Home
last modified time | relevance | path

Searched full:models (Results 1 – 25 of 6786) sorted by relevance

12345678910>>...272

/aosp_15_r20/external/tensorflow/tensorflow/lite/testing/nnapi_tflite_zip_tests/
HDmodels.tarmodels/ models/div/ models/div/div_activation=False,dtype=tf ... ...
/aosp_15_r20/external/XNNPACK/bench/
H A Dqs8-gemm-e2e.cc18 #include "models/models.h"
29 models::ExecutionPlanFactory model_factory, in GEMMEnd2EndBenchmark()
83 …static void qs8_gemm_4x8c4__aarch32_neondot_cortex_a55(benchmark::State& state, models::ExecutionP… in qs8_gemm_4x8c4__aarch32_neondot_cortex_a55()
93 …static void qs8_gemm_4x8c4__aarch32_neondot_ld64(benchmark::State& state, models::ExecutionPlanFac… in qs8_gemm_4x8c4__aarch32_neondot_ld64()
110 …static void qs8_gemm_4x8__aarch32_neon_mlal_lane_cortex_a53(benchmark::State& state, models::Execu… in BENCHMARK_QS8_END2END()
120 …static void qs8_gemm_4x8__aarch32_neon_mlal_lane_prfm_cortex_a53(benchmark::State& state, models::… in qs8_gemm_4x8__aarch32_neon_mlal_lane_prfm_cortex_a53()
130 …static void qs8_gemm_4x8__aarch32_neon_mlal_lane_cortex_a7(benchmark::State& state, models::Execut… in qs8_gemm_4x8__aarch32_neon_mlal_lane_cortex_a7()
140 …static void qs8_gemm_4x8__aarch32_neon_mlal_lane_prfm_cortex_a7(benchmark::State& state, models::E… in qs8_gemm_4x8__aarch32_neon_mlal_lane_prfm_cortex_a7()
150 …static void qs8_gemm_4x8__aarch32_neon_mlal_lane_ld64(benchmark::State& state, models::ExecutionPl… in qs8_gemm_4x8__aarch32_neon_mlal_lane_ld64()
160 …static void qs8_gemm_4x8__aarch32_neon_mlal_lane_prfm_ld64(benchmark::State& state, models::Execut… in qs8_gemm_4x8__aarch32_neon_mlal_lane_prfm_ld64()
[all …]
H A Dqu8-gemm-e2e.cc18 #include "models/models.h"
29 models::ExecutionPlanFactory model_factory, in GEMMEnd2EndBenchmark()
82 …static void qu8_gemm_4x8__aarch32_neon_mlal_lane_cortex_a53(benchmark::State& state, models::Execu… in qu8_gemm_4x8__aarch32_neon_mlal_lane_cortex_a53()
92 …static void qu8_gemm_4x8__aarch32_neon_mlal_lane_prfm_cortex_a53(benchmark::State& state, models::… in qu8_gemm_4x8__aarch32_neon_mlal_lane_prfm_cortex_a53()
102 …static void qu8_gemm_4x8__aarch32_neon_mlal_lane_cortex_a7(benchmark::State& state, models::Execut… in qu8_gemm_4x8__aarch32_neon_mlal_lane_cortex_a7()
112 …static void qu8_gemm_4x8__aarch32_neon_mlal_lane_prfm_cortex_a7(benchmark::State& state, models::E… in qu8_gemm_4x8__aarch32_neon_mlal_lane_prfm_cortex_a7()
122 …static void qu8_gemm_4x8__aarch32_neon_mlal_lane_ld64(benchmark::State& state, models::ExecutionPl… in qu8_gemm_4x8__aarch32_neon_mlal_lane_ld64()
132 …static void qu8_gemm_4x8__aarch32_neon_mlal_lane_prfm_ld64(benchmark::State& state, models::Execut… in qu8_gemm_4x8__aarch32_neon_mlal_lane_prfm_ld64()
152 …static void qu8_gemm_4x16c4__aarch64_neondot_cortex_a55(benchmark::State& state, models::Execution… in BENCHMARK_QU8_END2END()
162 …static void qu8_gemm_4x16c4__aarch64_neondot_ld128(benchmark::State& state, models::ExecutionPlanF… in qu8_gemm_4x16c4__aarch64_neondot_ld128()
[all …]
H A Df32-gemm-e2e.cc18 #include "models/models.h"
29 models::ExecutionPlanFactory model_factory, in GEMMEnd2EndBenchmark()
110 models::ExecutionPlanFactory model_factory, in GEMMEnd2EndBenchmark()
167 …static void f32_gemm_4x2__aarch64_neonfma_cortex_a75(benchmark::State& state, models::ExecutionPla… in f32_gemm_4x2__aarch64_neonfma_cortex_a75()
