differentiable 2802*da0073e9SAndroid Build Coastguard Worker 2803*da0073e9SAndroid Build Coastguard Worker- name: _nested_get_values(Tensor(a) self) -> Tensor(a) 2804*da0073e9SAndroid Build Coastguard Worker self: _nested_view_from_jagged(grad, at::_nested_get_offsets(self), at::_nested_get_jagged_dummy(self), at::_nested_get_lengths(self), at::_nested_get_ragged_idx(self)) 2805*da0073e9SAndroid Build Coastguard Worker 2806*da0073e9SAndroid Build Coastguard Worker# Transformers 2807*da0073e9SAndroid Build Coastguard Worker- name: _scaled_dot_product_efficient_attention(Tensor query, Tensor key, Tensor value, Tensor? attn_bias, bool compute_log_sumexp, float dropout_p=0.0, bool is_causal=False, *, float? scale=None) -> (Tensor output, Tensor log_sumexp, Tensor philox_seed, Tensor philox_offset) 2808*da0073e9SAndroid Build Coastguard Worker output_differentiability: [True, False, False, False] 2809*da0073e9SAndroid Build Coastguard Worker query, key, value, attn_bias: _scaled_dot_product_efficient_attention_backward(grad, query, key, value, attn_bias, output, log_sumexp, philox_seed, philox_offset, dropout_p, grad_input_mask, is_causal, scale) 2810*da0073e9SAndroid Build Coastguard Worker 2811*da0073e9SAndroid Build Coastguard Worker- name: _scaled_dot_product_flash_attention(Tensor query, Tensor key, Tensor value, float dropout_p=0.0, bool is_causal=False, bool return_debug_mask=False, *, float? scale=None) -> (Tensor output, Tensor logsumexp, Tensor cum_seq_q, Tensor cum_seq_k, SymInt max_q, SymInt max_k, Tensor philox_seed, Tensor philox_offset, Tensor debug_attn_mask) 2812*da0073e9SAndroid Build Coastguard Worker output_differentiability: [True, False, False, False, False, False, False, False, False] 2813*da0073e9SAndroid Build Coastguard Worker query, key, value: _scaled_dot_product_flash_attention_backward_symint(grad, query, key, value, output, logsumexp, cum_seq_q, cum_seq_k, max_q, max_k, dropout_p, is_causal, philox_seed, philox_offset, scale) 2814*da0073e9SAndroid Build Coastguard Worker 2815*da0073e9SAndroid Build Coastguard Worker- name: _scaled_dot_product_flash_attention_for_cpu(Tensor query, Tensor key, Tensor value, float dropout_p=0.0, bool is_causal=False, *, Tensor? attn_mask=None, float? scale=None) -> (Tensor output, Tensor logsumexp) 2816*da0073e9SAndroid Build Coastguard Worker output_differentiability: [True, False] 2817*da0073e9SAndroid Build Coastguard Worker query, key, value: _scaled_dot_product_flash_attention_for_cpu_backward(grad, query, key, value, output, logsumexp, dropout_p, is_causal, attn_mask, scale) 2818*da0073e9SAndroid Build Coastguard Worker 2819*da0073e9SAndroid Build Coastguard Worker- name: _flash_attention_forward(Tensor query, Tensor key, Tensor value, Tensor? cum_seq_q, Tensor? cum_seq_k, SymInt max_q, SymInt max_k, float dropout_p, bool is_causal, bool return_debug_mask, *, float? scale=None, SymInt? window_size_left=None, SymInt? window_size_right=None, Tensor? seqused_k=None, Tensor? alibi_slopes=None) -> (Tensor output, Tensor softmax_logsumexp, Tensor philox_seed, Tensor philox_offset, Tensor debug_attn_mask) 2820*da0073e9SAndroid Build Coastguard Worker output_differentiability: [True, False, False, False, False] 2821*da0073e9SAndroid Build Coastguard Worker query, key, value: _flash_attention_backward_symint(grad, query, key, value, output, softmax_logsumexp, cum_seq_q, cum_seq_k, max_q, max_k, dropout_p, is_causal, philox_seed, philox_offset, scale, window_size_left, window_size_right) 2822*da0073e9SAndroid Build Coastguard Worker 2823*da0073e9SAndroid Build Coastguard Worker- name: _efficient_attention_forward(Tensor query, Tensor key, Tensor value, Tensor? bias, Tensor? cu_seqlens_q, Tensor? cu_seqlens_k, SymInt? max_seqlen_q, SymInt? max_seqlen_k, float dropout_p, int custom_mask_type, bool compute_log_sumexp=False, *, float? scale=None, Tensor? seqlen_k=None, int? window_size=None) -> (Tensor output, Tensor logsumexp, Tensor philox_seed, Tensor philox_offset, SymInt max_seqlen_batch_q, SymInt max_seqlen_batch_k) 2824*da0073e9SAndroid Build Coastguard Worker output_differentiability: [True, False, False, False, False, False] 2825*da0073e9SAndroid Build