/aosp_15_r20/external/eigen/Eigen/src/Eigenvalues/ |
H A D | EigenSolver.h | 23 * \brief Computes eigenvalues and eigenvectors of general matrices 29 * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars 32 * \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V = 36 * The eigenvalues and eigenvectors of a matrix may be complex, even when the 46 * Call the function compute() to compute the eigenvalues and eigenvectors of 49 * eigenvalues and eigenvectors at construction time. Once the eigenvalue and 50 * eigenvectors are computed, they can be retrieved with the eigenvalues() and 51 * eigenvectors() functions. The pseudoEigenvalueMatrix() and 99 /** \brief Type for matrix of eigenvectors as returned by eigenvectors(). 134 * \param[in] computeEigenvectors If true, both the eigenvectors and the [all …]
|
H A D | GeneralizedEigenSolver.h | 24 * \brief Computes the generalized eigenvalues and eigenvectors of a pair of general matrices 30 …* The generalized eigenvalues and eigenvectors of a matrix pair \f$ A \f$ and \f$ B \f$ are scalars 33 * \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V = 37 * The generalized eigenvalues and eigenvectors of a matrix pair may be complex, even when the 45 * Call the function compute() to compute the generalized eigenvalues and eigenvectors of 48 * eigenvalues and eigenvectors at construction time. Once the eigenvalue and 49 * eigenvectors are computed, they can be retrieved with the eigenvalues() and 50 * eigenvectors() functions. 104 /** \brief Type for matrix of eigenvectors as returned by eigenvectors(). 147 * \param[in] computeEigenvectors If true, both the eigenvectors and the [all …]
|
H A D | ComplexEigenSolver.h | 24 * \brief Computes eigenvalues and eigenvectors of general complex matrices 30 * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars 33 * the diagonal, and \f$ V \f$ is a matrix with the eigenvectors as 39 * eigenvalues and eigenvectors of a given function. The 80 /** \brief Type for matrix of eigenvectors as returned by eigenvectors(). 119 * \param[in] computeEigenvectors If true, both the eigenvectors and the 137 /** \brief Returns the eigenvectors of given matrix. 139 * \returns A const reference to the matrix whose columns are the eigenvectors. 147 * This function returns a matrix whose columns are the eigenvectors. Column 149 * \f$ as returned by eigenvalues(). The eigenvectors are normalized to [all …]
|
H A D | SelfAdjointEigenSolver.h | 34 * \brief Computes eigenvalues and eigenvectors of selfadjoint matrices 42 * transpose. This class computes the eigenvalues and eigenvectors of a 47 * eigenvectors as its columns, then \f$ A = V D V^{-1} \f$. This is called the 61 * Call the function compute() to compute the eigenvalues and eigenvectors of 64 * the eigenvalues and eigenvectors at construction time. Once the eigenvalue 65 * and eigenvectors are computed, they can be retrieved with the eigenvalues() 66 * and eigenvectors() functions. 137 * eigenvalues and eigenvectors will be computed. 163 * eigenvalues of the matrix \p matrix. The eigenvectors are computed if 193 * then the eigenvectors are also computed and can be retrieved by [all …]
|
H A D | GeneralizedSelfAdjointEigenSolver.h | 23 * \brief Computes eigenvalues and eigenvectors of the generalized selfadjoint eigen problem 35 * Call the function compute() to compute the eigenvalues and eigenvectors of 38 * constructor which computes the eigenvalues and eigenvectors at construction time. 39 * Once the eigenvalue and eigenvectors are computed, they can be retrieved with the eigenvalues() 40 * and eigenvectors() functions. 67 * eigenvalues and eigenvectors will be computed. 90 * to compute the eigenvalues and (if requested) the eigenvectors of the 94 * \f$ x^* B x = 1 \f$. The eigenvectors are computed if 125 * the eigenvectors of one of the following three generalized eigenproblems: 135 * eigenvectors are also computed and can be retrieved by calling [all …]
