1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
6 * The allocator synchronizes using per slab locks or atomic operations
7 * and only uses a centralized lock to manage a pool of partial slabs.
8 *
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
11 */
12
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/kmsan.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ctype.h>
30 #include <linux/stackdepot.h>
31 #include <linux/debugobjects.h>
32 #include <linux/kallsyms.h>
33 #include <linux/kfence.h>
34 #include <linux/memory.h>
35 #include <linux/math64.h>
36 #include <linux/fault-inject.h>
37 #include <linux/kmemleak.h>
38 #include <linux/stacktrace.h>
39 #include <linux/prefetch.h>
40 #include <linux/memcontrol.h>
41 #include <linux/random.h>
42 #include <kunit/test.h>
43 #include <kunit/test-bug.h>
44 #include <linux/sort.h>
45
46 #include <linux/debugfs.h>
47 #include <trace/events/kmem.h>
48
49 #include "internal.h"
50
51 /*
52 * Lock order:
53 * 1. slab_mutex (Global Mutex)
54 * 2. node->list_lock (Spinlock)
55 * 3. kmem_cache->cpu_slab->lock (Local lock)
56 * 4. slab_lock(slab) (Only on some arches)
57 * 5. object_map_lock (Only for debugging)
58 *
59 * slab_mutex
60 *
61 * The role of the slab_mutex is to protect the list of all the slabs
62 * and to synchronize major metadata changes to slab cache structures.
63 * Also synchronizes memory hotplug callbacks.
64 *
65 * slab_lock
66 *
67 * The slab_lock is a wrapper around the page lock, thus it is a bit
68 * spinlock.
69 *
70 * The slab_lock is only used on arches that do not have the ability
71 * to do a cmpxchg_double. It only protects:
72 *
73 * A. slab->freelist -> List of free objects in a slab
74 * B. slab->inuse -> Number of objects in use
75 * C. slab->objects -> Number of objects in slab
76 * D. slab->frozen -> frozen state
77 *
78 * Frozen slabs
79 *
80 * If a slab is frozen then it is exempt from list management. It is
81 * the cpu slab which is actively allocated from by the processor that
82 * froze it and it is not on any list. The processor that froze the
83 * slab is the one who can perform list operations on the slab. Other
84 * processors may put objects onto the freelist but the processor that
85 * froze the slab is the only one that can retrieve the objects from the
86 * slab's freelist.
87 *
88 * CPU partial slabs
89 *
90 * The partially empty slabs cached on the CPU partial list are used
91 * for performance reasons, which speeds up the allocation process.
92 * These slabs are not frozen, but are also exempt from list management,
93 * by clearing the PG_workingset flag when moving out of the node
94 * partial list. Please see __slab_free() for more details.
95 *
96 * To sum up, the current scheme is:
97 * - node partial slab: PG_Workingset && !frozen
98 * - cpu partial slab: !PG_Workingset && !frozen
99 * - cpu slab: !PG_Workingset && frozen
100 * - full slab: !PG_Workingset && !frozen
101 *
102 * list_lock
103 *
104 * The list_lock protects the partial and full list on each node and
105 * the partial slab counter. If taken then no new slabs may be added or
106 * removed from the lists nor make the number of partial slabs be modified.
107 * (Note that the total number of slabs is an atomic value that may be
108 * modified without taking the list lock).
109 *
110 * The list_lock is a centralized lock and thus we avoid taking it as
111 * much as possible. As long as SLUB does not have to handle partial
112 * slabs, operations can continue without any centralized lock. F.e.
113 * allocating a long series of objects that fill up slabs does not require
114 * the list lock.
115 *
116 * For debug caches, all allocations are forced to go through a list_lock
117 * protected region to serialize against concurrent validation.
118 *
119 * cpu_slab->lock local lock
120 *
121 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
122 * except the stat counters. This is a percpu structure manipulated only by
123 * the local cpu, so the lock protects against being preempted or interrupted
124 * by an irq. Fast path operations rely on lockless operations instead.
125 *
126 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption
127 * which means the lockless fastpath cannot be used as it might interfere with
128 * an in-progress slow path operations. In this case the local lock is always
129 * taken but it still utilizes the freelist for the common operations.
130 *
131 * lockless fastpaths
132 *
133 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
134 * are fully lockless when satisfied from the percpu slab (and when
135 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
136 * They also don't disable preemption or migration or irqs. They rely on
137 * the transaction id (tid) field to detect being preempted or moved to
138 * another cpu.
139 *
140 * irq, preemption, migration considerations
141 *
142 * Interrupts are disabled as part of list_lock or local_lock operations, or
143 * around the slab_lock operation, in order to make the slab allocator safe
144 * to use in the context of an irq.
145 *
146 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
147 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
148 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
149 * doesn't have to be revalidated in each section protected by the local lock.
150 *
151 * SLUB assigns one slab for allocation to each processor.
152 * Allocations only occur from these slabs called cpu slabs.
153 *
154 * Slabs with free elements are kept on a partial list and during regular
155 * operations no list for full slabs is used. If an object in a full slab is
156 * freed then the slab will show up again on the partial lists.
157 * We track full slabs for debugging purposes though because otherwise we
158 * cannot scan all objects.
159 *
160 * Slabs are freed when they become empty. Teardown and setup is
161 * minimal so we rely on the page allocators per cpu caches for
162 * fast frees and allocs.
163 *
164 * slab->frozen The slab is frozen and exempt from list processing.
165 * This means that the slab is dedicated to a purpose
166 * such as satisfying allocations for a specific
167 * processor. Objects may be freed in the slab while
168 * it is frozen but slab_free will then skip the usual
169 * list operations. It is up to the processor holding
170 * the slab to integrate the slab into the slab lists
171 * when the slab is no longer needed.
172 *
173 * One use of this flag is to mark slabs that are
174 * used for allocations. Then such a slab becomes a cpu
175 * slab. The cpu slab may be equipped with an additional
176 * freelist that allows lockless access to
177 * free objects in addition to the regular freelist
178 * that requires the slab lock.
179 *
180 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
181 * options set. This moves slab handling out of
182 * the fast path and disables lockless freelists.
183 */
184
185 /*
186 * We could simply use migrate_disable()/enable() but as long as it's a
187 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
188 */
189 #ifndef CONFIG_PREEMPT_RT
190 #define slub_get_cpu_ptr(var) get_cpu_ptr(var)
191 #define slub_put_cpu_ptr(var) put_cpu_ptr(var)
192 #define USE_LOCKLESS_FAST_PATH() (true)
193 #else
194 #define slub_get_cpu_ptr(var) \
195 ({ \
196 migrate_disable(); \
197 this_cpu_ptr(var); \
198 })
199 #define slub_put_cpu_ptr(var) \
200 do { \
201 (void)(var); \
202 migrate_enable(); \
203 } while (0)
204 #define USE_LOCKLESS_FAST_PATH() (false)
205 #endif
206
207 #ifndef CONFIG_SLUB_TINY
208 #define __fastpath_inline __always_inline
209 #else
210 #define __fastpath_inline
211 #endif
212
213 #ifdef CONFIG_SLUB_DEBUG
214 #ifdef CONFIG_SLUB_DEBUG_ON
215 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
216 #else
217 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
218 #endif
219 #endif /* CONFIG_SLUB_DEBUG */
220
221 #ifdef CONFIG_NUMA
222 static DEFINE_STATIC_KEY_FALSE(strict_numa);
223 #endif
224
225 /* Structure holding parameters for get_partial() call chain */
226 struct partial_context {
227 gfp_t flags;
228 unsigned int orig_size;
229 void *object;
230 };
231
kmem_cache_debug(struct kmem_cache * s)232 static inline bool kmem_cache_debug(struct kmem_cache *s)
233 {
234 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
235 }
236
fixup_red_left(struct kmem_cache * s,void * p)237 void *fixup_red_left(struct kmem_cache *s, void *p)
238 {
239 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
240 p += s->red_left_pad;
241
242 return p;
243 }
244
kmem_cache_has_cpu_partial(struct kmem_cache * s)245 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
246 {
247 #ifdef CONFIG_SLUB_CPU_PARTIAL
248 return !kmem_cache_debug(s);
249 #else
250 return false;
251 #endif
252 }
253
254 /*
255 * Issues still to be resolved:
256 *
257 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
258 *
259 * - Variable sizing of the per node arrays
260 */
261
262 /* Enable to log cmpxchg failures */
263 #undef SLUB_DEBUG_CMPXCHG
264
265 #ifndef CONFIG_SLUB_TINY
266 /*
267 * Minimum number of partial slabs. These will be left on the partial
268 * lists even if they are empty. kmem_cache_shrink may reclaim them.
269 */
270 #define MIN_PARTIAL 5
271
272 /*
273 * Maximum number of desirable partial slabs.
274 * The existence of more partial slabs makes kmem_cache_shrink
275 * sort the partial list by the number of objects in use.
276 */
277 #define MAX_PARTIAL 10
278 #else
279 #define MIN_PARTIAL 0
280 #define MAX_PARTIAL 0
281 #endif
282
283 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
284 SLAB_POISON | SLAB_STORE_USER)
285
286 /*
287 * These debug flags cannot use CMPXCHG because there might be consistency
288 * issues when checking or reading debug information
289 */
290 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
291 SLAB_TRACE)
292
293
294 /*
295 * Debugging flags that require metadata to be stored in the slab. These get
296 * disabled when slab_debug=O is used and a cache's min order increases with
297 * metadata.
298 */
299 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
300
301 #define OO_SHIFT 16
302 #define OO_MASK ((1 << OO_SHIFT) - 1)
303 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */
304
305 /* Internal SLUB flags */
306 /* Poison object */
307 #define __OBJECT_POISON __SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
308 /* Use cmpxchg_double */
309
310 #ifdef system_has_freelist_aba
311 #define __CMPXCHG_DOUBLE __SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
312 #else
313 #define __CMPXCHG_DOUBLE __SLAB_FLAG_UNUSED
314 #endif
315
316 /*
317 * Tracking user of a slab.
318 */
319 #define TRACK_ADDRS_COUNT 16
320 struct track {
321 unsigned long addr; /* Called from address */
322 #ifdef CONFIG_STACKDEPOT
323 depot_stack_handle_t handle;
324 #endif
325 int cpu; /* Was running on cpu */
326 int pid; /* Pid context */
327 unsigned long when; /* When did the operation occur */
328 };
329
330 enum track_item { TRACK_ALLOC, TRACK_FREE };
331
332 #ifdef SLAB_SUPPORTS_SYSFS
333 static int sysfs_slab_add(struct kmem_cache *);
334 static int sysfs_slab_alias(struct kmem_cache *, const char *);
335 #else
sysfs_slab_add(struct kmem_cache * s)336 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
sysfs_slab_alias(struct kmem_cache * s,const char * p)337 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
338 { return 0; }
339 #endif
340
341 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
342 static void debugfs_slab_add(struct kmem_cache *);
343 #else
debugfs_slab_add(struct kmem_cache * s)344 static inline void debugfs_slab_add(struct kmem_cache *s) { }
345 #endif
346
347 enum stat_item {
348 ALLOC_FASTPATH, /* Allocation from cpu slab */
349 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
350 FREE_FASTPATH, /* Free to cpu slab */
351 FREE_SLOWPATH, /* Freeing not to cpu slab */
352 FREE_FROZEN, /* Freeing to frozen slab */
353 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
354 FREE_REMOVE_PARTIAL, /* Freeing removes last object */
355 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */
356 ALLOC_SLAB, /* Cpu slab acquired from page allocator */
357 ALLOC_REFILL, /* Refill cpu slab from slab freelist */
358 ALLOC_NODE_MISMATCH, /* Switching cpu slab */
359 FREE_SLAB, /* Slab freed to the page allocator */
360 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
361 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
362 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
363 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
364 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
365 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
366 DEACTIVATE_BYPASS, /* Implicit deactivation */
367 ORDER_FALLBACK, /* Number of times fallback was necessary */
368 CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
369 CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */
370 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */
371 CPU_PARTIAL_FREE, /* Refill cpu partial on free */
372 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */
373 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */
374 NR_SLUB_STAT_ITEMS
375 };
376
377 #ifndef CONFIG_SLUB_TINY
378 /*
379 * When changing the layout, make sure freelist and tid are still compatible
380 * with this_cpu_cmpxchg_double() alignment requirements.
381 */
382 struct kmem_cache_cpu {
383 union {
384 struct {
385 void **freelist; /* Pointer to next available object */
386 unsigned long tid; /* Globally unique transaction id */
387 };
388 freelist_aba_t freelist_tid;
389 };
390 struct slab *slab; /* The slab from which we are allocating */
391 #ifdef CONFIG_SLUB_CPU_PARTIAL
392 struct slab *partial; /* Partially allocated slabs */
393 #endif
394 local_lock_t lock; /* Protects the fields above */
395 #ifdef CONFIG_SLUB_STATS
396 unsigned int stat[NR_SLUB_STAT_ITEMS];
397 #endif
398 };
399 #endif /* CONFIG_SLUB_TINY */
400
stat(const struct kmem_cache * s,enum stat_item si)401 static inline void stat(const struct kmem_cache *s, enum stat_item si)
402 {
403 #ifdef CONFIG_SLUB_STATS
404 /*
405 * The rmw is racy on a preemptible kernel but this is acceptable, so
406 * avoid this_cpu_add()'s irq-disable overhead.
407 */
408 raw_cpu_inc(s->cpu_slab->stat[si]);
409 #endif
410 }
411
412 static inline
stat_add(const struct kmem_cache * s,enum stat_item si,int v)413 void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
414 {
415 #ifdef CONFIG_SLUB_STATS
416 raw_cpu_add(s->cpu_slab->stat[si], v);
417 #endif
418 }
419
420 /*
421 * The slab lists for all objects.
422 */
423 struct kmem_cache_node {
424 spinlock_t list_lock;
425 unsigned long nr_partial;
426 struct list_head partial;
427 #ifdef CONFIG_SLUB_DEBUG
428 atomic_long_t nr_slabs;
429 atomic_long_t total_objects;
430 struct list_head full;
431 #endif
432 };
433
get_node(struct kmem_cache * s,int node)434 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
435 {
436 return s->node[node];
437 }
438
439 /*
440 * Iterator over all nodes. The body will be executed for each node that has
441 * a kmem_cache_node structure allocated (which is true for all online nodes)
442 */
443 #define for_each_kmem_cache_node(__s, __node, __n) \
444 for (__node = 0; __node < nr_node_ids; __node++) \
445 if ((__n = get_node(__s, __node)))
446
447 /*
448 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
449 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
450 * differ during memory hotplug/hotremove operations.
451 * Protected by slab_mutex.
452 */
453 static nodemask_t slab_nodes;
454
455 #ifndef CONFIG_SLUB_TINY
456 /*
457 * Workqueue used for flush_cpu_slab().
458 */
459 static struct workqueue_struct *flushwq;
460 #endif
461
462 /********************************************************************
463 * Core slab cache functions
464 *******************************************************************/
465
466 /*
467 * Returns freelist pointer (ptr). With hardening, this is obfuscated
468 * with an XOR of the address where the pointer is held and a per-cache
469 * random number.
470 */
freelist_ptr_encode(const struct kmem_cache * s,void * ptr,unsigned long ptr_addr)471 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
472 void *ptr, unsigned long ptr_addr)
473 {
474 unsigned long encoded;
475
476 #ifdef CONFIG_SLAB_FREELIST_HARDENED
477 encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
478 #else
479 encoded = (unsigned long)ptr;
480 #endif
481 return (freeptr_t){.v = encoded};
482 }
483
freelist_ptr_decode(const struct kmem_cache * s,freeptr_t ptr,unsigned long ptr_addr)484 static inline void *freelist_ptr_decode(const struct kmem_cache *s,
485 freeptr_t ptr, unsigned long ptr_addr)
486 {
487 void *decoded;
488
489 #ifdef CONFIG_SLAB_FREELIST_HARDENED
490 decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
491 #else
492 decoded = (void *)ptr.v;
493 #endif
494 return decoded;
495 }
496
get_freepointer(struct kmem_cache * s,void * object)497 static inline void *get_freepointer(struct kmem_cache *s, void *object)
498 {
499 unsigned long ptr_addr;
500 freeptr_t p;
501
502 object = kasan_reset_tag(object);
503 ptr_addr = (unsigned long)object + s->offset;
504 p = *(freeptr_t *)(ptr_addr);
505 return freelist_ptr_decode(s, p, ptr_addr);
506 }
507
508 #ifndef CONFIG_SLUB_TINY
prefetch_freepointer(const struct kmem_cache * s,void * object)509 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
510 {
511 prefetchw(object + s->offset);
512 }
513 #endif
514
515 /*
516 * When running under KMSAN, get_freepointer_safe() may return an uninitialized
517 * pointer value in the case the current thread loses the race for the next
518 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
519 * slab_alloc_node() will fail, so the uninitialized value won't be used, but
520 * KMSAN will still check all arguments of cmpxchg because of imperfect
521 * handling of inline assembly.
522 * To work around this problem, we apply __no_kmsan_checks to ensure that
523 * get_freepointer_safe() returns initialized memory.
524 */
525 __no_kmsan_checks
get_freepointer_safe(struct kmem_cache * s,void * object)526 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
527 {
528 unsigned long freepointer_addr;
529 freeptr_t p;
530
531 if (!debug_pagealloc_enabled_static())
532 return get_freepointer(s, object);
533
534 object = kasan_reset_tag(object);
535 freepointer_addr = (unsigned long)object + s->offset;
536 copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
537 return freelist_ptr_decode(s, p, freepointer_addr);
538 }
539
set_freepointer(struct kmem_cache * s,void * object,void * fp)540 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
541 {
542 unsigned long freeptr_addr = (unsigned long)object + s->offset;
543
544 #ifdef CONFIG_SLAB_FREELIST_HARDENED
545 BUG_ON(object == fp); /* naive detection of double free or corruption */
546 #endif
547
548 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
549 *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
550 }
551
552 /*
553 * See comment in calculate_sizes().
554 */
freeptr_outside_object(struct kmem_cache * s)555 static inline bool freeptr_outside_object(struct kmem_cache *s)
556 {
557 return s->offset >= s->inuse;
558 }
559
560 /*
561 * Return offset of the end of info block which is inuse + free pointer if
562 * not overlapping with object.
563 */
get_info_end(struct kmem_cache * s)564 static inline unsigned int get_info_end(struct kmem_cache *s)
565 {
566 if (freeptr_outside_object(s))
567 return s->inuse + sizeof(void *);
568 else
569 return s->inuse;
570 }
571
572 /* Loop over all objects in a slab */
573 #define for_each_object(__p, __s, __addr, __objects) \
574 for (__p = fixup_red_left(__s, __addr); \
575 __p < (__addr) + (__objects) * (__s)->size; \
576 __p += (__s)->size)
577
order_objects(unsigned int order,unsigned int size)578 static inline unsigned int order_objects(unsigned int order, unsigned int size)
579 {
580 return ((unsigned int)PAGE_SIZE << order) / size;
581 }
582
oo_make(unsigned int order,unsigned int size)583 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
584 unsigned int size)
585 {
586 struct kmem_cache_order_objects x = {
587 (order << OO_SHIFT) + order_objects(order, size)
588 };
589
590 return x;
591 }
592
oo_order(struct kmem_cache_order_objects x)593 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
594 {
595 return x.x >> OO_SHIFT;
596 }
597
oo_objects(struct kmem_cache_order_objects x)598 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
599 {
600 return x.x & OO_MASK;
601 }
602
603 #ifdef CONFIG_SLUB_CPU_PARTIAL
slub_set_cpu_partial(struct kmem_cache * s,unsigned int nr_objects)604 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
605 {
606 unsigned int nr_slabs;
607
608 s->cpu_partial = nr_objects;
609
610 /*
611 * We take the number of objects but actually limit the number of
612 * slabs on the per cpu partial list, in order to limit excessive
613 * growth of the list. For simplicity we assume that the slabs will
614 * be half-full.
615 */
616 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
617 s->cpu_partial_slabs = nr_slabs;
618 }
619
slub_get_cpu_partial(struct kmem_cache * s)620 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
621 {
622 return s->cpu_partial_slabs;
623 }
624 #else
625 static inline void
slub_set_cpu_partial(struct kmem_cache * s,unsigned int nr_objects)626 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
627 {
628 }
629
slub_get_cpu_partial(struct kmem_cache * s)630 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
631 {
632 return 0;
633 }
634 #endif /* CONFIG_SLUB_CPU_PARTIAL */
635
636 /*
637 * Per slab locking using the pagelock
638 */
slab_lock(struct slab * slab)639 static __always_inline void slab_lock(struct slab *slab)
640 {
641 bit_spin_lock(PG_locked, &slab->__page_flags);
642 }
643
slab_unlock(struct slab * slab)644 static __always_inline void slab_unlock(struct slab *slab)
645 {
646 bit_spin_unlock(PG_locked, &slab->__page_flags);
647 }
648
649 static inline bool
__update_freelist_fast(struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new)650 __update_freelist_fast(struct slab *slab,
651 void *freelist_old, unsigned long counters_old,
652 void *freelist_new, unsigned long counters_new)
653 {
654 #ifdef system_has_freelist_aba
655 freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
656 freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
657
658 return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
659 #else
660 return false;
661 #endif
662 }
663
664 static inline bool
__update_freelist_slow(struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new)665 __update_freelist_slow(struct slab *slab,
666 void *freelist_old, unsigned long counters_old,
667 void *freelist_new, unsigned long counters_new)
668 {
669 bool ret = false;
670
671 slab_lock(slab);
672 if (slab->freelist == freelist_old &&
673 slab->counters == counters_old) {
674 slab->freelist = freelist_new;
675 slab->counters = counters_new;
676 ret = true;
677 }
678 slab_unlock(slab);
679
680 return ret;
681 }
682
683 /*
684 * Interrupts must be disabled (for the fallback code to work right), typically
685 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
686 * part of bit_spin_lock(), is sufficient because the policy is not to allow any
687 * allocation/ free operation in hardirq context. Therefore nothing can
688 * interrupt the operation.
689 */
__slab_update_freelist(struct kmem_cache * s,struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new,const char * n)690 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
691 void *freelist_old, unsigned long counters_old,
692 void *freelist_new, unsigned long counters_new,
693 const char *n)
694 {
695 bool ret;
696
697 if (USE_LOCKLESS_FAST_PATH())
698 lockdep_assert_irqs_disabled();
699
700 if (s->flags & __CMPXCHG_DOUBLE) {
701 ret = __update_freelist_fast(slab, freelist_old, counters_old,
702 freelist_new, counters_new);
703 } else {
704 ret = __update_freelist_slow(slab, freelist_old, counters_old,
705 freelist_new, counters_new);
706 }
707 if (likely(ret))
708 return true;
709
710 cpu_relax();
711 stat(s, CMPXCHG_DOUBLE_FAIL);
712
713 #ifdef SLUB_DEBUG_CMPXCHG
714 pr_info("%s %s: cmpxchg double redo ", n, s->name);
715 #endif
716
717 return false;
718 }
719
slab_update_freelist(struct kmem_cache * s,struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new,const char * n)720 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
721 void *freelist_old, unsigned long counters_old,
722 void *freelist_new, unsigned long counters_new,
723 const char *n)
724 {
725 bool ret;
726
727 if (s->flags & __CMPXCHG_DOUBLE) {
728 ret = __update_freelist_fast(slab, freelist_old, counters_old,
729 freelist_new, counters_new);
730 } else {
731 unsigned long flags;
732
733 local_irq_save(flags);
734 ret = __update_freelist_slow(slab, freelist_old, counters_old,
735 freelist_new, counters_new);
736 local_irq_restore(flags);
737 }
738 if (likely(ret))
739 return true;
740
741 cpu_relax();
742 stat(s, CMPXCHG_DOUBLE_FAIL);
743
744 #ifdef SLUB_DEBUG_CMPXCHG
745 pr_info("%s %s: cmpxchg double redo ", n, s->name);
746 #endif
747
748 return false;
749 }
750
751 /*
752 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
753 * family will round up the real request size to these fixed ones, so
754 * there could be an extra area than what is requested. Save the original
755 * request size in the meta data area, for better debug and sanity check.
756 */
set_orig_size(struct kmem_cache * s,void * object,unsigned int orig_size)757 static inline void set_orig_size(struct kmem_cache *s,
758 void *object, unsigned int orig_size)
759 {
760 void *p = kasan_reset_tag(object);
761
762 if (!slub_debug_orig_size(s))
763 return;
764
765 p += get_info_end(s);
766 p += sizeof(struct track) * 2;
767
768 *(unsigned int *)p = orig_size;
769 }
770
get_orig_size(struct kmem_cache * s,void * object)771 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
772 {
773 void *p = kasan_reset_tag(object);
774
775 if (is_kfence_address(object))
776 return kfence_ksize(object);
777
778 if (!slub_debug_orig_size(s))
779 return s->object_size;
780
781 p += get_info_end(s);
782 p += sizeof(struct track) * 2;
783
784 return *(unsigned int *)p;
785 }
786
787 #ifdef CONFIG_SLUB_DEBUG
788 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
789 static DEFINE_SPINLOCK(object_map_lock);
790
__fill_map(unsigned long * obj_map,struct kmem_cache * s,struct slab * slab)791 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
792 struct slab *slab)
793 {
794 void *addr = slab_address(slab);
795 void *p;
796
797 bitmap_zero(obj_map, slab->objects);
798
799 for (p = slab->freelist; p; p = get_freepointer(s, p))
800 set_bit(__obj_to_index(s, addr, p), obj_map);
801 }
802
803 #if IS_ENABLED(CONFIG_KUNIT)
slab_add_kunit_errors(void)804 static bool slab_add_kunit_errors(void)
805 {
806 struct kunit_resource *resource;
807
808 if (!kunit_get_current_test())
809 return false;
810
811 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
812 if (!resource)
813 return false;
814
815 (*(int *)resource->data)++;
816 kunit_put_resource(resource);
817 return true;
818 }
819
slab_in_kunit_test(void)820 bool slab_in_kunit_test(void)
821 {
822 struct kunit_resource *resource;
823
824 if (!kunit_get_current_test())
825 return false;
826
827 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
828 if (!resource)
829 return false;
830
831 kunit_put_resource(resource);
832 return true;
833 }
834 #else
slab_add_kunit_errors(void)835 static inline bool slab_add_kunit_errors(void) { return false; }
836 #endif
837
size_from_object(struct kmem_cache * s)838 static inline unsigned int size_from_object(struct kmem_cache *s)
839 {
840 if (s->flags & SLAB_RED_ZONE)
841 return s->size - s->red_left_pad;
842
843 return s->size;
844 }
845
restore_red_left(struct kmem_cache * s,void * p)846 static inline void *restore_red_left(struct kmem_cache *s, void *p)
847 {
848 if (s->flags & SLAB_RED_ZONE)
849 p -= s->red_left_pad;
850
851 return p;
852 }
853
854 /*
855 * Debug settings:
856 */
857 #if defined(CONFIG_SLUB_DEBUG_ON)
858 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
859 #else
860 static slab_flags_t slub_debug;
861 #endif
862
863 static char *slub_debug_string;
864 static int disable_higher_order_debug;
865
866 /*
867 * slub is about to manipulate internal object metadata. This memory lies
868 * outside the range of the allocated object, so accessing it would normally
869 * be reported by kasan as a bounds error. metadata_access_enable() is used
870 * to tell kasan that these accesses are OK.
