/aosp_15_r20/external/tensorflow/tensorflow/python/kernel_tests/sparse_ops/ |
H A D | sparse_cross_op_test.py | 82 ['batch2-FC1-F1', 'batch2-FC1-F2']]), 84 ['batch2-FC2-F1', 'batch2-FC2-F2']]) 87 'batch2-FC1-F1_X_batch2-FC2-F1', 'batch2-FC1-F1_X_batch2-FC2-F2', 88 'batch2-FC1-F2_X_batch2-FC2-F1', 'batch2-FC1-F2_X_batch2-FC2-F2' 98 ['batch2-FC1-F1', 'batch2-FC1-F2']], 101 ['batch2-FC2-F1', 'batch2-FC2-F2']], 108 'batch2-FC1-F1_X_batch2-FC2-F1', 'batch2-FC1-F1_X_batch2-FC2-F2', 109 'batch2-FC1-F2_X_batch2-FC2-F1', 'batch2-FC1-F2_X_batch2-FC2-F2' 120 ['batch2-FC2-F1', 'batch2-FC2-F2']]) 135 ['batch2-FC2-F1', 'batch2-FC2-F2']], [all …]
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/mkldnn/xpu/ |
H A D | Blas.cpp | 171 // result = beta * input + alpha * (batch1 @ batch2) 175 const Tensor& batch2, in baddbmm_out() argument 179 checkBackend("baddbmm_out", {input, batch1, batch2}, Backend::XPU); in baddbmm_out() 181 TORCH_CHECK(batch2.dim() == 3, "expected 3D tensor"); in baddbmm_out() 184 batch1.size(0), batch1.size(1), batch2.size(2)}; in baddbmm_out() 205 if (batch1.is_complex() || batch2.scalar_type() == ScalarType::Double) { in baddbmm_out() 229 onednn::matmul(result, batch1, batch2, at::Tensor(), true, attr); in baddbmm_out() 236 const Tensor& batch2, in baddbmm_() argument 239 … the same, got: input ", self.dtype(), ", batch1: ", batch1.dtype(), ", batch2: ", batch2.dtype()); in baddbmm_() 241 self, batch1, batch2, beta, alpha, self); in baddbmm_() [all …]
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/mps/operations/ |
H A D | LinearAlgebra.mm | 304 const Tensor& batch2, 313 TORCH_CHECK(batch2.is_mps()); 320 TORCH_CHECK(batch2.dim() == 3, "batch2 must be a 3D tensor"); 321 TORCH_CHECK(batch1.size(0) == batch2.size(0), 322 "batch1 and batch2 must have same number of batches, got ", 325 batch2.size(0)); 326 TORCH_CHECK(batch1.size(2) == batch2.size(1), 332 batch2.size(1), 334 batch2.size(2), 360 …key += getTensorsStringKey({batch1, batch2, input}) + ":" + std::to_string(beta.toDouble()) + ":" + [all …]
|
/aosp_15_r20/external/pytorch/tools/autograd/ |
H A D | deprecated.yaml | 13 - name: addbmm(Scalar beta, Tensor self, Scalar alpha, Tensor batch1, Tensor batch2) -> Tensor 14 aten: addbmm(self, batch1, batch2, beta, alpha) 16 - name: addbmm_(Scalar beta, Tensor(a!) self, Scalar alpha, Tensor batch1, Tensor batch2) -> Tensor… 17 aten: addbmm_(self, batch1, batch2, beta, alpha) 19 - name: addbmm(Scalar beta, Tensor self, Scalar alpha, Tensor batch1, Tensor batch2, *, Tensor(a!) … 20 aten: addbmm_out(out, self, batch1, batch2, beta, alpha) 22 - name: addbmm(Scalar beta, Tensor self, Tensor batch1, Tensor batch2) -> Tensor 23 aten: addbmm(self, batch1, batch2, beta, 1) 25 - name: addbmm_(Scalar beta, Tensor(a!) self, Tensor batch1, Tensor batch2) -> Tensor(a!) 26 aten: addbmm_(self, batch1, batch2, beta, 1) [all …]
|