Coastguard Worker query, key, value, bias: _efficient_attention_backward_symint(grad, query, key, value, bias, output, cu_seqlens_q, cu_seqlens_k, max_seqlen_batch_q, max_seqlen_batch_k, logsumexp, dropout_p, philox_seed, philox_offset, custom_mask_type, bias.requires_grad(), scale) 2826*da0073e9SAndroid Build Coastguard Worker 2827*da0073e9SAndroid Build Coastguard Worker- name: _scaled_dot_product_cudnn_attention(Tensor query, Tensor key, Tensor value, float dropout_p=0.0, bool is_causal=False, bool return_debug_mask=False, *, float? scale=None) -> (Tensor output, Tensor logsumexp, Tensor cum_seq_q, Tensor cum_seq_k, SymInt max_q, SymInt max_k, Tensor philox_seed, Tensor philox_offset, Tensor debug_attn_mask) 2828*da0073e9SAndroid Build Coastguard Worker output_differentiability: [True, False, False, False, False, False, False, False, False] 2829*da0073e9SAndroid Build Coastguard Worker query, key, value: _scaled_dot_product_cudnn_attention_backward_symint(grad, query, key, value, output, logsumexp, cum_seq_q, cum_seq_k, max_q, max_k, dropout_p, is_causal, philox_seed, philox_offset, scale) 2830*da0073e9SAndroid Build Coastguard Worker 2831*da0073e9SAndroid Build Coastguard Worker# fft 2832*da0073e9SAndroid Build Coastguard Worker- name: _fft_r2c(Tensor self, int[] dim, int normalization, bool onesided) -> Tensor 2833*da0073e9SAndroid Build Coastguard Worker self: fft_r2c_backward(grad, dim, normalization, onesided, self.sym_size(dim.back())) 2834*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2835*da0073e9SAndroid Build Coastguard Worker 2836*da0073e9SAndroid Build Coastguard Worker- name: _fft_c2r(Tensor self, int[] dim, int normalization, SymInt last_dim_size) -> Tensor 2837*da0073e9SAndroid Build Coastguard Worker self: fft_c2r_backward(grad, dim, normalization) 2838*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2839*da0073e9SAndroid Build Coastguard Worker 2840*da0073e9SAndroid Build Coastguard Worker- name: _fft_c2c(Tensor self, SymInt[] dim, int normalization, bool forward) -> Tensor 2841*da0073e9SAndroid Build Coastguard Worker self: _fft_c2c_symint(grad, dim, normalization, !forward) 2842*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2843*da0073e9SAndroid Build Coastguard Worker 2844*da0073e9SAndroid Build Coastguard Worker- name: unbind.int(Tensor(a -> *) self, int dim=0) -> Tensor(a)[] 2845*da0073e9SAndroid Build Coastguard Worker dispatch: 2846*da0073e9SAndroid Build Coastguard Worker Default: 2847*da0073e9SAndroid Build Coastguard Worker self: unbind_backward(grads, dim) 2848*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2849*da0073e9SAndroid Build Coastguard Worker AutogradNestedTensor: 2850*da0073e9SAndroid Build Coastguard Worker self: unbind_backward_nested(grads, at::native::get_nested_tensor_impl(self)->get_nested_sizes(), dim, self.options()) 2851*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2852*da0073e9SAndroid Build Coastguard Worker 2853*da0073e9SAndroid Build Coastguard Worker- name: stack(Tensor[] tensors, int dim=0) -> Tensor 2854*da0073e9SAndroid Build Coastguard Worker tensors: stack_tensors_backward(grad, dim, to_args_scalartypes(tensors)) 2855*da0073e9SAndroid Build Coastguard Worker result: stack_jvp(tensors, dim) 2856*da0073e9SAndroid Build Coastguard Worker 2857*da0073e9SAndroid Build Coastguard Worker# fused RNN kernels 2858*da0073e9SAndroid Build Coastguard Worker 2859*da0073e9SAndroid Build Coastguard Worker# Only frst two of _thnn_fused_lstm_cell outputs can have gradients. 2860*da0073e9SAndroid Build Coastguard Worker# _thnn_fused_lstm_cell outputs: (hy, cy, workspace) 2861*da0073e9SAndroid Build Coastguard Worker- name: _thnn_fused_lstm_cell(Tensor input_gates, Tensor hidden_gates, Tensor cx, Tensor? input_bias=None, Tensor? hidden_bias=None) -> (Tensor, Tensor, Tensor) 2862*da0073e9SAndroid Build Coastguard Worker output_differentiability: [True, True, False] 2863*da0073e9SAndroid Build Coastguard Worker input_gates, hidden_gates, cx, input_bias, hidden_bias: "GradMode::is_enabled() ? _thnn_differentiable_lstm_cell_backward(grads[0], grads[1], input_gates, hidden_gates, input_bias, hidden_bias, cx, result1) : _thnn_fused_lstm_cell_backward(grads[0], grads[1], cx, result1, result2, input_bias.defined())" 