871 */
metadata_access_enable(void)872 static inline void metadata_access_enable(void)
873 {
874 kasan_disable_current();
875 kmsan_disable_current();
876 }
877
metadata_access_disable(void)878 static inline void metadata_access_disable(void)
879 {
880 kmsan_enable_current();
881 kasan_enable_current();
882 }
883
884 /*
885 * Object debugging
886 */
887
888 /* Verify that a pointer has an address that is valid within a slab page */
check_valid_pointer(struct kmem_cache * s,struct slab * slab,void * object)889 static inline int check_valid_pointer(struct kmem_cache *s,
890 struct slab *slab, void *object)
891 {
892 void *base;
893
894 if (!object)
895 return 1;
896
897 base = slab_address(slab);
898 object = kasan_reset_tag(object);
899 object = restore_red_left(s, object);
900 if (object < base || object >= base + slab->objects * s->size ||
901 (object - base) % s->size) {
902 return 0;
903 }
904
905 return 1;
906 }
907
print_section(char * level,char * text,u8 * addr,unsigned int length)908 static void print_section(char *level, char *text, u8 *addr,
909 unsigned int length)
910 {
911 metadata_access_enable();
912 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
913 16, 1, kasan_reset_tag((void *)addr), length, 1);
914 metadata_access_disable();
915 }
916
get_track(struct kmem_cache * s,void * object,enum track_item alloc)917 static struct track *get_track(struct kmem_cache *s, void *object,
918 enum track_item alloc)
919 {
920 struct track *p;
921
922 p = object + get_info_end(s);
923
924 return kasan_reset_tag(p + alloc);
925 }
926
927 #ifdef CONFIG_STACKDEPOT
set_track_prepare(void)928 static noinline depot_stack_handle_t set_track_prepare(void)
929 {
930 depot_stack_handle_t handle;
931 unsigned long entries[TRACK_ADDRS_COUNT];
932 unsigned int nr_entries;
933
934 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
935 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
936
937 return handle;
938 }
939 #else
set_track_prepare(void)940 static inline depot_stack_handle_t set_track_prepare(void)
941 {
942 return 0;
943 }
944 #endif
945
set_track_update(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr,depot_stack_handle_t handle)946 static void set_track_update(struct kmem_cache *s, void *object,
947 enum track_item alloc, unsigned long addr,
948 depot_stack_handle_t handle)
949 {
950 struct track *p = get_track(s, object, alloc);
951
952 #ifdef CONFIG_STACKDEPOT
953 p->handle = handle;
954 #endif
955 p->addr = addr;
956 p->cpu = smp_processor_id();
957 p->pid = current->pid;
958 p->when = jiffies;
959 }
960
set_track(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr)961 static __always_inline void set_track(struct kmem_cache *s, void *object,
962 enum track_item alloc, unsigned long addr)
963 {
964 depot_stack_handle_t handle = set_track_prepare();
965
966 set_track_update(s, object, alloc, addr, handle);
967 }
968
init_tracking(struct kmem_cache * s,void * object)969 static void init_tracking(struct kmem_cache *s, void *object)
970 {
971 struct track *p;
972
973 if (!(s->flags & SLAB_STORE_USER))
974 return;
975
976 p = get_track(s, object, TRACK_ALLOC);
977 memset(p, 0, 2*sizeof(struct track));
978 }
979
print_track(const char * s,struct track * t,unsigned long pr_time)980 static void print_track(const char *s, struct track *t, unsigned long pr_time)
981 {
982 depot_stack_handle_t handle __maybe_unused;
983
984 if (!t->addr)
985 return;
986
987 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
988 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
989 #ifdef CONFIG_STACKDEPOT
990 handle = READ_ONCE(t->handle);
991 if (handle)
992 stack_depot_print(handle);
993 else
994 pr_err("object allocation/free stack trace missing\n");
995 #endif
996 }
997
print_tracking(struct kmem_cache * s,void * object)998 void print_tracking(struct kmem_cache *s, void *object)
999 {
1000 unsigned long pr_time = jiffies;
1001 if (!(s->flags & SLAB_STORE_USER))
1002 return;
1003
1004 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
1005 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
1006 }
1007
print_slab_info(const struct slab * slab)1008 static void print_slab_info(const struct slab *slab)
1009 {
1010 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
1011 slab, slab->objects, slab->inuse, slab->freelist,
1012 &slab->__page_flags);
1013 }
1014
skip_orig_size_check(struct kmem_cache * s,const void * object)1015 void skip_orig_size_check(struct kmem_cache *s, const void *object)
1016 {
1017 set_orig_size(s, (void *)object, s->object_size);
1018 }
1019
slab_bug(struct kmem_cache * s,char * fmt,...)1020 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
1021 {
1022 struct va_format vaf;
1023 va_list args;
1024
1025 va_start(args, fmt);
1026 vaf.fmt = fmt;
1027 vaf.va = &args;
1028 pr_err("=============================================================================\n");
1029 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
1030 pr_err("-----------------------------------------------------------------------------\n\n");
1031 va_end(args);
1032 }
1033
1034 __printf(2, 3)
slab_fix(struct kmem_cache * s,char * fmt,...)1035 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
1036 {
1037 struct va_format vaf;
1038 va_list args;
1039
1040 if (slab_add_kunit_errors())
1041 return;
1042
1043 va_start(args, fmt);
1044 vaf.fmt = fmt;
1045 vaf.va = &args;
1046 pr_err("FIX %s: %pV\n", s->name, &vaf);
1047 va_end(args);
1048 }
1049
print_trailer(struct kmem_cache * s,struct slab * slab,u8 * p)1050 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
1051 {
1052 unsigned int off; /* Offset of last byte */
1053 u8 *addr = slab_address(slab);
1054
1055 print_tracking(s, p);
1056
1057 print_slab_info(slab);
1058
1059 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
1060 p, p - addr, get_freepointer(s, p));
1061
1062 if (s->flags & SLAB_RED_ZONE)
1063 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
1064 s->red_left_pad);
1065 else if (p > addr + 16)
1066 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
1067
1068 print_section(KERN_ERR, "Object ", p,
1069 min_t(unsigned int, s->object_size, PAGE_SIZE));
1070 if (s->flags & SLAB_RED_ZONE)
1071 print_section(KERN_ERR, "Redzone ", p + s->object_size,
1072 s->inuse - s->object_size);
1073
1074 off = get_info_end(s);
1075
1076 if (s->flags & SLAB_STORE_USER)
1077 off += 2 * sizeof(struct track);
1078
1079 if (slub_debug_orig_size(s))
1080 off += sizeof(unsigned int);
1081
1082 off += kasan_metadata_size(s, false);
1083
1084 if (off != size_from_object(s))
1085 /* Beginning of the filler is the free pointer */
1086 print_section(KERN_ERR, "Padding ", p + off,
1087 size_from_object(s) - off);
1088
1089 dump_stack();
1090 }
1091
object_err(struct kmem_cache * s,struct slab * slab,u8 * object,char * reason)1092 static void object_err(struct kmem_cache *s, struct slab *slab,
1093 u8 *object, char *reason)
1094 {
1095 if (slab_add_kunit_errors())
1096 return;
1097
1098 slab_bug(s, "%s", reason);
1099 print_trailer(s, slab, object);
1100 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1101 }
1102
freelist_corrupted(struct kmem_cache * s,struct slab * slab,void ** freelist,void * nextfree)1103 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1104 void **freelist, void *nextfree)
1105 {
1106 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
1107 !check_valid_pointer(s, slab, nextfree) && freelist) {
1108 object_err(s, slab, *freelist, "Freechain corrupt");
1109 *freelist = NULL;
1110 slab_fix(s, "Isolate corrupted freechain");
1111 return true;
1112 }
1113
1114 return false;
1115 }
1116
slab_err(struct kmem_cache * s,struct slab * slab,const char * fmt,...)1117 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1118 const char *fmt, ...)
1119 {
1120 va_list args;
1121 char buf[100];
1122
1123 if (slab_add_kunit_errors())
1124 return;
1125
1126 va_start(args, fmt);
1127 vsnprintf(buf, sizeof(buf), fmt, args);
1128 va_end(args);
1129 slab_bug(s, "%s", buf);
1130 print_slab_info(slab);
1131 dump_stack();
1132 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1133 }
1134
init_object(struct kmem_cache * s,void * object,u8 val)1135 static void init_object(struct kmem_cache *s, void *object, u8 val)
1136 {
1137 u8 *p = kasan_reset_tag(object);
1138 unsigned int poison_size = s->object_size;
1139
1140 if (s->flags & SLAB_RED_ZONE) {
1141 /*
1142 * Here and below, avoid overwriting the KMSAN shadow. Keeping
1143 * the shadow makes it possible to distinguish uninit-value
1144 * from use-after-free.
1145 */
1146 memset_no_sanitize_memory(p - s->red_left_pad, val,
1147 s->red_left_pad);
1148
1149 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1150 /*
1151 * Redzone the extra allocated space by kmalloc than
1152 * requested, and the poison size will be limited to
1153 * the original request size accordingly.
1154 */
1155 poison_size = get_orig_size(s, object);
1156 }
1157 }
1158
1159 if (s->flags & __OBJECT_POISON) {
1160 memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1);
1161 memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1);
1162 }
1163
1164 if (s->flags & SLAB_RED_ZONE)
1165 memset_no_sanitize_memory(p + poison_size, val,
1166 s->inuse - poison_size);
1167 }
1168
restore_bytes(struct kmem_cache * s,char * message,u8 data,void * from,void * to)1169 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1170 void *from, void *to)
1171 {
1172 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1173 memset(from, data, to - from);
1174 }
1175
1176 #ifdef CONFIG_KMSAN
1177 #define pad_check_attributes noinline __no_kmsan_checks
1178 #else
1179 #define pad_check_attributes
1180 #endif
1181
1182 static pad_check_attributes int
check_bytes_and_report(struct kmem_cache * s,struct slab * slab,u8 * object,char * what,u8 * start,unsigned int value,unsigned int bytes)1183 check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1184 u8 *object, char *what,
1185 u8 *start, unsigned int value, unsigned int bytes)
1186 {
1187 u8 *fault;
1188 u8 *end;
1189 u8 *addr = slab_address(slab);
1190
1191 metadata_access_enable();
1192 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1193 metadata_access_disable();
1194 if (!fault)
1195 return 1;
1196
1197 end = start + bytes;
1198 while (end > fault && end[-1] == value)
1199 end--;
1200
1201 if (slab_add_kunit_errors())
1202 goto skip_bug_print;
1203
1204 slab_bug(s, "%s overwritten", what);
1205 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1206 fault, end - 1, fault - addr,
1207 fault[0], value);
1208
1209 skip_bug_print:
1210 restore_bytes(s, what, value, fault, end);
1211 return 0;
1212 }
1213
1214 /*
1215 * Object layout:
1216 *
1217 * object address
1218 * Bytes of the object to be managed.
1219 * If the freepointer may overlay the object then the free
1220 * pointer is at the middle of the object.
1221 *
1222 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
1223 * 0xa5 (POISON_END)
1224 *
1225 * object + s->object_size
1226 * Padding to reach word boundary. This is also used for Redzoning.
1227 * Padding is extended by another word if Redzoning is enabled and
1228 * object_size == inuse.
1229 *
1230 * We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with
1231 * 0xcc (SLUB_RED_ACTIVE) for objects in use.
1232 *
1233 * object + s->inuse
1234 * Meta data starts here.
1235 *
1236 * A. Free pointer (if we cannot overwrite object on free)
1237 * B. Tracking data for SLAB_STORE_USER
1238 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1239 * D. Padding to reach required alignment boundary or at minimum
1240 * one word if debugging is on to be able to detect writes
1241 * before the word boundary.
1242 *
1243 * Padding is done using 0x5a (POISON_INUSE)
1244 *
1245 * object + s->size
1246 * Nothing is used beyond s->size.
1247 *
1248 * If slabcaches are merged then the object_size and inuse boundaries are mostly
1249 * ignored. And therefore no slab options that rely on these boundaries
1250 * may be used with merged slabcaches.
1251 */
1252
check_pad_bytes(struct kmem_cache * s,struct slab * slab,u8 * p)1253 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1254 {
1255 unsigned long off = get_info_end(s); /* The end of info */
1256
1257 if (s->flags & SLAB_STORE_USER) {
1258 /* We also have user information there */
1259 off += 2 * sizeof(struct track);
1260
1261 if (s->flags & SLAB_KMALLOC)
1262 off += sizeof(unsigned int);
1263 }
1264
1265 off += kasan_metadata_size(s, false);
1266
1267 if (size_from_object(s) == off)
1268 return 1;
1269
1270 return check_bytes_and_report(s, slab, p, "Object padding",
1271 p + off, POISON_INUSE, size_from_object(s) - off);
1272 }
1273
1274 /* Check the pad bytes at the end of a slab page */
1275 static pad_check_attributes void
slab_pad_check(struct kmem_cache * s,struct slab * slab)1276 slab_pad_check(struct kmem_cache *s, struct slab *slab)
1277 {
1278 u8 *start;
1279 u8 *fault;
1280 u8 *end;
1281 u8 *pad;
1282 int length;
1283 int remainder;
1284
1285 if (!(s->flags & SLAB_POISON))
1286 return;
1287
1288 start = slab_address(slab);
1289 length = slab_size(slab);
1290 end = start + length;
1291 remainder = length % s->size;
1292 if (!remainder)
1293 return;
1294
1295 pad = end - remainder;
1296 metadata_access_enable();
1297 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1298 metadata_access_disable();
1299 if (!fault)
1300 return;
1301 while (end > fault && end[-1] == POISON_INUSE)
1302 end--;
1303
1304 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1305 fault, end - 1, fault - start);
1306 print_section(KERN_ERR, "Padding ", pad, remainder);
1307
1308 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1309 }
1310
check_object(struct kmem_cache * s,struct slab * slab,void * object,u8 val)1311 static int check_object(struct kmem_cache *s, struct slab *slab,
1312 void *object, u8 val)
1313 {
1314 u8 *p = object;
1315 u8 *endobject = object + s->object_size;
1316 unsigned int orig_size, kasan_meta_size;
1317 int ret = 1;
1318
1319 if (s->flags & SLAB_RED_ZONE) {
1320 if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1321 object - s->red_left_pad, val, s->red_left_pad))
1322 ret = 0;
1323
1324 if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1325 endobject, val, s->inuse - s->object_size))
1326 ret = 0;
1327
1328 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1329 orig_size = get_orig_size(s, object);
1330
1331 if (s->object_size > orig_size &&
1332 !check_bytes_and_report(s, slab, object,
1333 "kmalloc Redzone", p + orig_size,
1334 val, s->object_size - orig_size)) {
1335 ret = 0;
1336 }
1337 }
1338 } else {
1339 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1340 if (!check_bytes_and_report(s, slab, p, "Alignment padding",
1341 endobject, POISON_INUSE,
1342 s->inuse - s->object_size))
1343 ret = 0;
1344 }
1345 }
1346
1347 if (s->flags & SLAB_POISON) {
1348 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1349 /*
1350 * KASAN can save its free meta data inside of the
1351 * object at offset 0. Thus, skip checking the part of
1352 * the redzone that overlaps with the meta data.
1353 */
1354 kasan_meta_size = kasan_metadata_size(s, true);
1355 if (kasan_meta_size < s->object_size - 1 &&
1356 !check_bytes_and_report(s, slab, p, "Poison",
1357 p + kasan_meta_size, POISON_FREE,
1358 s->object_size - kasan_meta_size - 1))
1359 ret = 0;
1360 if (kasan_meta_size < s->object_size &&
1361 !check_bytes_and_report(s, slab, p, "End Poison",
1362 p + s->object_size - 1, POISON_END, 1))
1363 ret = 0;
1364 }
1365 /*
1366 * check_pad_bytes cleans up on its own.
1367 */
1368 if (!check_pad_bytes(s, slab, p))
1369 ret = 0;
1370 }
1371
1372 /*
1373 * Cannot check freepointer while object is allocated if
1374 * object and freepointer overlap.
1375 */
1376 if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) &&
1377 !check_valid_pointer(s, slab, get_freepointer(s, p))) {
1378 object_err(s, slab, p, "Freepointer corrupt");
1379 /*
1380 * No choice but to zap it and thus lose the remainder
1381 * of the free objects in this slab. May cause
1382 * another error because the object count is now wrong.
1383 */
1384 set_freepointer(s, p, NULL);
1385 ret = 0;
1386 }
1387
1388 if (!ret && !slab_in_kunit_test()) {
1389 print_trailer(s, slab, object);
1390 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1391 }
1392
1393 return ret;
1394 }
1395
check_slab(struct kmem_cache * s,struct slab * slab)1396 static int check_slab(struct kmem_cache *s, struct slab *slab)
1397 {
1398 int maxobj;
1399
1400 if (!folio_test_slab(slab_folio(slab))) {
1401 slab_err(s, slab, "Not a valid slab page");
1402 return 0;
1403 }
1404
1405 maxobj = order_objects(slab_order(slab), s->size);
1406 if (slab->objects > maxobj) {
1407 slab_err(s, slab, "objects %u > max %u",
1408 slab->objects, maxobj);
1409 return 0;
1410 }
1411 if (slab->inuse > slab->objects) {
1412 slab_err(s, slab, "inuse %u > max %u",
1413 slab->inuse, slab->objects);
1414 return 0;
1415 }
1416 if (slab->frozen) {
1417 slab_err(s, slab, "Slab disabled since SLUB metadata consistency check failed");
1418 return 0;
1419 }
1420
1421 /* Slab_pad_check fixes things up after itself */
1422 slab_pad_check(s, slab);
1423 return 1;
1424 }
1425
1426 /*
1427 * Determine if a certain object in a slab is on the freelist. Must hold the
1428 * slab lock to guarantee that the chains are in a consistent state.
1429 */
on_freelist(struct kmem_cache * s,struct slab * slab,void * search)1430 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1431 {
1432 int nr = 0;
1433 void *fp;
1434 void *object = NULL;
1435 int max_objects;
1436
1437 fp = slab->freelist;
1438 while (fp && nr <= slab->objects) {
1439 if (fp == search)
1440 return 1;
1441 if (!check_valid_pointer(s, slab, fp)) {
1442 if (object) {
1443 object_err(s, slab, object,
1444 "Freechain corrupt");
1445 set_freepointer(s, object, NULL);
1446 } else {
1447 slab_err(s, slab, "Freepointer corrupt");
1448 slab->freelist = NULL;
1449 slab->inuse = slab->objects;
1450 slab_fix(s, "Freelist cleared");
1451 return 0;
1452 }
1453 break;
1454 }
1455 object = fp;
1456 fp = get_freepointer(s, object);
1457 nr++;
1458 }
1459
1460 max_objects = order_objects(slab_order(slab), s->size);
1461 if (max_objects > MAX_OBJS_PER_PAGE)
1462 max_objects = MAX_OBJS_PER_PAGE;
1463
1464 if (slab->objects != max_objects) {
1465 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1466 slab->objects, max_objects);
1467 slab->objects = max_objects;
1468 slab_fix(s, "Number of objects adjusted");
1469 }
1470 if (slab->inuse != slab->objects - nr) {
1471 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1472 slab->inuse, slab->objects - nr);
1473 slab->inuse = slab->objects - nr;
1474 slab_fix(s, "Object count adjusted");
1475 }
1476 return search == NULL;
1477 }
1478
trace(struct kmem_cache * s,struct slab * slab,void * object,int alloc)1479 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1480 int alloc)
1481 {
1482 if (s->flags & SLAB_TRACE) {
1483 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1484 s->name,
1485 alloc ? "alloc" : "free",
1486 object, slab->inuse,
1487 slab->freelist);
1488
1489 if (!alloc)
1490 print_section(KERN_INFO, "Object ", (void *)object,
1491 s->object_size);
1492
1493 dump_stack();
1494 }
1495 }
1496
1497 /*
1498 * Tracking of fully allocated slabs for debugging purposes.
1499 */
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1500 static void add_full(struct kmem_cache *s,
1501 struct kmem_cache_node *n, struct slab *slab)
1502 {
1503 if (!(s->flags & SLAB_STORE_USER))
1504 return;
1505
1506 lockdep_assert_held(&n->list_lock);
1507 list_add(&slab->slab_list, &n->full);
1508 }
1509
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1510 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1511 {
1512 if (!(s->flags & SLAB_STORE_USER))
1513 return;
1514
1515 lockdep_assert_held(&n->list_lock);
1516 list_del(&slab->slab_list);
1517 }
1518
node_nr_slabs(struct kmem_cache_node * n)1519 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1520 {
1521 return atomic_long_read(&n->nr_slabs);
1522 }
1523
inc_slabs_node(struct kmem_cache * s,int node,int objects)1524 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1525 {
1526 struct kmem_cache_node *n = get_node(s, node);
1527
1528 atomic_long_inc(&n->nr_slabs);
1529 atomic_long_add(objects, &n->total_objects);
1530 }
dec_slabs_node(struct kmem_cache * s,int node,int objects)1531 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1532 {
1533 struct kmem_cache_node *n = get_node(s, node);
1534
1535 atomic_long_dec(&n->nr_slabs);
1536 atomic_long_sub(objects, &n->total_objects);
1537 }
1538
1539 /* Object debug checks for alloc/free paths */
setup_object_debug(struct kmem_cache * s,void * object)1540 static void setup_object_debug(struct kmem_cache *s, void *object)
1541 {
1542 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1543 return;
1544
1545 init_object(s, object, SLUB_RED_INACTIVE);
1546 init_tracking(s, object);
1547 }
1548
1549 static
setup_slab_debug(struct kmem_cache * s,struct slab * slab,void * addr)1550 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1551 {
1552 if (!kmem_cache_debug_flags(s, SLAB_POISON))
1553 return;
1554
1555 metadata_access_enable();
1556 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1557 metadata_access_disable();
1558 }
1559
alloc_consistency_checks(struct kmem_cache * s,struct slab * slab,void * object)1560 static inline int alloc_consistency_checks(struct kmem_cache *s,
1561 struct slab *slab, void *object)
1562 {
1563 if (!check_slab(s, slab))
1564 return 0;
1565
1566 if (!check_valid_pointer(s, slab, object)) {
1567 object_err(s, slab, object, "Freelist Pointer check fails");
1568 return 0;
1569 }
1570
1571 if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1572 return 0;
1573
1574 return 1;
1575 }
1576
alloc_debug_processing(struct kmem_cache * s,struct slab * slab,void * object,int orig_size)1577 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1578 struct slab *slab, void *object, int orig_size)
1579 {
1580 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1581 if (!alloc_consistency_checks(s, slab, object))
1582 goto bad;
1583 }
1584
1585 /* Success. Perform special debug activities for allocs */
1586 trace(s, slab, object, 1);
1587 set_orig_size(s, object, orig_size);
1588 init_object(s, object, SLUB_RED_ACTIVE);
1589 return true;
1590
1591 bad:
1592 if (folio_test_slab(slab_folio(slab))) {
1593 /*
1594 * If this is a slab page then lets do the best we can
1595 * to avoid issues in the future. Marking all objects
1596 * as used avoids touching the remaining objects.
1597 */
1598 slab_fix(s, "Marking all objects used");
1599 slab->inuse = slab->objects;
1600 slab->freelist = NULL;
1601 slab->frozen = 1; /* mark consistency-failed slab as frozen */
1602 }
1603 return false;
1604 }
1605
free_consistency_checks(struct kmem_cache * s,struct slab * slab,void * object,unsigned long addr)1606 static inline int free_consistency_checks(struct kmem_cache *s,
1607 struct slab *slab, void *object, unsigned long addr)
1608 {
1609 if (!check_valid_pointer(s, slab, object)) {
1610 slab_err(s, slab, "Invalid object pointer 0x%p", object);
1611 return 0;
1612 }
1613
1614 if (on_freelist(s, slab, object)) {
1615 object_err(s, slab, object, "Object already free");
1616 return 0;
1617 }
1618
1619 if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1620 return 0;
1621
1622 if (unlikely(s != slab->slab_cache)) {
1623 if (!folio_test_slab(slab_folio(slab))) {
1624 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1625 object);
1626 } else if (!slab->slab_cache) {
1627 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1628 object);
1629 dump_stack();
1630 } else
1631 object_err(s, slab, object,
1632 "page slab pointer corrupt.");
1633 return 0;
1634 }
1635 return 1;
1636 }
1637
1638 /*
1639 * Parse a block of slab_debug options. Blocks are delimited by ';'
1640 *
1641 * @str: start of block
1642 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1643 * @slabs: return start of list of slabs, or NULL when there's no list
1644 * @init: assume this is initial parsing and not per-kmem-create parsing
1645 *
1646 * returns the start of next block if there's any, or NULL
1647 */
1648 static char *
parse_slub_debug_flags(char * str,slab_flags_t * flags,char ** slabs,bool init)1649 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1650 {
1651 bool higher_order_disable = false;
1652
1653 /* Skip any completely empty blocks */
1654 while (*str && *str == ';')
1655 str++;
1656
1657 if (*str == ',') {
1658 /*
1659 * No options but restriction on slabs. This means full
1660 * debugging for slabs matching a pattern.
1661 */
1662 *flags = DEBUG_DEFAULT_FLAGS;
1663 goto check_slabs;
1664 }
1665 *flags = 0;
1666
1667 /* Determine which debug features should be switched on */
1668 for (; *str && *str != ',' && *str != ';'; str++) {
1669 switch (tolower(*str)) {
1670 case '-':
1671 *flags = 0;
1672 break;
1673 case 'f':
1674 *flags |= SLAB_CONSISTENCY_CHECKS;
1675 break;
1676 case 'z':
1677 *flags |= SLAB_RED_ZONE;
1678 break;
1679 case 'p':
1680 *flags |= SLAB_POISON;
1681 break;
1682 case 'u':
1683 *flags |= SLAB_STORE_USER;
1684 break;
1685 case 't':
1686 *flags |= SLAB_TRACE;
1687 break;
1688 case 'a':
1689 *flags |= SLAB_FAILSLAB;
1690 break;
1691 case 'o':
1692 /*
1693 * Avoid enabling debugging on caches if its minimum
1694 * order would increase as a result.
1695 */
1696 higher_order_disable = true;
1697 break;
1698 default:
1699 if (init)
1700 pr_err("slab_debug option '%c' unknown. skipped\n", *str);
1701 }
1702 }
1703 check_slabs:
1704 if (*str == ',')
1705 *slabs = ++str;
1706 else
1707 *slabs = NULL;
1708
1709 /* Skip over the slab list */
1710 while (*str && *str != ';')
1711 str++;
1712
1713 /* Skip any completely empty blocks */
1714 while (*str && *str == ';')
1715 str++;
1716
1717 if (init && higher_order_disable)
1718 disable_higher_order_debug = 1;
1719
1720 if (*str)
1721 return str;
1722 else
1723 return NULL;
1724 }
1725
setup_slub_debug(char * str)1726 static int __init setup_slub_debug(char *str)
1727 {
1728 slab_flags_t flags;
1729 slab_flags_t global_flags;
1730 char *saved_str;
1731 char *slab_list;
1732 bool global_slub_debug_changed = false;
1733 bool slab_list_specified = false;
1734
1735 global_flags = DEBUG_DEFAULT_FLAGS;
1736 if (*str++ != '=' || !*str)
1737 /*
1738 * No options specified. Switch on full debugging.
1739 */
1740 goto out;
1741
1742 saved_str = str;
1743 while (str) {
1744 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1745
1746 if (!slab_list) {
1747 global_flags = flags;
1748 global_slub_debug_changed = true;
1749 } else {
1750 slab_list_specified = true;
1751 if (flags & SLAB_STORE_USER)
1752 stack_depot_request_early_init();
1753 }
1754 }
1755
1756 /*
1757 * For backwards compatibility, a single list of flags with list of
1758 * slabs means debugging is only changed for those slabs, so the global
1759 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1760 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1761 * long as there is no option specifying flags without a slab list.
1762 */
1763 if (slab_list_specified) {
1764 if (!global_slub_debug_changed)
1765 global_flags = slub_debug;
1766 slub_debug_string = saved_str;
1767 }
1768 out:
1769 slub_debug = global_flags;
1770 if (slub_debug & SLAB_STORE_USER)
1771 stack_depot_request_early_init();
1772 if (slub_debug != 0 || slub_debug_string)
1773 static_branch_enable(&slub_debug_enabled);
1774 else
1775 static_branch_disable(&slub_debug_enabled);
1776 if ((static_branch_unlikely(&init_on_alloc) ||
1777 static_branch_unlikely(&init_on_free)) &&
1778 (slub_debug & SLAB_POISON))
1779 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1780 return 1;
1781 }
1782
1783 __setup("slab_debug", setup_slub_debug);
1784 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0);
1785
1786 /*
1787 * kmem_cache_flags - apply debugging options to the cache
1788 * @flags: flags to set
1789 * @name: name of the cache
1790 *
1791 * Debug option(s) are applied to @flags. In addition to the debug
1792 * option(s), if a slab name (or multiple) is specified i.e.
1793 * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1794 * then only the select slabs will receive the debug option(s).
