/aosp_15_r20/external/pytorch/aten/src/ATen/native/transformers/cuda/ |
H A D | attention_backward.cu | 176 const Tensor& attn_bias, in _scaled_dot_product_cudnn_attention_backward_cuda() argument 204 if (attn_bias.defined()) { in _scaled_dot_product_cudnn_attention_backward_cuda() 205 attn_bias_ = attn_bias; in _scaled_dot_product_cudnn_attention_backward_cuda() 215 …TORCH_CHECK(bias_dim == 4, "cuDNN SDPA expects either a 2D, 3D, or 4D attn_bias but got ", attn_bi… in _scaled_dot_product_cudnn_attention_backward_cuda() 235 attn_bias_ /*const std::optional<Tensor>& attn_bias*/, in _scaled_dot_product_cudnn_attention_backward_cuda() 593 "attn_bias: wrong shape (batch dimension)"); in _efficient_attention_backward() 596 "attn_bias: wrong shape (head dimension)"); in _efficient_attention_backward() 599 "attn_bias: wrong shape (seqlenQ dimension)"); in _efficient_attention_backward() 602 "attn_bias: wrong shape (seqlenKV dimension)"); in _efficient_attention_backward() 605 "attn_bias: wrong alignment (last dimension must be contiguous)"); in _efficient_attention_backward() [all …]
|
H A D | attention.cu | 793 const std::optional<at::Tensor>& attn_bias, in _scaled_dot_product_efficient_attention_cuda() argument 815 attn_bias, in _scaled_dot_product_efficient_attention_cuda() 1248 "attn_bias: wrong shape (batch dimension)"); in _efficient_attention_forward() 1251 "attn_bias: wrong shape (head dimension)"); in _efficient_attention_forward() 1254 "attn_bias: wrong shape (seqlenQ dimension)"); in _efficient_attention_forward() 1257 "attn_bias: wrong shape (seqlenKV dimension)"); in _efficient_attention_forward() 1263 "attn_bias: wrong alignment (last dimension must be contiguous)"); in _efficient_attention_forward()
|
/aosp_15_r20/external/pytorch/aten/src/ATen/functorch/ |
H A D | BatchRulesLinearAlgebra.cpp | 542 const std::optional<Tensor>& attn_bias, optional<int64_t> attn_bias_bdim, in _scaled_dot_product_efficient_attention_batch_rule() argument 566 if (attn_bias.has_value() && attn_bias->defined()) { in _scaled_dot_product_efficient_attention_batch_rule() 567 …bias_bdim.has_value() ? reshape_dim_into(*attn_bias_bdim, 0, attn_bias.value()) : attn_bias.value(… in _scaled_dot_product_efficient_attention_batch_rule() 583 const std::optional<Tensor>& attn_bias, std::optional<int64_t> attn_bias_bdim, in _scaled_dot_product_cudnn_attention_batch_rule() argument 607 if (attn_bias.has_value() && attn_bias->defined()) { in _scaled_dot_product_cudnn_attention_batch_rule() 608 …bias_bdim.has_value() ? reshape_dim_into(*attn_bias_bdim, 0, attn_bias.value()) : attn_bias.value(… in _scaled_dot_product_cudnn_attention_batch_rule()
|
/aosp_15_r20/external/pytorch/torch/distributed/tensor/experimental/ |
H A D | _attention.py | 151 attn_bias: Optional[torch.Tensor] = None, 158 if attn_bias is not None: 159 raise NotImplementedError("attn_bias is not supported yet") 170 attn_bias=attn_bias, 523 attn_bias=bias,
|
/aosp_15_r20/external/pytorch/torch/distributed/tensor/_ops/ |
H A D | _matrix_ops.py | 434 # NOTE: Output sharding of grad_bias on heads dim if attn_bias is present; 440 all_replicate[3] = None # grad bias is None if attn_bias is not present 462 # the place for optional input attn_bias, 466 # input sharding of attn_bias on heads dim if present
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/transformers/ |
H A D | attention.cpp | 550 at::Tensor pad_bias(const at::Tensor& attn_bias) { in pad_bias() argument 551 auto last_dim_size = attn_bias.sym_size(-1); in pad_bias() 553 auto padded_bias = at::pad_symint(attn_bias, {c10::SymInt(0), pad_count}); in pad_bias() 579 at::Tensor pad_last_dim(const at::Tensor& attn_bias) { in pad_last_dim() argument 580 auto last_dim_size = attn_bias.sym_size(-1); in pad_last_dim() 582 return attn_bias; in pad_last_dim() 585 auto padded_bias = at::pad_symint(attn_bias, {c10::SymInt(0), pad_count}); in pad_last_dim()
|
/aosp_15_r20/external/pytorch/test/ |
H A D | test_transformers.py | 2019 attn_bias=None, argument 2030 attn_bias: broadcastable to (batch_size, nheads, seqlen_q, seqlen_k) 2059 if attn_bias is not None: 2060 scores = scores + attn_bias.to(dtype=scores.dtype) 3051 kwargs["attn_bias"] = None 3422 attn_bias=None, argument 3433 realized = attn_bias._materialize(device) if attn_bias is not None else None 3447 attn_mask=attn_bias, 3491 attn_bias = causal_upper_left(seq_len_q, seq_len_kv) 3493 attn_bias = causal_lower_right(seq_len_q, seq_len_kv) [all …]
|
/aosp_15_r20/external/pytorch/torch/csrc/inductor/aoti_torch/generated/ |
H A D | c_shim_cuda.h | 37 … query, AtenTensorHandle key, AtenTensorHandle value, AtenTensorHandle* attn_bias, int32_t compute… 38 …sorHandle philox_seed, AtenTensorHandle philox_offset, AtenTensorHandle attn_bias, AtenTensorHandl… 39 … query, AtenTensorHandle key, AtenTensorHandle value, AtenTensorHandle* attn_bias, int32_t compute… 40 …e query, AtenTensorHandle key, AtenTensorHandle value, AtenTensorHandle attn_bias, AtenTensorHandl…