|
/aosp_15_r20/external/eigen/test/ |
H A D | eigensolver_selfadjoint.cpp | 35 VERIFY_IS_APPROX((m.template selfadjointView<Lower>() * eiSymm.eigenvectors())/scaling, in selfadjointeigensolver_essential_check() 36 (eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal())/scaling); in selfadjointeigensolver_essential_check() 39 VERIFY_IS_UNITARY(eiSymm.eigenvectors()); in selfadjointeigensolver_essential_check() 60 VERIFY_IS_APPROX((m.template selfadjointView<Lower>() * eiDirect.eigenvectors())/scaling, in selfadjointeigensolver_essential_check() 61 (eiDirect.eigenvectors() * eiDirect.eigenvalues().asDiagonal())/scaling); in selfadjointeigensolver_essential_check() 65 VERIFY_IS_UNITARY(eiDirect.eigenvectors()); in selfadjointeigensolver_essential_check() 110 VERIFY((symmC.template selfadjointView<Lower>() * eiSymmGen.eigenvectors()).isApprox( in selfadjointeigensolver() 111 …symmB.template selfadjointView<Lower>() * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDi… in selfadjointeigensolver() 116 …ointView<Lower>() * (symmC.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox( in selfadjointeigensolver() 117 (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps)); in selfadjointeigensolver() [all …]
|
H A D | eigensolver_generic.cpp | 24 VERIFY_IS_APPROX(a.template cast<Complex>() * eig.eigenvectors(), in check_eigensolver_for_given_mat() 25 eig.eigenvectors() * eig.eigenvalues().asDiagonal()); in check_eigensolver_for_given_mat() 26 VERIFY_IS_APPROX(eig.eigenvectors().colwise().norm(), RealVectorType::Ones(n).transpose()); in check_eigensolver_for_given_mat() 58 VERIFY_IS_EQUAL(ei2.eigenvectors(), ei1.eigenvectors()); in eigensolver() 94 VERIFY((ei3.eigenvectors().transpose()*ei3.eigenvectors().transpose()).eval().isIdentity()); in eigensolver() 101 VERIFY_RAISES_ASSERT(eig.eigenvectors()); in eigensolver_verify_assert() 108 VERIFY_RAISES_ASSERT(eig.eigenvectors()); in eigensolver_verify_assert() 137 …VERIFY_IS_APPROX(a * eig.eigenvectors()*scale, eig.eigenvectors() * eig.eigenvalues().asDiagonal()… in eigensolver_generic_extra() 148 VERIFY_IS_APPROX((a * eig.eigenvectors()).norm()+1., 1.); in eigensolver_generic_extra() 149 VERIFY_IS_APPROX((eig.eigenvectors() * eig.eigenvalues().asDiagonal()).norm()+1., 1.); in eigensolver_generic_extra()
|
H A D | eigensolver_complex.cpp | 88 VERIFY_IS_APPROX(symmA * ei0.eigenvectors(), ei0.eigenvectors() * ei0.eigenvalues().asDiagonal()); in eigensolver() 92 VERIFY_IS_APPROX(a * ei1.eigenvectors(), ei1.eigenvectors() * ei1.eigenvalues().asDiagonal()); in eigensolver() 100 VERIFY_IS_EQUAL(ei2.eigenvectors(), ei1.eigenvectors()); in eigensolver() 140 VERIFY((ei3.eigenvectors().transpose()*ei3.eigenvectors().transpose()).eval().isIdentity()); in eigensolver() 147 VERIFY_RAISES_ASSERT(eig.eigenvectors()); in eigensolver_verify_assert() 152 VERIFY_RAISES_ASSERT(eig.eigenvectors()); in eigensolver_verify_assert()
|
H A D | eigensolver_generalized_real.cpp | 46 // check eigenvectors in generalized_eigensolver_real() 48 typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType V = eig.eigenvectors(); in generalized_eigensolver_real() 66 // check eigenvectors in generalized_eigensolver_real() 68 typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType V = eig.eigenvectors(); in generalized_eigensolver_real() 80 // check without eigenvectors in generalized_eigensolver_real()
|
/aosp_15_r20/external/apache-commons-math/src/main/java/org/apache/commons/math/linear/ |