2864*da0073e9SAndroid Build Coastguard Worker 2865*da0073e9SAndroid Build Coastguard Worker- name: _thnn_fused_gru_cell(Tensor input_gates, Tensor hidden_gates, Tensor hx, Tensor? input_bias=None, Tensor? hidden_bias=None) -> (Tensor, Tensor) 2866*da0073e9SAndroid Build Coastguard Worker input_gates, hidden_gates, hx, input_bias, hidden_bias: "grad.defined() ? (GradMode::is_enabled() ? _thnn_differentiable_gru_cell_backward(grad, input_gates, hidden_gates, hx, input_bias, hidden_bias) : _thnn_fused_gru_cell_backward(grad, result1, input_bias.defined())) : std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor>()" 2867*da0073e9SAndroid Build Coastguard Worker 2868*da0073e9SAndroid Build Coastguard Worker# PackedSequence helpers 2869*da0073e9SAndroid Build Coastguard Worker- name: _pack_padded_sequence(Tensor input, Tensor lengths, bool batch_first) -> (Tensor, Tensor) 2870*da0073e9SAndroid Build Coastguard Worker input: _pack_padded_sequence_backward_symint(grad, input.sym_sizes(), result1, batch_first) 2871*da0073e9SAndroid Build Coastguard Worker 2872*da0073e9SAndroid Build Coastguard Worker# TH wrappers 2873*da0073e9SAndroid Build Coastguard Worker- name: eq.Scalar(Tensor self, Scalar other) -> Tensor 2874*da0073e9SAndroid Build Coastguard Worker output_differentiability: [False] 2875*da0073e9SAndroid Build Coastguard Worker 2876*da0073e9SAndroid Build Coastguard Worker- name: eq.Tensor(Tensor self, Tensor other) -> Tensor 2877*da0073e9SAndroid Build Coastguard Worker output_differentiability: [False] 2878*da0073e9SAndroid Build Coastguard Worker 2879*da0073e9SAndroid Build Coastguard Worker- name: ge.Scalar(Tensor self, Scalar other) -> Tensor 2880*da0073e9SAndroid Build Coastguard Worker output_differentiability: [False] 2881*da0073e9SAndroid Build Coastguard Worker 2882*da0073e9SAndroid Build Coastguard Worker- name: ge.Tensor(Tensor self, Tensor other) -> Tensor 2883*da0073e9SAndroid Build Coastguard Worker output_differentiability: [False] 2884*da0073e9SAndroid Build Coastguard Worker 2885*da0073e9SAndroid Build Coastguard Worker- name: gt.Scalar(Tensor self, Scalar other) -> Tensor 2886*da0073e9SAndroid Build Coastguard Worker output_differentiability: [False] 2887*da0073e9SAndroid Build Coastguard Worker 2888*da0073e9SAndroid Build Coastguard Worker- name: gt.Tensor(Tensor self, Tensor other) -> Tensor 2889*da0073e9SAndroid Build Coastguard Worker output_differentiability: [False] 2890*da0073e9SAndroid Build Coastguard Worker 2891*da0073e9SAndroid Build Coastguard Worker- name: le.Scalar(Tensor self, Scalar other) -> Tensor 2892*da0073e9SAndroid Build Coastguard Worker output_differentiability: [False] 2893*da0073e9SAndroid Build Coastguard Worker 2894*da0073e9SAndroid Build Coastguard Worker- name: le.Tensor(Tensor self, Tensor other) -> Tensor 2895*da0073e9SAndroid Build Coastguard Worker output_differentiability: [False] 2896*da0073e9SAndroid Build Coastguard Worker 2897*da0073e9SAndroid Build Coastguard Worker- name: lt.Scalar(Tensor self, Scalar other) -> Tensor 2898*da0073e9SAndroid Build Coastguard Worker output_differentiability: [False] 2899*da0073e9SAndroid Build Coastguard Worker 2900*da0073e9SAndroid Build Coastguard Worker- name: lt.Tensor(Tensor self, Tensor other) -> Tensor 2901*da0073e9SAndroid Build Coastguard Worker output_differentiability: [False] 2902*da0073e9SAndroid Build Coastguard Worker 2903*da0073e9SAndroid Build Coastguard Worker- name: ne.Scalar(Tensor self, Scalar other) -> Tensor 2904*da0073e9SAndroid Build Coastguard Worker output_differentiability: [False] 2905*da0073e9SAndroid Build Coastguard Worker 2906*da0073e9SAndroid Build Coastguard Worker- name: ne.Tensor(Tensor self, Tensor other) -> Tensor 2907*da0073e9SAndroid Build Coastguard Worker output_differentiability: [False] 2908*da0073e9SAndroid Build Coastguard Worker 2909*da0073e9SAndroid Build Coastguard Worker- name: multinomial(Tensor self, int num_samples, bool replacement=False, *, Generator? generator=None) -> Tensor 2910*da0073e9SAndroid Build Coastguard Worker output_differentiability: [False] 2911*da0073e9SAndroid Build Coastguard Worker 