178 …static void f32_gemm_4x2__aarch64_neonfma_prfm_cortex_a75(benchmark::State& state, models::Executi… in f32_gemm_4x2__aarch64_neonfma_prfm_cortex_a75()
189 …static void f32_gemm_4x2__aarch64_neonfma_ld64(benchmark::State& state, models::ExecutionPlanFacto… in f32_gemm_4x2__aarch64_neonfma_ld64()
200 …static void f32_gemm_4x12__aarch64_neonfma_cortex_a53(benchmark::State& state, models::ExecutionPl… in f32_gemm_4x12__aarch64_neonfma_cortex_a53()
211 …static void f32_gemm_4x8__aarch64_neonfma_cortex_a53(benchmark::State& state, models::ExecutionPla… in f32_gemm_4x8__aarch64_neonfma_cortex_a53()
222 …static void f32_gemm_4x8__aarch64_neonfma_prfm_cortex_a53(benchmark::State& state, models::Executi… in f32_gemm_4x8__aarch64_neonfma_prfm_cortex_a53()
233 …static void f32_gemm_4x8__aarch64_neonfma_cortex_a55(benchmark::State& state, models::ExecutionPla… in f32_gemm_4x8__aarch64_neonfma_cortex_a55()
[all …]
H A Dqs8-dwconv-e2e.cc15 #include "models/models.h"
25 models::ExecutionPlanFactory model_factory, in DWConvEnd2EndBenchmark()
77 …static void qs8_dwconv_up8x9__neon_mul8_ld64(benchmark::State& state, models::ExecutionPlanFactory… in qs8_dwconv_up8x9__neon_mul8_ld64()
83 …static void qs8_dwconv_up16x9__neon_mul8_ld64(benchmark::State& state, models::ExecutionPlanFactor… in qs8_dwconv_up16x9__neon_mul8_ld64()
89 …static void qs8_dwconv_up16x9__neon_mul8_ld128(benchmark::State& state, models::ExecutionPlanFacto… in qs8_dwconv_up16x9__neon_mul8_ld128()
95 …static void qs8_dwconv_up8x9__neon_mla8_ld64(benchmark::State& state, models::ExecutionPlanFactory… in qs8_dwconv_up8x9__neon_mla8_ld64()
101 …static void qs8_dwconv_up16x9__neon_mla8_ld64(benchmark::State& state, models::ExecutionPlanFactor… in qs8_dwconv_up16x9__neon_mla8_ld64()
107 …static void qs8_dwconv_up16x9__neon_mla8_ld128(benchmark::State& state, models::ExecutionPlanFacto… in qs8_dwconv_up16x9__neon_mla8_ld128()
113 …static void qs8_dwconv_up8x9__neon_mul16(benchmark::State& state, models::ExecutionPlanFactory mod… in qs8_dwconv_up8x9__neon_mul16()
119 …static void qs8_dwconv_up16x9__neon_mul16(benchmark::State& state, models::ExecutionPlanFactory mo… in qs8_dwconv_up16x9__neon_mul16()
[all …]
H A Df32-dwconv-e2e.cc18 #include "models/models.h"
28 models::ExecutionPlanFactory model_factory, in DWConvEnd2EndBenchmark()
83 …static void f32_dwconv_up4x9__aarch64_neonfma(benchmark::State& state, models::ExecutionPlanFactor… in f32_dwconv_up4x9__aarch64_neonfma()
91 …static void f32_dwconv_up4x9__aarch64_neonfma_cortex_a55(benchmark::State& state, models::Executio… in f32_dwconv_up4x9__aarch64_neonfma_cortex_a55()
104 static void f32_dwconv_up4x9__neon(benchmark::State& state, models::ExecutionPlanFactory model) { in f32_dwconv_up4x9__neon()
112 …static void f32_dwconv_up4x9__neon_acc2(benchmark::State& state, models::ExecutionPlanFactory mode… in f32_dwconv_up4x9__neon_acc2()
120 static void f32_dwconv_up8x9__neon(benchmark::State& state, models::ExecutionPlanFactory model) { in f32_dwconv_up8x9__neon()
128 …static void f32_dwconv_up8x9__neon_acc2(benchmark::State& state, models::ExecutionPlanFactory mode… in f32_dwconv_up8x9__neon_acc2()
136 static void f32_dwconv_up16x9__neon(benchmark::State& state, models::ExecutionPlanFactory model) { in f32_dwconv_up16x9__neon()
144 …static void f32_dwconv_up16x9__neon_acc2(benchmark::State& state, models::ExecutionPlanFactory mod… in f32_dwconv_up16x9__neon_acc2()