H A D | EigenDecompositionImpl.java | 77 /** Eigenvectors. */ 78 private ArrayRealVector[] eigenvectors; field in EigenDecompositionImpl 162 final int m = eigenvectors.length; in getV() 165 cachedV.setColumnVector(k, eigenvectors[k]); in getV() 186 final int m = eigenvectors.length; in getVT() 189 cachedVt.setRowVector(k, eigenvectors[k]); in getVT() 223 return eigenvectors[i].copy(); in getEigenvector() 240 return new Solver(realEigenvalues, imagEigenvalues, eigenvectors); in getSolver() 252 /** Eigenvectors. */ 253 private final ArrayRealVector[] eigenvectors; field in EigenDecompositionImpl.Solver [all …]
|
/aosp_15_r20/external/eigen/unsupported/Eigen/src/Eigenvalues/ |
H A D | ArpackSelfAdjointEigenSolver.h | 66 * \param[in] A Self-adjoint matrix whose eigenvalues / eigenvectors will 70 * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute. 82 …* to compute the eigenvalues of the matrix \p A with respect to \p B. The eigenvectors are compute… 101 * \param[in] A Self-adjoint matrix whose eigenvalues / eigenvectors will 104 * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute. 116 * to compute the eigenvalues of the matrix \p A. The eigenvectors are computed if 135 …/** \brief Computes generalized eigenvalues / eigenvectors of given matrix using the external ARPA… 139 * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute. 154 * then the eigenvectors are also computed and can be retrieved by 155 * calling eigenvectors(). [all …]
|
/aosp_15_r20/external/apache-commons-math/src/main/java/org/apache/commons/math3/linear/ |
H A D | EigenDecomposition.java | 62 * The columns of V represent the eigenvectors in the sense that A*V = V*D, i.e. A.multiply(V) 96 /** Eigenvectors. */ 97 private ArrayRealVector[] eigenvectors; field in EigenDecomposition 191 * its inverse. The columns of V are the eigenvectors of the original matrix. No assumption is 200 final int m = eigenvectors.length; in getV() 203 cachedV.setColumnVector(k, eigenvectors[k]); in getV() 238 * transpose is also its inverse. The columns of V are the eigenvectors of the original matrix. 247 final int m = eigenvectors.length; in getVT() 250 cachedVt.setRowVector(k, eigenvectors[k]); in getVT() 334 return eigenvectors[i].copy(); in getEigenvector() [all …]
|
/aosp_15_r20/external/libchrome/ui/gfx/geometry/ |
H A D | matrix3_unittest.cc | 120 Matrix3F eigenvectors = Matrix3F::Zeros(); in TEST() local 121 Vector3dF eigenvals = matrix.SolveEigenproblem(&eigenvectors); in TEST() 124 EXPECT_EQ(Vector3dF(0.0f, 0.0f, 1.0f), eigenvectors.get_column(0)); in TEST() 125 EXPECT_EQ(Vector3dF(1.0f, 0.0f, 0.0f), eigenvectors.get_column(1)); in TEST() 126 EXPECT_EQ(Vector3dF(0.0f, 1.0f, 0.0f), eigenvectors.get_column(2)); in TEST() 130 // This block tests computation of eigenvectors of a matrix where nice in TEST() 136 Matrix3F eigenvectors = Matrix3F::Zeros(); in TEST() local 137 Vector3dF eigenvals = matrix.SolveEigenproblem(&eigenvectors); in TEST() 142 (expected_principal - eigenvectors.get_column(0)).Length(), in TEST() 147 // This block tests computation of eigenvectors of a matrix where output in TEST() [all …]
|
H A D | matrix3_f.h | 90 // Compute eigenvalues and (optionally) normalized eigenvectors of 91 // a positive defnite matrix *this. Eigenvectors are computed only if 92 // non-null |eigenvectors| matrix is passed. If it is NULL, the routine 93 // will not attempt to compute eigenvectors but will still return eigenvalues 97 // only needs to be symmetric while eigenvectors require it to be 100 // Eigenvectors are placed as column in |eigenvectors| in order corresponding 102 Vector3dF SolveEigenproblem(Matrix3F* eigenvectors) const;
|