1795 */
kmem_cache_flags(slab_flags_t flags,const char * name)1796 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1797 {
1798 char *iter;
1799 size_t len;
1800 char *next_block;
1801 slab_flags_t block_flags;
1802 slab_flags_t slub_debug_local = slub_debug;
1803
1804 if (flags & SLAB_NO_USER_FLAGS)
1805 return flags;
1806
1807 /*
1808 * If the slab cache is for debugging (e.g. kmemleak) then
1809 * don't store user (stack trace) information by default,
1810 * but let the user enable it via the command line below.
1811 */
1812 if (flags & SLAB_NOLEAKTRACE)
1813 slub_debug_local &= ~SLAB_STORE_USER;
1814
1815 len = strlen(name);
1816 next_block = slub_debug_string;
1817 /* Go through all blocks of debug options, see if any matches our slab's name */
1818 while (next_block) {
1819 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1820 if (!iter)
1821 continue;
1822 /* Found a block that has a slab list, search it */
1823 while (*iter) {
1824 char *end, *glob;
1825 size_t cmplen;
1826
1827 end = strchrnul(iter, ',');
1828 if (next_block && next_block < end)
1829 end = next_block - 1;
1830
1831 glob = strnchr(iter, end - iter, '*');
1832 if (glob)
1833 cmplen = glob - iter;
1834 else
1835 cmplen = max_t(size_t, len, (end - iter));
1836
1837 if (!strncmp(name, iter, cmplen)) {
1838 flags |= block_flags;
1839 return flags;
1840 }
1841
1842 if (!*end || *end == ';')
1843 break;
1844 iter = end + 1;
1845 }
1846 }
1847
1848 return flags | slub_debug_local;
1849 }
1850 #else /* !CONFIG_SLUB_DEBUG */
setup_object_debug(struct kmem_cache * s,void * object)1851 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1852 static inline
setup_slab_debug(struct kmem_cache * s,struct slab * slab,void * addr)1853 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1854
alloc_debug_processing(struct kmem_cache * s,struct slab * slab,void * object,int orig_size)1855 static inline bool alloc_debug_processing(struct kmem_cache *s,
1856 struct slab *slab, void *object, int orig_size) { return true; }
1857
free_debug_processing(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int * bulk_cnt,unsigned long addr,depot_stack_handle_t handle)1858 static inline bool free_debug_processing(struct kmem_cache *s,
1859 struct slab *slab, void *head, void *tail, int *bulk_cnt,
1860 unsigned long addr, depot_stack_handle_t handle) { return true; }
1861
slab_pad_check(struct kmem_cache * s,struct slab * slab)1862 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
check_object(struct kmem_cache * s,struct slab * slab,void * object,u8 val)1863 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1864 void *object, u8 val) { return 1; }
set_track_prepare(void)1865 static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
set_track(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr)1866 static inline void set_track(struct kmem_cache *s, void *object,
1867 enum track_item alloc, unsigned long addr) {}
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1868 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1869 struct slab *slab) {}
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1870 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1871 struct slab *slab) {}
kmem_cache_flags(slab_flags_t flags,const char * name)1872 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1873 {
1874 return flags;
1875 }
1876 #define slub_debug 0
1877
1878 #define disable_higher_order_debug 0
1879
node_nr_slabs(struct kmem_cache_node * n)1880 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1881 { return 0; }
inc_slabs_node(struct kmem_cache * s,int node,int objects)1882 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1883 int objects) {}
dec_slabs_node(struct kmem_cache * s,int node,int objects)1884 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1885 int objects) {}
1886 #ifndef CONFIG_SLUB_TINY
freelist_corrupted(struct kmem_cache * s,struct slab * slab,void ** freelist,void * nextfree)1887 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1888 void **freelist, void *nextfree)
1889 {
1890 return false;
1891 }
1892 #endif
1893 #endif /* CONFIG_SLUB_DEBUG */
1894
1895 #ifdef CONFIG_SLAB_OBJ_EXT
1896
1897 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
1898
mark_objexts_empty(struct slabobj_ext * obj_exts)1899 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts)
1900 {
1901 struct slabobj_ext *slab_exts;
1902 struct slab *obj_exts_slab;
1903
1904 obj_exts_slab = virt_to_slab(obj_exts);
1905 slab_exts = slab_obj_exts(obj_exts_slab);
1906 if (slab_exts) {
1907 unsigned int offs = obj_to_index(obj_exts_slab->slab_cache,
1908 obj_exts_slab, obj_exts);
1909 /* codetag should be NULL */
1910 WARN_ON(slab_exts[offs].ref.ct);
1911 set_codetag_empty(&slab_exts[offs].ref);
1912 }
1913 }
1914
mark_failed_objexts_alloc(struct slab * slab)1915 static inline void mark_failed_objexts_alloc(struct slab *slab)
1916 {
1917 slab->obj_exts = OBJEXTS_ALLOC_FAIL;
1918 }
1919
handle_failed_objexts_alloc(unsigned long obj_exts,struct slabobj_ext * vec,unsigned int objects)1920 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1921 struct slabobj_ext *vec, unsigned int objects)
1922 {
1923 /*
1924 * If vector previously failed to allocate then we have live
1925 * objects with no tag reference. Mark all references in this
1926 * vector as empty to avoid warnings later on.
1927 */
1928 if (obj_exts & OBJEXTS_ALLOC_FAIL) {
1929 unsigned int i;
1930
1931 for (i = 0; i < objects; i++)
1932 set_codetag_empty(&vec[i].ref);
1933 }
1934 }
1935
1936 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1937
mark_objexts_empty(struct slabobj_ext * obj_exts)1938 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {}
mark_failed_objexts_alloc(struct slab * slab)1939 static inline void mark_failed_objexts_alloc(struct slab *slab) {}
handle_failed_objexts_alloc(unsigned long obj_exts,struct slabobj_ext * vec,unsigned int objects)1940 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1941 struct slabobj_ext *vec, unsigned int objects) {}
1942
1943 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1944
1945 /*
1946 * The allocated objcg pointers array is not accounted directly.
1947 * Moreover, it should not come from DMA buffer and is not readily
1948 * reclaimable. So those GFP bits should be masked off.
1949 */
1950 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \
1951 __GFP_ACCOUNT | __GFP_NOFAIL)
1952
init_slab_obj_exts(struct slab * slab)1953 static inline void init_slab_obj_exts(struct slab *slab)
1954 {
1955 slab->obj_exts = 0;
1956 }
1957
alloc_slab_obj_exts(struct slab * slab,struct kmem_cache * s,gfp_t gfp,bool new_slab)1958 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
1959 gfp_t gfp, bool new_slab)
1960 {
1961 unsigned int objects = objs_per_slab(s, slab);
1962 unsigned long new_exts;
1963 unsigned long old_exts;
1964 struct slabobj_ext *vec;
1965
1966 gfp &= ~OBJCGS_CLEAR_MASK;
1967 /* Prevent recursive extension vector allocation */
1968 gfp |= __GFP_NO_OBJ_EXT;
1969 vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
1970 slab_nid(slab));
1971 if (!vec) {
1972 /* Mark vectors which failed to allocate */
1973 if (new_slab)
1974 mark_failed_objexts_alloc(slab);
1975
1976 return -ENOMEM;
1977 }
1978
1979 new_exts = (unsigned long)vec;
1980 #ifdef CONFIG_MEMCG
1981 new_exts |= MEMCG_DATA_OBJEXTS;
1982 #endif
1983 old_exts = READ_ONCE(slab->obj_exts);
1984 handle_failed_objexts_alloc(old_exts, vec, objects);
1985 if (new_slab) {
1986 /*
1987 * If the slab is brand new and nobody can yet access its
1988 * obj_exts, no synchronization is required and obj_exts can
1989 * be simply assigned.
1990 */
1991 slab->obj_exts = new_exts;
1992 } else if ((old_exts & ~OBJEXTS_FLAGS_MASK) ||
1993 cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) {
1994 /*
1995 * If the slab is already in use, somebody can allocate and
1996 * assign slabobj_exts in parallel. In this case the existing
1997 * objcg vector should be reused.
1998 */
1999 mark_objexts_empty(vec);
2000 kfree(vec);
2001 return 0;
2002 }
2003
2004 kmemleak_not_leak(vec);
2005 return 0;
2006 }
2007
free_slab_obj_exts(struct slab * slab)2008 static inline void free_slab_obj_exts(struct slab *slab)
2009 {
2010 struct slabobj_ext *obj_exts;
2011
2012 obj_exts = slab_obj_exts(slab);
2013 if (!obj_exts)
2014 return;
2015
2016 /*
2017 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its
2018 * corresponding extension will be NULL. alloc_tag_sub() will throw a
2019 * warning if slab has extensions but the extension of an object is
2020 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that
2021 * the extension for obj_exts is expected to be NULL.
2022 */
2023 mark_objexts_empty(obj_exts);
2024 kfree(obj_exts);
2025 slab->obj_exts = 0;
2026 }
2027
need_slab_obj_ext(void)2028 static inline bool need_slab_obj_ext(void)
2029 {
2030 if (mem_alloc_profiling_enabled())
2031 return true;
2032
2033 /*
2034 * CONFIG_MEMCG creates vector of obj_cgroup objects conditionally
2035 * inside memcg_slab_post_alloc_hook. No other users for now.
2036 */
2037 return false;
2038 }
2039
2040 #else /* CONFIG_SLAB_OBJ_EXT */
2041
init_slab_obj_exts(struct slab * slab)2042 static inline void init_slab_obj_exts(struct slab *slab)
2043 {
2044 }
2045
alloc_slab_obj_exts(struct slab * slab,struct kmem_cache * s,gfp_t gfp,bool new_slab)2046 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2047 gfp_t gfp, bool new_slab)
2048 {
2049 return 0;
2050 }
2051
free_slab_obj_exts(struct slab * slab)2052 static inline void free_slab_obj_exts(struct slab *slab)
2053 {
2054 }
2055
need_slab_obj_ext(void)2056 static inline bool need_slab_obj_ext(void)
2057 {
2058 return false;
2059 }
2060
2061 #endif /* CONFIG_SLAB_OBJ_EXT */
2062
2063 #ifdef CONFIG_MEM_ALLOC_PROFILING
2064
2065 static inline struct slabobj_ext *
prepare_slab_obj_exts_hook(struct kmem_cache * s,gfp_t flags,void * p)2066 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p)
2067 {
2068 struct slab *slab;
2069
2070 if (!p)
2071 return NULL;
2072
2073 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2074 return NULL;
2075
2076 if (flags & __GFP_NO_OBJ_EXT)
2077 return NULL;
2078
2079 slab = virt_to_slab(p);
2080 if (!slab_obj_exts(slab) &&
2081 WARN(alloc_slab_obj_exts(slab, s, flags, false),
2082 "%s, %s: Failed to create slab extension vector!\n",
2083 __func__, s->name))
2084 return NULL;
2085
2086 return slab_obj_exts(slab) + obj_to_index(s, slab, p);
2087 }
2088
2089 static inline void
alloc_tagging_slab_alloc_hook(struct kmem_cache * s,void * object,gfp_t flags)2090 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2091 {
2092 if (need_slab_obj_ext()) {
2093 struct slabobj_ext *obj_exts;
2094
2095 obj_exts = prepare_slab_obj_exts_hook(s, flags, object);
2096 /*
2097 * Currently obj_exts is used only for allocation profiling.
2098 * If other users appear then mem_alloc_profiling_enabled()
2099 * check should be added before alloc_tag_add().
2100 */
2101 if (likely(obj_exts))
2102 alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size);
2103 }
2104 }
2105
2106 static inline void
alloc_tagging_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2107 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2108 int objects)
2109 {
2110 struct slabobj_ext *obj_exts;
2111 int i;
2112
2113 if (!mem_alloc_profiling_enabled())
2114 return;
2115
2116 /* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */
2117 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2118 return;
2119
2120 obj_exts = slab_obj_exts(slab);
2121 if (!obj_exts)
2122 return;
2123
2124 for (i = 0; i < objects; i++) {
2125 unsigned int off = obj_to_index(s, slab, p[i]);
2126
2127 alloc_tag_sub(&obj_exts[off].ref, s->size);
2128 }
2129 }
2130
2131 #else /* CONFIG_MEM_ALLOC_PROFILING */
2132
2133 static inline void
alloc_tagging_slab_alloc_hook(struct kmem_cache * s,void * object,gfp_t flags)2134 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2135 {
2136 }
2137
2138 static inline void
alloc_tagging_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2139 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2140 int objects)
2141 {
2142 }
2143
2144 #endif /* CONFIG_MEM_ALLOC_PROFILING */
2145
2146
2147 #ifdef CONFIG_MEMCG
2148
2149 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object);
2150
2151 static __fastpath_inline
memcg_slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p)2152 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2153 gfp_t flags, size_t size, void **p)
2154 {
2155 if (likely(!memcg_kmem_online()))
2156 return true;
2157
2158 if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
2159 return true;
2160
2161 if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p)))
2162 return true;
2163
2164 if (likely(size == 1)) {
2165 memcg_alloc_abort_single(s, *p);
2166 *p = NULL;
2167 } else {
2168 kmem_cache_free_bulk(s, size, p);
2169 }
2170
2171 return false;
2172 }
2173
2174 static __fastpath_inline
memcg_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2175 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2176 int objects)
2177 {
2178 struct slabobj_ext *obj_exts;
2179
2180 if (!memcg_kmem_online())
2181 return;
2182
2183 obj_exts = slab_obj_exts(slab);
2184 if (likely(!obj_exts))
2185 return;
2186
2187 __memcg_slab_free_hook(s, slab, p, objects, obj_exts);
2188 }
2189
2190 static __fastpath_inline
memcg_slab_post_charge(void * p,gfp_t flags)2191 bool memcg_slab_post_charge(void *p, gfp_t flags)
2192 {
2193 struct slabobj_ext *slab_exts;
2194 struct kmem_cache *s;
2195 struct folio *folio;
2196 struct slab *slab;
2197 unsigned long off;
2198
2199 folio = virt_to_folio(p);
2200 if (!folio_test_slab(folio)) {
2201 int size;
2202
2203 if (folio_memcg_kmem(folio))
2204 return true;
2205
2206 if (__memcg_kmem_charge_page(folio_page(folio, 0), flags,
2207 folio_order(folio)))
2208 return false;
2209
2210 /*
2211 * This folio has already been accounted in the global stats but
2212 * not in the memcg stats. So, subtract from the global and use
2213 * the interface which adds to both global and memcg stats.
2214 */
2215 size = folio_size(folio);
2216 node_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, -size);
2217 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, size);
2218 return true;
2219 }
2220
2221 slab = folio_slab(folio);
2222 s = slab->slab_cache;
2223
2224 /*
2225 * Ignore KMALLOC_NORMAL cache to avoid possible circular dependency
2226 * of slab_obj_exts being allocated from the same slab and thus the slab
2227 * becoming effectively unfreeable.
2228 */
2229 if (is_kmalloc_normal(s))
2230 return true;
2231
2232 /* Ignore already charged objects. */
2233 slab_exts = slab_obj_exts(slab);
2234 if (slab_exts) {
2235 off = obj_to_index(s, slab, p);
2236 if (unlikely(slab_exts[off].objcg))
2237 return true;
2238 }
2239
2240 return __memcg_slab_post_alloc_hook(s, NULL, flags, 1, &p);
2241 }
2242
2243 #else /* CONFIG_MEMCG */
memcg_slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p)2244 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s,
2245 struct list_lru *lru,
2246 gfp_t flags, size_t size,
2247 void **p)
2248 {
2249 return true;
2250 }
2251
memcg_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2252 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2253 void **p, int objects)
2254 {
2255 }
2256
memcg_slab_post_charge(void * p,gfp_t flags)2257 static inline bool memcg_slab_post_charge(void *p, gfp_t flags)
2258 {
2259 return true;
2260 }
2261 #endif /* CONFIG_MEMCG */
2262
2263 #ifdef CONFIG_SLUB_RCU_DEBUG
2264 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head);
2265
2266 struct rcu_delayed_free {
2267 struct rcu_head head;
2268 void *object;
2269 };
2270 #endif
2271
2272 /*
2273 * Hooks for other subsystems that check memory allocations. In a typical
2274 * production configuration these hooks all should produce no code at all.
2275 *
2276 * Returns true if freeing of the object can proceed, false if its reuse
2277 * was delayed by CONFIG_SLUB_RCU_DEBUG or KASAN quarantine, or it was returned
2278 * to KFENCE.
2279 */
2280 static __always_inline
slab_free_hook(struct kmem_cache * s,void * x,bool init,bool after_rcu_delay)2281 bool slab_free_hook(struct kmem_cache *s, void *x, bool init,
2282 bool after_rcu_delay)
2283 {
2284 /* Are the object contents still accessible? */
2285 bool still_accessible = (s->flags & SLAB_TYPESAFE_BY_RCU) && !after_rcu_delay;
2286
2287 kmemleak_free_recursive(x, s->flags);
2288 kmsan_slab_free(s, x);
2289
2290 debug_check_no_locks_freed(x, s->object_size);
2291
2292 if (!(s->flags & SLAB_DEBUG_OBJECTS))
2293 debug_check_no_obj_freed(x, s->object_size);
2294
2295 /* Use KCSAN to help debug racy use-after-free. */
2296 if (!still_accessible)
2297 __kcsan_check_access(x, s->object_size,
2298 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2299
2300 if (kfence_free(x))
2301 return false;
2302
2303 /*
2304 * Give KASAN a chance to notice an invalid free operation before we
2305 * modify the object.
2306 */
2307 if (kasan_slab_pre_free(s, x))
2308 return false;
2309
2310 #ifdef CONFIG_SLUB_RCU_DEBUG
2311 if (still_accessible) {
2312 struct rcu_delayed_free *delayed_free;
2313
2314 delayed_free = kmalloc(sizeof(*delayed_free), GFP_NOWAIT);
2315 if (delayed_free) {
2316 /*
2317 * Let KASAN track our call stack as a "related work
2318 * creation", just like if the object had been freed
2319 * normally via kfree_rcu().
2320 * We have to do this manually because the rcu_head is
2321 * not located inside the object.
2322 */
2323 kasan_record_aux_stack(x);
2324
2325 delayed_free->object = x;
2326 call_rcu(&delayed_free->head, slab_free_after_rcu_debug);
2327 return false;
2328 }
2329 }
2330 #endif /* CONFIG_SLUB_RCU_DEBUG */
2331
2332 /*
2333 * As memory initialization might be integrated into KASAN,
2334 * kasan_slab_free and initialization memset's must be
2335 * kept together to avoid discrepancies in behavior.
2336 *
2337 * The initialization memset's clear the object and the metadata,
2338 * but don't touch the SLAB redzone.
2339 *
2340 * The object's freepointer is also avoided if stored outside the
2341 * object.
2342 */
2343 if (unlikely(init)) {
2344 int rsize;
2345 unsigned int inuse, orig_size;
2346
2347 inuse = get_info_end(s);
2348 orig_size = get_orig_size(s, x);
2349 if (!kasan_has_integrated_init())
2350 memset(kasan_reset_tag(x), 0, orig_size);
2351 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
2352 memset((char *)kasan_reset_tag(x) + inuse, 0,
2353 s->size - inuse - rsize);
2354 /*
2355 * Restore orig_size, otherwize kmalloc redzone overwritten
2356 * would be reported
2357 */
2358 set_orig_size(s, x, orig_size);
2359
2360 }
2361 /* KASAN might put x into memory quarantine, delaying its reuse. */
2362 return !kasan_slab_free(s, x, init, still_accessible);
2363 }
2364
2365 static __fastpath_inline
slab_free_freelist_hook(struct kmem_cache * s,void ** head,void ** tail,int * cnt)2366 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail,
2367 int *cnt)
2368 {
2369
2370 void *object;
2371 void *next = *head;
2372 void *old_tail = *tail;
2373 bool init;
2374
2375 if (is_kfence_address(next)) {
2376 slab_free_hook(s, next, false, false);
2377 return false;
2378 }
2379
2380 /* Head and tail of the reconstructed freelist */
2381 *head = NULL;
2382 *tail = NULL;
2383
2384 init = slab_want_init_on_free(s);
2385
2386 do {
2387 object = next;
2388 next = get_freepointer(s, object);
2389
2390 /* If object's reuse doesn't have to be delayed */
2391 if (likely(slab_free_hook(s, object, init, false))) {
2392 /* Move object to the new freelist */
2393 set_freepointer(s, object, *head);
2394 *head = object;
2395 if (!*tail)
2396 *tail = object;
2397 } else {
2398 /*
2399 * Adjust the reconstructed freelist depth
2400 * accordingly if object's reuse is delayed.
2401 */
2402 --(*cnt);
2403 }
2404 } while (object != old_tail);
2405
2406 return *head != NULL;
2407 }
2408
setup_object(struct kmem_cache * s,void * object)2409 static void *setup_object(struct kmem_cache *s, void *object)
2410 {
2411 setup_object_debug(s, object);
2412 object = kasan_init_slab_obj(s, object);
2413 if (unlikely(s->ctor)) {
2414 kasan_unpoison_new_object(s, object);
2415 s->ctor(object);
2416 kasan_poison_new_object(s, object);
2417 }
2418 return object;
2419 }
2420
2421 /*
2422 * Slab allocation and freeing
2423 */
alloc_slab_page(gfp_t flags,int node,struct kmem_cache_order_objects oo)2424 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
2425 struct kmem_cache_order_objects oo)
2426 {
2427 struct folio *folio;
2428 struct slab *slab;
2429 unsigned int order = oo_order(oo);
2430
2431 if (node == NUMA_NO_NODE)
2432 folio = (struct folio *)alloc_frozen_pages(flags, order);
2433 else
2434 folio = (struct folio *)__alloc_frozen_pages(flags, order, node, NULL);
2435
2436 if (!folio)
2437 return NULL;
2438
2439 slab = folio_slab(folio);
2440 __folio_set_slab(folio);
2441 if (folio_is_pfmemalloc(folio))
2442 slab_set_pfmemalloc(slab);
2443
2444 return slab;
2445 }
2446
2447 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2448 /* Pre-initialize the random sequence cache */
init_cache_random_seq(struct kmem_cache * s)2449 static int init_cache_random_seq(struct kmem_cache *s)
2450 {
2451 unsigned int count = oo_objects(s->oo);
2452 int err;
2453
2454 /* Bailout if already initialised */
2455 if (s->random_seq)
2456 return 0;
2457
2458 err = cache_random_seq_create(s, count, GFP_KERNEL);
2459 if (err) {
2460 pr_err("SLUB: Unable to initialize free list for %s\n",
2461 s->name);
2462 return err;
2463 }
2464
2465 /* Transform to an offset on the set of pages */
2466 if (s->random_seq) {
2467 unsigned int i;
2468
2469 for (i = 0; i < count; i++)
2470 s->random_seq[i] *= s->size;
2471 }
2472 return 0;
2473 }
2474
2475 /* Initialize each random sequence freelist per cache */
init_freelist_randomization(void)2476 static void __init init_freelist_randomization(void)
2477 {
2478 struct kmem_cache *s;
2479
2480 mutex_lock(&slab_mutex);
2481
2482 list_for_each_entry(s, &slab_caches, list)
2483 init_cache_random_seq(s);
2484
2485 mutex_unlock(&slab_mutex);
2486 }
2487
2488 /* Get the next entry on the pre-computed freelist randomized */
next_freelist_entry(struct kmem_cache * s,unsigned long * pos,void * start,unsigned long page_limit,unsigned long freelist_count)2489 static void *next_freelist_entry(struct kmem_cache *s,
2490 unsigned long *pos, void *start,
2491 unsigned long page_limit,
2492 unsigned long freelist_count)
2493 {
2494 unsigned int idx;
2495
2496 /*
2497 * If the target page allocation failed, the number of objects on the
2498 * page might be smaller than the usual size defined by the cache.
2499 */
2500 do {
2501 idx = s->random_seq[*pos];
2502 *pos += 1;
2503 if (*pos >= freelist_count)
2504 *pos = 0;
2505 } while (unlikely(idx >= page_limit));
2506
2507 return (char *)start + idx;
2508 }
2509
2510 /* Shuffle the single linked freelist based on a random pre-computed sequence */
shuffle_freelist(struct kmem_cache * s,struct slab * slab)2511 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2512 {
2513 void *start;
2514 void *cur;
2515 void *next;
2516 unsigned long idx, pos, page_limit, freelist_count;
2517
2518 if (slab->objects < 2 || !s->random_seq)
2519 return false;
2520
2521 freelist_count = oo_objects(s->oo);
2522 pos = get_random_u32_below(freelist_count);
2523
2524 page_limit = slab->objects * s->size;
2525 start = fixup_red_left(s, slab_address(slab));
2526
2527 /* First entry is used as the base of the freelist */
2528 cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
2529 cur = setup_object(s, cur);
2530 slab->freelist = cur;
2531
2532 for (idx = 1; idx < slab->objects; idx++) {
2533 next = next_freelist_entry(s, &pos, start, page_limit,
2534 freelist_count);
2535 next = setup_object(s, next);
2536 set_freepointer(s, cur, next);
2537 cur = next;
2538 }
2539 set_freepointer(s, cur, NULL);
2540
2541 return true;
2542 }
2543 #else
init_cache_random_seq(struct kmem_cache * s)2544 static inline int init_cache_random_seq(struct kmem_cache *s)
2545 {
2546 return 0;
2547 }
init_freelist_randomization(void)2548 static inline void init_freelist_randomization(void) { }
shuffle_freelist(struct kmem_cache * s,struct slab * slab)2549 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2550 {
2551 return false;
2552 }
2553 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2554
account_slab(struct slab * slab,int order,struct kmem_cache * s,gfp_t gfp)2555 static __always_inline void account_slab(struct slab *slab, int order,
2556 struct kmem_cache *s, gfp_t gfp)
2557 {
2558 if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
2559 alloc_slab_obj_exts(slab, s, gfp, true);
2560
2561 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2562 PAGE_SIZE << order);
2563 }
2564
unaccount_slab(struct slab * slab,int order,struct kmem_cache * s)2565 static __always_inline void unaccount_slab(struct slab *slab, int order,
2566 struct kmem_cache *s)
2567 {
2568 if (memcg_kmem_online() || need_slab_obj_ext())
2569 free_slab_obj_exts(slab);
2570
2571 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2572 -(PAGE_SIZE << order));
2573 }
2574
allocate_slab(struct kmem_cache * s,gfp_t flags,int node)2575 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
2576 {
2577 struct slab *slab;
2578 struct kmem_cache_order_objects oo = s->oo;
2579 gfp_t alloc_gfp;
2580 void *start, *p, *next;
2581 int idx;
2582 bool shuffle;
2583
2584 flags &= gfp_allowed_mask;
2585
2586 flags |= s->allocflags;
2587
2588 /*
2589 * Let the initial higher-order allocation fail under memory pressure
2590 * so we fall-back to the minimum order allocation.
2591 */
2592 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2593 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2594 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2595
2596 slab = alloc_slab_page(alloc_gfp, node, oo);
2597 if (unlikely(!slab)) {
2598 oo = s->min;
2599 alloc_gfp = flags;
2600 /*
2601 * Allocation may have failed due to fragmentation.