[all …]
H A Dqu8-dwconv-e2e.cc17 #include "models/models.h"
27 models::ExecutionPlanFactory model_factory, in DWConvEnd2EndBenchmark()
79 …static void qu8_dwconv_up8x9__neon_mul8(benchmark::State& state, models::ExecutionPlanFactory mode… in qu8_dwconv_up8x9__neon_mul8()
85 …static void qu8_dwconv_up16x9__neon_mul8(benchmark::State& state, models::ExecutionPlanFactory mod… in qu8_dwconv_up16x9__neon_mul8()
91 …static void qu8_dwconv_up24x9__neon_mul8(benchmark::State& state, models::ExecutionPlanFactory mod… in qu8_dwconv_up24x9__neon_mul8()
97 …static void qu8_dwconv_up32x9__neon_mul8(benchmark::State& state, models::ExecutionPlanFactory mod… in qu8_dwconv_up32x9__neon_mul8()
103 …static void qu8_dwconv_up8x9__neon_mul16(benchmark::State& state, models::ExecutionPlanFactory mod… in qu8_dwconv_up8x9__neon_mul16()
109 …static void qu8_dwconv_up16x9__neon_mul16(benchmark::State& state, models::ExecutionPlanFactory mo… in qu8_dwconv_up16x9__neon_mul16()
115 …static void qu8_dwconv_up24x9__neon_mul16(benchmark::State& state, models::ExecutionPlanFactory mo… in qu8_dwconv_up24x9__neon_mul16()
121 …static void qu8_dwconv_up32x9__neon_mul16(benchmark::State& state, models::ExecutionPlanFactory mo… in qu8_dwconv_up32x9__neon_mul16()
[all …]
/aosp_15_r20/external/autotest/frontend/afe/
H A Drpc_interface_unittest.py17 models, rpc_interface, rpc_utils)
30 _hqe_status = models.HostQueueEntry.Status
93 return models.Job.objects.get(id=job_id)
98 label2 = models.Label.objects.create(name='bluetooth', platform=False)
108 host2 = models.Host.objects.create(hostname='test_host2', leased=False)
118 host2 = models.Host.objects.create(hostname='test_host2', leased=False)
124 models.Host,
132 host2 = models.Host.smart_get(host2.id)
141 leased_host = models.Host.objects.create(hostname='leased_host',
167 host3 = models.Host.objects.create(hostname='test_host3', leased=False)
[all …]
H A Drpc_interface.py48 from autotest_lib.frontend.afe import (model_attributes, model_logic, models,
50 from autotest_lib.frontend.tko import models as tko_models
62 from django.db.models import Count
96 label_model = models.Label.smart_get(id)
116 label_model = models.Label.smart_get(id)
127 hosts.append(models.Host.smart_get(h.id))
146 # models.Label.add_object() throws model_logic.ValidationError
151 label = models.Label.add_object(name=name, **kwargs)
171 @raises models.Label.DoesNotExist: If the label with id doesn't exist.
173 label = models.Label.smart_get(id)
[all …]
H A Dmodels_test.py10 from autotest_lib.frontend.afe import models, model_logic
31 everyone_acl = models.AclGroup.objects.get(name='Everyone')
38 models.AclGroup.on_host_membership_change()
55 models.Host.objects.populate_relationships(
56 [host], models.HostAttribute, 'attribute_list')
61 previous_config = models.RESPECT_STATIC_ATTRIBUTES
62 models.RESPECT_STATIC_ATTRIBUTES = False
63 host1 = models.Host.objects.create(hostname='test_host1')
73 models.RESPECT_STATIC_ATTRIBUTES = previous_config
77 previous_config = models.RESPECT_STATIC_ATTRIBUTES
[all …]
/aosp_15_r20/external/tensorflow/tensorflow/lite/g3doc/examples/trained/
H A Dindex.md1 # Pre-trained models for TensorFlow Lite
3 There are a variety of already trained, open source models you can use
5 Using pre-trained TensorFlow Lite models lets you add machine learning
8 models for use with TensorFlow Lite.
