/aosp_15_r20/external/tensorflow/tensorflow/python/kernel_tests/sparse_ops/ |
H A D | sparse_cross_op_test.py | 81 self._sparse_tensor([['batch1-FC1-F1'], 83 self._sparse_tensor([['batch1-FC2-F1'], 86 expected_out = self._sparse_tensor([['batch1-FC1-F1_X_batch1-FC2-F1'], [ 97 constant_op.constant([['batch1-FC1-F1', 'batch1-FC1-F2'], 100 constant_op.constant([['batch1-FC2-F1', 'batch1-FC2-F2'], 105 'batch1-FC1-F1_X_batch1-FC2-F1', 'batch1-FC1-F1_X_batch1-FC2-F2', 106 'batch1-FC1-F2_X_batch1-FC2-F1', 'batch1-FC1-F2_X_batch1-FC2-F2' 119 self._sparse_tensor([['batch1-FC2-F1'], 134 constant_op.constant([['batch1-FC2-F1', 'batch1-FC2-F2'], 152 self._sparse_tensor([['batch1-FC1-F1'], [all …]
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/mkldnn/xpu/ |
H A D | Blas.cpp | 171 // result = beta * input + alpha * (batch1 @ batch2) 174 const Tensor& batch1, in baddbmm_out() argument 179 checkBackend("baddbmm_out", {input, batch1, batch2}, Backend::XPU); in baddbmm_out() 180 TORCH_CHECK(batch1.dim() == 3, "expected 3D tensor"); in baddbmm_out() 184 batch1.size(0), batch1.size(1), batch2.size(2)}; in baddbmm_out() 188 } else if (batch1.size(2) == 0){ in baddbmm_out() 205 if (batch1.is_complex() || batch2.scalar_type() == ScalarType::Double) { in baddbmm_out() 229 onednn::matmul(result, batch1, batch2, at::Tensor(), true, attr); in baddbmm_out() 235 const Tensor& batch1, in baddbmm_() argument 239 …TORCH_CHECK(self.dtype() == batch1.dtype(), "Input dtypes must be the same, got: input ", self.dty… in baddbmm_() [all …]
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/mps/operations/ |
H A D | LinearAlgebra.mm | 303 const Tensor& batch1, 312 TORCH_CHECK(batch1.is_mps()); 316 TORCH_CHECK(supportedFloatingOrComplexType(batch1), 319 TORCH_CHECK(batch1.dim() == 3, "batch1 must be a 3D tensor"); 321 TORCH_CHECK(batch1.size(0) == batch2.size(0), 322 "batch1 and batch2 must have same number of batches, got ", 323 batch1.size(0), 326 TORCH_CHECK(batch1.size(2) == batch2.size(1), 328 batch1.size(1), 330 batch1.size(2), [all …]
|
/aosp_15_r20/external/pytorch/tools/autograd/ |
H A D | deprecated.yaml | 13 - name: addbmm(Scalar beta, Tensor self, Scalar alpha, Tensor batch1, Tensor batch2) -> Tensor 14 aten: addbmm(self, batch1, batch2, beta, alpha) 16 - name: addbmm_(Scalar beta, Tensor(a!) self, Scalar alpha, Tensor batch1, Tensor batch2) -> Tensor… 17 aten: addbmm_(self, batch1, batch2, beta, alpha) 19 - name: addbmm(Scalar beta, Tensor self, Scalar alpha, Tensor batch1, Tensor batch2, *, Tensor(a!) … 20 aten: addbmm_out(out, self, batch1, batch2, beta, alpha) 22 - name: addbmm(Scalar beta, Tensor self, Tensor batch1, Tensor batch2) -> Tensor 23 aten: addbmm(self, batch1, batch2, beta, 1) 25 - name: addbmm_(Scalar beta, Tensor(a!) self, Tensor batch1, Tensor batch2) -> Tensor(a!) 26 aten: addbmm_(self, batch1, batch2, beta, 1) [all …]
|
H A D | derivatives.yaml | 238 - name: addbmm(Tensor self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1) -> Tens… 240 …batch1: maybe_multiply(grad.unsqueeze(0).expand_symint({ batch1.sym_size(0), batch1.sym_size(1), b… 241 …batch2: maybe_multiply(batch1.transpose(1, 2).conj().bmm(grad.unsqueeze(0).expand_symint({ batch1.… 358 - name: baddbmm(Tensor self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1) -> Ten… 360 batch1: maybe_multiply(grad.bmm(batch2.transpose(1, 2).conj()), alpha.conj()) 361 batch2: maybe_multiply(batch1.transpose(1, 2).conj().bmm(grad), alpha.conj())