H A D | derivatives.yaml | 238 - name: addbmm(Tensor self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1) -> Tens… 240 …(0).expand_symint({ batch1.sym_size(0), batch1.sym_size(1), batch2.sym_size(2) }).bmm(batch2.trans… 241 …batch2: maybe_multiply(batch1.transpose(1, 2).conj().bmm(grad.unsqueeze(0).expand_symint({ batch1.… 358 - name: baddbmm(Tensor self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1) -> Ten… 360 batch1: maybe_multiply(grad.bmm(batch2.transpose(1, 2).conj()), alpha.conj()) 361 batch2: maybe_multiply(batch1.transpose(1, 2).conj().bmm(grad), alpha.conj())
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/ |
H A D | LinearAlgebra.cpp | 284 void common_checks_baddbmm_bmm(Meta& meta, const Tensor& batch1, const Tensor& batch2, const Scalar… in common_checks_baddbmm_bmm() argument 286 TORCH_CHECK(batch2.dim() == 3, "batch2 must be a 3D tensor"); in common_checks_baddbmm_bmm() 289 const auto batch2_sizes = batch2.sizes(); in common_checks_baddbmm_bmm() 298 "Expected size for first two dimensions of batch2 tensor to be: [", in common_checks_baddbmm_bmm() 303 meta.set_output_raw_strided(0, output_size, {}, batch2.options()); in common_checks_baddbmm_bmm() 318 outnames = namedinference::compute_baddbmm_outnames(result, batch1, batch2, self); in common_checks_baddbmm_bmm() 321 outnames = namedinference::compute_bmm_outnames(result, batch1, batch2); in common_checks_baddbmm_bmm() 334 TORCH_META_FUNC(baddbmm)(const Tensor& self, const Tensor& batch1, const Tensor& batch2, const Scal… in TORCH_META_FUNC() 335 auto self_ = expand_size(self, {batch1.size(0), batch1.size(1), batch2.size(2)}, "baddbmm"); in TORCH_META_FUNC() 336 … the same, got: input ", self.dtype(), ", batch1: ", batch1.dtype(), ", batch2: ", batch2.dtype()); in TORCH_META_FUNC() [all …]
|
/aosp_15_r20/external/sdk-platform-java/gax-java/gax/src/test/java/com/google/api/gax/rpc/ |
H A D | BatchTest.java | 68 Batch<LabeledIntList, List<Integer>> batch2 = createBatch(request2); in testMerge() local 70 batch1.merge(batch2); in testMerge() 82 Batch<LabeledIntList, List<Integer>> batch2 = createBatch(request2); in testMergeStartEmpty() local 84 batch1.merge(batch2); in testMergeStartEmpty() 88 Truth.assertThat(batch1.getCallable()).isSameInstanceAs(batch2.getCallable()); in testMergeStartEmpty() 116 Batch<LabeledIntList, List<Integer>> batch2 = createBatch(request2); in testBatchMergerImpl() local 119 batchMerger.merge(batch1, batch2); in testBatchMergerImpl()
|
/aosp_15_r20/packages/modules/Bluetooth/android/app/tests/unit/src/com/android/bluetooth/opp/ |
D | BluetoothOppServiceTest.java | 171 BluetoothOppBatch batch2 = new BluetoothOppBatch(mService, shareInfo2); in deleteShare_deleteShareAndCorrespondingBatch() local 172 batch2.mStatus = Constants.BATCH_STATUS_FINISHED; in deleteShare_deleteShareAndCorrespondingBatch() 175 mService.mBatches.add(batch2); in deleteShare_deleteShareAndCorrespondingBatch() 180 assertThat(mService.mBatches).containsExactly(batch2); in deleteShare_deleteShareAndCorrespondingBatch()
|
/aosp_15_r20/external/pytorch/benchmarks/operator_benchmark/pt/ |