2912*da0073e9SAndroid Build Coastguard Worker- name: nonzero(Tensor self) -> Tensor 2913*da0073e9SAndroid Build Coastguard Worker output_differentiability: [False] 2914*da0073e9SAndroid Build Coastguard Worker 2915*da0073e9SAndroid Build Coastguard Worker- name: segment_reduce(Tensor data, str reduce, *, Tensor? lengths=None, Tensor? indices=None, Tensor? offsets=None, int axis=0, bool unsafe=False, Scalar? initial=None) -> Tensor 2916*da0073e9SAndroid Build Coastguard Worker data: _segment_reduce_backward(grad, result, data, reduce, lengths, offsets, axis, initial) 2917*da0073e9SAndroid Build Coastguard Worker 2918*da0073e9SAndroid Build Coastguard Worker- name: _pin_memory(Tensor self, Device? device=None) -> Tensor 2919*da0073e9SAndroid Build Coastguard Worker self: grad 2920*da0073e9SAndroid Build Coastguard Worker 2921*da0073e9SAndroid Build Coastguard Worker- name: _new_zeros_with_same_feature_meta(Tensor self, Tensor other, *, int self_num_batch_dims=0) -> Tensor 2922*da0073e9SAndroid Build Coastguard Worker self: non_differentiable 2923*da0073e9SAndroid Build Coastguard Worker other: non_differentiable 2924*da0073e9SAndroid Build Coastguard Worker output_differentiability: [False] 2925*da0073e9SAndroid Build Coastguard Worker 2926*da0073e9SAndroid Build Coastguard Worker- name: _test_warn_in_autograd(Tensor self) -> Tensor 2927*da0073e9SAndroid Build Coastguard Worker self: warn_backwards(grad) 2928*da0073e9SAndroid Build Coastguard Worker 2929*da0073e9SAndroid Build Coastguard Worker- name: _test_autograd_multiple_dispatch.fullcoverage(Tensor self) -> Tensor 2930*da0073e9SAndroid Build Coastguard Worker dispatch: 2931*da0073e9SAndroid Build Coastguard Worker Default: 2932*da0073e9SAndroid Build Coastguard Worker self: grad.expand_symint(self.sym_sizes()) + 1 2933*da0073e9SAndroid Build Coastguard Worker result: auto_linear 2934*da0073e9SAndroid Build Coastguard Worker AutogradNestedTensor: 2935*da0073e9SAndroid Build Coastguard Worker self: grad.mul(grad) 2936*da0073e9SAndroid Build Coastguard Worker AutogradCUDA: 2937*da0073e9SAndroid Build Coastguard Worker self: grad.expand_symint(self.sym_sizes()) * 2 2938*da0073e9SAndroid Build Coastguard Worker 2939*da0073e9SAndroid Build Coastguard Worker- name: _test_autograd_multiple_dispatch.ntonly(Tensor self, bool b) -> Tensor 2940*da0073e9SAndroid Build Coastguard Worker dispatch: 2941*da0073e9SAndroid Build Coastguard Worker AutogradNestedTensor: 2942*da0073e9SAndroid Build Coastguard Worker self: grad.mul(grad).add(grad) 2943*da0073e9SAndroid Build Coastguard Worker 2944*da0073e9SAndroid Build Coastguard Worker- name: _test_autograd_multiple_dispatch_view(Tensor(a) self) -> Tensor(a) 2945*da0073e9SAndroid Build Coastguard Worker dispatch: 2946*da0073e9SAndroid Build Coastguard Worker Default: 2947*da0073e9SAndroid Build Coastguard Worker self: grad.reshape_as(self) 2948*da0073e9SAndroid Build Coastguard Worker AutogradCUDA: 2949*da0073e9SAndroid Build Coastguard Worker self: grad.reshape_as(self) + 1 2950*da0073e9SAndroid Build Coastguard Worker 2951*da0073e9SAndroid Build Coastguard Worker- name: _efficientzerotensor(SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor 2952*da0073e9SAndroid Build Coastguard Worker output_differentiability: [False] 2953*da0073e9SAndroid Build Coastguard Worker 2954*da0073e9SAndroid Build Coastguard Worker- name: scatter_reduce.two(Tensor self, int dim, Tensor index, Tensor src, str reduce, *, bool include_self=True) -> Tensor 2955*da0073e9SAndroid Build Coastguard Worker self, src: scatter_reduce_backward(grad, self, dim, index, src, reduce, include_self, result) 2956*da0073e9SAndroid Build Coastguard Worker index: non_differentiable 2957*da0073e9SAndroid Build Coastguard Worker result: scatter_reduce_jvp(self_p, self_t, dim, index, src_p, src_t, reduce, include_self, result) 2958*da0073e9SAndroid Build Coastguard Worker 2959*da0073e9SAndroid Build Coastguard Worker- name: special_airy_ai(Tensor x) -> Tensor 2960*da0073e9SAndroid Build Coastguard Worker x: non_differentiable 2961*da0073e9SAndroid Build Coastguard Worker 2962*da0073e9SAndroid Build Coastguard Worker- name: special_bessel_j0(Tensor self) -> Tensor 