|
/aosp_15_r20/external/sdk-platform-java/gax-java/gax/src/test/java/com/google/api/gax/rpc/ |
H A D | BatchTest.java | 65 Batch<LabeledIntList, List<Integer>> batch1 = createBatch(request1); in testMerge() local 70 batch1.merge(batch2); in testMerge() 72 Truth.assertThat(batch1.getByteCount()).isEqualTo(3); in testMerge() 78 Batch<LabeledIntList, List<Integer>> batch1 = createBatch(request1, null); in testMergeStartEmpty() local 79 Truth.assertThat(batch1.getCallable()).isNull(); in testMergeStartEmpty() 84 batch1.merge(batch2); in testMergeStartEmpty() 86 Truth.assertThat(batch1.getByteCount()).isEqualTo(2); in testMergeStartEmpty() 87 Truth.assertThat(batch1.getCallable()).isNotNull(); in testMergeStartEmpty() 88 Truth.assertThat(batch1.getCallable()).isSameInstanceAs(batch2.getCallable()); in testMergeStartEmpty() 113 Batch<LabeledIntList, List<Integer>> batch1 = createBatch(request1); in testBatchMergerImpl() local [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/python/ops/ragged/ |
H A D | ragged_cross_op_test.py | 245 ragged_const([['batch1-FC1-F1']]), 246 ragged_const([['batch1-FC2-F1']]), 247 ragged_const([['batch1-FC3-F1']]) 253 ragged_const([['batch1-FC1-F1']]), 254 ragged_const([['batch1-FC2-F1']]), 255 ragged_const([['batch1-FC3-F1']]) 262 ragged_const([['batch1-FC1-F1']]), 263 ragged_const([['batch1-FC2-F1']]), 264 ragged_const([['batch1-FC3-F1']]) 271 ragged_const([['batch1-FC1-F1']]), [all …]
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/ |
H A D | LinearAlgebra.cpp | 284 void common_checks_baddbmm_bmm(Meta& meta, const Tensor& batch1, const Tensor& batch2, const Scalar… in common_checks_baddbmm_bmm() argument 285 TORCH_CHECK(batch1.dim() == 3, "batch1 must be a 3D tensor"); in common_checks_baddbmm_bmm() 288 const auto batch1_sizes = batch1.sizes(); in common_checks_baddbmm_bmm() 318 outnames = namedinference::compute_baddbmm_outnames(result, batch1, batch2, self); in common_checks_baddbmm_bmm() 321 outnames = namedinference::compute_bmm_outnames(result, batch1, batch2); in common_checks_baddbmm_bmm() 334 TORCH_META_FUNC(baddbmm)(const Tensor& self, const Tensor& batch1, const Tensor& batch2, const Scal… in TORCH_META_FUNC() 335 auto self_ = expand_size(self, {batch1.size(0), batch1.size(1), batch2.size(2)}, "baddbmm"); in TORCH_META_FUNC() 336 …TORCH_CHECK(self.dtype() == batch1.dtype(), "Input dtypes must be the same, got: input ", self.dty… in TORCH_META_FUNC() 337 common_checks_baddbmm_bmm(*this, batch1, batch2, beta, alpha, false, *self_); in TORCH_META_FUNC() 1549 …Tensor &result, const Tensor &self, const Tensor &batch1, const Tensor &batch2, const Scalar& beta… in addbmm_impl_() argument [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/python/data/experimental/kernel_tests/ |
H A D | make_batched_features_dataset_test.py | 129 batch1 = self._run_actual_batch(outputs1) 131 for i in range(len(batch1)): 132 self.assertAllEqual(batch1[i], batch2[i]) 158 batch1 = self._run_actual_batch(outputs1) 160 for i in range(len(batch1)): 161 all_equal = all_equal and np.array_equal(batch1[i], batch2[i])
|