2602 * Try a lower order alloc if possible
2603 */
2604 slab = alloc_slab_page(alloc_gfp, node, oo);
2605 if (unlikely(!slab))
2606 return NULL;
2607 stat(s, ORDER_FALLBACK);
2608 }
2609
2610 slab->objects = oo_objects(oo);
2611 slab->inuse = 0;
2612 slab->frozen = 0;
2613 init_slab_obj_exts(slab);
2614
2615 account_slab(slab, oo_order(oo), s, flags);
2616
2617 slab->slab_cache = s;
2618
2619 kasan_poison_slab(slab);
2620
2621 start = slab_address(slab);
2622
2623 setup_slab_debug(s, slab, start);
2624
2625 shuffle = shuffle_freelist(s, slab);
2626
2627 if (!shuffle) {
2628 start = fixup_red_left(s, start);
2629 start = setup_object(s, start);
2630 slab->freelist = start;
2631 for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2632 next = p + s->size;
2633 next = setup_object(s, next);
2634 set_freepointer(s, p, next);
2635 p = next;
2636 }
2637 set_freepointer(s, p, NULL);
2638 }
2639
2640 return slab;
2641 }
2642
new_slab(struct kmem_cache * s,gfp_t flags,int node)2643 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2644 {
2645 if (unlikely(flags & GFP_SLAB_BUG_MASK))
2646 flags = kmalloc_fix_flags(flags);
2647
2648 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2649
2650 return allocate_slab(s,
2651 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2652 }
2653
__free_slab(struct kmem_cache * s,struct slab * slab)2654 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2655 {
2656 struct folio *folio = slab_folio(slab);
2657 int order = folio_order(folio);
2658 int pages = 1 << order;
2659
2660 __slab_clear_pfmemalloc(slab);
2661 folio->mapping = NULL;
2662 __folio_clear_slab(folio);
2663 mm_account_reclaimed_pages(pages);
2664 unaccount_slab(slab, order, s);
2665 free_frozen_pages(&folio->page, order);
2666 }
2667
rcu_free_slab(struct rcu_head * h)2668 static void rcu_free_slab(struct rcu_head *h)
2669 {
2670 struct slab *slab = container_of(h, struct slab, rcu_head);
2671
2672 __free_slab(slab->slab_cache, slab);
2673 }
2674
free_slab(struct kmem_cache * s,struct slab * slab)2675 static void free_slab(struct kmem_cache *s, struct slab *slab)
2676 {
2677 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2678 void *p;
2679
2680 slab_pad_check(s, slab);
2681 for_each_object(p, s, slab_address(slab), slab->objects)
2682 check_object(s, slab, p, SLUB_RED_INACTIVE);
2683 }
2684
2685 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2686 call_rcu(&slab->rcu_head, rcu_free_slab);
2687 else
2688 __free_slab(s, slab);
2689 }
2690
discard_slab(struct kmem_cache * s,struct slab * slab)2691 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2692 {
2693 dec_slabs_node(s, slab_nid(slab), slab->objects);
2694 free_slab(s, slab);
2695 }
2696
2697 /*
2698 * SLUB reuses PG_workingset bit to keep track of whether it's on
2699 * the per-node partial list.
2700 */
slab_test_node_partial(const struct slab * slab)2701 static inline bool slab_test_node_partial(const struct slab *slab)
2702 {
2703 return folio_test_workingset(slab_folio(slab));
2704 }
2705
slab_set_node_partial(struct slab * slab)2706 static inline void slab_set_node_partial(struct slab *slab)
2707 {
2708 set_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2709 }
2710
slab_clear_node_partial(struct slab * slab)2711 static inline void slab_clear_node_partial(struct slab *slab)
2712 {
2713 clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2714 }
2715
2716 /*
2717 * Management of partially allocated slabs.
2718 */
2719 static inline void
__add_partial(struct kmem_cache_node * n,struct slab * slab,int tail)2720 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2721 {
2722 n->nr_partial++;
2723 if (tail == DEACTIVATE_TO_TAIL)
2724 list_add_tail(&slab->slab_list, &n->partial);
2725 else
2726 list_add(&slab->slab_list, &n->partial);
2727 slab_set_node_partial(slab);
2728 }
2729
add_partial(struct kmem_cache_node * n,struct slab * slab,int tail)2730 static inline void add_partial(struct kmem_cache_node *n,
2731 struct slab *slab, int tail)
2732 {
2733 lockdep_assert_held(&n->list_lock);
2734 __add_partial(n, slab, tail);
2735 }
2736
remove_partial(struct kmem_cache_node * n,struct slab * slab)2737 static inline void remove_partial(struct kmem_cache_node *n,
2738 struct slab *slab)
2739 {
2740 lockdep_assert_held(&n->list_lock);
2741 list_del(&slab->slab_list);
2742 slab_clear_node_partial(slab);
2743 n->nr_partial--;
2744 }
2745
2746 /*
2747 * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
2748 * slab from the n->partial list. Remove only a single object from the slab, do
2749 * the alloc_debug_processing() checks and leave the slab on the list, or move
2750 * it to full list if it was the last free object.
2751 */
alloc_single_from_partial(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab,int orig_size)2752 static void *alloc_single_from_partial(struct kmem_cache *s,
2753 struct kmem_cache_node *n, struct slab *slab, int orig_size)
2754 {
2755 void *object;
2756
2757 lockdep_assert_held(&n->list_lock);
2758
2759 object = slab->freelist;
2760 slab->freelist = get_freepointer(s, object);
2761 slab->inuse++;
2762
2763 if (!alloc_debug_processing(s, slab, object, orig_size)) {
2764 if (folio_test_slab(slab_folio(slab)))
2765 remove_partial(n, slab);
2766 return NULL;
2767 }
2768
2769 if (slab->inuse == slab->objects) {
2770 remove_partial(n, slab);
2771 add_full(s, n, slab);
2772 }
2773
2774 return object;
2775 }
2776
2777 /*
2778 * Called only for kmem_cache_debug() caches to allocate from a freshly
2779 * allocated slab. Allocate a single object instead of whole freelist
2780 * and put the slab to the partial (or full) list.
2781 */
alloc_single_from_new_slab(struct kmem_cache * s,struct slab * slab,int orig_size)2782 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2783 struct slab *slab, int orig_size)
2784 {
2785 int nid = slab_nid(slab);
2786 struct kmem_cache_node *n = get_node(s, nid);
2787 unsigned long flags;
2788 void *object;
2789
2790
2791 object = slab->freelist;
2792 slab->freelist = get_freepointer(s, object);
2793 slab->inuse = 1;
2794
2795 if (!alloc_debug_processing(s, slab, object, orig_size))
2796 /*
2797 * It's not really expected that this would fail on a
2798 * freshly allocated slab, but a concurrent memory
2799 * corruption in theory could cause that.
2800 */
2801 return NULL;
2802
2803 spin_lock_irqsave(&n->list_lock, flags);
2804
2805 if (slab->inuse == slab->objects)
2806 add_full(s, n, slab);
2807 else
2808 add_partial(n, slab, DEACTIVATE_TO_HEAD);
2809
2810 inc_slabs_node(s, nid, slab->objects);
2811 spin_unlock_irqrestore(&n->list_lock, flags);
2812
2813 return object;
2814 }
2815
2816 #ifdef CONFIG_SLUB_CPU_PARTIAL
2817 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2818 #else
put_cpu_partial(struct kmem_cache * s,struct slab * slab,int drain)2819 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2820 int drain) { }
2821 #endif
2822 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2823
2824 /*
2825 * Try to allocate a partial slab from a specific node.
2826 */
get_partial_node(struct kmem_cache * s,struct kmem_cache_node * n,struct partial_context * pc)2827 static struct slab *get_partial_node(struct kmem_cache *s,
2828 struct kmem_cache_node *n,
2829 struct partial_context *pc)
2830 {
2831 struct slab *slab, *slab2, *partial = NULL;
2832 unsigned long flags;
2833 unsigned int partial_slabs = 0;
2834
2835 /*
2836 * Racy check. If we mistakenly see no partial slabs then we
2837 * just allocate an empty slab. If we mistakenly try to get a
2838 * partial slab and there is none available then get_partial()
2839 * will return NULL.
2840 */
2841 if (!n || !n->nr_partial)
2842 return NULL;
2843
2844 spin_lock_irqsave(&n->list_lock, flags);
2845 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2846 if (!pfmemalloc_match(slab, pc->flags))
2847 continue;
2848
2849 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2850 void *object = alloc_single_from_partial(s, n, slab,
2851 pc->orig_size);
2852 if (object) {
2853 partial = slab;
2854 pc->object = object;
2855 break;
2856 }
2857 continue;
2858 }
2859
2860 remove_partial(n, slab);
2861
2862 if (!partial) {
2863 partial = slab;
2864 stat(s, ALLOC_FROM_PARTIAL);
2865
2866 if ((slub_get_cpu_partial(s) == 0)) {
2867 break;
2868 }
2869 } else {
2870 put_cpu_partial(s, slab, 0);
2871 stat(s, CPU_PARTIAL_NODE);
2872
2873 if (++partial_slabs > slub_get_cpu_partial(s) / 2) {
2874 break;
2875 }
2876 }
2877 }
2878 spin_unlock_irqrestore(&n->list_lock, flags);
2879 return partial;
2880 }
2881
2882 /*
2883 * Get a slab from somewhere. Search in increasing NUMA distances.
2884 */
get_any_partial(struct kmem_cache * s,struct partial_context * pc)2885 static struct slab *get_any_partial(struct kmem_cache *s,
2886 struct partial_context *pc)
2887 {
2888 #ifdef CONFIG_NUMA
2889 struct zonelist *zonelist;
2890 struct zoneref *z;
2891 struct zone *zone;
2892 enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2893 struct slab *slab;
2894 unsigned int cpuset_mems_cookie;
2895
2896 /*
2897 * The defrag ratio allows a configuration of the tradeoffs between
2898 * inter node defragmentation and node local allocations. A lower
2899 * defrag_ratio increases the tendency to do local allocations
2900 * instead of attempting to obtain partial slabs from other nodes.
2901 *
2902 * If the defrag_ratio is set to 0 then kmalloc() always
2903 * returns node local objects. If the ratio is higher then kmalloc()
2904 * may return off node objects because partial slabs are obtained
2905 * from other nodes and filled up.
2906 *
2907 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2908 * (which makes defrag_ratio = 1000) then every (well almost)
2909 * allocation will first attempt to defrag slab caches on other nodes.
2910 * This means scanning over all nodes to look for partial slabs which
2911 * may be expensive if we do it every time we are trying to find a slab
2912 * with available objects.
2913 */
2914 if (!s->remote_node_defrag_ratio ||
2915 get_cycles() % 1024 > s->remote_node_defrag_ratio)
2916 return NULL;
2917
2918 do {
2919 cpuset_mems_cookie = read_mems_allowed_begin();
2920 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2921 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2922 struct kmem_cache_node *n;
2923
2924 n = get_node(s, zone_to_nid(zone));
2925
2926 if (n && cpuset_zone_allowed(zone, pc->flags) &&
2927 n->nr_partial > s->min_partial) {
2928 slab = get_partial_node(s, n, pc);
2929 if (slab) {
2930 /*
2931 * Don't check read_mems_allowed_retry()
2932 * here - if mems_allowed was updated in
2933 * parallel, that was a harmless race
2934 * between allocation and the cpuset
2935 * update
2936 */
2937 return slab;
2938 }
2939 }
2940 }
2941 } while (read_mems_allowed_retry(cpuset_mems_cookie));
2942 #endif /* CONFIG_NUMA */
2943 return NULL;
2944 }
2945
2946 /*
2947 * Get a partial slab, lock it and return it.
2948 */
get_partial(struct kmem_cache * s,int node,struct partial_context * pc)2949 static struct slab *get_partial(struct kmem_cache *s, int node,
2950 struct partial_context *pc)
2951 {
2952 struct slab *slab;
2953 int searchnode = node;
2954
2955 if (node == NUMA_NO_NODE)
2956 searchnode = numa_mem_id();
2957
2958 slab = get_partial_node(s, get_node(s, searchnode), pc);
2959 if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE)))
2960 return slab;
2961
2962 return get_any_partial(s, pc);
2963 }
2964
2965 #ifndef CONFIG_SLUB_TINY
2966
2967 #ifdef CONFIG_PREEMPTION
2968 /*
2969 * Calculate the next globally unique transaction for disambiguation
2970 * during cmpxchg. The transactions start with the cpu number and are then
2971 * incremented by CONFIG_NR_CPUS.
2972 */
2973 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2974 #else
2975 /*
2976 * No preemption supported therefore also no need to check for
2977 * different cpus.
2978 */
2979 #define TID_STEP 1
2980 #endif /* CONFIG_PREEMPTION */
2981
next_tid(unsigned long tid)2982 static inline unsigned long next_tid(unsigned long tid)
2983 {
2984 return tid + TID_STEP;
2985 }
2986
2987 #ifdef SLUB_DEBUG_CMPXCHG
tid_to_cpu(unsigned long tid)2988 static inline unsigned int tid_to_cpu(unsigned long tid)
2989 {
2990 return tid % TID_STEP;
2991 }
2992
tid_to_event(unsigned long tid)2993 static inline unsigned long tid_to_event(unsigned long tid)
2994 {
2995 return tid / TID_STEP;
2996 }
2997 #endif
2998
init_tid(int cpu)2999 static inline unsigned int init_tid(int cpu)
3000 {
3001 return cpu;
3002 }
3003
note_cmpxchg_failure(const char * n,const struct kmem_cache * s,unsigned long tid)3004 static inline void note_cmpxchg_failure(const char *n,
3005 const struct kmem_cache *s, unsigned long tid)
3006 {
3007 #ifdef SLUB_DEBUG_CMPXCHG
3008 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
3009
3010 pr_info("%s %s: cmpxchg redo ", n, s->name);
3011
3012 #ifdef CONFIG_PREEMPTION
3013 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
3014 pr_warn("due to cpu change %d -> %d\n",
3015 tid_to_cpu(tid), tid_to_cpu(actual_tid));
3016 else
3017 #endif
3018 if (tid_to_event(tid) != tid_to_event(actual_tid))
3019 pr_warn("due to cpu running other code. Event %ld->%ld\n",
3020 tid_to_event(tid), tid_to_event(actual_tid));
3021 else
3022 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
3023 actual_tid, tid, next_tid(tid));
3024 #endif
3025 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
3026 }
3027
init_kmem_cache_cpus(struct kmem_cache * s)3028 static void init_kmem_cache_cpus(struct kmem_cache *s)
3029 {
3030 int cpu;
3031 struct kmem_cache_cpu *c;
3032
3033 for_each_possible_cpu(cpu) {
3034 c = per_cpu_ptr(s->cpu_slab, cpu);
3035 local_lock_init(&c->lock);
3036 c->tid = init_tid(cpu);
3037 }
3038 }
3039
3040 /*
3041 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
3042 * unfreezes the slabs and puts it on the proper list.
3043 * Assumes the slab has been already safely taken away from kmem_cache_cpu
3044 * by the caller.
3045 */
deactivate_slab(struct kmem_cache * s,struct slab * slab,void * freelist)3046 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
3047 void *freelist)
3048 {
3049 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3050 int free_delta = 0;
3051 void *nextfree, *freelist_iter, *freelist_tail;
3052 int tail = DEACTIVATE_TO_HEAD;
3053 unsigned long flags = 0;
3054 struct slab new;
3055 struct slab old;
3056
3057 if (READ_ONCE(slab->freelist)) {
3058 stat(s, DEACTIVATE_REMOTE_FREES);
3059 tail = DEACTIVATE_TO_TAIL;
3060 }
3061
3062 /*
3063 * Stage one: Count the objects on cpu's freelist as free_delta and
3064 * remember the last object in freelist_tail for later splicing.
3065 */
3066 freelist_tail = NULL;
3067 freelist_iter = freelist;
3068 while (freelist_iter) {
3069 nextfree = get_freepointer(s, freelist_iter);
3070
3071 /*
3072 * If 'nextfree' is invalid, it is possible that the object at
3073 * 'freelist_iter' is already corrupted. So isolate all objects
3074 * starting at 'freelist_iter' by skipping them.
3075 */
3076 if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
3077 break;
3078
3079 freelist_tail = freelist_iter;
3080 free_delta++;
3081
3082 freelist_iter = nextfree;
3083 }
3084
3085 /*
3086 * Stage two: Unfreeze the slab while splicing the per-cpu
3087 * freelist to the head of slab's freelist.
3088 */
3089 do {
3090 old.freelist = READ_ONCE(slab->freelist);
3091 old.counters = READ_ONCE(slab->counters);
3092 VM_BUG_ON(!old.frozen);
3093
3094 /* Determine target state of the slab */
3095 new.counters = old.counters;
3096 new.frozen = 0;
3097 if (freelist_tail) {
3098 new.inuse -= free_delta;
3099 set_freepointer(s, freelist_tail, old.freelist);
3100 new.freelist = freelist;
3101 } else {
3102 new.freelist = old.freelist;
3103 }
3104 } while (!slab_update_freelist(s, slab,
3105 old.freelist, old.counters,
3106 new.freelist, new.counters,
3107 "unfreezing slab"));
3108
3109 /*
3110 * Stage three: Manipulate the slab list based on the updated state.
3111 */
3112 if (!new.inuse && n->nr_partial >= s->min_partial) {
3113 stat(s, DEACTIVATE_EMPTY);
3114 discard_slab(s, slab);
3115 stat(s, FREE_SLAB);
3116 } else if (new.freelist) {
3117 spin_lock_irqsave(&n->list_lock, flags);
3118 add_partial(n, slab, tail);
3119 spin_unlock_irqrestore(&n->list_lock, flags);
3120 stat(s, tail);
3121 } else {
3122 stat(s, DEACTIVATE_FULL);
3123 }
3124 }
3125
3126 #ifdef CONFIG_SLUB_CPU_PARTIAL
__put_partials(struct kmem_cache * s,struct slab * partial_slab)3127 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
3128 {
3129 struct kmem_cache_node *n = NULL, *n2 = NULL;
3130 struct slab *slab, *slab_to_discard = NULL;
3131 unsigned long flags = 0;
3132
3133 while (partial_slab) {
3134 slab = partial_slab;
3135 partial_slab = slab->next;
3136
3137 n2 = get_node(s, slab_nid(slab));
3138 if (n != n2) {
3139 if (n)
3140 spin_unlock_irqrestore(&n->list_lock, flags);
3141
3142 n = n2;
3143 spin_lock_irqsave(&n->list_lock, flags);
3144 }
3145
3146 if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
3147 slab->next = slab_to_discard;
3148 slab_to_discard = slab;
3149 } else {
3150 add_partial(n, slab, DEACTIVATE_TO_TAIL);
3151 stat(s, FREE_ADD_PARTIAL);
3152 }
3153 }
3154
3155 if (n)
3156 spin_unlock_irqrestore(&n->list_lock, flags);
3157
3158 while (slab_to_discard) {
3159 slab = slab_to_discard;
3160 slab_to_discard = slab_to_discard->next;
3161
3162 stat(s, DEACTIVATE_EMPTY);
3163 discard_slab(s, slab);
3164 stat(s, FREE_SLAB);
3165 }
3166 }
3167
3168 /*
3169 * Put all the cpu partial slabs to the node partial list.
3170 */
put_partials(struct kmem_cache * s)3171 static void put_partials(struct kmem_cache *s)
3172 {
3173 struct slab *partial_slab;
3174 unsigned long flags;
3175
3176 local_lock_irqsave(&s->cpu_slab->lock, flags);
3177 partial_slab = this_cpu_read(s->cpu_slab->partial);
3178 this_cpu_write(s->cpu_slab->partial, NULL);
3179 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3180
3181 if (partial_slab)
3182 __put_partials(s, partial_slab);
3183 }
3184
put_partials_cpu(struct kmem_cache * s,struct kmem_cache_cpu * c)3185 static void put_partials_cpu(struct kmem_cache *s,
3186 struct kmem_cache_cpu *c)
3187 {
3188 struct slab *partial_slab;
3189
3190 partial_slab = slub_percpu_partial(c);
3191 c->partial = NULL;
3192
3193 if (partial_slab)
3194 __put_partials(s, partial_slab);
3195 }
3196
3197 /*
3198 * Put a slab into a partial slab slot if available.
3199 *
3200 * If we did not find a slot then simply move all the partials to the
3201 * per node partial list.
3202 */
put_cpu_partial(struct kmem_cache * s,struct slab * slab,int drain)3203 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
3204 {
3205 struct slab *oldslab;
3206 struct slab *slab_to_put = NULL;
3207 unsigned long flags;
3208 int slabs = 0;
3209
3210 local_lock_irqsave(&s->cpu_slab->lock, flags);
3211
3212 oldslab = this_cpu_read(s->cpu_slab->partial);
3213
3214 if (oldslab) {
3215 if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
3216 /*
3217 * Partial array is full. Move the existing set to the
3218 * per node partial list. Postpone the actual unfreezing
3219 * outside of the critical section.
3220 */
3221 slab_to_put = oldslab;
3222 oldslab = NULL;
3223 } else {
3224 slabs = oldslab->slabs;
3225 }
3226 }
3227
3228 slabs++;
3229
3230 slab->slabs = slabs;
3231 slab->next = oldslab;
3232
3233 this_cpu_write(s->cpu_slab->partial, slab);
3234
3235 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3236
3237 if (slab_to_put) {
3238 __put_partials(s, slab_to_put);
3239 stat(s, CPU_PARTIAL_DRAIN);
3240 }
3241 }
3242
3243 #else /* CONFIG_SLUB_CPU_PARTIAL */
3244
put_partials(struct kmem_cache * s)3245 static inline void put_partials(struct kmem_cache *s) { }
put_partials_cpu(struct kmem_cache * s,struct kmem_cache_cpu * c)3246 static inline void put_partials_cpu(struct kmem_cache *s,
3247 struct kmem_cache_cpu *c) { }
3248
3249 #endif /* CONFIG_SLUB_CPU_PARTIAL */
3250
flush_slab(struct kmem_cache * s,struct kmem_cache_cpu * c)3251 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3252 {
3253 unsigned long flags;
3254 struct slab *slab;
3255 void *freelist;
3256
3257 local_lock_irqsave(&s->cpu_slab->lock, flags);
3258
3259 slab = c->slab;
3260 freelist = c->freelist;
3261
3262 c->slab = NULL;
3263 c->freelist = NULL;
3264 c->tid = next_tid(c->tid);
3265
3266 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3267
3268 if (slab) {
3269 deactivate_slab(s, slab, freelist);
3270 stat(s, CPUSLAB_FLUSH);
3271 }
3272 }
3273
__flush_cpu_slab(struct kmem_cache * s,int cpu)3274 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
3275 {
3276 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3277 void *freelist = c->freelist;
3278 struct slab *slab = c->slab;
3279
3280 c->slab = NULL;
3281 c->freelist = NULL;
3282 c->tid = next_tid(c->tid);
3283
3284 if (slab) {
3285 deactivate_slab(s, slab, freelist);
3286 stat(s, CPUSLAB_FLUSH);
3287 }
3288
3289 put_partials_cpu(s, c);
3290 }
3291
3292 struct slub_flush_work {
3293 struct work_struct work;
3294 struct kmem_cache *s;
3295 bool skip;
3296 };
3297
3298 /*
3299 * Flush cpu slab.
3300 *
3301 * Called from CPU work handler with migration disabled.
3302 */
flush_cpu_slab(struct work_struct * w)3303 static void flush_cpu_slab(struct work_struct *w)
3304 {
3305 struct kmem_cache *s;
3306 struct kmem_cache_cpu *c;
3307 struct slub_flush_work *sfw;
3308
3309 sfw = container_of(w, struct slub_flush_work, work);
3310
3311 s = sfw->s;
3312 c = this_cpu_ptr(s->cpu_slab);
3313
3314 if (c->slab)
3315 flush_slab(s, c);
3316
3317 put_partials(s);
3318 }
3319
has_cpu_slab(int cpu,struct kmem_cache * s)3320 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
3321 {
3322 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3323
3324 return c->slab || slub_percpu_partial(c);
3325 }
3326
3327 static DEFINE_MUTEX(flush_lock);
3328 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
3329
flush_all_cpus_locked(struct kmem_cache * s)3330 static void flush_all_cpus_locked(struct kmem_cache *s)
3331 {
3332 struct slub_flush_work *sfw;
3333 unsigned int cpu;
3334
3335 lockdep_assert_cpus_held();
3336 mutex_lock(&flush_lock);
3337
3338 for_each_online_cpu(cpu) {
3339 sfw = &per_cpu(slub_flush, cpu);
3340 if (!has_cpu_slab(cpu, s)) {
3341 sfw->skip = true;
3342 continue;
3343 }
3344 INIT_WORK(&sfw->work, flush_cpu_slab);
3345 sfw->skip = false;
3346 sfw->s = s;
3347 queue_work_on(cpu, flushwq, &sfw->work);
3348 }
3349
3350 for_each_online_cpu(cpu) {
3351 sfw = &per_cpu(slub_flush, cpu);
3352 if (sfw->skip)
3353 continue;
3354 flush_work(&sfw->work);
3355 }
3356
3357 mutex_unlock(&flush_lock);
3358 }
3359
flush_all(struct kmem_cache * s)3360 static void flush_all(struct kmem_cache *s)
3361 {
3362 cpus_read_lock();
3363 flush_all_cpus_locked(s);
3364 cpus_read_unlock();
3365 }
3366
3367 /*
3368 * Use the cpu notifier to insure that the cpu slabs are flushed when
3369 * necessary.
3370 */
slub_cpu_dead(unsigned int cpu)3371 static int slub_cpu_dead(unsigned int cpu)
3372 {
3373 struct kmem_cache *s;
3374
3375 mutex_lock(&slab_mutex);
3376 list_for_each_entry(s, &slab_caches, list)
3377 __flush_cpu_slab(s, cpu);
3378 mutex_unlock(&slab_mutex);
3379 return 0;
3380 }
3381
3382 #else /* CONFIG_SLUB_TINY */
flush_all_cpus_locked(struct kmem_cache * s)3383 static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
flush_all(struct kmem_cache * s)3384 static inline void flush_all(struct kmem_cache *s) { }
__flush_cpu_slab(struct kmem_cache * s,int cpu)3385 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
slub_cpu_dead(unsigned int cpu)3386 static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
3387 #endif /* CONFIG_SLUB_TINY */
3388
3389 /*
3390 * Check if the objects in a per cpu structure fit numa
3391 * locality expectations.
3392 */
node_match(struct slab * slab,int node)3393 static inline int node_match(struct slab *slab, int node)
3394 {
3395 #ifdef CONFIG_NUMA
3396 if (node != NUMA_NO_NODE && slab_nid(slab) != node)
3397 return 0;
3398 #endif
3399 return 1;
3400 }
3401
3402 #ifdef CONFIG_SLUB_DEBUG
count_free(struct slab * slab)3403 static int count_free(struct slab *slab)
3404 {
3405 return slab->objects - slab->inuse;
3406 }
3407
node_nr_objs(struct kmem_cache_node * n)3408 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
3409 {
3410 return atomic_long_read(&n->total_objects);
3411 }
3412
3413 /* Supports checking bulk free of a constructed freelist */
free_debug_processing(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int * bulk_cnt,unsigned long addr,depot_stack_handle_t handle)3414 static inline bool free_debug_processing(struct kmem_cache *s,
3415 struct slab *slab, void *head, void *tail, int *bulk_cnt,
3416 unsigned long addr, depot_stack_handle_t handle)
3417 {
3418 bool checks_ok = false;
3419 void *object = head;
3420 int cnt = 0;
3421
3422 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3423 if (!check_slab(s, slab))
3424 goto out;
3425 }
3426
3427 if (slab->inuse < *bulk_cnt) {
3428 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
3429 slab->inuse, *bulk_cnt);
3430 goto out;
3431 }
3432
3433 next_object:
3434
3435 if (++cnt > *bulk_cnt)
3436 goto out_cnt;
3437
3438 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3439 if (!free_consistency_checks(s, slab, object, addr))
3440 goto out;
3441 }
3442
3443 if (s->flags & SLAB_STORE_USER)
3444 set_track_update(s, object, TRACK_FREE, addr, handle);
3445 trace(s, slab, object, 0);
3446 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
3447 init_object(s, object, SLUB_RED_INACTIVE);
3448
3449 /* Reached end of constructed freelist yet? */
3450 if (object != tail) {
3451 object = get_freepointer(s, object);
3452 goto next_object;
3453 }
3454 checks_ok = true;
3455
3456 out_cnt:
3457 if (cnt != *bulk_cnt) {
3458 slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
3459 *bulk_cnt, cnt);
3460 *bulk_cnt = cnt;
3461 }
3462
3463 out:
3464
3465 if (!checks_ok)
3466 slab_fix(s, "Object at 0x%p not freed", object);
3467
3468 return checks_ok;
3469 }
3470 #endif /* CONFIG_SLUB_DEBUG */
3471
3472 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
count_partial(struct kmem_cache_node * n,int (* get_count)(struct slab *))3473 static unsigned long count_partial(struct kmem_cache_node *n,
3474 int (*get_count)(struct slab *))
3475 {
3476 unsigned long flags;
3477 unsigned long x = 0;
3478 struct slab *slab;
3479
3480 spin_lock_irqsave(&n->list_lock, flags);
3481 list_for_each_entry(slab, &n->partial, slab_list)
3482 x += get_count(slab);
3483 spin_unlock_irqrestore(&n->list_lock, flags);
3484 return x;
3485 }
3486 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
3487
3488 #ifdef CONFIG_SLUB_DEBUG
3489 #define MAX_PARTIAL_TO_SCAN 10000
3490
count_partial_free_approx(struct kmem_cache_node * n)3491 static unsigned long count_partial_free_approx(struct kmem_cache_node *n)
3492 {
3493 unsigned long flags;
3494 unsigned long x = 0;
3495 struct slab *slab;
3496
3497 spin_lock_irqsave(&n->list_lock, flags);
3498 if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) {
3499 list_for_each_entry(slab, &n->partial, slab_list)
3500 x += slab->objects - slab->inuse;
3501 } else {
3502 /*
3503 * For a long list, approximate the total count of objects in
3504 * it to meet the limit on the number of slabs to scan.