H A D | bmm_test.py | 15 "batch2": torch.rand( 28 def forward(self, batch1, batch2): argument 29 return self.op(batch1, batch2)
|
H A D | add_test.py | 122 "batch2": torch.rand( 134 def forward(self, input_one, batch1, batch2): argument 135 return torch.addbmm(input_one, batch1, batch2)
|
/aosp_15_r20/external/tensorflow/tensorflow/python/data/experimental/kernel_tests/ |
H A D | make_batched_features_dataset_test.py | 130 batch2 = self._run_actual_batch(outputs2) 132 self.assertAllEqual(batch1[i], batch2[i]) 159 batch2 = self._run_actual_batch(outputs2) 161 all_equal = all_equal and np.array_equal(batch1[i], batch2[i])
|
H A D | make_csv_dataset_test.py | 729 batch2 = nest.flatten(self.evaluate(next2())) 731 self.assertAllEqual(batch1[i], batch2[i]) 759 batch2 = nest.flatten(self.evaluate(next2())) 761 all_equal = all_equal and np.array_equal(batch1[i], batch2[i])
|
/aosp_15_r20/external/pytorch/test/fx/ |
H A D | test_shape_inference.py | 47 …"Expected size for first two dimensions of batch2 tensor to be: [s0, (s2//2) + 12] but got: [s0, 1… 57 … "Expected size for first two dimensions of batch2 tensor to be: [s0, 40] but got: [s0, s5]." 66 … "Expected size for first two dimensions of batch2 tensor to be: [s0, 47*s6] but got: [s0*s6, 47]."
|
/aosp_15_r20/external/pytorch/torch/ |
H A D | _meta_registrations.py | 2020 def meta_baddbmm(self, batch1, batch2, *, beta=1, alpha=1): argument 2023 dim3 = batch2.size(2) 2026 torch._check(batch2.dim() == 3, lambda: "batch2 must be a 3D tensor") 2028 self.dtype == batch1.dtype == batch2.dtype, 2029 …dtypes must be the same, got: input: {self.dtype}, batch1: {batch1.dtype}, batch2: {batch2.dtype}", 2032 batch2_sizes = batch2.shape 2038 f"Expected size for first two dimensions of batch2 tensor to be: " 3129 def meta_addbmm(self, batch1, batch2, *, beta=1, alpha=1): argument 3131 dim2 = batch2.size(2) 3134 torch._check(batch2.dim() == 3, lambda: "batch2 must be a 3D tensor") [all …]
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/cuda/ |
H A D | Blas.cpp | 511 … Tensor& result, const Tensor& self, const Tensor& batch1, const Tensor& batch2, const Scalar& bet… in baddbmm_out_cuda_impl() argument 543 int64_t k = (transpose_result ? batch2 : batch1).sizes()[leading_dim]; in baddbmm_out_cuda_impl() 547 …auto batch1_ = prepare_batch_matrix_for_cublas(transpose_result ? batch2 : batch1, transpose_batch… in baddbmm_out_cuda_impl() 548 …auto batch2_ = prepare_batch_matrix_for_cublas(transpose_result ? batch1 : batch2, transpose_batch… in baddbmm_out_cuda_impl() 607 TORCH_IMPL_FUNC(baddbmm_out_cuda)(const Tensor& self, const Tensor& batch1, const Tensor& batch2, c… in TORCH_IMPL_FUNC() 610 baddbmm_out_cuda_impl(result, self, batch1, batch2, beta, alpha); in TORCH_IMPL_FUNC() 614 TORCH_IMPL_FUNC(bmm_out_cuda)(const Tensor& batch1, const Tensor& batch2, const Tensor &result) { in TORCH_IMPL_FUNC() 619 baddbmm_out_cuda_impl(result, result, batch1, batch2, beta, alpha); in TORCH_IMPL_FUNC()
|
/aosp_15_r20/external/pytorch/torch/_inductor/ |