H A D | make_csv_dataset_test.py | 728 batch1 = nest.flatten(self.evaluate(next1())) 730 for i in range(len(batch1)): 731 self.assertAllEqual(batch1[i], batch2[i]) 758 batch1 = nest.flatten(self.evaluate(next1())) 760 for i in range(len(batch1)): 761 all_equal = all_equal and np.array_equal(batch1[i], batch2[i])
|
/aosp_15_r20/external/tensorflow/tensorflow/compiler/xla/mlir_hlo/tests/Dialect/lhlo/ |
H A D | lhlo-legalize-to-affine.mlir | 251 // CHECK-NEXT: affine.for %[[batch1:.*]] = 0 to 128 { 254 // CHECK-NEXT: %[[a:.*]] = affine.load %[[START_INDICES]][%[[batch0]], %[[batch1]]] : memre… 259 // CHECK-NEXT: %[[prev_value:.*]] = affine.load %[[temp_output]][%[[batch0]], %[[batch1]], … 261 // CHECK-NEXT: affine.store %[[final_value]], %[[temp_output]][%[[batch0]], %[[batch1]], %[… 353 // CHECK-NEXT: affine.for %[[batch1:.*]] = 0 to 5 { 358 // CHECK-NEXT: %[[a:.*]] = affine.load %[[START_INDICES]][%[[batch0]], %c0, %[[batch1]]… 360 // CHECK-NEXT: %[[b:.*]] = affine.load %[[START_INDICES]][%[[batch0]], %c1, %[[batch1]]… 369 // CHECK-NEXT: %[[prev_value:.*]] = affine.load %[[temp_output]][%[[batch0]], %[[batch1… 371 // CHECK-NEXT: affine.store %[[final_value]], %[[temp_output]][%[[batch0]], %[[batch1]]… 407 // CHECK-NEXT: affine.for %[[batch1:.*]] = 0 to 4 { [all …]
|
/aosp_15_r20/external/pytorch/benchmarks/operator_benchmark/pt/ |
H A D | bmm_test.py | 12 "batch1": torch.rand( 28 def forward(self, batch1, batch2): argument 29 return self.op(batch1, batch2)
|
H A D | add_test.py | 119 "batch1": torch.rand( 134 def forward(self, input_one, batch1, batch2): argument 135 return torch.addbmm(input_one, batch1, batch2)
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/cuda/ |
H A D | Blas.cpp | 511 const Tensor& baddbmm_out_cuda_impl(const Tensor& result, const Tensor& self, const Tensor& batch1,… in baddbmm_out_cuda_impl() argument 515 } else if (batch1.size(2) == 0) { in baddbmm_out_cuda_impl() 543 int64_t k = (transpose_result ? batch2 : batch1).sizes()[leading_dim]; in baddbmm_out_cuda_impl() 547 …auto batch1_ = prepare_batch_matrix_for_cublas(transpose_result ? batch2 : batch1, transpose_batch… in baddbmm_out_cuda_impl() 548 …auto batch2_ = prepare_batch_matrix_for_cublas(transpose_result ? batch1 : batch2, transpose_batch… in baddbmm_out_cuda_impl() 607 TORCH_IMPL_FUNC(baddbmm_out_cuda)(const Tensor& self, const Tensor& batch1, const Tensor& batch2, c… in TORCH_IMPL_FUNC() 610 baddbmm_out_cuda_impl(result, self, batch1, batch2, beta, alpha); in TORCH_IMPL_FUNC() 614 TORCH_IMPL_FUNC(bmm_out_cuda)(const Tensor& batch1, const Tensor& batch2, const Tensor &result) { in TORCH_IMPL_FUNC() 619 baddbmm_out_cuda_impl(result, result, batch1, batch2, beta, alpha); in TORCH_IMPL_FUNC()
|
/aosp_15_r20/packages/modules/Bluetooth/android/app/tests/unit/src/com/android/bluetooth/opp/ |
D | BluetoothOppServiceTest.java | 169 // batch1 will be removed in deleteShare_deleteShareAndCorrespondingBatch() 170 BluetoothOppBatch batch1 = new BluetoothOppBatch(mService, shareInfo); in deleteShare_deleteShareAndCorrespondingBatch() local 174 mService.mBatches.add(batch1); in deleteShare_deleteShareAndCorrespondingBatch()
|
/aosp_15_r20/external/pytorch/torch/ |