3505 * Scan from both the list's head and tail for better accuracy.
3506 */
3507 unsigned long scanned = 0;
3508
3509 list_for_each_entry(slab, &n->partial, slab_list) {
3510 x += slab->objects - slab->inuse;
3511 if (++scanned == MAX_PARTIAL_TO_SCAN / 2)
3512 break;
3513 }
3514 list_for_each_entry_reverse(slab, &n->partial, slab_list) {
3515 x += slab->objects - slab->inuse;
3516 if (++scanned == MAX_PARTIAL_TO_SCAN)
3517 break;
3518 }
3519 x = mult_frac(x, n->nr_partial, scanned);
3520 x = min(x, node_nr_objs(n));
3521 }
3522 spin_unlock_irqrestore(&n->list_lock, flags);
3523 return x;
3524 }
3525
3526 static noinline void
slab_out_of_memory(struct kmem_cache * s,gfp_t gfpflags,int nid)3527 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
3528 {
3529 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
3530 DEFAULT_RATELIMIT_BURST);
3531 int cpu = raw_smp_processor_id();
3532 int node;
3533 struct kmem_cache_node *n;
3534
3535 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
3536 return;
3537
3538 pr_warn("SLUB: Unable to allocate memory on CPU %u (of node %d) on node %d, gfp=%#x(%pGg)\n",
3539 cpu, cpu_to_node(cpu), nid, gfpflags, &gfpflags);
3540 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
3541 s->name, s->object_size, s->size, oo_order(s->oo),
3542 oo_order(s->min));
3543
3544 if (oo_order(s->min) > get_order(s->object_size))
3545 pr_warn(" %s debugging increased min order, use slab_debug=O to disable.\n",
3546 s->name);
3547
3548 for_each_kmem_cache_node(s, node, n) {
3549 unsigned long nr_slabs;
3550 unsigned long nr_objs;
3551 unsigned long nr_free;
3552
3553 nr_free = count_partial_free_approx(n);
3554 nr_slabs = node_nr_slabs(n);
3555 nr_objs = node_nr_objs(n);
3556
3557 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
3558 node, nr_slabs, nr_objs, nr_free);
3559 }
3560 }
3561 #else /* CONFIG_SLUB_DEBUG */
3562 static inline void
slab_out_of_memory(struct kmem_cache * s,gfp_t gfpflags,int nid)3563 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3564 #endif
3565
pfmemalloc_match(struct slab * slab,gfp_t gfpflags)3566 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3567 {
3568 if (unlikely(slab_test_pfmemalloc(slab)))
3569 return gfp_pfmemalloc_allowed(gfpflags);
3570
3571 return true;
3572 }
3573
3574 #ifndef CONFIG_SLUB_TINY
3575 static inline bool
__update_cpu_freelist_fast(struct kmem_cache * s,void * freelist_old,void * freelist_new,unsigned long tid)3576 __update_cpu_freelist_fast(struct kmem_cache *s,
3577 void *freelist_old, void *freelist_new,
3578 unsigned long tid)
3579 {
3580 freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3581 freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3582
3583 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3584 &old.full, new.full);
3585 }
3586
3587 /*
3588 * Check the slab->freelist and either transfer the freelist to the
3589 * per cpu freelist or deactivate the slab.
3590 *
3591 * The slab is still frozen if the return value is not NULL.
3592 *
3593 * If this function returns NULL then the slab has been unfrozen.
3594 */
get_freelist(struct kmem_cache * s,struct slab * slab)3595 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3596 {
3597 struct slab new;
3598 unsigned long counters;
3599 void *freelist;
3600
3601 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3602
3603 do {
3604 freelist = slab->freelist;
3605 counters = slab->counters;
3606
3607 new.counters = counters;
3608
3609 new.inuse = slab->objects;
3610 new.frozen = freelist != NULL;
3611
3612 } while (!__slab_update_freelist(s, slab,
3613 freelist, counters,
3614 NULL, new.counters,
3615 "get_freelist"));
3616
3617 return freelist;
3618 }
3619
3620 /*
3621 * Freeze the partial slab and return the pointer to the freelist.
3622 */
freeze_slab(struct kmem_cache * s,struct slab * slab)3623 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
3624 {
3625 struct slab new;
3626 unsigned long counters;
3627 void *freelist;
3628
3629 do {
3630 freelist = slab->freelist;
3631 counters = slab->counters;
3632
3633 new.counters = counters;
3634 VM_BUG_ON(new.frozen);
3635
3636 new.inuse = slab->objects;
3637 new.frozen = 1;
3638
3639 } while (!slab_update_freelist(s, slab,
3640 freelist, counters,
3641 NULL, new.counters,
3642 "freeze_slab"));
3643
3644 return freelist;
3645 }
3646
3647 /*
3648 * Slow path. The lockless freelist is empty or we need to perform
3649 * debugging duties.
3650 *
3651 * Processing is still very fast if new objects have been freed to the
3652 * regular freelist. In that case we simply take over the regular freelist
3653 * as the lockless freelist and zap the regular freelist.
3654 *
3655 * If that is not working then we fall back to the partial lists. We take the
3656 * first element of the freelist as the object to allocate now and move the
3657 * rest of the freelist to the lockless freelist.
3658 *
3659 * And if we were unable to get a new slab from the partial slab lists then
3660 * we need to allocate a new slab. This is the slowest path since it involves
3661 * a call to the page allocator and the setup of a new slab.
3662 *
3663 * Version of __slab_alloc to use when we know that preemption is
3664 * already disabled (which is the case for bulk allocation).
3665 */
___slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c,unsigned int orig_size)3666 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3667 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3668 {
3669 void *freelist;
3670 struct slab *slab;
3671 unsigned long flags;
3672 struct partial_context pc;
3673 bool try_thisnode = true;
3674
3675 stat(s, ALLOC_SLOWPATH);
3676
3677 reread_slab:
3678
3679 slab = READ_ONCE(c->slab);
3680 if (!slab) {
3681 /*
3682 * if the node is not online or has no normal memory, just
3683 * ignore the node constraint
3684 */
3685 if (unlikely(node != NUMA_NO_NODE &&
3686 !node_isset(node, slab_nodes)))
3687 node = NUMA_NO_NODE;
3688 goto new_slab;
3689 }
3690
3691 if (unlikely(!node_match(slab, node))) {
3692 /*
3693 * same as above but node_match() being false already
3694 * implies node != NUMA_NO_NODE
3695 */
3696 if (!node_isset(node, slab_nodes)) {
3697 node = NUMA_NO_NODE;
3698 } else {
3699 stat(s, ALLOC_NODE_MISMATCH);
3700 goto deactivate_slab;
3701 }
3702 }
3703
3704 /*
3705 * By rights, we should be searching for a slab page that was
3706 * PFMEMALLOC but right now, we are losing the pfmemalloc
3707 * information when the page leaves the per-cpu allocator
3708 */
3709 if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3710 goto deactivate_slab;
3711
3712 /* must check again c->slab in case we got preempted and it changed */
3713 local_lock_irqsave(&s->cpu_slab->lock, flags);
3714 if (unlikely(slab != c->slab)) {
3715 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3716 goto reread_slab;
3717 }
3718 freelist = c->freelist;
3719 if (freelist)
3720 goto load_freelist;
3721
3722 freelist = get_freelist(s, slab);
3723
3724 if (!freelist) {
3725 c->slab = NULL;
3726 c->tid = next_tid(c->tid);
3727 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3728 stat(s, DEACTIVATE_BYPASS);
3729 goto new_slab;
3730 }
3731
3732 stat(s, ALLOC_REFILL);
3733
3734 load_freelist:
3735
3736 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3737
3738 /*
3739 * freelist is pointing to the list of objects to be used.
3740 * slab is pointing to the slab from which the objects are obtained.
3741 * That slab must be frozen for per cpu allocations to work.
3742 */
3743 VM_BUG_ON(!c->slab->frozen);
3744 c->freelist = get_freepointer(s, freelist);
3745 c->tid = next_tid(c->tid);
3746 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3747 return freelist;
3748
3749 deactivate_slab:
3750
3751 local_lock_irqsave(&s->cpu_slab->lock, flags);
3752 if (slab != c->slab) {
3753 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3754 goto reread_slab;
3755 }
3756 freelist = c->freelist;
3757 c->slab = NULL;
3758 c->freelist = NULL;
3759 c->tid = next_tid(c->tid);
3760 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3761 deactivate_slab(s, slab, freelist);
3762
3763 new_slab:
3764
3765 #ifdef CONFIG_SLUB_CPU_PARTIAL
3766 while (slub_percpu_partial(c)) {
3767 local_lock_irqsave(&s->cpu_slab->lock, flags);
3768 if (unlikely(c->slab)) {
3769 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3770 goto reread_slab;
3771 }
3772 if (unlikely(!slub_percpu_partial(c))) {
3773 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3774 /* we were preempted and partial list got empty */
3775 goto new_objects;
3776 }
3777
3778 slab = slub_percpu_partial(c);
3779 slub_set_percpu_partial(c, slab);
3780
3781 if (likely(node_match(slab, node) &&
3782 pfmemalloc_match(slab, gfpflags))) {
3783 c->slab = slab;
3784 freelist = get_freelist(s, slab);
3785 VM_BUG_ON(!freelist);
3786 stat(s, CPU_PARTIAL_ALLOC);
3787 goto load_freelist;
3788 }
3789
3790 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3791
3792 slab->next = NULL;
3793 __put_partials(s, slab);
3794 }
3795 #endif
3796
3797 new_objects:
3798
3799 pc.flags = gfpflags;
3800 /*
3801 * When a preferred node is indicated but no __GFP_THISNODE
3802 *
3803 * 1) try to get a partial slab from target node only by having
3804 * __GFP_THISNODE in pc.flags for get_partial()
3805 * 2) if 1) failed, try to allocate a new slab from target node with
3806 * GPF_NOWAIT | __GFP_THISNODE opportunistically
3807 * 3) if 2) failed, retry with original gfpflags which will allow
3808 * get_partial() try partial lists of other nodes before potentially
3809 * allocating new page from other nodes
3810 */
3811 if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3812 && try_thisnode))
3813 pc.flags = GFP_NOWAIT | __GFP_THISNODE;
3814
3815 pc.orig_size = orig_size;
3816 slab = get_partial(s, node, &pc);
3817 if (slab) {
3818 if (kmem_cache_debug(s)) {
3819 freelist = pc.object;
3820 /*
3821 * For debug caches here we had to go through
3822 * alloc_single_from_partial() so just store the
3823 * tracking info and return the object.
3824 */
3825 if (s->flags & SLAB_STORE_USER)
3826 set_track(s, freelist, TRACK_ALLOC, addr);
3827
3828 return freelist;
3829 }
3830
3831 freelist = freeze_slab(s, slab);
3832 goto retry_load_slab;
3833 }
3834
3835 slub_put_cpu_ptr(s->cpu_slab);
3836 slab = new_slab(s, pc.flags, node);
3837 c = slub_get_cpu_ptr(s->cpu_slab);
3838
3839 if (unlikely(!slab)) {
3840 if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3841 && try_thisnode) {
3842 try_thisnode = false;
3843 goto new_objects;
3844 }
3845 slab_out_of_memory(s, gfpflags, node);
3846 return NULL;
3847 }
3848
3849 stat(s, ALLOC_SLAB);
3850
3851 if (kmem_cache_debug(s)) {
3852 freelist = alloc_single_from_new_slab(s, slab, orig_size);
3853
3854 if (unlikely(!freelist))
3855 goto new_objects;
3856
3857 if (s->flags & SLAB_STORE_USER)
3858 set_track(s, freelist, TRACK_ALLOC, addr);
3859
3860 return freelist;
3861 }
3862
3863 /*
3864 * No other reference to the slab yet so we can
3865 * muck around with it freely without cmpxchg
3866 */
3867 freelist = slab->freelist;
3868 slab->freelist = NULL;
3869 slab->inuse = slab->objects;
3870 slab->frozen = 1;
3871
3872 inc_slabs_node(s, slab_nid(slab), slab->objects);
3873
3874 if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3875 /*
3876 * For !pfmemalloc_match() case we don't load freelist so that
3877 * we don't make further mismatched allocations easier.
3878 */
3879 deactivate_slab(s, slab, get_freepointer(s, freelist));
3880 return freelist;
3881 }
3882
3883 retry_load_slab:
3884
3885 local_lock_irqsave(&s->cpu_slab->lock, flags);
3886 if (unlikely(c->slab)) {
3887 void *flush_freelist = c->freelist;
3888 struct slab *flush_slab = c->slab;
3889
3890 c->slab = NULL;
3891 c->freelist = NULL;
3892 c->tid = next_tid(c->tid);
3893
3894 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3895
3896 deactivate_slab(s, flush_slab, flush_freelist);
3897
3898 stat(s, CPUSLAB_FLUSH);
3899
3900 goto retry_load_slab;
3901 }
3902 c->slab = slab;
3903
3904 goto load_freelist;
3905 }
3906
3907 /*
3908 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3909 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3910 * pointer.
3911 */
__slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c,unsigned int orig_size)3912 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3913 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3914 {
3915 void *p;
3916
3917 #ifdef CONFIG_PREEMPT_COUNT
3918 /*
3919 * We may have been preempted and rescheduled on a different
3920 * cpu before disabling preemption. Need to reload cpu area
3921 * pointer.
3922 */
3923 c = slub_get_cpu_ptr(s->cpu_slab);
3924 #endif
3925
3926 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3927 #ifdef CONFIG_PREEMPT_COUNT
3928 slub_put_cpu_ptr(s->cpu_slab);
3929 #endif
3930 return p;
3931 }
3932
__slab_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)3933 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3934 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3935 {
3936 struct kmem_cache_cpu *c;
3937 struct slab *slab;
3938 unsigned long tid;
3939 void *object;
3940
3941 redo:
3942 /*
3943 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3944 * enabled. We may switch back and forth between cpus while
3945 * reading from one cpu area. That does not matter as long
3946 * as we end up on the original cpu again when doing the cmpxchg.
3947 *
3948 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3949 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3950 * the tid. If we are preempted and switched to another cpu between the
3951 * two reads, it's OK as the two are still associated with the same cpu
3952 * and cmpxchg later will validate the cpu.
3953 */
3954 c = raw_cpu_ptr(s->cpu_slab);
3955 tid = READ_ONCE(c->tid);
3956
3957 /*
3958 * Irqless object alloc/free algorithm used here depends on sequence
3959 * of fetching cpu_slab's data. tid should be fetched before anything
3960 * on c to guarantee that object and slab associated with previous tid
3961 * won't be used with current tid. If we fetch tid first, object and
3962 * slab could be one associated with next tid and our alloc/free
3963 * request will be failed. In this case, we will retry. So, no problem.
3964 */
3965 barrier();
3966
3967 /*
3968 * The transaction ids are globally unique per cpu and per operation on
3969 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3970 * occurs on the right processor and that there was no operation on the
3971 * linked list in between.
3972 */
3973
3974 object = c->freelist;
3975 slab = c->slab;
3976
3977 #ifdef CONFIG_NUMA
3978 if (static_branch_unlikely(&strict_numa) &&
3979 node == NUMA_NO_NODE) {
3980
3981 struct mempolicy *mpol = current->mempolicy;
3982
3983 if (mpol) {
3984 /*
3985 * Special BIND rule support. If existing slab
3986 * is in permitted set then do not redirect
3987 * to a particular node.
3988 * Otherwise we apply the memory policy to get
3989 * the node we need to allocate on.
3990 */
3991 if (mpol->mode != MPOL_BIND || !slab ||
3992 !node_isset(slab_nid(slab), mpol->nodes))
3993
3994 node = mempolicy_slab_node();
3995 }
3996 }
3997 #endif
3998
3999 if (!USE_LOCKLESS_FAST_PATH() ||
4000 unlikely(!object || !slab || !node_match(slab, node))) {
4001 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
4002 } else {
4003 void *next_object = get_freepointer_safe(s, object);
4004
4005 /*
4006 * The cmpxchg will only match if there was no additional
4007 * operation and if we are on the right processor.
4008 *
4009 * The cmpxchg does the following atomically (without lock
4010 * semantics!)
4011 * 1. Relocate first pointer to the current per cpu area.
4012 * 2. Verify that tid and freelist have not been changed
4013 * 3. If they were not changed replace tid and freelist
4014 *
4015 * Since this is without lock semantics the protection is only
4016 * against code executing on this cpu *not* from access by
4017 * other cpus.
4018 */
4019 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
4020 note_cmpxchg_failure("slab_alloc", s, tid);
4021 goto redo;
4022 }
4023 prefetch_freepointer(s, next_object);
4024 stat(s, ALLOC_FASTPATH);
4025 }
4026
4027 return object;
4028 }
4029 #else /* CONFIG_SLUB_TINY */
__slab_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)4030 static void *__slab_alloc_node(struct kmem_cache *s,
4031 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4032 {
4033 struct partial_context pc;
4034 struct slab *slab;
4035 void *object;
4036
4037 pc.flags = gfpflags;
4038 pc.orig_size = orig_size;
4039 slab = get_partial(s, node, &pc);
4040
4041 if (slab)
4042 return pc.object;
4043
4044 slab = new_slab(s, gfpflags, node);
4045 if (unlikely(!slab)) {
4046 slab_out_of_memory(s, gfpflags, node);
4047 return NULL;
4048 }
4049
4050 object = alloc_single_from_new_slab(s, slab, orig_size);
4051
4052 return object;
4053 }
4054 #endif /* CONFIG_SLUB_TINY */
4055
4056 /*
4057 * If the object has been wiped upon free, make sure it's fully initialized by
4058 * zeroing out freelist pointer.
4059 *
4060 * Note that we also wipe custom freelist pointers.
4061 */
maybe_wipe_obj_freeptr(struct kmem_cache * s,void * obj)4062 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
4063 void *obj)
4064 {
4065 if (unlikely(slab_want_init_on_free(s)) && obj &&
4066 !freeptr_outside_object(s))
4067 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
4068 0, sizeof(void *));
4069 }
4070
4071 static __fastpath_inline
slab_pre_alloc_hook(struct kmem_cache * s,gfp_t flags)4072 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
4073 {
4074 flags &= gfp_allowed_mask;
4075
4076 might_alloc(flags);
4077
4078 if (unlikely(should_failslab(s, flags)))
4079 return NULL;
4080
4081 return s;
4082 }
4083
4084 static __fastpath_inline
slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p,bool init,unsigned int orig_size)4085 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
4086 gfp_t flags, size_t size, void **p, bool init,
4087 unsigned int orig_size)
4088 {
4089 unsigned int zero_size = s->object_size;
4090 bool kasan_init = init;
4091 size_t i;
4092 gfp_t init_flags = flags & gfp_allowed_mask;
4093
4094 /*
4095 * For kmalloc object, the allocated memory size(object_size) is likely
4096 * larger than the requested size(orig_size). If redzone check is
4097 * enabled for the extra space, don't zero it, as it will be redzoned
4098 * soon. The redzone operation for this extra space could be seen as a
4099 * replacement of current poisoning under certain debug option, and
4100 * won't break other sanity checks.
4101 */
4102 if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
4103 (s->flags & SLAB_KMALLOC))
4104 zero_size = orig_size;
4105
4106 /*
4107 * When slab_debug is enabled, avoid memory initialization integrated
4108 * into KASAN and instead zero out the memory via the memset below with
4109 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
4110 * cause false-positive reports. This does not lead to a performance
4111 * penalty on production builds, as slab_debug is not intended to be
4112 * enabled there.
4113 */
4114 if (__slub_debug_enabled())
4115 kasan_init = false;
4116
4117 /*
4118 * As memory initialization might be integrated into KASAN,
4119 * kasan_slab_alloc and initialization memset must be
4120 * kept together to avoid discrepancies in behavior.
4121 *
4122 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
4123 */
4124 for (i = 0; i < size; i++) {
4125 p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
4126 if (p[i] && init && (!kasan_init ||
4127 !kasan_has_integrated_init()))
4128 memset(p[i], 0, zero_size);
4129 kmemleak_alloc_recursive(p[i], s->object_size, 1,
4130 s->flags, init_flags);
4131 kmsan_slab_alloc(s, p[i], init_flags);
4132 alloc_tagging_slab_alloc_hook(s, p[i], flags);
4133 }
4134
4135 return memcg_slab_post_alloc_hook(s, lru, flags, size, p);
4136 }
4137
4138 /*
4139 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
4140 * have the fastpath folded into their functions. So no function call
4141 * overhead for requests that can be satisfied on the fastpath.
4142 *
4143 * The fastpath works by first checking if the lockless freelist can be used.
4144 * If not then __slab_alloc is called for slow processing.
4145 *
4146 * Otherwise we can simply pick the next object from the lockless free list.
4147 */
slab_alloc_node(struct kmem_cache * s,struct list_lru * lru,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)4148 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
4149 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4150 {
4151 void *object;
4152 bool init = false;
4153
4154 s = slab_pre_alloc_hook(s, gfpflags);
4155 if (unlikely(!s))
4156 return NULL;
4157
4158 object = kfence_alloc(s, orig_size, gfpflags);
4159 if (unlikely(object))
4160 goto out;
4161
4162 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
4163
4164 maybe_wipe_obj_freeptr(s, object);
4165 init = slab_want_init_on_alloc(gfpflags, s);
4166
4167 out:
4168 /*
4169 * When init equals 'true', like for kzalloc() family, only
4170 * @orig_size bytes might be zeroed instead of s->object_size
4171 * In case this fails due to memcg_slab_post_alloc_hook(),
4172 * object is set to NULL
4173 */
4174 slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size);
4175
4176 return object;
4177 }
4178
kmem_cache_alloc_noprof(struct kmem_cache * s,gfp_t gfpflags)4179 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags)
4180 {
4181 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
4182 s->object_size);
4183
4184 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4185
4186 return ret;
4187 }
4188 EXPORT_SYMBOL(kmem_cache_alloc_noprof);
4189
kmem_cache_alloc_lru_noprof(struct kmem_cache * s,struct list_lru * lru,gfp_t gfpflags)4190 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
4191 gfp_t gfpflags)
4192 {
4193 void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
4194 s->object_size);
4195
4196 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4197
4198 return ret;
4199 }
4200 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof);
4201
kmem_cache_charge(void * objp,gfp_t gfpflags)4202 bool kmem_cache_charge(void *objp, gfp_t gfpflags)
4203 {
4204 if (!memcg_kmem_online())
4205 return true;
4206
4207 return memcg_slab_post_charge(objp, gfpflags);
4208 }
4209 EXPORT_SYMBOL(kmem_cache_charge);
4210
4211 /**
4212 * kmem_cache_alloc_node - Allocate an object on the specified node
4213 * @s: The cache to allocate from.
4214 * @gfpflags: See kmalloc().
4215 * @node: node number of the target node.
4216 *
4217 * Identical to kmem_cache_alloc but it will allocate memory on the given
4218 * node, which can improve the performance for cpu bound structures.
4219 *
4220 * Fallback to other node is possible if __GFP_THISNODE is not set.
4221 *
4222 * Return: pointer to the new object or %NULL in case of error
4223 */
kmem_cache_alloc_node_noprof(struct kmem_cache * s,gfp_t gfpflags,int node)4224 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node)
4225 {
4226 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
4227
4228 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
4229
4230 return ret;
4231 }
4232 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof);
4233
4234 /*
4235 * To avoid unnecessary overhead, we pass through large allocation requests
4236 * directly to the page allocator. We use __GFP_COMP, because we will need to
4237 * know the allocation order to free the pages properly in kfree.
4238 */
___kmalloc_large_node(size_t size,gfp_t flags,int node)4239 static void *___kmalloc_large_node(size_t size, gfp_t flags, int node)
4240 {
4241 struct folio *folio;
4242 void *ptr = NULL;
4243 unsigned int order = get_order(size);
4244
4245 if (unlikely(flags & GFP_SLAB_BUG_MASK))
4246 flags = kmalloc_fix_flags(flags);
4247
4248 flags |= __GFP_COMP;
4249 folio = (struct folio *)alloc_pages_node_noprof(node, flags, order);
4250 if (folio) {
4251 ptr = folio_address(folio);
4252 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4253 PAGE_SIZE << order);
4254 }
4255
4256 ptr = kasan_kmalloc_large(ptr, size, flags);
4257 /* As ptr might get tagged, call kmemleak hook after KASAN. */
4258 kmemleak_alloc(ptr, size, 1, flags);
4259 kmsan_kmalloc_large(ptr, size, flags);
4260
4261 return ptr;
4262 }
4263
__kmalloc_large_noprof(size_t size,gfp_t flags)4264 void *__kmalloc_large_noprof(size_t size, gfp_t flags)
4265 {
4266 void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE);
4267
4268 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4269 flags, NUMA_NO_NODE);
4270 return ret;
4271 }
4272 EXPORT_SYMBOL(__kmalloc_large_noprof);
4273
__kmalloc_large_node_noprof(size_t size,gfp_t flags,int node)4274 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
4275 {
4276 void *ret = ___kmalloc_large_node(size, flags, node);
4277
4278 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4279 flags, node);
4280 return ret;
4281 }
4282 EXPORT_SYMBOL(__kmalloc_large_node_noprof);
4283
4284 static __always_inline
__do_kmalloc_node(size_t size,kmem_buckets * b,gfp_t flags,int node,unsigned long caller)4285 void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node,
4286 unsigned long caller)
4287 {
4288 struct kmem_cache *s;
4289 void *ret;
4290
4291 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4292 ret = __kmalloc_large_node_noprof(size, flags, node);
4293 trace_kmalloc(caller, ret, size,
4294 PAGE_SIZE << get_order(size), flags, node);
4295 return ret;
4296 }
4297
4298 if (unlikely(!size))
4299 return ZERO_SIZE_PTR;
4300
4301 s = kmalloc_slab(size, b, flags, caller);
4302
4303 ret = slab_alloc_node(s, NULL, flags, node, caller, size);
4304 ret = kasan_kmalloc(s, ret, size, flags);
4305 trace_kmalloc(caller, ret, size, s->size, flags, node);
4306 return ret;
4307 }
__kmalloc_node_noprof(DECL_BUCKET_PARAMS (size,b),gfp_t flags,int node)4308 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
4309 {
4310 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_);
4311 }
4312 EXPORT_SYMBOL(__kmalloc_node_noprof);
4313
__kmalloc_noprof(size_t size,gfp_t flags)4314 void *__kmalloc_noprof(size_t size, gfp_t flags)
4315 {
4316 return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_);
4317 }
4318 EXPORT_SYMBOL(__kmalloc_noprof);
4319
__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS (size,b),gfp_t flags,int node,unsigned long caller)4320 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags,
4321 int node, unsigned long caller)
4322 {
4323 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller);
4324
4325 }
4326 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof);
4327
__kmalloc_cache_noprof(struct kmem_cache * s,gfp_t gfpflags,size_t size)4328 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size)
4329 {
4330 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
4331 _RET_IP_, size);
4332
4333 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
4334
4335 ret = kasan_kmalloc(s, ret, size, gfpflags);
4336 return ret;
4337 }
4338 EXPORT_SYMBOL(__kmalloc_cache_noprof);
4339
__kmalloc_cache_node_noprof(struct kmem_cache * s,gfp_t gfpflags,int node,size_t size)4340 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
4341 int node, size_t size)
4342 {
4343 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
4344
4345 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
4346
4347 ret = kasan_kmalloc(s, ret, size, gfpflags);
4348 return ret;
4349 }
4350 EXPORT_SYMBOL(__kmalloc_cache_node_noprof);
4351
free_to_partial_list(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int bulk_cnt,unsigned long addr)4352 static noinline void free_to_partial_list(
4353 struct kmem_cache *s, struct slab *slab,
4354 void *head, void *tail, int bulk_cnt,
4355 unsigned long addr)
4356 {
4357 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
4358 struct slab *slab_free = NULL;
4359 int cnt = bulk_cnt;
4360 unsigned long flags;
4361 depot_stack_handle_t handle = 0;
4362
4363 if (s->flags & SLAB_STORE_USER)
4364 handle = set_track_prepare();
4365
4366 spin_lock_irqsave(&n->list_lock, flags);
4367
4368 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
4369 void *prior = slab->freelist;
4370
4371 /* Perform the actual freeing while we still hold the locks */
4372 slab->inuse -= cnt;
4373 set_freepointer(s, tail, prior);
4374 slab->freelist = head;
4375
4376 /*
4377 * If the slab is empty, and node's partial list is full,
4378 * it should be discarded anyway no matter it's on full or
4379 * partial list.