|
/aosp_15_r20/external/pytorch/torch/nn/attention/ |
H A D | bias.py | 102 attn_bias = causal_lower_right(seqlen_q, seqlen_kv) 108 out = F.scaled_dot_product_attention(q, k, v, attn_bias) 283 …e behavior of torch.nn.functional.scaled_dot_product_attention when the attn_bias is an AttnBias"""
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/cudnn/ |
H A D | MHA.h | 21 const std::optional<Tensor>& attn_bias, 40 const std::optional<Tensor>& attn_bias,
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/transformers/cuda/mem_eff_attention/ |
H A D | kernel_forward.h | 580 "attn_bias is not correctly aligned (strideB). ", in check_supported() 581 "attn_bias.stride( 0) = ", p.bias_strideB, ", and should be a " in check_supported() 585 "attn_bias is not correctly aligned (strideH). " in check_supported() 586 "attn_bias.stride(1) = ", p.bias_strideH, ", and should be a " in check_supported() 590 "attn_bias is not correctly aligned (strideM). " in check_supported() 591 "attn_bias.stride(2) = ", p.bias_strideM, ", and should be a " in check_supported()
|
H A D | kernel_backward.h | 1224 "attn_bias is not correctly aligned (strideB). ", in check_supported() 1225 "attn_bias.stride(0) = ", p.bias_strideB, ", and should be a " in check_supported() 1229 "attn_bias is not correctly aligned (strideH) ." in check_supported() 1230 "attn_bias.stride(1) = ", p.bias_strideH, ", and should be a " in check_supported() 1234 "attn_bias is not correctly aligned (strideM). " in check_supported() 1235 "attn_bias.stride(2) = ", p.bias_strideM, ", and should be a ", in check_supported() 1241 "attn_bias.grad is not correctly aligned (strideB)"); in check_supported() 1244 "attn_bias.grad is not correctly aligned (strideH)"); in check_supported() 1247 "attn_bias.grad is not correctly aligned (strideM)"); in check_supported()
|
/aosp_15_r20/external/pytorch/test/cpp_extensions/ |
H A D | open_registration_extension.cpp | 449 const std::optional<at::Tensor> & attn_bias, in custom_scaled_dot_product_fused_attention_overrideable() argument 477 const at::Tensor & attn_bias, in custom_scaled_dot_product_fused_attention_overrideable_backward() argument 494 at::empty_like(attn_bias)); in custom_scaled_dot_product_fused_attention_overrideable_backward()
|
/aosp_15_r20/external/pytorch/torch/ |
H A D | _meta_registrations.py | 5106 attn_bias: Optional[Tensor], 5259 attn_bias: Optional[Tensor], 5304 attn_bias: Optional[Tensor], 5341 if attn_bias is not None and grad_input_mask[3]: 5342 lastDim = attn_bias.size(-1) 5344 new_sizes = list(attn_bias.size()) 5347 new_sizes, dtype=attn_bias.dtype, device=attn_bias.device 5368 attn_bias: Tensor,
|
/aosp_15_r20/external/pytorch/torch/csrc/inductor/aoti_torch/ |
H A D | shim_common.cpp | 604 AtenTensorHandle attn_bias, // optional argument in aoti_torch__scaled_dot_product_efficient_attention() argument 619 pointer_to_optional(tensor_handle_to_tensor_pointer(attn_bias)); in aoti_torch__scaled_dot_product_efficient_attention()
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/nested/cuda/ |
H A D | NestedTensorTransformerFunctions.cpp | 286 const std::optional<at::Tensor>& attn_bias, in _scaled_dot_product_efficient_attention_nestedtensor_cuda() argument
|
/aosp_15_r20/external/pytorch/torch/csrc/inductor/aoti_torch/c/ |
H A D | shim.h | 377 AtenTensorHandle attn_bias, // optional argument
|
/aosp_15_r20/external/pytorch/torch/nn/ |
H A D | functional.py | 5623 attn_bias = torch.zeros(L, S, dtype=query.dtype) 5627 attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf")) 5628 attn_bias.to(query.dtype) 5632 attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf")) 5634 attn_bias += attn_mask 5641 attn_weight += attn_bias
|
/aosp_15_r20/external/pytorch/tools/autograd/ |
H A D | derivatives.yaml | 2807 …uct_efficient_attention(Tensor query, Tensor key, Tensor value, Tensor? attn_bias, bool compute_lo… 2809 …query, key, value, attn_bias: _scaled_dot_product_efficient_attention_backward(grad, query, key, v…
|
/aosp_15_r20/external/pytorch/test/inductor/ |
H A D | test_aot_inductor.py | 2847 def forward(self, q, k, v, attn_bias): argument 2849 q, k, v, attn_bias, False
|
H A D | test_torchinductor.py | 9655 def fn(q, k, v, attn_bias, compute_log_sumexp): argument 9657 q, k, v, attn_bias, compute_log_sumexp
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/ |
H A D | native_functions.yaml | 14719 …uct_efficient_attention(Tensor query, Tensor key, Tensor value, Tensor? attn_bias, bool compute_lo… 14725 …ckward(Tensor grad_out_, Tensor query, Tensor key, Tensor value, Tensor attn_bias, Tensor out, Ten…
|