2963*da0073e9SAndroid Build Coastguard Worker self: non_differentiable 2964*da0073e9SAndroid Build Coastguard Worker 2965*da0073e9SAndroid Build Coastguard Worker- name: special_bessel_j1(Tensor self) -> Tensor 2966*da0073e9SAndroid Build Coastguard Worker self: non_differentiable 2967*da0073e9SAndroid Build Coastguard Worker 2968*da0073e9SAndroid Build Coastguard Worker- name: special_bessel_y0(Tensor self) -> Tensor 2969*da0073e9SAndroid Build Coastguard Worker self: non_differentiable 2970*da0073e9SAndroid Build Coastguard Worker 2971*da0073e9SAndroid Build Coastguard Worker- name: special_bessel_y1(Tensor self) -> Tensor 2972*da0073e9SAndroid Build Coastguard Worker self: non_differentiable 2973*da0073e9SAndroid Build Coastguard Worker 2974*da0073e9SAndroid Build Coastguard Worker- name: special_chebyshev_polynomial_t(Tensor x, Tensor n) -> Tensor 2975*da0073e9SAndroid Build Coastguard Worker x: non_differentiable 2976*da0073e9SAndroid Build Coastguard Worker n: non_differentiable 2977*da0073e9SAndroid Build Coastguard Worker 2978*da0073e9SAndroid Build Coastguard Worker- name: special_chebyshev_polynomial_t.x_scalar(Scalar x, Tensor n) -> Tensor 2979*da0073e9SAndroid Build Coastguard Worker n: non_differentiable 2980*da0073e9SAndroid Build Coastguard Worker 2981*da0073e9SAndroid Build Coastguard Worker- name: special_chebyshev_polynomial_t.n_scalar(Tensor x, Scalar n) -> Tensor 2982*da0073e9SAndroid Build Coastguard Worker x: non_differentiable 2983*da0073e9SAndroid Build Coastguard Worker 2984*da0073e9SAndroid Build Coastguard Worker- name: special_chebyshev_polynomial_u(Tensor x, Tensor n) -> Tensor 2985*da0073e9SAndroid Build Coastguard Worker x: non_differentiable 2986*da0073e9SAndroid Build Coastguard Worker n: non_differentiable 2987*da0073e9SAndroid Build Coastguard Worker 2988*da0073e9SAndroid Build Coastguard Worker- name: special_chebyshev_polynomial_u.x_scalar(Scalar x, Tensor n) -> Tensor 2989*da0073e9SAndroid Build Coastguard Worker n: non_differentiable 2990*da0073e9SAndroid Build Coastguard Worker 2991*da0073e9SAndroid Build Coastguard Worker- name: special_chebyshev_polynomial_u.n_scalar(Tensor x, Scalar n) -> Tensor 2992*da0073e9SAndroid Build Coastguard Worker x: non_differentiable 2993*da0073e9SAndroid Build Coastguard Worker 2994*da0073e9SAndroid Build Coastguard Worker- name: special_chebyshev_polynomial_v(Tensor x, Tensor n) -> Tensor 2995*da0073e9SAndroid Build Coastguard Worker x: non_differentiable 2996*da0073e9SAndroid Build Coastguard Worker n: non_differentiable 2997*da0073e9SAndroid Build Coastguard Worker 2998*da0073e9SAndroid Build Coastguard Worker- name: special_chebyshev_polynomial_v.x_scalar(Scalar x, Tensor n) -> Tensor 2999*da0073e9SAndroid Build Coastguard Worker n: non_differentiable 3000*da0073e9SAndroid Build Coastguard Worker 3001*da0073e9SAndroid Build Coastguard Worker- name: special_chebyshev_polynomial_v.n_scalar(Tensor x, Scalar n) -> Tensor 3002*da0073e9SAndroid Build Coastguard Worker x: non_differentiable 3003*da0073e9SAndroid Build Coastguard Worker 3004*da0073e9SAndroid Build Coastguard Worker- name: special_chebyshev_polynomial_w(Tensor x, Tensor n) -> Tensor 3005*da0073e9SAndroid Build Coastguard Worker x: non_differentiable 3006*da0073e9SAndroid Build Coastguard Worker n: non_differentiable 3007*da0073e9SAndroid Build Coastguard Worker 3008*da0073e9SAndroid Build Coastguard Worker- name: special_chebyshev_polynomial_w.x_scalar(Scalar x, Tensor n) -> Tensor 3009*da0073e9SAndroid Build Coastguard Worker n: non_differentiable 3010*da0073e9SAndroid Build Coastguard Worker 3011*da0073e9SAndroid Build Coastguard Worker- name: special_chebyshev_polynomial_w.n_scalar(Tensor x, Scalar n) -> Tensor 3012*da0073e9SAndroid Build Coastguard Worker x: non_differentiable 3013*da0073e9SAndroid Build Coastguard Worker 3014*da0073e9SAndroid Build Coastguard Worker- name: special_hermite_polynomial_h(Tensor x, Tensor n) -> Tensor 3015*da0073e9SAndroid Build Coastguard Worker x: non_differentiable 3016*da0073e9SAndroid Build Coastguard Worker n: non_differentiable 3017*da0073e9SAndroid Build Coastguard Worker 3018*da0073e9SAndroid Build Coastguard Worker- name: special_hermite_polynomial_h.x_scalar(Scalar x, Tensor n) -> Tensor 3019*da0073e9SAndroid Build Coastguard Worker n: non_differentiable 3020*da0073e9SAndroid Build Coastguard Worker 3021*da0073e9SAndroid Build Coastguard Worker- name: special_hermite_polynomial_h.n_scalar(Tensor x, Scalar n) -> Tensor 3022*da0073e9SAndroid Build Coastguard Worker x: non_differentiable 3023*da0073e9SAndroid Build Coastguard Worker 3024*da0073e9SAndroid Build Coastguard Worker- name: special_hermite_polynomial_he(Tensor x, Tensor n) -> Tensor 3025*da0073e9SAndroid Build Coastguard Worker x: non_differentiable 3026*da0073e9SAndroid Build Coastguard Worker n: non_differentiable 3027*da0073e9SAndroid Build Coastguard Worker 3028*da0073e9SAndroid Build Coastguard Worker- name: special_hermite_polynomial_he.x_scalar(Scalar x, Tensor n) -> Tensor 3029*da0073e9SAndroid Build Coastguard Worker n: non_differentiable 3030*da0073e9SAndroid Build Coastguard Worker 3031*da0073e9SAndroid Build Coastguard Worker- name: special_hermite_polynomial_he.n_scalar(Tensor x, Scalar n) -> Tensor 3032*da0073e9SAndroid Build Coastguard Worker x: non_differentiable 3033*da0073e9SAndroid Build Coastguard Worker 3034*da0073e9SAndroid Build Coastguard Worker- name: special_laguerre_polynomial_l(Tensor x, Tensor n) -> Tensor 3035*da0073e9SAndroid Build Coastguard Worker x: non_differentiable 3036*da0073e9SAndroid Build Coastguard Worker n: non_differentiable 3037*da0073e9SAndroid Build Coastguard Worker 3038*da0073e9SAndroid Build Coastguard Worker- name: special_laguerre_polynomial_l.x_scalar(Scalar x, Tensor n) -> Tensor 3039*da0073e9SAndroid Build Coastguard Worker n: non_differentiable 3040*da0073e9SAndroid Build Coastguard Worker 3041*da0073e9SAndroid Build Coastguard Worker- name: special_laguerre_polynomial_l.n_scalar(Tensor x, Scalar n) -> Tensor 3042*da0073e9SAndroid Build Coastguard Worker x: non_differentiable 3043*da0073e9SAndroid Build Coastguard Worker 3044*da0073e9SAndroid Build Coastguard Worker- name: special_legendre_polynomial_p(Tensor x, Tensor n) -> Tensor 3045*da0073e9SAndroid Build Coastguard Worker x: non_differentiable 3046*da0073e9SAndroid Build Coastguard Worker n: non_differentiable 3047*da0073e9SAndroid Build Coastguard Worker 3048*da0073e9SAndroid Build Coastguard Worker- name: special_legendre_polynomial_p.x_scalar(Scalar x, Tensor n) -> Tensor 3049*da0073e9SAndroid Build Coastguard Worker n: non_differentiable 3050*da0073e9SAndroid Build Coastguard Worker 3051*da0073e9SAndroid Build Coastguard Worker- name: special_legendre_polynomial_p.n_scalar(Tensor x, Scalar n) -> Tensor 3052*da0073e9SAndroid Build Coastguard Worker x: non_differentiable 3053*da0073e9SAndroid Build Coastguard Worker 3054*da0073e9SAndroid Build Coastguard Worker- name: special_modified_bessel_i0(Tensor self) -> Tensor 3055*da0073e9SAndroid Build Coastguard Worker self: non_differentiable 3056*da0073e9SAndroid Build Coastguard Worker 3057*da0073e9SAndroid Build Coastguard Worker- name: special_modified_bessel_i1(Tensor self) -> Tensor 3058*da0073e9SAndroid Build Coastguard Worker self: non_differentiable 3059*da0073e9SAndroid Build Coastguard Worker 3060*da0073e9SAndroid Build Coastguard Worker- name: special_modified_bessel_k0(Tensor self) -> Tensor 3061*da0073e9SAndroid Build Coastguard Worker self: non_differentiable 3062*da0073e9SAndroid Build Coastguard Worker 3063*da0073e9SAndroid Build Coastguard Worker- name: special_modified_bessel_k1(Tensor self) -> Tensor 3064*da0073e9SAndroid Build Coastguard Worker self: non_differentiable 3065*da0073e9SAndroid Build Coastguard Worker 3066*da0073e9SAndroid Build Coastguard Worker- name: special_scaled_modified_bessel_k0(Tensor x) -> Tensor 3067*da0073e9SAndroid Build Coastguard Worker x: non_differentiable 3068*da0073e9SAndroid Build Coastguard Worker 3069*da0073e9SAndroid Build Coastguard Worker- name: special_scaled_modified_bessel_k1(Tensor x) -> Tensor 3070*da0073e9SAndroid Build Coastguard Worker x: non_differentiable 3071*da0073e9SAndroid Build Coastguard Worker 3072*da0073e9SAndroid Build Coastguard Worker- name: special_shifted_chebyshev_polynomial_t(Tensor x, Tensor n) -> Tensor 3073*da0073e9SAndroid Build Coastguard Worker x: non_differentiable 3074*da0073e9SAndroid Build Coastguard Worker n: non_differentiable 3075*da0073e9SAndroid Build Coastguard Worker 3076*da0073e9SAndroid Build Coastguard Worker- name: special_shifted_chebyshev_polynomial_t.x_scalar(Scalar x, Tensor n) -> Tensor 3077*da0073e9SAndroid Build Coastguard Worker n: non_differentiable 3078*da0073e9SAndroid Build Coastguard Worker 3079*da0073e9SAndroid Build Coastguard Worker- name: special_shifted_chebyshev_polynomial_t.n_scalar(Tensor x, Scalar n) -> Tensor 3080*da0073e9SAndroid Build Coastguard Worker x: non_differentiable 3081*da0073e9SAndroid Build Coastguard Worker 3082*da0073e9SAndroid Build Coastguard Worker- name: special_shifted_chebyshev_polynomial_u(Tensor x, Tensor n) -> Tensor 3083*da0073e9SAndroid Build Coastguard Worker x: non_differentiable 3084*da0073e9SAndroid Build Coastguard Worker n: non_differentiable 3085*da0073e9SAndroid Build Coastguard Worker 3086*da0073e9SAndroid Build Coastguard Worker- name: special_shifted_chebyshev_polynomial_u.x_scalar(Scalar x, Tensor n) -> Tensor 3087*da0073e9SAndroid Build Coastguard Worker n: non_differentiable 3088*da0073e9SAndroid Build Coastguard Worker 3089*da0073e9SAndroid Build Coastguard Worker- name: special_shifted_chebyshev_polynomial_u.n_scalar(Tensor x, Scalar n) -> Tensor 3090*da0073e9SAndroid Build Coastguard Worker x: non_differentiable 3091*da0073e9SAndroid Build Coastguard Worker 3092*da0073e9SAndroid Build Coastguard Worker- name: special_shifted_chebyshev_polynomial_v(Tensor x, Tensor n) -> Tensor 3093*da0073e9SAndroid Build Coastguard Worker x: non_differentiable 3094*da0073e9SAndroid Build Coastguard Worker n: non_differentiable 3095*da0073e9SAndroid Build Coastguard Worker 3096*da0073e9SAndroid Build Coastguard Worker- name: special_shifted_chebyshev_polynomial_v.x_scalar(Scalar x, Tensor n) -> Tensor 3097*da0073e9SAndroid Build Coastguard Worker n: non_differentiable 3098*da0073e9SAndroid Build Coastguard Worker 3099*da0073e9SAndroid Build Coastguard Worker- name: special_shifted_chebyshev_polynomial_v.n_scalar(Tensor x, Scalar n) -> Tensor 3100*da0073e9SAndroid Build Coastguard Worker x: non_differentiable 3101*da0073e9SAndroid Build Coastguard Worker 3102*da0073e9SAndroid Build Coastguard Worker- name: special_shifted_chebyshev_polynomial_w(Tensor x, Tensor n) -> Tensor 3103*da0073e9SAndroid Build Coastguard Worker x: non_differentiable 3104*da0073e9SAndroid Build Coastguard Worker n: non_differentiable 3105*da0073e9SAndroid Build Coastguard Worker 3106*da0073e9SAndroid Build Coastguard Worker- name: special_shifted_chebyshev_polynomial_w.x_scalar(Scalar x, Tensor n) -> Tensor 3107*da0073e9SAndroid Build Coastguard Worker n: non_differentiable 3108*da0073e9SAndroid Build Coastguard Worker 3109*da0073e9SAndroid Build Coastguard Worker- name: special_shifted_chebyshev_polynomial_w.n_scalar(Tensor x, Scalar n) -> Tensor 3110*da0073e9SAndroid Build Coastguard Worker x: non_differentiable 3111*da0073e9SAndroid Build Coastguard Worker 3112*da0073e9SAndroid Build Coastguard Worker- name: special_spherical_bessel_j0(Tensor x) -> Tensor 3113*da0073e9SAndroid Build Coastguard Worker x: non_differentiable 3114*da0073e9SAndroid Build Coastguard Worker 3115*da0073e9SAndroid Build Coastguard Worker- name: _reshape_copy(Tensor self, SymInt[] size) -> Tensor 3116*da0073e9SAndroid Build Coastguard Worker self: grad.reshape_symint(self.sym_sizes()) 3117*da0073e9SAndroid Build Coastguard Worker result: auto_linear 3118*da0073e9SAndroid Build Coastguard Worker 3119*da0073e9SAndroid Build Coastguard Worker# note(crcrpar): `torchgen/api/autograd` logic would unwantedly replace substrings of `self` and `other` of function names. 