H A D | matrix3_f.cc | 153 Vector3dF Matrix3F::SolveEigenproblem(Matrix3F* eigenvectors) const { in SolveEigenproblem() 221 if (eigenvectors != NULL && diagonal) { in SolveEigenproblem() 222 // Eigenvectors are e-vectors, just need to be sorted accordingly. in SolveEigenproblem() 223 *eigenvectors = Zeros(); in SolveEigenproblem() 225 eigenvectors->set(indices[i], i, 1.0f); in SolveEigenproblem() 226 } else if (eigenvectors != NULL) { in SolveEigenproblem() 259 eigenvectors->set_column(i, eigvec); in SolveEigenproblem()
|
/aosp_15_r20/external/tensorflow/tensorflow/python/ops/linalg/ |
H A D | linalg_impl.py | 537 numerically singular systems when computing eigenvectors by inverse 1248 eigvals_only: If False, both eigenvalues and corresponding eigenvectors are 1267 eig_vectors: If `eigvals_only` is False the eigenvectors are returned in 1272 NotImplemented: Computing eigenvectors for `eigvals_only` = False is 1461 """Implements inverse iteration to compute eigenvectors.""" 1467 # Eigenvectors corresponding to cluster of close eigenvalues are 1476 # Find the beginning and end of runs of eigenvectors corresponding 1492 # We perform inverse iteration for all eigenvectors in parallel, 1502 # Replicate alpha-eigvals(ik) and beta across the k eigenvectors so we 1512 def orthogonalize_close_eigenvectors(eigenvectors): argument [all …]
|
/aosp_15_r20/external/eigen/doc/snippets/ |
H A D | ComplexEigenSolver_compute.cpp | 7 cout << "The matrix of eigenvectors, V, is:" << endl << ces.eigenvectors() << endl << endl; 11 VectorXcf v = ces.eigenvectors().col(0); 16 << ces.eigenvectors() * ces.eigenvalues().asDiagonal() * ces.eigenvectors().inverse() << endl;
|
H A D | EigenSolver_EigenSolver_MatrixType.cpp | 6 cout << "The matrix of eigenvectors, V, is:" << endl << es.eigenvectors() << endl << endl; 10 VectorXcd v = es.eigenvectors().col(0); 15 MatrixXcd V = es.eigenvectors();
|
H A D | SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp | 7 cout << "The matrix of eigenvectors, V, is:" << endl << es.eigenvectors() << endl << endl; 11 VectorXd v = es.eigenvectors().col(0); 16 MatrixXd V = es.eigenvectors();
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/cuda/linalg/ |
H A D | BatchLinearAlgebraLib.cpp | 1418 static void linalg_eigh_cusolver_syevd(const Tensor& eigenvalues, const Tensor& eigenvectors, const… in linalg_eigh_cusolver_syevd() argument 1419 AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES(eigenvectors.scalar_type(), "linalg_eigh_cuda", [&] { in linalg_eigh_cusolver_syevd() 1420 apply_syevd<scalar_t>(eigenvalues, eigenvectors, infos, upper, compute_eigenvectors); in linalg_eigh_cusolver_syevd() 1424 static void linalg_eigh_cusolver_syevj(const Tensor& eigenvalues, const Tensor& eigenvectors, const… in linalg_eigh_cusolver_syevj() argument 1425 AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES(eigenvectors.scalar_type(), "linalg_eigh_cuda", [&] { in linalg_eigh_cusolver_syevj() 1426 apply_syevj<scalar_t>(eigenvalues, eigenvectors, infos, upper, compute_eigenvectors); in linalg_eigh_cusolver_syevj() 1430 …_eigh_cusolver_syevj_batched(const Tensor& eigenvalues, const Tensor& eigenvectors, const Tensor& … in linalg_eigh_cusolver_syevj_batched() argument 1431 AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES(eigenvectors.scalar_type(), "linalg_eigh_cuda", [&] { in linalg_eigh_cusolver_syevj_batched() 1432 apply_syevj_batched<scalar_t>(eigenvalues, eigenvectors, infos, upper, compute_eigenvectors); in linalg_eigh_cusolver_syevj_batched() 1436 void linalg_eigh_cusolver(const Tensor& eigenvalues, const Tensor& eigenvectors, const Tensor& info… in linalg_eigh_cusolver() argument [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/core/api_def/base_api/ |
H A D | api_def_Eig.pbtxt | 21 Eigenvectors. Shape is `[N, N]`. 27 If `True` then eigenvectors will be computed and returned in `v`. 33 Computes the eigenvalues and (optionally) right eigenvectors of each inner matrix in 40 # v is a tensor of eigenvectors.