H A D | decomposition.py | 232 batch2: torch.Tensor, 236 batch2.shape[2] == 1 238 out = (self.unsqueeze(-1) * batch2.unsqueeze(1)).sum(dim=2) 242 batch2.size(-1) == 1 246 self.squeeze(1) * batch2.squeeze(-1), dim=1, keepdim=True
|
/aosp_15_r20/external/pytorch/test/distributed/fsdp/ |
H A D | test_fsdp_grad_acc.py | 154 for batch1, batch2 in itertools.combinations(batches, r=2): 155 for t1, t2 in zip(batch1, batch2):
|
/aosp_15_r20/external/pytorch/aten/src/ATen/functorch/ |
H A D | BatchRulesLinearAlgebra.cpp | 126 …const Tensor& input, const Tensor& batch1, const Tensor& batch2, const Scalar& beta, const Scalar&… in addbmm_decomp() argument 127 Tensor out = at::bmm(batch1, batch2).sum(0); in addbmm_decomp() 138 …const Tensor& input, const Tensor& batch1, const Tensor& batch2, const Scalar& beta, const Scalar&… in baddbmm_decomp() argument 139 Tensor out = at::bmm(batch1, batch2); in baddbmm_decomp()
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/nested/ |
H A D | NestedTensorMatmul.cpp | 22 TORCH_CHECK(mat2.dim() == 3, "batch2 must be a 3D tensor"); in bmm_nested() 28 "Expected size for the 1st dimension of batch2 tensor to be: ", ntensors, in bmm_nested()
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/nested/cuda/ |
H A D | NestedTensorMatmul.cu | 291 TORCH_CHECK(mat2_ptr->dim() == 3, "batch2 must be a 3D tensor"); in bmm_nested_cuda() 295 "Expected size for the 1st dimension of batch2 tensor to be: ", in bmm_nested_cuda()
|
/aosp_15_r20/external/tensorflow/tensorflow/compiler/tests/ |
H A D | image_ops_test.py | 56 batch2 = image_ops.hsv_to_rgb(batch1) 63 batch1, batch2, join1, join2 = sess.run([batch1, batch2, join1, join2], 68 self.assertAllCloseAccordingToType(batch2, join2, half_rtol=0.000002) 70 batch2, inp, bfloat16_atol=0.03, half_rtol=0.02)
|
/aosp_15_r20/external/perfetto/ui/src/trace_processor/ |
H A D | query_result_unittest.ts | 251 const batch2 = protos.QueryResult.create({ constant 265 qr.appendResultBatch(protos.QueryResult.encode(batch2).finish());
|
/aosp_15_r20/external/tensorflow/tensorflow/python/ops/ |
H A D | image_ops_test.py | 74 batch2 = image_ops.hsv_to_rgb(batch1) 80 batch1, batch2, join1, join2 = self.evaluate( 81 [batch1, batch2, join1, join2]) 85 self.assertAllClose(batch2, join2) 86 self.assertAllClose(batch2, inp) 130 batch2 = image_ops.yiq_to_rgb(batch1) 136 batch1, batch2, join1, join2 = self.evaluate( 137 [batch1, batch2, join1, join2]) 141 self.assertAllClose(batch2, join2, rtol=1e-4, atol=1e-4) 142 self.assertAllClose(batch2, inp, rtol=1e-4, atol=1e-4) [all …]
|
/aosp_15_r20/external/pytorch/test/xpu/ |
H A D | test_gemm.py | 752 batch2 = torch.rand((1, 2, 2), dtype=torch.float32, device=device) 756 y = torch.baddbmm(input_tensor, batch1, batch2, beta=0.0) 759 y_ref = torch.bmm(batch1, batch2) 760 y = torch.baddbmm(input_tensor, batch1, batch2, beta=0.0, out=out)
|
/aosp_15_r20/external/pytorch/torch/fx/experimental/shape_inference/ |
H A D | infer_symbol_values.py | 26 elif constraint.find("first two dimensions of batch2 tensor to be") != -1:
|