10 You can start browsing TensorFlow Lite models right away based on general use
12 larger set of models on [TensorFlow Hub](https://tfhub.dev/s?deployment-
15 **Important:** TensorFlow Hub lists both regular TensorFlow models and
16 TensorFlow Lite format models. These model formats are not interchangeable.
17 TensorFlow models can be converted into TensorFlow Lite models, but that process
25 to discover models for use with TensorFlow Lite:
[all …]
/aosp_15_r20/external/tensorflow/tensorflow/lite/g3doc/android/
H A Dindex.md3 TensorFlow Lite lets you run TensorFlow machine learning (ML) models in your
5 execution environments for running models on Android quickly and efficiently,
41 <a href="../models">
42 <h3 class="no-link hide-from-toc" id="ml-models" data-text="ML models">ML models</h3></a>
43 Learn about choosing and using ML models with TensorFlow Lite, see the
44 <a href="../models">Models</a> docs.
53 ## Machine learning models
55 TensorFlow Lite uses TensorFlow models that are converted into a smaller,
57 models with TensorFlow Lite on Android, or build your own TensorFlow models and
60 **Key Point:** TensorFlow Lite models and TensorFlow models have a *different
[all …]
/aosp_15_r20/out/soong/.intermediates/packages/providers/MediaProvider/pdf/framework/framework-pdf.impl/android_common_apex30/javac/
Dframework-pdf.jar ... numPages public static native android.graphics.pdf.models.jni.LoadPdfResult createFromFd (int, java. ...
/aosp_15_r20/external/google-cloud-java/java-aiplatform/proto-google-cloud-aiplatform-v1/src/main/java/com/google/cloud/aiplatform/v1/
H A DModelExplanation.java80 * For Models that predict only one output, such as regression Models that
82 * predicted output. For Models that predict multiple outputs, such as
83 * multiclass Models that predict multiple classes, each element explains one
93 * NOTE: Currently AutoML tabular classification Models produce only one
113 * For Models that predict only one output, such as regression Models that
115 * predicted output. For Models that predict multiple outputs, such as
116 * multiclass Models that predict multiple classes, each element explains one
126 * NOTE: Currently AutoML tabular classification Models produce only one
147 * For Models that predict only one output, such as regression Models that
149 * predicted output. For Models that predict multiple outputs, such as
[all …]
H A DExplanation.java83 * For Models that predict only one output, such as regression Models that
85 * predicted output. For Models that predict multiple outputs, such as
86 * multiclass Models that predict multiple classes, each element explains one
114 * For Models that predict only one output, such as regression Models that
116 * predicted output. For Models that predict multiple outputs, such as
117 * multiclass Models that predict multiple classes, each element explains one
146 * For Models that predict only one output, such as regression Models that
148 * predicted output. For Models that predict multiple outputs, such as
149 * multiclass Models that predict multiple classes, each element explains one
177 * For Models that predict only one output, such as regression Models that
[all …]
/aosp_15_r20/external/google-cloud-java/java-aiplatform/proto-google-cloud-aiplatform-v1beta1/src/main/java/com/google/cloud/aiplatform/v1beta1/
H A DModelExplanation.java80 * For Models that predict only one output, such as regression Models that
82 * predicted output. For Models that predict multiple outputs, such as
83 * multiclass Models that predict multiple classes, each element explains one
93 * NOTE: Currently AutoML tabular classification Models produce only one
113 * For Models that predict only one output, such as regression Models that
115 * predicted output. For Models that predict multiple outputs, such as
116 * multiclass Models that predict multiple classes, each element explains one
126 * NOTE: Currently AutoML tabular classification Models produce only one
147 * For Models that predict only one output, such as regression Models that
149 * predicted output. For Models that predict multiple outputs, such as
[all …]
H A DExplanation.java83 * For Models that predict only one output, such as regression Models that
85 * predicted output. For Models that predict multiple outputs, such as
86 * multiclass Models that predict multiple classes, each element explains one
114 * For Models that predict only one output, such as regression Models that
116 * predicted output. For Models that predict multiple outputs, such as
117 * multiclass Models that predict multiple classes, each element explains one
146 * For Models that predict only one output, such as regression Models that
148 * predicted output. For Models that predict multiple outputs, such as
149 * multiclass Models that predict multiple classes, each element explains one
177 * For Models that predict only one output, such as regression Models that
[all …]
/aosp_15_r20/external/autotest/frontend/tko/
H A Drpc_interface.py3 from django.db import models as dbmodels
6 from autotest_lib.frontend.afe import models as afe_models, readonly_connection
7 from autotest_lib.frontend.tko import models, tko_rpc_utils
15 models.TestView.list_objects(filter_data))
19 return models.TestView.query_count(filter_data)
47 query = models.TestView.objects.get_query_set_with_joins(filter_data)
49 query = models.TestView.query_objects(filter_data, initial_query=query,
51 count_alias, count_sql = models.TestView.objects.get_count_sql(query)
55 query = models.TestView.apply_presentation(query, filter_data)
68 query = models.TestView.objects.get_query_set_with_joins(filter_data)
[all …]
/aosp_15_r20/prebuilts/devtools/tools/lib/
HDhierarchyviewer2lib.jar ... void run () com.android.hierarchyviewerlib.models.ViewNode viewNode org.eclipse.swt.graphics ...