H A D | _meta_registrations.py | 2020 def meta_baddbmm(self, batch1, batch2, *, beta=1, alpha=1): argument 2021 dim1 = batch1.size(0) 2022 dim2 = batch1.size(1) 2025 torch._check(batch1.dim() == 3, lambda: "batch1 must be a 3D tensor") 2028 self.dtype == batch1.dtype == batch2.dtype, 2029 …lambda: f"Input dtypes must be the same, got: input: {self.dtype}, batch1: {batch1.dtype}, batch2:… 2031 batch1_sizes = batch1.shape 3129 def meta_addbmm(self, batch1, batch2, *, beta=1, alpha=1): argument 3130 dim1 = batch1.size(1) 3133 torch._check(batch1.dim() == 3, lambda: "batch1 must be a 3D tensor") [all …]
|
/aosp_15_r20/external/pytorch/test/distributed/fsdp/ |
H A D | test_fsdp_grad_acc.py | 154 for batch1, batch2 in itertools.combinations(batches, r=2): 155 for t1, t2 in zip(batch1, batch2):
|
/aosp_15_r20/external/pytorch/aten/src/ATen/functorch/ |
H A D | BatchRulesLinearAlgebra.cpp | 126 …const Tensor& input, const Tensor& batch1, const Tensor& batch2, const Scalar& beta, const Scalar&… in addbmm_decomp() argument 127 Tensor out = at::bmm(batch1, batch2).sum(0); in addbmm_decomp() 138 …const Tensor& input, const Tensor& batch1, const Tensor& batch2, const Scalar& beta, const Scalar&… in baddbmm_decomp() argument 139 Tensor out = at::bmm(batch1, batch2); in baddbmm_decomp()
|
/aosp_15_r20/packages/modules/NeuralNetworks/common/cpu_operations/ |
D | LayerNormLSTMTest.cpp | 381 { // Batch1: 3 (input_sequence_size) * 5 (n_input) in TEST() 395 // Batch1: 3 (input_sequence_size) * 3 (n_output) in TEST()
|
/aosp_15_r20/external/tensorflow/tensorflow/compiler/tests/ |
H A D | image_ops_test.py | 55 batch1 = image_ops.rgb_to_hsv(batch0) 56 batch2 = image_ops.hsv_to_rgb(batch1) 63 batch1, batch2, join1, join2 = sess.run([batch1, batch2, join1, join2], 67 self.assertAllCloseAccordingToType(batch1, join1, half_rtol=0.000002)
|
/aosp_15_r20/external/perfetto/ui/src/trace_processor/ |
H A D | query_result_unittest.ts | 241 const batch1 = protos.QueryResult.create({ constant 264 qr.appendResultBatch(protos.QueryResult.encode(batch1).finish());
|
/aosp_15_r20/external/tensorflow/tensorflow/python/ops/ |
H A D | image_ops_test.py | 73 batch1 = image_ops.rgb_to_hsv(batch0) 74 batch2 = image_ops.hsv_to_rgb(batch1) 80 batch1, batch2, join1, join2 = self.evaluate( 81 [batch1, batch2, join1, join2]) 84 self.assertAllClose(batch1, join1) 129 batch1 = image_ops.rgb_to_yiq(batch0) 130 batch2 = image_ops.yiq_to_rgb(batch1) 136 batch1, batch2, join1, join2 = self.evaluate( 137 [batch1, batch2, join1, join2]) 140 self.assertAllClose(batch1, join1, rtol=1e-4, atol=1e-4) [all …]
|
/aosp_15_r20/external/pytorch/test/xpu/ |
H A D | test_gemm.py | 751 batch1 = torch.rand((1, 2, 2), dtype=torch.float32, device=device) 756 y = torch.baddbmm(input_tensor, batch1, batch2, beta=0.0) 759 y_ref = torch.bmm(batch1, batch2) 760 y = torch.baddbmm(input_tensor, batch1, batch2, beta=0.0, out=out)
|
/aosp_15_r20/external/tensorflow/tensorflow/compiler/mlir/tfr/tests/ |
H A D | end2end.mlir | 213 %batch1 = "tfr.cast"(%batch) : (tensor<i64>) -> !tfr.tensor 218 …%ret = tfr.call @tf__map_and_batch_dataset_v0(%input_dataset, %batch1, %calls1, %drop1, %other_arg…
|
/aosp_15_r20/external/rust/android-crates-io/crates/quiche/deps/boringssl/src/tool/ |
D | speed.cc | 1382 !SpeedTrustToken("TrustToken-Exp1-Batch1", TRUST_TOKEN_experiment_v1(), 1, in Speed() 1386 !SpeedTrustToken("TrustToken-Exp2VOPRF-Batch1", in Speed() 1390 !SpeedTrustToken("TrustToken-Exp2PMB-Batch1", in Speed()
|