3120*da0073e9SAndroid Build Coastguard Worker- name: _foreach_div.List(Tensor[] self, Tensor[] other) -> Tensor[] 3121*da0073e9SAndroid Build Coastguard Worker self: div_tensor_self_backward(grads[i], other[i], self[i].scalar_type()) 3122*da0073e9SAndroid Build Coastguard Worker other: div_tensor_other_backward(grads[i], self[i], other[i]) 3123*da0073e9SAndroid Build Coastguard Worker result: (self_t - other_t * result[i]) / other_p 3124*da0073e9SAndroid Build Coastguard Worker 3125*da0073e9SAndroid Build Coastguard Worker- name: _foreach_pow.List(Tensor[] self, Tensor[] exponent) -> Tensor[] 3126*da0073e9SAndroid Build Coastguard Worker self: pow_backward_self(grads[i], self[i], exponent[i]) 3127*da0073e9SAndroid Build Coastguard Worker exponent: pow_backward_exponent(grads[i], self[i], exponent[i], result[i]) 3128*da0073e9SAndroid Build Coastguard Worker result: (pow_backward_self(self_t.conj(), self_p, exponent_p) + pow_backward_exponent(exponent_t.conj(), self_p, exponent_p, result[i])).conj() 3129*da0073e9SAndroid Build Coastguard Worker 3130*da0073e9SAndroid Build Coastguard Worker- name: _foreach_pow.ScalarList(Tensor[] self, Scalar[] exponent) -> Tensor[] 3131*da0073e9SAndroid Build Coastguard Worker self: pow_backward(grads[i], self[i], exponent[i]) 3132*da0073e9SAndroid Build Coastguard Worker result: pow_backward(self_t.conj(), self_p, exponent[i]).conj() 3133*da0073e9SAndroid Build Coastguard Worker 3134*da0073e9SAndroid Build Coastguard Worker- name: _foreach_pow.ScalarAndTensor(Scalar self, Tensor[] exponent) -> Tensor[] 3135*da0073e9SAndroid Build Coastguard Worker exponent: pow_backward_exponent(grads[i], self, exponent[i], result[i]) 3136*da0073e9SAndroid Build Coastguard Worker 3137*da0073e9SAndroid Build Coastguard Worker# note(crcrpar): following definitions seem necessary because the reference native functions 3138*da0073e9SAndroid Build Coastguard Worker# of `maximum` and `minimum` don't have the overload def with Scalar as their second argument. 3139*da0073e9SAndroid Build Coastguard Worker- name: _foreach_minimum.Scalar(Tensor[] self, Scalar scalar) -> Tensor[] 3140*da0073e9SAndroid Build Coastguard Worker self: at::where(self[i] == scalar, grads[i] / 2, grads[i]).masked_fill_(self[i] > scalar, 0) 3141*da0073e9SAndroid Build Coastguard Worker result: scalar + at::where(self_p == scalar, at::scalar_tensor(0.5, result[i].options()), (self_p < scalar).to(result[i].scalar_type())) * (self_t - scalar) 3142*da0073e9SAndroid Build Coastguard Worker 3143*da0073e9SAndroid Build Coastguard Worker- name: _foreach_minimum.ScalarList(Tensor[] self, Scalar[] scalars) -> Tensor[] 3144*da0073e9SAndroid Build Coastguard Worker self: at::where(self[i] == scalars[i], grads[i] / 2, grads[i]).masked_fill_(self[i] > scalars[i], 0) 3145*da0073e9SAndroid Build Coastguard Worker result: scalars[i] + at::where(self_p == scalars[i], at::scalar_tensor(0.5, result[i].options()), (self_p < scalars[i]).to(result[i].scalar_type())) * (self_t - scalars[i]) 3146*da0073e9SAndroid Build Coastguard Worker 3147*da0073e9SAndroid Build Coastguard Worker- name: _foreach_maximum.Scalar(Tensor[] self, Scalar scalar) -> Tensor[] 3148*da0073e9SAndroid Build Coastguard Worker self: at::where(self[i] == scalar, grads[i] / 2, grads[i]).masked_fill_(self[i] < scalar, 0) 3149*da0073e9SAndroid Build Coastguard Worker result: scalar + at::where(self_p == scalar, at::scalar_tensor(0.5, result[i].options()), (self_p > scalar).to(result[i].scalar_type())) * (self_t - scalar) 3150*da0073e9SAndroid Build Coastguard Worker 3151*da0073e9SAndroid Build Coastguard Worker- name: _foreach_maximum.ScalarList(Tensor[] self, Scalar[] scalars) -> Tensor[] 3152*da0073e9SAndroid Build Coastguard Worker self: at::where(self[i] == scalars[i], grads[i] / 2, grads[i]).masked_fill_(self[i] < scalars[i], 0) 3153*da0073e9SAndroid Build Coastguard Worker result: scalars[i] + at::where(self_p == scalars[i], at::scalar_tensor(0.5, result[i].options()), (self_p > scalars[i]).to(result[i].scalar_type())) * (self_t - scalars[i]) 3154*da0073e9SAndroid Build Coastguard Worker 3155*da0073e9SAndroid Build Coastguard Worker# note(crcrpar): forward-mode AD is tricky for a simple string replace to handle: 3156*da0073e9SAndroid Build Coastguard Worker# formula.replace("p", "ord") produces `norm_jvord(self_ord, self_t, ord, result)` 3157*da0073e9SAndroid Build Coastguard Worker- name: _foreach_norm.Scalar(Tensor[] self, Scalar ord=2, ScalarType? dtype=None) -> Tensor[] 3158*da0073e9SAndroid Build Coastguard Worker self: norm_backward(grads[i], self[i], ord, result[i]) 3159*da0073e9SAndroid Build Coastguard Worker result: norm_jvp(self_p, self_t, ord, result[i]) 3160