/aosp_15_r20/external/python/google-api-python-client/docs/dyn/
Dbigquery_v2.models.html75 <h1><a href="bigquery_v2.html">BigQuery API</a> . <a href="bigquery_v2.models.html">models</a></h1>
88models in the specified dataset. Requires the READER dataset role. After retrieving the list of mo…
132models will be deleted and their storage reclaimed. The defaultTableExpirationMs property of the e…
162 …associated with this model. You can use these to organize and group your models. Label keys and va…
187 …r eval data was used during training. These are not present for imported models. # The evaluation …
188 …ics&quot;: { # Model evaluation metrics for ARIMA forecasting models. # Populated for ARIMA models.
238 …metrics for binary classification/classifier models. # Populated for binary classification/classif…
239 …s&quot;: { # Aggregate metrics for classification/classifier models. For multi-class models, the m…
246 …computed. For binary classification models this is the positive class threshold. For multi-class c…
249 { # Confusion matrix for binary classification models.
[all …]
/aosp_15_r20/external/sdv/vsomeip/third_party/boost/container/include/boost/container/detail/
Dcopy_move_algo.hpp173 <typename I, // I models InputIterator
174 typename F> // F models ForwardIterator
190 <typename I, // I models InputIterator
191 typename U, // U models unsigned integral constant
192 typename F> // F models ForwardIterator
205 <typename I, // I models InputIterator
206 typename U, // U models unsigned integral constant
207 typename F> // F models ForwardIterator
219 <typename I, // I models InputIterator
220 typename U, // U models unsigned integral constant
[all …]
/aosp_15_r20/external/tensorflow/tensorflow/lite/g3doc/examples/
H A D_index.yaml3 title: Models
10 Overview of models for TensorFlow Lite
16 TensorFlow Lite uses TensorFlow models converted into a smaller, more efficient machine
17 learning (ML) model format. You can use pre-trained models with TensorFlow Lite, modify
18 existing models, or build your own TensorFlow models and then convert them to
19 TensorFlow Lite format. TensorFlow Lite models can perform almost any task a regular
32 <a href="/lite/models/convert/index"><h3 class="no-link">Have a TensorFlow model?</h3></a>
33 Skip to the <a href="/lite/models/convert/index">Convert</a> section for information about
35 path: /lite/models/convert/index
40 For guidance on getting models for your use case,
[all …]
/aosp_15_r20/out/soong/.intermediates/packages/providers/MediaProvider/pdf/framework/framework-pdf.impl/android_common_apex30/combined/
Dframework-pdf.jar ... numPages public static native android.graphics.pdf.models.jni.LoadPdfResult createFromFd (int, java. ...
/aosp_15_r20/external/tensorflow/tensorflow/lite/delegates/flex/
H A Dbuild_def.bzl29 models,
36 models: TFLite models to interpret.
47 if type(models) != type([]):
48 models = [models]
50 # List all flex ops from models.
52 ["$(location %s)" % f for f in models],
67 srcs = models,
70 message = "Listing flex ops from %s..." % ",".join(models),
93 models = [],
98 """A rule to generate a flex delegate with only ops to run listed models.
[all …]
/aosp_15_r20/out/soong/.intermediates/packages/providers/MediaProvider/pdf/framework/framework-pdf.impl/android_common_apex30/turbine/
Dframework-pdf.jar ... ) public static native android.graphics.pdf.models.jni.LoadPdfResult createFromFd (int, java. ...

12345678910>>...272