4380 */
4381 if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
4382 slab_free = slab;
4383
4384 if (!prior) {
4385 /* was on full list */
4386 remove_full(s, n, slab);
4387 if (!slab_free) {
4388 add_partial(n, slab, DEACTIVATE_TO_TAIL);
4389 stat(s, FREE_ADD_PARTIAL);
4390 }
4391 } else if (slab_free) {
4392 remove_partial(n, slab);
4393 stat(s, FREE_REMOVE_PARTIAL);
4394 }
4395 }
4396
4397 if (slab_free) {
4398 /*
4399 * Update the counters while still holding n->list_lock to
4400 * prevent spurious validation warnings
4401 */
4402 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
4403 }
4404
4405 spin_unlock_irqrestore(&n->list_lock, flags);
4406
4407 if (slab_free) {
4408 stat(s, FREE_SLAB);
4409 free_slab(s, slab_free);
4410 }
4411 }
4412
4413 /*
4414 * Slow path handling. This may still be called frequently since objects
4415 * have a longer lifetime than the cpu slabs in most processing loads.
4416 *
4417 * So we still attempt to reduce cache line usage. Just take the slab
4418 * lock and free the item. If there is no additional partial slab
4419 * handling required then we can return immediately.
4420 */
__slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)4421 static void __slab_free(struct kmem_cache *s, struct slab *slab,
4422 void *head, void *tail, int cnt,
4423 unsigned long addr)
4424
4425 {
4426 void *prior;
4427 int was_frozen;
4428 struct slab new;
4429 unsigned long counters;
4430 struct kmem_cache_node *n = NULL;
4431 unsigned long flags;
4432 bool on_node_partial;
4433
4434 stat(s, FREE_SLOWPATH);
4435
4436 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
4437 free_to_partial_list(s, slab, head, tail, cnt, addr);
4438 return;
4439 }
4440
4441 do {
4442 if (unlikely(n)) {
4443 spin_unlock_irqrestore(&n->list_lock, flags);
4444 n = NULL;
4445 }
4446 prior = slab->freelist;
4447 counters = slab->counters;
4448 set_freepointer(s, tail, prior);
4449 new.counters = counters;
4450 was_frozen = new.frozen;
4451 new.inuse -= cnt;
4452 if ((!new.inuse || !prior) && !was_frozen) {
4453 /* Needs to be taken off a list */
4454 if (!kmem_cache_has_cpu_partial(s) || prior) {
4455
4456 n = get_node(s, slab_nid(slab));
4457 /*
4458 * Speculatively acquire the list_lock.
4459 * If the cmpxchg does not succeed then we may
4460 * drop the list_lock without any processing.
4461 *
4462 * Otherwise the list_lock will synchronize with
4463 * other processors updating the list of slabs.
4464 */
4465 spin_lock_irqsave(&n->list_lock, flags);
4466
4467 on_node_partial = slab_test_node_partial(slab);
4468 }
4469 }
4470
4471 } while (!slab_update_freelist(s, slab,
4472 prior, counters,
4473 head, new.counters,
4474 "__slab_free"));
4475
4476 if (likely(!n)) {
4477
4478 if (likely(was_frozen)) {
4479 /*
4480 * The list lock was not taken therefore no list
4481 * activity can be necessary.
4482 */
4483 stat(s, FREE_FROZEN);
4484 } else if (kmem_cache_has_cpu_partial(s) && !prior) {
4485 /*
4486 * If we started with a full slab then put it onto the
4487 * per cpu partial list.
4488 */
4489 put_cpu_partial(s, slab, 1);
4490 stat(s, CPU_PARTIAL_FREE);
4491 }
4492
4493 return;
4494 }
4495
4496 /*
4497 * This slab was partially empty but not on the per-node partial list,
4498 * in which case we shouldn't manipulate its list, just return.
4499 */
4500 if (prior && !on_node_partial) {
4501 spin_unlock_irqrestore(&n->list_lock, flags);
4502 return;
4503 }
4504
4505 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
4506 goto slab_empty;
4507
4508 /*
4509 * Objects left in the slab. If it was not on the partial list before
4510 * then add it.
4511 */
4512 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
4513 add_partial(n, slab, DEACTIVATE_TO_TAIL);
4514 stat(s, FREE_ADD_PARTIAL);
4515 }
4516 spin_unlock_irqrestore(&n->list_lock, flags);
4517 return;
4518
4519 slab_empty:
4520 if (prior) {
4521 /*
4522 * Slab on the partial list.
4523 */
4524 remove_partial(n, slab);
4525 stat(s, FREE_REMOVE_PARTIAL);
4526 }
4527
4528 spin_unlock_irqrestore(&n->list_lock, flags);
4529 stat(s, FREE_SLAB);
4530 discard_slab(s, slab);
4531 }
4532
4533 #ifndef CONFIG_SLUB_TINY
4534 /*
4535 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
4536 * can perform fastpath freeing without additional function calls.
4537 *
4538 * The fastpath is only possible if we are freeing to the current cpu slab
4539 * of this processor. This typically the case if we have just allocated
4540 * the item before.
4541 *
4542 * If fastpath is not possible then fall back to __slab_free where we deal
4543 * with all sorts of special processing.
4544 *
4545 * Bulk free of a freelist with several objects (all pointing to the
4546 * same slab) possible by specifying head and tail ptr, plus objects
4547 * count (cnt). Bulk free indicated by tail pointer being set.
4548 */
do_slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)4549 static __always_inline void do_slab_free(struct kmem_cache *s,
4550 struct slab *slab, void *head, void *tail,
4551 int cnt, unsigned long addr)
4552 {
4553 struct kmem_cache_cpu *c;
4554 unsigned long tid;
4555 void **freelist;
4556
4557 redo:
4558 /*
4559 * Determine the currently cpus per cpu slab.
4560 * The cpu may change afterward. However that does not matter since
4561 * data is retrieved via this pointer. If we are on the same cpu
4562 * during the cmpxchg then the free will succeed.
4563 */
4564 c = raw_cpu_ptr(s->cpu_slab);
4565 tid = READ_ONCE(c->tid);
4566
4567 /* Same with comment on barrier() in __slab_alloc_node() */
4568 barrier();
4569
4570 if (unlikely(slab != c->slab)) {
4571 __slab_free(s, slab, head, tail, cnt, addr);
4572 return;
4573 }
4574
4575 if (USE_LOCKLESS_FAST_PATH()) {
4576 freelist = READ_ONCE(c->freelist);
4577
4578 set_freepointer(s, tail, freelist);
4579
4580 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
4581 note_cmpxchg_failure("slab_free", s, tid);
4582 goto redo;
4583 }
4584 } else {
4585 /* Update the free list under the local lock */
4586 local_lock(&s->cpu_slab->lock);
4587 c = this_cpu_ptr(s->cpu_slab);
4588 if (unlikely(slab != c->slab)) {
4589 local_unlock(&s->cpu_slab->lock);
4590 goto redo;
4591 }
4592 tid = c->tid;
4593 freelist = c->freelist;
4594
4595 set_freepointer(s, tail, freelist);
4596 c->freelist = head;
4597 c->tid = next_tid(tid);
4598
4599 local_unlock(&s->cpu_slab->lock);
4600 }
4601 stat_add(s, FREE_FASTPATH, cnt);
4602 }
4603 #else /* CONFIG_SLUB_TINY */
do_slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)4604 static void do_slab_free(struct kmem_cache *s,
4605 struct slab *slab, void *head, void *tail,
4606 int cnt, unsigned long addr)
4607 {
4608 __slab_free(s, slab, head, tail, cnt, addr);
4609 }
4610 #endif /* CONFIG_SLUB_TINY */
4611
4612 static __fastpath_inline
slab_free(struct kmem_cache * s,struct slab * slab,void * object,unsigned long addr)4613 void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
4614 unsigned long addr)
4615 {
4616 memcg_slab_free_hook(s, slab, &object, 1);
4617 alloc_tagging_slab_free_hook(s, slab, &object, 1);
4618
4619 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
4620 do_slab_free(s, slab, object, object, 1, addr);
4621 }
4622
4623 #ifdef CONFIG_MEMCG
4624 /* Do not inline the rare memcg charging failed path into the allocation path */
4625 static noinline
memcg_alloc_abort_single(struct kmem_cache * s,void * object)4626 void memcg_alloc_abort_single(struct kmem_cache *s, void *object)
4627 {
4628 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
4629 do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_);
4630 }
4631 #endif
4632
4633 static __fastpath_inline
slab_free_bulk(struct kmem_cache * s,struct slab * slab,void * head,void * tail,void ** p,int cnt,unsigned long addr)4634 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
4635 void *tail, void **p, int cnt, unsigned long addr)
4636 {
4637 memcg_slab_free_hook(s, slab, p, cnt);
4638 alloc_tagging_slab_free_hook(s, slab, p, cnt);
4639 /*
4640 * With KASAN enabled slab_free_freelist_hook modifies the freelist
4641 * to remove objects, whose reuse must be delayed.
4642 */
4643 if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
4644 do_slab_free(s, slab, head, tail, cnt, addr);
4645 }
4646
4647 #ifdef CONFIG_SLUB_RCU_DEBUG
slab_free_after_rcu_debug(struct rcu_head * rcu_head)4648 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head)
4649 {
4650 struct rcu_delayed_free *delayed_free =
4651 container_of(rcu_head, struct rcu_delayed_free, head);
4652 void *object = delayed_free->object;
4653 struct slab *slab = virt_to_slab(object);
4654 struct kmem_cache *s;
4655
4656 kfree(delayed_free);
4657
4658 if (WARN_ON(is_kfence_address(object)))
4659 return;
4660
4661 /* find the object and the cache again */
4662 if (WARN_ON(!slab))
4663 return;
4664 s = slab->slab_cache;
4665 if (WARN_ON(!(s->flags & SLAB_TYPESAFE_BY_RCU)))
4666 return;
4667
4668 /* resume freeing */
4669 if (slab_free_hook(s, object, slab_want_init_on_free(s), true))
4670 do_slab_free(s, slab, object, object, 1, _THIS_IP_);
4671 }
4672 #endif /* CONFIG_SLUB_RCU_DEBUG */
4673
4674 #ifdef CONFIG_KASAN_GENERIC
___cache_free(struct kmem_cache * cache,void * x,unsigned long addr)4675 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
4676 {
4677 do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
4678 }
4679 #endif
4680
virt_to_cache(const void * obj)4681 static inline struct kmem_cache *virt_to_cache(const void *obj)
4682 {
4683 struct slab *slab;
4684
4685 slab = virt_to_slab(obj);
4686 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
4687 return NULL;
4688 return slab->slab_cache;
4689 }
4690
cache_from_obj(struct kmem_cache * s,void * x)4691 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
4692 {
4693 struct kmem_cache *cachep;
4694
4695 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
4696 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
4697 return s;
4698
4699 cachep = virt_to_cache(x);
4700 if (WARN(cachep && cachep != s,
4701 "%s: Wrong slab cache. %s but object is from %s\n",
4702 __func__, s->name, cachep->name))
4703 print_tracking(cachep, x);
4704 return cachep;
4705 }
4706
4707 /**
4708 * kmem_cache_free - Deallocate an object
4709 * @s: The cache the allocation was from.
4710 * @x: The previously allocated object.
4711 *
4712 * Free an object which was previously allocated from this
4713 * cache.
4714 */
kmem_cache_free(struct kmem_cache * s,void * x)4715 void kmem_cache_free(struct kmem_cache *s, void *x)
4716 {
4717 s = cache_from_obj(s, x);
4718 if (!s)
4719 return;
4720 trace_kmem_cache_free(_RET_IP_, x, s);
4721 slab_free(s, virt_to_slab(x), x, _RET_IP_);
4722 }
4723 EXPORT_SYMBOL(kmem_cache_free);
4724
free_large_kmalloc(struct folio * folio,void * object)4725 static void free_large_kmalloc(struct folio *folio, void *object)
4726 {
4727 unsigned int order = folio_order(folio);
4728
4729 if (WARN_ON_ONCE(order == 0))
4730 pr_warn_once("object pointer: 0x%p\n", object);
4731
4732 kmemleak_free(object);
4733 kasan_kfree_large(object);
4734 kmsan_kfree_large(object);
4735
4736 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4737 -(PAGE_SIZE << order));
4738 folio_put(folio);
4739 }
4740
4741 /**
4742 * kfree - free previously allocated memory
4743 * @object: pointer returned by kmalloc() or kmem_cache_alloc()
4744 *
4745 * If @object is NULL, no operation is performed.
4746 */
kfree(const void * object)4747 void kfree(const void *object)
4748 {
4749 struct folio *folio;
4750 struct slab *slab;
4751 struct kmem_cache *s;
4752 void *x = (void *)object;
4753
4754 trace_kfree(_RET_IP_, object);
4755
4756 if (unlikely(ZERO_OR_NULL_PTR(object)))
4757 return;
4758
4759 folio = virt_to_folio(object);
4760 if (unlikely(!folio_test_slab(folio))) {
4761 free_large_kmalloc(folio, (void *)object);
4762 return;
4763 }
4764
4765 slab = folio_slab(folio);
4766 s = slab->slab_cache;
4767 slab_free(s, slab, x, _RET_IP_);
4768 }
4769 EXPORT_SYMBOL(kfree);
4770
4771 static __always_inline __realloc_size(2) void *
__do_krealloc(const void * p,size_t new_size,gfp_t flags)4772 __do_krealloc(const void *p, size_t new_size, gfp_t flags)
4773 {
4774 void *ret;
4775 size_t ks = 0;
4776 int orig_size = 0;
4777 struct kmem_cache *s = NULL;
4778
4779 if (unlikely(ZERO_OR_NULL_PTR(p)))
4780 goto alloc_new;
4781
4782 /* Check for double-free. */
4783 if (!kasan_check_byte(p))
4784 return NULL;
4785
4786 if (is_kfence_address(p)) {
4787 ks = orig_size = kfence_ksize(p);
4788 } else {
4789 struct folio *folio;
4790
4791 folio = virt_to_folio(p);
4792 if (unlikely(!folio_test_slab(folio))) {
4793 /* Big kmalloc object */
4794 WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE);
4795 WARN_ON(p != folio_address(folio));
4796 ks = folio_size(folio);
4797 } else {
4798 s = folio_slab(folio)->slab_cache;
4799 orig_size = get_orig_size(s, (void *)p);
4800 ks = s->object_size;
4801 }
4802 }
4803
4804 /* If the old object doesn't fit, allocate a bigger one */
4805 if (new_size > ks)
4806 goto alloc_new;
4807
4808 /* Zero out spare memory. */
4809 if (want_init_on_alloc(flags)) {
4810 kasan_disable_current();
4811 if (orig_size && orig_size < new_size)
4812 memset(kasan_reset_tag(p) + orig_size, 0, new_size - orig_size);
4813 else
4814 memset(kasan_reset_tag(p) + new_size, 0, ks - new_size);
4815 kasan_enable_current();
4816 }
4817
4818 /* Setup kmalloc redzone when needed */
4819 if (s && slub_debug_orig_size(s)) {
4820 set_orig_size(s, (void *)p, new_size);
4821 if (s->flags & SLAB_RED_ZONE && new_size < ks)
4822 memset_no_sanitize_memory(kasan_reset_tag(p) + new_size,
4823 SLUB_RED_ACTIVE, ks - new_size);
4824 }
4825
4826 p = kasan_krealloc(p, new_size, flags);
4827 return (void *)p;
4828
4829 alloc_new:
4830 ret = kmalloc_node_track_caller_noprof(new_size, flags, NUMA_NO_NODE, _RET_IP_);
4831 if (ret && p) {
4832 /* Disable KASAN checks as the object's redzone is accessed. */
4833 kasan_disable_current();
4834 memcpy(ret, kasan_reset_tag(p), orig_size ?: ks);
4835 kasan_enable_current();
4836 }
4837
4838 return ret;
4839 }
4840
4841 /**
4842 * krealloc - reallocate memory. The contents will remain unchanged.
4843 * @p: object to reallocate memory for.
4844 * @new_size: how many bytes of memory are required.
4845 * @flags: the type of memory to allocate.
4846 *
4847 * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size
4848 * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
4849 *
4850 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
4851 * initial memory allocation, every subsequent call to this API for the same
4852 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
4853 * __GFP_ZERO is not fully honored by this API.
4854 *
4855 * When slub_debug_orig_size() is off, krealloc() only knows about the bucket
4856 * size of an allocation (but not the exact size it was allocated with) and
4857 * hence implements the following semantics for shrinking and growing buffers
4858 * with __GFP_ZERO.
4859 *
4860 * new bucket
4861 * 0 size size
4862 * |--------|----------------|
4863 * | keep | zero |
4864 *
4865 * Otherwise, the original allocation size 'orig_size' could be used to
4866 * precisely clear the requested size, and the new size will also be stored
4867 * as the new 'orig_size'.
4868 *
4869 * In any case, the contents of the object pointed to are preserved up to the
4870 * lesser of the new and old sizes.
4871 *
4872 * Return: pointer to the allocated memory or %NULL in case of error
4873 */
krealloc_noprof(const void * p,size_t new_size,gfp_t flags)4874 void *krealloc_noprof(const void *p, size_t new_size, gfp_t flags)
4875 {
4876 void *ret;
4877
4878 if (unlikely(!new_size)) {
4879 kfree(p);
4880 return ZERO_SIZE_PTR;
4881 }
4882
4883 ret = __do_krealloc(p, new_size, flags);
4884 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
4885 kfree(p);
4886
4887 return ret;
4888 }
4889 EXPORT_SYMBOL(krealloc_noprof);
4890
4891 struct detached_freelist {
4892 struct slab *slab;
4893 void *tail;
4894 void *freelist;
4895 int cnt;
4896 struct kmem_cache *s;
4897 };
4898
4899 /*
4900 * This function progressively scans the array with free objects (with
4901 * a limited look ahead) and extract objects belonging to the same
4902 * slab. It builds a detached freelist directly within the given
4903 * slab/objects. This can happen without any need for
4904 * synchronization, because the objects are owned by running process.
4905 * The freelist is build up as a single linked list in the objects.
4906 * The idea is, that this detached freelist can then be bulk
4907 * transferred to the real freelist(s), but only requiring a single
4908 * synchronization primitive. Look ahead in the array is limited due
4909 * to performance reasons.
4910 */
4911 static inline
build_detached_freelist(struct kmem_cache * s,size_t size,void ** p,struct detached_freelist * df)4912 int build_detached_freelist(struct kmem_cache *s, size_t size,
4913 void **p, struct detached_freelist *df)
4914 {
4915 int lookahead = 3;
4916 void *object;
4917 struct folio *folio;
4918 size_t same;
4919
4920 object = p[--size];
4921 folio = virt_to_folio(object);
4922 if (!s) {
4923 /* Handle kalloc'ed objects */
4924 if (unlikely(!folio_test_slab(folio))) {
4925 free_large_kmalloc(folio, object);
4926 df->slab = NULL;
4927 return size;
4928 }
4929 /* Derive kmem_cache from object */
4930 df->slab = folio_slab(folio);
4931 df->s = df->slab->slab_cache;
4932 } else {
4933 df->slab = folio_slab(folio);
4934 df->s = cache_from_obj(s, object); /* Support for memcg */
4935 }
4936
4937 /* Start new detached freelist */
4938 df->tail = object;
4939 df->freelist = object;
4940 df->cnt = 1;
4941
4942 if (is_kfence_address(object))
4943 return size;
4944
4945 set_freepointer(df->s, object, NULL);
4946
4947 same = size;
4948 while (size) {
4949 object = p[--size];
4950 /* df->slab is always set at this point */
4951 if (df->slab == virt_to_slab(object)) {
4952 /* Opportunity build freelist */
4953 set_freepointer(df->s, object, df->freelist);
4954 df->freelist = object;
4955 df->cnt++;
4956 same--;
4957 if (size != same)
4958 swap(p[size], p[same]);
4959 continue;
4960 }
4961
4962 /* Limit look ahead search */
4963 if (!--lookahead)
4964 break;
4965 }
4966
4967 return same;
4968 }
4969
4970 /*
4971 * Internal bulk free of objects that were not initialised by the post alloc
4972 * hooks and thus should not be processed by the free hooks
4973 */
__kmem_cache_free_bulk(struct kmem_cache * s,size_t size,void ** p)4974 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4975 {
4976 if (!size)
4977 return;
4978
4979 do {
4980 struct detached_freelist df;
4981
4982 size = build_detached_freelist(s, size, p, &df);
4983 if (!df.slab)
4984 continue;
4985
4986 if (kfence_free(df.freelist))
4987 continue;
4988
4989 do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
4990 _RET_IP_);
4991 } while (likely(size));
4992 }
4993
4994 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_free_bulk(struct kmem_cache * s,size_t size,void ** p)4995 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4996 {
4997 if (!size)
4998 return;
4999
5000 do {
5001 struct detached_freelist df;
5002
5003 size = build_detached_freelist(s, size, p, &df);
5004 if (!df.slab)
5005 continue;
5006
5007 slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
5008 df.cnt, _RET_IP_);
5009 } while (likely(size));
5010 }
5011 EXPORT_SYMBOL(kmem_cache_free_bulk);
5012
5013 #ifndef CONFIG_SLUB_TINY
5014 static inline
__kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)5015 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
5016 void **p)
5017 {
5018 struct kmem_cache_cpu *c;
5019 unsigned long irqflags;
5020 int i;
5021
5022 /*
5023 * Drain objects in the per cpu slab, while disabling local
5024 * IRQs, which protects against PREEMPT and interrupts
5025 * handlers invoking normal fastpath.
5026 */
5027 c = slub_get_cpu_ptr(s->cpu_slab);
5028 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
5029
5030 for (i = 0; i < size; i++) {
5031 void *object = kfence_alloc(s, s->object_size, flags);
5032
5033 if (unlikely(object)) {
5034 p[i] = object;
5035 continue;
5036 }
5037
5038 object = c->freelist;
5039 if (unlikely(!object)) {
5040 /*
5041 * We may have removed an object from c->freelist using
5042 * the fastpath in the previous iteration; in that case,
5043 * c->tid has not been bumped yet.
5044 * Since ___slab_alloc() may reenable interrupts while
5045 * allocating memory, we should bump c->tid now.
5046 */
5047 c->tid = next_tid(c->tid);
5048
5049 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
5050
5051 /*
5052 * Invoking slow path likely have side-effect
5053 * of re-populating per CPU c->freelist
5054 */
5055 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
5056 _RET_IP_, c, s->object_size);
5057 if (unlikely(!p[i]))
5058 goto error;
5059
5060 c = this_cpu_ptr(s->cpu_slab);
5061 maybe_wipe_obj_freeptr(s, p[i]);
5062
5063 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
5064
5065 continue; /* goto for-loop */
5066 }
5067 c->freelist = get_freepointer(s, object);
5068 p[i] = object;
5069 maybe_wipe_obj_freeptr(s, p[i]);
5070 stat(s, ALLOC_FASTPATH);
5071 }
5072 c->tid = next_tid(c->tid);
5073 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
5074 slub_put_cpu_ptr(s->cpu_slab);
5075
5076 return i;
5077
5078 error:
5079 slub_put_cpu_ptr(s->cpu_slab);
5080 __kmem_cache_free_bulk(s, i, p);
5081 return 0;
5082
5083 }
5084 #else /* CONFIG_SLUB_TINY */
__kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)5085 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
5086 size_t size, void **p)
5087 {
5088 int i;
5089
5090 for (i = 0; i < size; i++) {
5091 void *object = kfence_alloc(s, s->object_size, flags);
5092
5093 if (unlikely(object)) {
5094 p[i] = object;
5095 continue;
5096 }
5097
5098 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
5099 _RET_IP_, s->object_size);
5100 if (unlikely(!p[i]))
5101 goto error;
5102
5103 maybe_wipe_obj_freeptr(s, p[i]);
5104 }
5105
5106 return i;
5107
5108 error:
5109 __kmem_cache_free_bulk(s, i, p);
5110 return 0;
5111 }
5112 #endif /* CONFIG_SLUB_TINY */
5113
5114 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_alloc_bulk_noprof(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)5115 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size,
5116 void **p)
5117 {
5118 int i;
5119
5120 if (!size)
5121 return 0;
5122
5123 s = slab_pre_alloc_hook(s, flags);
5124 if (unlikely(!s))
5125 return 0;
5126
5127 i = __kmem_cache_alloc_bulk(s, flags, size, p);
5128 if (unlikely(i == 0))
5129 return 0;
5130
5131 /*
5132 * memcg and kmem_cache debug support and memory initialization.
5133 * Done outside of the IRQ disabled fastpath loop.
5134 */
5135 if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p,
5136 slab_want_init_on_alloc(flags, s), s->object_size))) {
5137 return 0;
5138 }
5139 return i;
5140 }
5141 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof);
5142
5143
5144 /*
5145 * Object placement in a slab is made very easy because we always start at
5146 * offset 0. If we tune the size of the object to the alignment then we can
5147 * get the required alignment by putting one properly sized object after
5148 * another.
5149 *
5150 * Notice that the allocation order determines the sizes of the per cpu
5151 * caches. Each processor has always one slab available for allocations.
5152 * Increasing the allocation order reduces the number of times that slabs
5153 * must be moved on and off the partial lists and is therefore a factor in
5154 * locking overhead.
5155 */
5156
5157 /*
5158 * Minimum / Maximum order of slab pages. This influences locking overhead
5159 * and slab fragmentation. A higher order reduces the number of partial slabs
5160 * and increases the number of allocations possible without having to
5161 * take the list_lock.
5162 */
5163 static unsigned int slub_min_order;
5164 static unsigned int slub_max_order =
5165 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
5166 static unsigned int slub_min_objects;
5167
5168 /*
5169 * Calculate the order of allocation given an slab object size.
5170 *
5171 * The order of allocation has significant impact on performance and other
5172 * system components. Generally order 0 allocations should be preferred since
5173 * order 0 does not cause fragmentation in the page allocator. Larger objects
5174 * be problematic to put into order 0 slabs because there may be too much
5175 * unused space left. We go to a higher order if more than 1/16th of the slab
5176 * would be wasted.
5177 *
5178 * In order to reach satisfactory performance we must ensure that a minimum
5179 * number of objects is in one slab. Otherwise we may generate too much
5180 * activity on the partial lists which requires taking the list_lock. This is
5181 * less a concern for large slabs though which are rarely used.
5182 *
5183 * slab_max_order specifies the order where we begin to stop considering the
5184 * number of objects in a slab as critical. If we reach slab_max_order then
5185 * we try to keep the page order as low as possible. So we accept more waste
5186 * of space in favor of a small page order.
5187 *
5188 * Higher order allocations also allow the placement of more objects in a
5189 * slab and thereby reduce object handling overhead. If the user has
5190 * requested a higher minimum order then we start with that one instead of
5191 * the smallest order which will fit the object.