|
H A D | api_def_SelfAdjointEigV2.pbtxt | 21 Eigenvectors. Shape is `[N, N]`. 27 If `True` then eigenvectors will be computed and returned in `v`. 33 Computes the eigenvalues and (optionally) eigenvectors of each inner matrix in 40 # v is a tensor of eigenvectors.
|
/aosp_15_r20/external/tensorflow/tensorflow/python/ops/ |
H A D | linalg_ops.py | 384 and eigenvectors for a non-Hermitian matrix in general are complex. The 385 eigenvectors are not guaranteed to be linearly independent. 387 Computes the eigenvalues and right eigenvectors of the innermost 399 v: Eigenvectors. Shape is `[..., N, N]`. The columns of the inner most 400 matrices contain eigenvectors of the corresponding matrices in `tensor` 418 eigenvectors are used to compute the gradient w.r.t. the eigenvalues. See 443 Computes the eigenvalues and eigenvectors of the innermost N-by-N matrices 454 v: Eigenvectors. Shape is `[..., N, N]`. The columns of the inner most 455 matrices contain eigenvectors of the corresponding matrices in `tensor` 470 eigenvectors are used to compute the gradient w.r.t. the eigenvalues. See
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/ |
H A D | BatchLinearAlgebraKernel.cpp | 140 Computes the eigenvalues and eigenvectors of n-by-n matrix 'input'. 154 char jobvl = 'N'; // only right eigenvectors are computed in apply_linalg_eig() 164 scalar_t* lvectors_data = nullptr; // only right eigenvectors are computed in apply_linalg_eig() 197 void linalg_eig_kernel(Tensor& eigenvalues, Tensor& eigenvectors, Tensor& infos, const Tensor& inpu… in linalg_eig_kernel() argument 200 // the content of eigenvalues, eigenvectors and infos is overwritten by 'apply_linalg_eig' in linalg_eig_kernel() 208 …apply_linalg_eig<scalar_t>(eigenvalues, eigenvectors, input_working_copy, infos, compute_eigenvect… in linalg_eig_kernel() 213 Computes eigenvalues and eigenvectors of the input that is stored initially in 'vectors'. 218 'compute_eigenvectors' controls whether eigenvectors should be computed. 294 void linalg_eigh_kernel(const Tensor& eigenvalues, const Tensor& eigenvectors, const Tensor& infos,… in linalg_eigh_kernel() argument 297 // content of eigenvalues, eigenvectors and infos is overwritten by in linalg_eigh_kernel() [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/python/kernel_tests/linalg/ |
H A D | self_adjoint_eig_op_test.py | 101 """Equilibrate the phase of the Eigenvectors in the columns of `x` and `y`. 103 Eigenvectors are only unique up to an arbitrary phase. This function rotates x 108 x: `np.ndarray` with Eigenvectors 109 y: `np.ndarray` with Eigenvectors 214 # (complex) Eigenvectors are only unique up to an arbitrary phase
|