5192 */
calc_slab_order(unsigned int size,unsigned int min_order,unsigned int max_order,unsigned int fract_leftover)5193 static inline unsigned int calc_slab_order(unsigned int size,
5194 unsigned int min_order, unsigned int max_order,
5195 unsigned int fract_leftover)
5196 {
5197 unsigned int order;
5198
5199 for (order = min_order; order <= max_order; order++) {
5200
5201 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
5202 unsigned int rem;
5203
5204 rem = slab_size % size;
5205
5206 if (rem <= slab_size / fract_leftover)
5207 break;
5208 }
5209
5210 return order;
5211 }
5212
calculate_order(unsigned int size)5213 static inline int calculate_order(unsigned int size)
5214 {
5215 unsigned int order;
5216 unsigned int min_objects;
5217 unsigned int max_objects;
5218 unsigned int min_order;
5219
5220 min_objects = slub_min_objects;
5221 if (!min_objects) {
5222 /*
5223 * Some architectures will only update present cpus when
5224 * onlining them, so don't trust the number if it's just 1. But
5225 * we also don't want to use nr_cpu_ids always, as on some other
5226 * architectures, there can be many possible cpus, but never
5227 * onlined. Here we compromise between trying to avoid too high
5228 * order on systems that appear larger than they are, and too
5229 * low order on systems that appear smaller than they are.
5230 */
5231 unsigned int nr_cpus = num_present_cpus();
5232 if (nr_cpus <= 1)
5233 nr_cpus = nr_cpu_ids;
5234 min_objects = 4 * (fls(nr_cpus) + 1);
5235 }
5236 /* min_objects can't be 0 because get_order(0) is undefined */
5237 max_objects = max(order_objects(slub_max_order, size), 1U);
5238 min_objects = min(min_objects, max_objects);
5239
5240 min_order = max_t(unsigned int, slub_min_order,
5241 get_order(min_objects * size));
5242 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
5243 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
5244
5245 /*
5246 * Attempt to find best configuration for a slab. This works by first
5247 * attempting to generate a layout with the best possible configuration
5248 * and backing off gradually.
5249 *
5250 * We start with accepting at most 1/16 waste and try to find the
5251 * smallest order from min_objects-derived/slab_min_order up to
5252 * slab_max_order that will satisfy the constraint. Note that increasing
5253 * the order can only result in same or less fractional waste, not more.
5254 *
5255 * If that fails, we increase the acceptable fraction of waste and try
5256 * again. The last iteration with fraction of 1/2 would effectively
5257 * accept any waste and give us the order determined by min_objects, as
5258 * long as at least single object fits within slab_max_order.
5259 */
5260 for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
5261 order = calc_slab_order(size, min_order, slub_max_order,
5262 fraction);
5263 if (order <= slub_max_order)
5264 return order;
5265 }
5266
5267 /*
5268 * Doh this slab cannot be placed using slab_max_order.
5269 */
5270 order = get_order(size);
5271 if (order <= MAX_PAGE_ORDER)
5272 return order;
5273 return -ENOSYS;
5274 }
5275
5276 static void
init_kmem_cache_node(struct kmem_cache_node * n)5277 init_kmem_cache_node(struct kmem_cache_node *n)
5278 {
5279 n->nr_partial = 0;
5280 spin_lock_init(&n->list_lock);
5281 INIT_LIST_HEAD(&n->partial);
5282 #ifdef CONFIG_SLUB_DEBUG
5283 atomic_long_set(&n->nr_slabs, 0);
5284 atomic_long_set(&n->total_objects, 0);
5285 INIT_LIST_HEAD(&n->full);
5286 #endif
5287 }
5288
5289 #ifndef CONFIG_SLUB_TINY
alloc_kmem_cache_cpus(struct kmem_cache * s)5290 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5291 {
5292 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
5293 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
5294 sizeof(struct kmem_cache_cpu));
5295
5296 /*
5297 * Must align to double word boundary for the double cmpxchg
5298 * instructions to work; see __pcpu_double_call_return_bool().
5299 */
5300 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
5301 2 * sizeof(void *));
5302
5303 if (!s->cpu_slab)
5304 return 0;
5305
5306 init_kmem_cache_cpus(s);
5307
5308 return 1;
5309 }
5310 #else
alloc_kmem_cache_cpus(struct kmem_cache * s)5311 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5312 {
5313 return 1;
5314 }
5315 #endif /* CONFIG_SLUB_TINY */
5316
5317 static struct kmem_cache *kmem_cache_node;
5318
5319 /*
5320 * No kmalloc_node yet so do it by hand. We know that this is the first
5321 * slab on the node for this slabcache. There are no concurrent accesses
5322 * possible.
5323 *
5324 * Note that this function only works on the kmem_cache_node
5325 * when allocating for the kmem_cache_node. This is used for bootstrapping
5326 * memory on a fresh node that has no slab structures yet.
5327 */
early_kmem_cache_node_alloc(int node)5328 static void early_kmem_cache_node_alloc(int node)
5329 {
5330 struct slab *slab;
5331 struct kmem_cache_node *n;
5332
5333 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
5334
5335 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
5336
5337 BUG_ON(!slab);
5338 if (slab_nid(slab) != node) {
5339 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
5340 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
5341 }
5342
5343 n = slab->freelist;
5344 BUG_ON(!n);
5345 #ifdef CONFIG_SLUB_DEBUG
5346 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
5347 #endif
5348 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
5349 slab->freelist = get_freepointer(kmem_cache_node, n);
5350 slab->inuse = 1;
5351 kmem_cache_node->node[node] = n;
5352 init_kmem_cache_node(n);
5353 inc_slabs_node(kmem_cache_node, node, slab->objects);
5354
5355 /*
5356 * No locks need to be taken here as it has just been
5357 * initialized and there is no concurrent access.
5358 */
5359 __add_partial(n, slab, DEACTIVATE_TO_HEAD);
5360 }
5361
free_kmem_cache_nodes(struct kmem_cache * s)5362 static void free_kmem_cache_nodes(struct kmem_cache *s)
5363 {
5364 int node;
5365 struct kmem_cache_node *n;
5366
5367 for_each_kmem_cache_node(s, node, n) {
5368 s->node[node] = NULL;
5369 kmem_cache_free(kmem_cache_node, n);
5370 }
5371 }
5372
__kmem_cache_release(struct kmem_cache * s)5373 void __kmem_cache_release(struct kmem_cache *s)
5374 {
5375 cache_random_seq_destroy(s);
5376 #ifndef CONFIG_SLUB_TINY
5377 free_percpu(s->cpu_slab);
5378 #endif
5379 free_kmem_cache_nodes(s);
5380 }
5381
init_kmem_cache_nodes(struct kmem_cache * s)5382 static int init_kmem_cache_nodes(struct kmem_cache *s)
5383 {
5384 int node;
5385
5386 for_each_node_mask(node, slab_nodes) {
5387 struct kmem_cache_node *n;
5388
5389 if (slab_state == DOWN) {
5390 early_kmem_cache_node_alloc(node);
5391 continue;
5392 }
5393 n = kmem_cache_alloc_node(kmem_cache_node,
5394 GFP_KERNEL, node);
5395
5396 if (!n) {
5397 free_kmem_cache_nodes(s);
5398 return 0;
5399 }
5400
5401 init_kmem_cache_node(n);
5402 s->node[node] = n;
5403 }
5404 return 1;
5405 }
5406
set_cpu_partial(struct kmem_cache * s)5407 static void set_cpu_partial(struct kmem_cache *s)
5408 {
5409 #ifdef CONFIG_SLUB_CPU_PARTIAL
5410 unsigned int nr_objects;
5411
5412 /*
5413 * cpu_partial determined the maximum number of objects kept in the
5414 * per cpu partial lists of a processor.
5415 *
5416 * Per cpu partial lists mainly contain slabs that just have one
5417 * object freed. If they are used for allocation then they can be
5418 * filled up again with minimal effort. The slab will never hit the
5419 * per node partial lists and therefore no locking will be required.
5420 *
5421 * For backwards compatibility reasons, this is determined as number
5422 * of objects, even though we now limit maximum number of pages, see
5423 * slub_set_cpu_partial()
5424 */
5425 if (!kmem_cache_has_cpu_partial(s))
5426 nr_objects = 0;
5427 else if (s->size >= PAGE_SIZE)
5428 nr_objects = 6;
5429 else if (s->size >= 1024)
5430 nr_objects = 24;
5431 else if (s->size >= 256)
5432 nr_objects = 52;
5433 else
5434 nr_objects = 120;
5435
5436 slub_set_cpu_partial(s, nr_objects);
5437 #endif
5438 }
5439
5440 /*
5441 * calculate_sizes() determines the order and the distribution of data within
5442 * a slab object.
5443 */
calculate_sizes(struct kmem_cache_args * args,struct kmem_cache * s)5444 static int calculate_sizes(struct kmem_cache_args *args, struct kmem_cache *s)
5445 {
5446 slab_flags_t flags = s->flags;
5447 unsigned int size = s->object_size;
5448 unsigned int order;
5449
5450 /*
5451 * Round up object size to the next word boundary. We can only
5452 * place the free pointer at word boundaries and this determines
5453 * the possible location of the free pointer.
5454 */
5455 size = ALIGN(size, sizeof(void *));
5456
5457 #ifdef CONFIG_SLUB_DEBUG
5458 /*
5459 * Determine if we can poison the object itself. If the user of
5460 * the slab may touch the object after free or before allocation
5461 * then we should never poison the object itself.
5462 */
5463 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
5464 !s->ctor)
5465 s->flags |= __OBJECT_POISON;
5466 else
5467 s->flags &= ~__OBJECT_POISON;
5468
5469
5470 /*
5471 * If we are Redzoning then check if there is some space between the
5472 * end of the object and the free pointer. If not then add an
5473 * additional word to have some bytes to store Redzone information.
5474 */
5475 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
5476 size += sizeof(void *);
5477 #endif
5478
5479 /*
5480 * With that we have determined the number of bytes in actual use
5481 * by the object and redzoning.
5482 */
5483 s->inuse = size;
5484
5485 if (((flags & SLAB_TYPESAFE_BY_RCU) && !args->use_freeptr_offset) ||
5486 (flags & SLAB_POISON) || s->ctor ||
5487 ((flags & SLAB_RED_ZONE) &&
5488 (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) {
5489 /*
5490 * Relocate free pointer after the object if it is not
5491 * permitted to overwrite the first word of the object on
5492 * kmem_cache_free.
5493 *
5494 * This is the case if we do RCU, have a constructor or
5495 * destructor, are poisoning the objects, or are
5496 * redzoning an object smaller than sizeof(void *) or are
5497 * redzoning an object with slub_debug_orig_size() enabled,
5498 * in which case the right redzone may be extended.
5499 *
5500 * The assumption that s->offset >= s->inuse means free
5501 * pointer is outside of the object is used in the
5502 * freeptr_outside_object() function. If that is no
5503 * longer true, the function needs to be modified.
5504 */
5505 s->offset = size;
5506 size += sizeof(void *);
5507 } else if ((flags & SLAB_TYPESAFE_BY_RCU) && args->use_freeptr_offset) {
5508 s->offset = args->freeptr_offset;
5509 } else {
5510 /*
5511 * Store freelist pointer near middle of object to keep
5512 * it away from the edges of the object to avoid small
5513 * sized over/underflows from neighboring allocations.
5514 */
5515 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
5516 }
5517
5518 #ifdef CONFIG_SLUB_DEBUG
5519 if (flags & SLAB_STORE_USER) {
5520 /*
5521 * Need to store information about allocs and frees after
5522 * the object.
5523 */
5524 size += 2 * sizeof(struct track);
5525
5526 /* Save the original kmalloc request size */
5527 if (flags & SLAB_KMALLOC)
5528 size += sizeof(unsigned int);
5529 }
5530 #endif
5531
5532 kasan_cache_create(s, &size, &s->flags);
5533 #ifdef CONFIG_SLUB_DEBUG
5534 if (flags & SLAB_RED_ZONE) {
5535 /*
5536 * Add some empty padding so that we can catch
5537 * overwrites from earlier objects rather than let
5538 * tracking information or the free pointer be
5539 * corrupted if a user writes before the start
5540 * of the object.
5541 */
5542 size += sizeof(void *);
5543
5544 s->red_left_pad = sizeof(void *);
5545 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
5546 size += s->red_left_pad;
5547 }
5548 #endif
5549
5550 /*
5551 * SLUB stores one object immediately after another beginning from
5552 * offset 0. In order to align the objects we have to simply size
5553 * each object to conform to the alignment.
5554 */
5555 size = ALIGN(size, s->align);
5556 s->size = size;
5557 s->reciprocal_size = reciprocal_value(size);
5558 order = calculate_order(size);
5559
5560 if ((int)order < 0)
5561 return 0;
5562
5563 s->allocflags = __GFP_COMP;
5564
5565 if (s->flags & SLAB_CACHE_DMA)
5566 s->allocflags |= GFP_DMA;
5567
5568 if (s->flags & SLAB_CACHE_DMA32)
5569 s->allocflags |= GFP_DMA32;
5570
5571 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5572 s->allocflags |= __GFP_RECLAIMABLE;
5573
5574 /*
5575 * Determine the number of objects per slab
5576 */
5577 s->oo = oo_make(order, size);
5578 s->min = oo_make(get_order(size), size);
5579
5580 return !!oo_objects(s->oo);
5581 }
5582
list_slab_objects(struct kmem_cache * s,struct slab * slab,const char * text)5583 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
5584 const char *text)
5585 {
5586 #ifdef CONFIG_SLUB_DEBUG
5587 void *addr = slab_address(slab);
5588 void *p;
5589
5590 slab_err(s, slab, text, s->name);
5591
5592 spin_lock(&object_map_lock);
5593 __fill_map(object_map, s, slab);
5594
5595 for_each_object(p, s, addr, slab->objects) {
5596
5597 if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
5598 if (slab_add_kunit_errors())
5599 continue;
5600 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
5601 print_tracking(s, p);
5602 }
5603 }
5604 spin_unlock(&object_map_lock);
5605 #endif
5606 }
5607
5608 /*
5609 * Attempt to free all partial slabs on a node.
5610 * This is called from __kmem_cache_shutdown(). We must take list_lock
5611 * because sysfs file might still access partial list after the shutdowning.
5612 */
free_partial(struct kmem_cache * s,struct kmem_cache_node * n)5613 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
5614 {
5615 LIST_HEAD(discard);
5616 struct slab *slab, *h;
5617
5618 BUG_ON(irqs_disabled());
5619 spin_lock_irq(&n->list_lock);
5620 list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
5621 if (!slab->inuse) {
5622 remove_partial(n, slab);
5623 list_add(&slab->slab_list, &discard);
5624 } else {
5625 list_slab_objects(s, slab,
5626 "Objects remaining in %s on __kmem_cache_shutdown()");
5627 }
5628 }
5629 spin_unlock_irq(&n->list_lock);
5630
5631 list_for_each_entry_safe(slab, h, &discard, slab_list)
5632 discard_slab(s, slab);
5633 }
5634
__kmem_cache_empty(struct kmem_cache * s)5635 bool __kmem_cache_empty(struct kmem_cache *s)
5636 {
5637 int node;
5638 struct kmem_cache_node *n;
5639
5640 for_each_kmem_cache_node(s, node, n)
5641 if (n->nr_partial || node_nr_slabs(n))
5642 return false;
5643 return true;
5644 }
5645
5646 /*
5647 * Release all resources used by a slab cache.
5648 */
__kmem_cache_shutdown(struct kmem_cache * s)5649 int __kmem_cache_shutdown(struct kmem_cache *s)
5650 {
5651 int node;
5652 struct kmem_cache_node *n;
5653
5654 flush_all_cpus_locked(s);
5655 /* Attempt to free all objects */
5656 for_each_kmem_cache_node(s, node, n) {
5657 free_partial(s, n);
5658 if (n->nr_partial || node_nr_slabs(n))
5659 return 1;
5660 }
5661 return 0;
5662 }
5663
5664 #ifdef CONFIG_PRINTK
__kmem_obj_info(struct kmem_obj_info * kpp,void * object,struct slab * slab)5665 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
5666 {
5667 void *base;
5668 int __maybe_unused i;
5669 unsigned int objnr;
5670 void *objp;
5671 void *objp0;
5672 struct kmem_cache *s = slab->slab_cache;
5673 struct track __maybe_unused *trackp;
5674
5675 kpp->kp_ptr = object;
5676 kpp->kp_slab = slab;
5677 kpp->kp_slab_cache = s;
5678 base = slab_address(slab);
5679 objp0 = kasan_reset_tag(object);
5680 #ifdef CONFIG_SLUB_DEBUG
5681 objp = restore_red_left(s, objp0);
5682 #else
5683 objp = objp0;
5684 #endif
5685 objnr = obj_to_index(s, slab, objp);
5686 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
5687 objp = base + s->size * objnr;
5688 kpp->kp_objp = objp;
5689 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
5690 || (objp - base) % s->size) ||
5691 !(s->flags & SLAB_STORE_USER))
5692 return;
5693 #ifdef CONFIG_SLUB_DEBUG
5694 objp = fixup_red_left(s, objp);
5695 trackp = get_track(s, objp, TRACK_ALLOC);
5696 kpp->kp_ret = (void *)trackp->addr;
5697 #ifdef CONFIG_STACKDEPOT
5698 {
5699 depot_stack_handle_t handle;
5700 unsigned long *entries;
5701 unsigned int nr_entries;
5702
5703 handle = READ_ONCE(trackp->handle);
5704 if (handle) {
5705 nr_entries = stack_depot_fetch(handle, &entries);
5706 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5707 kpp->kp_stack[i] = (void *)entries[i];
5708 }
5709
5710 trackp = get_track(s, objp, TRACK_FREE);
5711 handle = READ_ONCE(trackp->handle);
5712 if (handle) {
5713 nr_entries = stack_depot_fetch(handle, &entries);
5714 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5715 kpp->kp_free_stack[i] = (void *)entries[i];
5716 }
5717 }
5718 #endif
5719 #endif
5720 }
5721 #endif
5722
5723 /********************************************************************
5724 * Kmalloc subsystem
5725 *******************************************************************/
5726
setup_slub_min_order(char * str)5727 static int __init setup_slub_min_order(char *str)
5728 {
5729 get_option(&str, (int *)&slub_min_order);
5730
5731 if (slub_min_order > slub_max_order)
5732 slub_max_order = slub_min_order;
5733
5734 return 1;
5735 }
5736
5737 __setup("slab_min_order=", setup_slub_min_order);
5738 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0);
5739
5740
setup_slub_max_order(char * str)5741 static int __init setup_slub_max_order(char *str)
5742 {
5743 get_option(&str, (int *)&slub_max_order);
5744 slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
5745
5746 if (slub_min_order > slub_max_order)
5747 slub_min_order = slub_max_order;
5748
5749 return 1;
5750 }
5751
5752 __setup("slab_max_order=", setup_slub_max_order);
5753 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0);
5754
setup_slub_min_objects(char * str)5755 static int __init setup_slub_min_objects(char *str)
5756 {
5757 get_option(&str, (int *)&slub_min_objects);
5758
5759 return 1;
5760 }
5761
5762 __setup("slab_min_objects=", setup_slub_min_objects);
5763 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0);
5764
5765 #ifdef CONFIG_NUMA
setup_slab_strict_numa(char * str)5766 static int __init setup_slab_strict_numa(char *str)
5767 {
5768 if (nr_node_ids > 1) {
5769 static_branch_enable(&strict_numa);
5770 pr_info("SLUB: Strict NUMA enabled.\n");
5771 } else {
5772 pr_warn("slab_strict_numa parameter set on non NUMA system.\n");
5773 }
5774
5775 return 1;
5776 }
5777
5778 __setup("slab_strict_numa", setup_slab_strict_numa);
5779 #endif
5780
5781
5782 #ifdef CONFIG_HARDENED_USERCOPY
5783 /*
5784 * Rejects incorrectly sized objects and objects that are to be copied
5785 * to/from userspace but do not fall entirely within the containing slab
5786 * cache's usercopy region.
5787 *
5788 * Returns NULL if check passes, otherwise const char * to name of cache
5789 * to indicate an error.
5790 */
__check_heap_object(const void * ptr,unsigned long n,const struct slab * slab,bool to_user)5791 void __check_heap_object(const void *ptr, unsigned long n,
5792 const struct slab *slab, bool to_user)
5793 {
5794 struct kmem_cache *s;
5795 unsigned int offset;
5796 bool is_kfence = is_kfence_address(ptr);
5797
5798 ptr = kasan_reset_tag(ptr);
5799
5800 /* Find object and usable object size. */
5801 s = slab->slab_cache;
5802
5803 /* Reject impossible pointers. */
5804 if (ptr < slab_address(slab))
5805 usercopy_abort("SLUB object not in SLUB page?!", NULL,
5806 to_user, 0, n);
5807
5808 /* Find offset within object. */
5809 if (is_kfence)
5810 offset = ptr - kfence_object_start(ptr);
5811 else
5812 offset = (ptr - slab_address(slab)) % s->size;
5813
5814 /* Adjust for redzone and reject if within the redzone. */
5815 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
5816 if (offset < s->red_left_pad)
5817 usercopy_abort("SLUB object in left red zone",
5818 s->name, to_user, offset, n);
5819 offset -= s->red_left_pad;
5820 }
5821
5822 /* Allow address range falling entirely within usercopy region. */
5823 if (offset >= s->useroffset &&
5824 offset - s->useroffset <= s->usersize &&
5825 n <= s->useroffset - offset + s->usersize)
5826 return;
5827
5828 usercopy_abort("SLUB object", s->name, to_user, offset, n);
5829 }
5830 #endif /* CONFIG_HARDENED_USERCOPY */
5831
5832 #define SHRINK_PROMOTE_MAX 32
5833
5834 /*
5835 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
5836 * up most to the head of the partial lists. New allocations will then
5837 * fill those up and thus they can be removed from the partial lists.
5838 *
5839 * The slabs with the least items are placed last. This results in them
5840 * being allocated from last increasing the chance that the last objects
5841 * are freed in them.
5842 */
__kmem_cache_do_shrink(struct kmem_cache * s)5843 static int __kmem_cache_do_shrink(struct kmem_cache *s)
5844 {
5845 int node;
5846 int i;
5847 struct kmem_cache_node *n;
5848 struct slab *slab;
5849 struct slab *t;
5850 struct list_head discard;
5851 struct list_head promote[SHRINK_PROMOTE_MAX];
5852 unsigned long flags;
5853 int ret = 0;
5854
5855 for_each_kmem_cache_node(s, node, n) {
5856 INIT_LIST_HEAD(&discard);
5857 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
5858 INIT_LIST_HEAD(promote + i);
5859
5860 spin_lock_irqsave(&n->list_lock, flags);
5861
5862 /*
5863 * Build lists of slabs to discard or promote.
5864 *
5865 * Note that concurrent frees may occur while we hold the
5866 * list_lock. slab->inuse here is the upper limit.
5867 */
5868 list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
5869 int free = slab->objects - slab->inuse;
5870
5871 /* Do not reread slab->inuse */
5872 barrier();
5873
5874 /* We do not keep full slabs on the list */
5875 BUG_ON(free <= 0);
5876
5877 if (free == slab->objects) {
5878 list_move(&slab->slab_list, &discard);
5879 slab_clear_node_partial(slab);
5880 n->nr_partial--;
5881 dec_slabs_node(s, node, slab->objects);
5882 } else if (free <= SHRINK_PROMOTE_MAX)
5883 list_move(&slab->slab_list, promote + free - 1);
5884 }
5885
5886 /*
5887 * Promote the slabs filled up most to the head of the
5888 * partial list.
5889 */
5890 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
5891 list_splice(promote + i, &n->partial);
5892
5893 spin_unlock_irqrestore(&n->list_lock, flags);
5894
5895 /* Release empty slabs */
5896 list_for_each_entry_safe(slab, t, &discard, slab_list)
5897 free_slab(s, slab);
5898
5899 if (node_nr_slabs(n))
5900 ret = 1;
5901 }
5902
5903 return ret;
5904 }
5905
__kmem_cache_shrink(struct kmem_cache * s)5906 int __kmem_cache_shrink(struct kmem_cache *s)
5907 {
5908 flush_all(s);
5909 return __kmem_cache_do_shrink(s);
5910 }
5911
slab_mem_going_offline_callback(void * arg)5912 static int slab_mem_going_offline_callback(void *arg)
5913 {
5914 struct kmem_cache *s;
5915
5916 mutex_lock(&slab_mutex);
5917 list_for_each_entry(s, &slab_caches, list) {
5918 flush_all_cpus_locked(s);
5919 __kmem_cache_do_shrink(s);
5920 }
5921 mutex_unlock(&slab_mutex);
5922
5923 return 0;
5924 }
5925
slab_mem_offline_callback(void * arg)5926 static void slab_mem_offline_callback(void *arg)
5927 {
5928 struct memory_notify *marg = arg;
5929 int offline_node;
5930
5931 offline_node = marg->status_change_nid_normal;
5932
5933 /*
5934 * If the node still has available memory. we need kmem_cache_node
5935 * for it yet.
5936 */
5937 if (offline_node < 0)
5938 return;
5939
5940 mutex_lock(&slab_mutex);
5941 node_clear(offline_node, slab_nodes);
5942 /*
5943 * We no longer free kmem_cache_node structures here, as it would be
5944 * racy with all get_node() users, and infeasible to protect them with
5945 * slab_mutex.
5946 */
5947 mutex_unlock(&slab_mutex);
5948 }
5949
slab_mem_going_online_callback(void * arg)5950 static int slab_mem_going_online_callback(void *arg)
5951 {
5952 struct kmem_cache_node *n;
5953 struct kmem_cache *s;
5954 struct memory_notify *marg = arg;
5955 int nid = marg->status_change_nid_normal;
5956 int ret = 0;
5957
5958 /*
5959 * If the node's memory is already available, then kmem_cache_node is
5960 * already created. Nothing to do.
5961 */
5962 if (nid < 0)
5963 return 0;
5964
5965 /*
5966 * We are bringing a node online. No memory is available yet. We must
5967 * allocate a kmem_cache_node structure in order to bring the node
5968 * online.
5969 */
5970 mutex_lock(&slab_mutex);
5971 list_for_each_entry(s, &slab_caches, list) {
5972 /*
5973 * The structure may already exist if the node was previously
5974 * onlined and offlined.
5975 */
5976 if (get_node(s, nid))
5977 continue;
5978 /*
5979 * XXX: kmem_cache_alloc_node will fallback to other nodes
5980 * since memory is not yet available from the node that
5981 * is brought up.
5982 */
5983 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
5984 if (!n) {
5985 ret = -ENOMEM;
5986 goto out;
5987 }
5988 init_kmem_cache_node(n);
5989 s->node[nid] = n;
5990 }
5991 /*
5992 * Any cache created after this point will also have kmem_cache_node
5993 * initialized for the new node.
5994 */
5995 node_set(nid, slab_nodes);
5996 out:
5997 mutex_unlock(&slab_mutex);
5998 return ret;
5999 }
6000
slab_memory_callback(struct notifier_block * self,unsigned long action,void * arg)6001 static int slab_memory_callback(struct notifier_block *self,
6002 unsigned long action, void *arg)
6003 {
6004 int ret = 0;
6005
6006 switch (action) {
6007 case MEM_GOING_ONLINE:
6008 ret = slab_mem_going_online_callback(arg);
6009 break;
6010 case MEM_GOING_OFFLINE:
6011 ret = slab_mem_going_offline_callback(arg);
6012 break;
6013 case MEM_OFFLINE:
6014 case MEM_CANCEL_ONLINE:
6015 slab_mem_offline_callback(arg);
6016 break;
6017 case MEM_ONLINE:
6018 case MEM_CANCEL_OFFLINE:
6019 break;
6020 }
6021 if (ret)
6022 ret = notifier_from_errno(ret);
6023 else
6024 ret = NOTIFY_OK;
6025 return ret;
6026 }
6027
6028 /********************************************************************
6029 * Basic setup of slabs
6030 *******************************************************************/
6031
6032 /*
6033 * Used for early kmem_cache structures that were allocated using
6034 * the page allocator. Allocate them properly then fix up the pointers
6035 * that may be pointing to the wrong kmem_cache structure.
6036 */
6037
bootstrap(struct kmem_cache * static_cache)6038 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
6039 {
6040 int node;
6041 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
6042 struct kmem_cache_node *n;
6043
6044 memcpy(s, static_cache, kmem_cache->object_size);
6045
6046 /*
6047 * This runs very early, and only the boot processor is supposed to be
6048 * up. Even if it weren't true, IRQs are not up so we couldn't fire
6049 * IPIs around.
6050 */
6051 __flush_cpu_slab(s, smp_processor_id());
6052 for_each_kmem_cache_node(s, node, n) {
6053 struct slab *p;
6054
6055 list_for_each_entry(p, &n->partial, slab_list)
6056 p->slab_cache = s;
6057
6058 #ifdef CONFIG_SLUB_DEBUG
6059 list_for_each_entry(p, &n->full, slab_list)
6060 p->slab_cache = s;
6061 #endif
6062 }
6063 list_add(&s->list, &slab_caches);
6064 return s;
6065 }
6066
kmem_cache_init(void)6067 void __init kmem_cache_init(void)
6068 {
6069 static __initdata struct kmem_cache boot_kmem_cache,
6070 boot_kmem_cache_node;
6071 int node;
6072
6073 if (debug_guardpage_minorder())
6074 slub_max_order = 0;
6075
6076 /* Print slub debugging pointers without hashing */
6077 if (__slub_debug_enabled())
6078 no_hash_pointers_enable(NULL);
6079
6080 kmem_cache_node = &boot_kmem_cache_node;
6081 kmem_cache = &boot_kmem_cache;
6082
6083 /*
6084 * Initialize the nodemask for which we will allocate per node
6085 * structures. Here we don't need taking slab_mutex yet.
6086 */
6087 for_each_node_state(node, N_NORMAL_MEMORY)
6088 node_set(node, slab_nodes);
6089
6090 create_boot_cache(kmem_cache_node, "kmem_cache_node",
6091 sizeof(struct kmem_cache_node),
6092 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
6093
6094 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
6095
6096 /* Able to allocate the per node structures */
6097 slab_state = PARTIAL;
6098
6099 create_boot_cache(kmem_cache, "kmem_cache",
6100 offsetof(struct kmem_cache, node) +
6101 nr_node_ids * sizeof(struct kmem_cache_node *),
6102 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
6103
6104 kmem_cache = bootstrap(&boot_kmem_cache);
6105 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
6106
6107 /* Now we can use the kmem_cache to allocate kmalloc slabs */
6108 setup_kmalloc_cache_index_table();
6109 create_kmalloc_caches();
6110
6111 /* Setup random freelists for each cache */
6112 init_freelist_randomization();
6113
6114 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
6115 slub_cpu_dead);
6116
6117 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
6118 cache_line_size(),
6119 slub_min_order, slub_max_order, slub_min_objects,
6120 nr_cpu_ids, nr_node_ids);
6121 }
6122
kmem_cache_init_late(void)6123 void __init kmem_cache_init_late(void)
6124 {
6125 #ifndef CONFIG_SLUB_TINY
6126 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
6127 WARN_ON(!flushwq);
6128 #endif
6129 }
6130
6131 struct kmem_cache *
__kmem_cache_alias(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,void (* ctor)(void *))6132 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
6133 slab_flags_t flags, void (*ctor)(void *))
6134 {
6135 struct kmem_cache *s;
6136
6137 s = find_mergeable(size, align, flags, name, ctor);
6138 if (s) {
6139 if (sysfs_slab_alias(s, name))
6140 pr_err("SLUB: Unable to add cache alias %s to sysfs\n",
6141 name);
6142
6143 s->refcount++;
6144
6145 /*
6146 * Adjust the object sizes so that we clear
6147 * the complete object on kzalloc.
6148 */
6149 s->object_size = max(s->object_size, size);
6150 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6151 }
6152
6153 return s;
6154 }
6155
do_kmem_cache_create(struct kmem_cache * s,const char * name,unsigned int size,struct kmem_cache_args * args,slab_flags_t flags)6156 int do_kmem_cache_create(struct kmem_cache *s, const char *name,
6157 unsigned int size, struct kmem_cache_args *args,
6158 slab_flags_t flags)
6159 {
6160 int err = -EINVAL;
6161
6162 s->name = name;
6163 s->size = s->object_size = size;
6164
6165 s->flags = kmem_cache_flags(flags, s->name);
6166 #ifdef CONFIG_SLAB_FREELIST_HARDENED
6167 s->random = get_random_long();
6168 #endif
6169 s->align = args->align;
6170 s->ctor = args->ctor;
6171 #ifdef CONFIG_HARDENED_USERCOPY
6172 s->useroffset = args->useroffset;
6173 s->usersize = args->usersize;
6174 #endif
6175
6176 if (!calculate_sizes(args, s))
6177 goto out;
6178 if (disable_higher_order_debug) {
6179 /*
6180 * Disable debugging flags that store metadata if the min slab
6181 * order increased.
6182 */
6183 if (get_order(s->size) > get_order(s->object_size)) {
6184 s->flags &= ~DEBUG_METADATA_FLAGS;
6185 s->offset = 0;
6186 if (!calculate_sizes(args, s))
6187 goto out;
6188 }
6189 }
6190
6191 #ifdef system_has_freelist_aba
6192 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
6193 /* Enable fast mode */
6194 s->flags |= __CMPXCHG_DOUBLE;
6195 }
6196 #endif
6197
6198 /*
6199 * The larger the object size is, the more slabs we want on the partial
6200 * list to avoid pounding the page allocator excessively.
6201 */
6202 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
6203 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
6204
6205 set_cpu_partial(s);
6206
6207 #ifdef CONFIG_NUMA
6208 s->remote_node_defrag_ratio = 1000;
6209 #endif
6210
6211 /* Initialize the pre-computed randomized freelist if slab is up */
6212 if (slab_state >= UP) {
6213 if (init_cache_random_seq(s))
6214 goto out;
6215 }
6216
6217 if (!init_kmem_cache_nodes(s))
6218 goto out;
6219
6220 if (!alloc_kmem_cache_cpus(s))
6221 goto out;
6222
6223 err = 0;
6224
6225 /* Mutex is not taken during early boot */
6226 if (slab_state <= UP)
6227 goto out;
6228
6229 /*
6230 * Failing to create sysfs files is not critical to SLUB functionality.
6231 * If it fails, proceed with cache creation without these files.
6232 */
6233 if (sysfs_slab_add(s))
6234 pr_err("SLUB: Unable to add cache %s to sysfs\n", s->name);
6235
6236 if (s->flags & SLAB_STORE_USER)
6237 debugfs_slab_add(s);
6238
6239 out:
6240 if (err)
6241 __kmem_cache_release(s);
6242 return err;
6243 }
6244
6245 #ifdef SLAB_SUPPORTS_SYSFS
count_inuse(struct slab * slab)6246 static int count_inuse(struct slab *slab)
6247 {
6248 return slab->inuse;
6249 }
6250
count_total(struct slab * slab)6251 static int count_total(struct slab *slab)
6252 {
6253 return slab->objects;
6254 }
6255 #endif
6256
6257 #ifdef CONFIG_SLUB_DEBUG
validate_slab(struct kmem_cache * s,struct slab * slab,unsigned long * obj_map)6258 static void validate_slab(struct kmem_cache *s, struct slab *slab,
6259 unsigned long *obj_map)
6260 {
6261 void *p;
6262 void *addr = slab_address(slab);
6263
6264 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
6265 return;
6266
6267 /* Now we know that a valid freelist exists */
6268 __fill_map(obj_map, s, slab);
6269 for_each_object(p, s, addr, slab->objects) {
6270 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
6271 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
6272
6273 if (!check_object(s, slab, p, val))
6274 break;
6275 }
6276 }
6277
validate_slab_node(struct kmem_cache * s,struct kmem_cache_node * n,unsigned long * obj_map)6278 static int validate_slab_node(struct kmem_cache *s,
6279 struct kmem_cache_node *n, unsigned long *obj_map)
6280 {
6281 unsigned long count = 0;
6282 struct slab *slab;
6283 unsigned long flags;
6284
6285 spin_lock_irqsave(&n->list_lock, flags);
6286
6287 list_for_each_entry(slab, &n->partial, slab_list) {
6288 validate_slab(s, slab, obj_map);
6289 count++;
6290 }
6291 if (count != n->nr_partial) {
6292 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
6293 s->name, count, n->nr_partial);
6294 slab_add_kunit_errors();
6295 }
6296
6297 if (!(s->flags & SLAB_STORE_USER))
6298 goto out;
6299
6300 list_for_each_entry(slab, &n->full, slab_list) {
6301 validate_slab(s, slab, obj_map);
6302 count++;
6303 }
6304 if (count != node_nr_slabs(n)) {
6305 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
6306 s->name, count, node_nr_slabs(n));
6307 slab_add_kunit_errors();
6308 }
6309
6310 out:
6311 spin_unlock_irqrestore(&n->list_lock, flags);
6312 return count;
6313 }
6314
validate_slab_cache(struct kmem_cache * s)6315 long validate_slab_cache(struct kmem_cache *s)
6316 {
6317 int node;
6318 unsigned long count = 0;
6319 struct kmem_cache_node *n;
6320 unsigned long *obj_map;
6321
6322 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6323 if (!obj_map)
6324 return -ENOMEM;
6325
6326 flush_all(s);
6327 for_each_kmem_cache_node(s, node, n)
6328 count += validate_slab_node(s, n, obj_map);
6329
6330 bitmap_free(obj_map);
6331
6332 return count;
6333 }
6334 EXPORT_SYMBOL(validate_slab_cache);
6335
6336 #ifdef CONFIG_DEBUG_FS
6337 /*
6338 * Generate lists of code addresses where slabcache objects are allocated
6339 * and freed.
6340 */
6341
6342 struct location {
6343 depot_stack_handle_t handle;
6344 unsigned long count;
6345 unsigned long addr;
6346 unsigned long waste;
6347 long long sum_time;
6348 long min_time;
6349 long max_time;
6350 long min_pid;
6351 long max_pid;
6352 DECLARE_BITMAP(cpus, NR_CPUS);
6353 nodemask_t nodes;
6354 };
6355
6356 struct loc_track {
6357 unsigned long max;
6358 unsigned long count;
6359 struct location *loc;
6360 loff_t idx;
6361 };
6362
6363 static struct dentry *slab_debugfs_root;
6364
free_loc_track(struct loc_track * t)6365 static void free_loc_track(struct loc_track *t)
6366 {
6367 if (t->max)
6368 free_pages((unsigned long)t->loc,
6369 get_order(sizeof(struct location) * t->max));
6370 }
6371
alloc_loc_track(struct loc_track * t,unsigned long max,gfp_t flags)6372 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
6373 {
6374 struct location *l;
6375 int order;
6376
6377 order = get_order(sizeof(struct location) * max);
6378
6379 l = (void *)__get_free_pages(flags, order);
6380 if (!l)
6381 return 0;
6382
6383 if (t->count) {
6384 memcpy(l, t->loc, sizeof(struct location) * t->count);
6385 free_loc_track(t);
6386 }
6387 t->max = max;
6388 t->loc = l;
6389 return 1;
6390 }
6391
add_location(struct loc_track * t,struct kmem_cache * s,const struct track * track,unsigned int orig_size)6392 static int add_location(struct loc_track *t, struct kmem_cache *s,
6393 const struct track *track,
6394 unsigned int orig_size)
6395 {
6396 long start, end, pos;
6397 struct location *l;
6398 unsigned long caddr, chandle, cwaste;
6399 unsigned long age = jiffies - track->when;
6400 depot_stack_handle_t handle = 0;
6401 unsigned int waste = s->object_size - orig_size;
6402
6403 #ifdef CONFIG_STACKDEPOT
6404 handle = READ_ONCE(track->handle);
6405 #endif
6406 start = -1;
6407 end = t->count;
6408
6409 for ( ; ; ) {
6410 pos = start + (end - start + 1) / 2;
6411
6412 /*
6413 * There is nothing at "end". If we end up there
6414 * we need to add something to before end.
6415 */
6416 if (pos == end)
6417 break;
6418
6419 l = &t->loc[pos];
6420 caddr = l->addr;
6421 chandle = l->handle;
6422 cwaste = l->waste;
6423 if ((track->addr == caddr) && (handle == chandle) &&
6424 (waste == cwaste)) {
6425
6426 l->count++;
6427 if (track->when) {
6428 l->sum_time += age;
6429 if (age < l->min_time)
6430 l->min_time = age;
6431 if (age > l->max_time)
6432 l->max_time = age;
6433
6434 if (track->pid < l->min_pid)
6435 l->min_pid = track->pid;
6436 if (track->pid > l->max_pid)
6437 l->max_pid = track->pid;
6438
6439 cpumask_set_cpu(track->cpu,
6440 to_cpumask(l->cpus));
6441 }
6442 node_set(page_to_nid(virt_to_page(track)), l->nodes);
6443 return 1;
6444 }
6445
6446 if (track->addr < caddr)
6447 end = pos;
6448 else if (track->addr == caddr && handle < chandle)
6449 end = pos;
6450 else if (track->addr == caddr && handle == chandle &&
6451 waste < cwaste)
6452 end = pos;
6453 else
6454 start = pos;
6455 }
6456
6457 /*
6458 * Not found. Insert new tracking element.
6459 */
6460 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
6461 return 0;
6462
6463 l = t->loc + pos;
6464 if (pos < t->count)
6465 memmove(l + 1, l,
6466 (t->count - pos) * sizeof(struct location));
6467 t->count++;
6468 l->count = 1;
6469 l->addr = track->addr;
6470 l->sum_time = age;
6471 l->min_time = age;
6472 l->max_time = age;
6473 l->min_pid = track->pid;
6474 l->max_pid = track->pid;
6475 l->handle = handle;
6476 l->waste = waste;
6477 cpumask_clear(to_cpumask(l->cpus));
6478 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
6479 nodes_clear(l->nodes);
6480 node_set(page_to_nid(virt_to_page(track)), l->nodes);
6481 return 1;
6482 }
6483
process_slab(struct loc_track * t,struct kmem_cache * s,struct slab * slab,enum track_item alloc,unsigned long * obj_map)6484 static void process_slab(struct loc_track *t, struct kmem_cache *s,
6485 struct slab *slab, enum track_item alloc,
6486 unsigned long *obj_map)
6487 {
6488 void *addr = slab_address(slab);
6489 bool is_alloc = (alloc == TRACK_ALLOC);
6490 void *p;
6491
6492 __fill_map(obj_map, s, slab);
6493
6494 for_each_object(p, s, addr, slab->objects)
6495 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
6496 add_location(t, s, get_track(s, p, alloc),
6497 is_alloc ? get_orig_size(s, p) :
6498 s->object_size);
6499 }
6500 #endif /* CONFIG_DEBUG_FS */
6501 #endif /* CONFIG_SLUB_DEBUG */
6502
6503 #ifdef SLAB_SUPPORTS_SYSFS
6504 enum slab_stat_type {
6505 SL_ALL, /* All slabs */
6506 SL_PARTIAL, /* Only partially allocated slabs */
6507 SL_CPU, /* Only slabs used for cpu caches */
6508 SL_OBJECTS, /* Determine allocated objects not slabs */
6509 SL_TOTAL /* Determine object capacity not slabs */
6510 };
6511
6512 #define SO_ALL (1 << SL_ALL)
6513 #define SO_PARTIAL (1 << SL_PARTIAL)
6514 #define SO_CPU (1 << SL_CPU)
6515 #define SO_OBJECTS (1 << SL_OBJECTS)
6516 #define SO_TOTAL (1 << SL_TOTAL)
6517
show_slab_objects(struct kmem_cache * s,char * buf,unsigned long flags)6518 static ssize_t show_slab_objects(struct kmem_cache *s,
6519 char *buf, unsigned long flags)
6520 {
6521 unsigned long total = 0;
6522 int node;
6523 int x;
6524 unsigned long *nodes;
6525 int len = 0;
6526
6527 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
6528 if (!nodes)
6529 return -ENOMEM;
6530
6531 if (flags & SO_CPU) {
6532 int cpu;
6533
6534 for_each_possible_cpu(cpu) {
6535 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
6536 cpu);
6537 int node;
6538 struct slab *slab;
6539
6540 slab = READ_ONCE(c->slab);
6541 if (!slab)
6542 continue;
6543
6544 node = slab_nid(slab);
6545 if (flags & SO_TOTAL)
6546 x = slab->objects;
6547 else if (flags & SO_OBJECTS)
6548 x = slab->inuse;
6549 else
6550 x = 1;
6551
6552 total += x;
6553 nodes[node] += x;
6554
6555 #ifdef CONFIG_SLUB_CPU_PARTIAL
6556 slab = slub_percpu_partial_read_once(c);
6557 if (slab) {
6558 node = slab_nid(slab);
6559 if (flags & SO_TOTAL)
6560 WARN_ON_ONCE(1);
6561 else if (flags & SO_OBJECTS)
6562 WARN_ON_ONCE(1);
6563 else
6564 x = data_race(slab->slabs);
6565 total += x;
6566 nodes[node] += x;
6567 }
6568 #endif
6569 }
6570 }
6571
6572 /*
6573 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
6574 * already held which will conflict with an existing lock order:
6575 *
6576 * mem_hotplug_lock->slab_mutex->kernfs_mutex
6577 *
6578 * We don't really need mem_hotplug_lock (to hold off
6579 * slab_mem_going_offline_callback) here because slab's memory hot
6580 * unplug code doesn't destroy the kmem_cache->node[] data.
6581 */
6582
6583 #ifdef CONFIG_SLUB_DEBUG
6584 if (flags & SO_ALL) {
6585 struct kmem_cache_node *n;
6586
6587 for_each_kmem_cache_node(s, node, n) {
6588
6589 if (flags & SO_TOTAL)
6590 x = node_nr_objs(n);
6591 else if (flags & SO_OBJECTS)
6592 x = node_nr_objs(n) - count_partial(n, count_free);
6593 else
6594 x = node_nr_slabs(n);
6595 total += x;
6596 nodes[node] += x;
6597 }
6598
6599 } else
6600 #endif
6601 if (flags & SO_PARTIAL) {
6602 struct kmem_cache_node *n;
6603
6604 for_each_kmem_cache_node(s, node, n) {
6605 if (flags & SO_TOTAL)
6606 x = count_partial(n, count_total);
6607 else if (flags & SO_OBJECTS)
6608 x = count_partial(n, count_inuse);
6609 else
6610 x = n->nr_partial;
6611 total += x;
6612 nodes[node] += x;
6613 }
6614 }
6615
6616 len += sysfs_emit_at(buf, len, "%lu", total);
6617 #ifdef CONFIG_NUMA
6618 for (node = 0; node < nr_node_ids; node++) {
6619 if (nodes[node])
6620 len += sysfs_emit_at(buf, len, " N%d=%lu",
6621 node, nodes[node]);
6622 }
6623 #endif
6624 len += sysfs_emit_at(buf, len, "\n");
6625 kfree(nodes);
6626
6627 return len;
6628 }
6629
6630 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
6631 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
6632
6633 struct slab_attribute {
6634 struct attribute attr;
6635 ssize_t (*show)(struct kmem_cache *s, char *buf);
6636 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
6637 };
6638
6639 #define SLAB_ATTR_RO(_name) \
6640 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
6641
6642 #define SLAB_ATTR(_name) \
6643 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
6644
slab_size_show(struct kmem_cache * s,char * buf)6645 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
6646 {
6647 return sysfs_emit(buf, "%u\n", s->size);
6648 }
6649 SLAB_ATTR_RO(slab_size);
6650
align_show(struct kmem_cache * s,char * buf)6651 static ssize_t align_show(struct kmem_cache *s, char *buf)
6652 {
6653 return sysfs_emit(buf, "%u\n", s->align);
6654 }
6655 SLAB_ATTR_RO(align);
6656
object_size_show(struct kmem_cache * s,char * buf)6657 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
6658 {
6659 return sysfs_emit(buf, "%u\n", s->object_size);
6660 }
6661 SLAB_ATTR_RO(object_size);
6662
objs_per_slab_show(struct kmem_cache * s,char * buf)6663 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
6664 {
6665 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
6666 }
6667 SLAB_ATTR_RO(objs_per_slab);
6668
order_show(struct kmem_cache * s,char * buf)6669 static ssize_t order_show(struct kmem_cache *s, char *buf)
6670 {
6671 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
6672 }
6673 SLAB_ATTR_RO(order);
6674
min_partial_show(struct kmem_cache * s,char * buf)6675 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
6676 {
6677 return sysfs_emit(buf, "%lu\n", s->min_partial);
6678 }
6679
min_partial_store(struct kmem_cache * s,const char * buf,size_t length)6680 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
6681 size_t length)
6682 {
6683 unsigned long min;
6684 int err;
6685
6686 err = kstrtoul(buf, 10, &min);
6687 if (err)
6688 return err;
6689
6690 s->min_partial = min;
6691 return length;
6692 }
6693 SLAB_ATTR(min_partial);
6694
cpu_partial_show(struct kmem_cache * s,char * buf)6695 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
6696 {
6697 unsigned int nr_partial = 0;
6698 #ifdef CONFIG_SLUB_CPU_PARTIAL
6699 nr_partial = s->cpu_partial;
6700 #endif
6701
6702 return sysfs_emit(buf, "%u\n", nr_partial);
6703 }
6704
cpu_partial_store(struct kmem_cache * s,const char * buf,size_t length)6705 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
6706 size_t length)
6707 {
6708 unsigned int objects;
6709 int err;
6710
6711 err = kstrtouint(buf, 10, &objects);
6712 if (err)
6713 return err;
6714 if (objects && !kmem_cache_has_cpu_partial(s))
6715 return -EINVAL;
6716
6717 slub_set_cpu_partial(s, objects);
6718 flush_all(s);
6719 return length;
6720 }
6721 SLAB_ATTR(cpu_partial);
6722
ctor_show(struct kmem_cache * s,char * buf)6723 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
6724 {
6725 if (!s->ctor)
6726 return 0;
6727 return sysfs_emit(buf, "%pS\n", s->ctor);
6728 }
6729 SLAB_ATTR_RO(ctor);
6730
aliases_show(struct kmem_cache * s,char * buf)6731 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
6732 {
6733 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
6734 }
6735 SLAB_ATTR_RO(aliases);
6736
partial_show(struct kmem_cache * s,char * buf)6737 static ssize_t partial_show(struct kmem_cache *s, char *buf)
6738 {
6739 return show_slab_objects(s, buf, SO_PARTIAL);
6740 }
6741 SLAB_ATTR_RO(partial);
6742
cpu_slabs_show(struct kmem_cache * s,char * buf)6743 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
6744 {
6745 return show_slab_objects(s, buf, SO_CPU);
6746 }
6747 SLAB_ATTR_RO(cpu_slabs);
6748
objects_partial_show(struct kmem_cache * s,char * buf)6749 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
6750 {
6751 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
6752 }
6753 SLAB_ATTR_RO(objects_partial);
6754
slabs_cpu_partial_show(struct kmem_cache * s,char * buf)6755 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
6756 {
6757 int objects = 0;
6758 int slabs = 0;
6759 int cpu __maybe_unused;
6760 int len = 0;
6761
6762 #ifdef CONFIG_SLUB_CPU_PARTIAL
6763 for_each_online_cpu(cpu) {
6764 struct slab *slab;
6765
6766 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6767
6768 if (slab)
6769 slabs += data_race(slab->slabs);
6770 }
6771 #endif
6772
6773 /* Approximate half-full slabs, see slub_set_cpu_partial() */
6774 objects = (slabs * oo_objects(s->oo)) / 2;
6775 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
6776
6777 #ifdef CONFIG_SLUB_CPU_PARTIAL
6778 for_each_online_cpu(cpu) {
6779 struct slab *slab;
6780
6781 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6782 if (slab) {
6783 slabs = data_race(slab->slabs);
6784 objects = (slabs * oo_objects(s->oo)) / 2;
6785 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
6786 cpu, objects, slabs);
6787 }
6788 }
6789 #endif
6790 len += sysfs_emit_at(buf, len, "\n");
6791
6792 return len;
6793 }
6794 SLAB_ATTR_RO(slabs_cpu_partial);
6795
reclaim_account_show(struct kmem_cache * s,char * buf)6796 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
6797 {
6798 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
6799 }
6800 SLAB_ATTR_RO(reclaim_account);
6801
hwcache_align_show(struct kmem_cache * s,char * buf)6802 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
6803 {
6804 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
6805 }
6806 SLAB_ATTR_RO(hwcache_align);
6807
6808 #ifdef CONFIG_ZONE_DMA
cache_dma_show(struct kmem_cache * s,char * buf)6809 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
6810 {
6811 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
6812 }
6813 SLAB_ATTR_RO(cache_dma);
6814 #endif
6815
6816 #ifdef CONFIG_HARDENED_USERCOPY
usersize_show(struct kmem_cache * s,char * buf)6817 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
6818 {
6819 return sysfs_emit(buf, "%u\n", s->usersize);
6820 }
6821 SLAB_ATTR_RO(usersize);
6822 #endif
6823
destroy_by_rcu_show(struct kmem_cache * s,char * buf)6824 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
6825 {
6826 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
6827 }
6828 SLAB_ATTR_RO(destroy_by_rcu);
6829
6830 #ifdef CONFIG_SLUB_DEBUG
slabs_show(struct kmem_cache * s,char * buf)6831 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
6832 {
6833 return show_slab_objects(s, buf, SO_ALL);
6834 }
6835 SLAB_ATTR_RO(slabs);
6836
total_objects_show(struct kmem_cache * s,char * buf)6837 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
6838 {
6839 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
6840 }
6841 SLAB_ATTR_RO(total_objects);
6842
objects_show(struct kmem_cache * s,char * buf)6843 static ssize_t objects_show(struct kmem_cache *s, char *buf)
6844 {
6845 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
6846 }
6847 SLAB_ATTR_RO(objects);
6848
sanity_checks_show(struct kmem_cache * s,char * buf)6849 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
6850 {
6851 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
6852 }
6853 SLAB_ATTR_RO(sanity_checks);
6854
trace_show(struct kmem_cache * s,char * buf)6855 static ssize_t trace_show(struct kmem_cache *s, char *buf)
6856 {
6857 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
6858 }
6859 SLAB_ATTR_RO(trace);
6860
red_zone_show(struct kmem_cache * s,char * buf)6861 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
6862 {
6863 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
6864 }
6865
6866 SLAB_ATTR_RO(red_zone);
6867
poison_show(struct kmem_cache * s,char * buf)6868 static ssize_t poison_show(struct kmem_cache *s, char *buf)
6869 {
6870 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
6871 }
6872
6873 SLAB_ATTR_RO(poison);
6874
store_user_show(struct kmem_cache * s,char * buf)6875 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
6876 {
6877 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
6878 }
6879
6880 SLAB_ATTR_RO(store_user);
6881
validate_show(struct kmem_cache * s,char * buf)6882 static ssize_t validate_show(struct kmem_cache *s, char *buf)
6883 {
6884 return 0;
6885 }
6886
validate_store(struct kmem_cache * s,const char * buf,size_t length)6887 static ssize_t validate_store(struct kmem_cache *s,
6888 const char *buf, size_t length)
6889 {
6890 int ret = -EINVAL;
6891
6892 if (buf[0] == '1' && kmem_cache_debug(s)) {
6893 ret = validate_slab_cache(s);
6894 if (ret >= 0)
6895 ret = length;
6896 }
6897 return ret;
6898 }
6899 SLAB_ATTR(validate);
6900
6901 #endif /* CONFIG_SLUB_DEBUG */
6902
6903 #ifdef CONFIG_FAILSLAB
failslab_show(struct kmem_cache * s,char * buf)6904 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
6905 {
6906 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
6907 }
6908
failslab_store(struct kmem_cache * s,const char * buf,size_t length)6909 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
6910 size_t length)
6911 {
6912 if (s->refcount > 1)
6913 return -EINVAL;
6914
6915 if (buf[0] == '1')
6916 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
6917 else
6918 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
6919
6920 return length;
6921 }
6922 SLAB_ATTR(failslab);
6923 #endif
6924
shrink_show(struct kmem_cache * s,char * buf)6925 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
6926 {
6927 return 0;
6928 }
6929
shrink_store(struct kmem_cache * s,const char * buf,size_t length)6930 static ssize_t shrink_store(struct kmem_cache *s,
6931 const char *buf, size_t length)
6932 {
6933 if (buf[0] == '1')
6934 kmem_cache_shrink(s);
6935 else
6936 return -EINVAL;
6937 return length;
6938 }
6939 SLAB_ATTR(shrink);
6940
6941 #ifdef CONFIG_NUMA
remote_node_defrag_ratio_show(struct kmem_cache * s,char * buf)6942 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
6943 {
6944 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
6945 }
6946
remote_node_defrag_ratio_store(struct kmem_cache * s,const char * buf,size_t length)6947 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
6948 const char *buf, size_t length)
6949 {
6950 unsigned int ratio;
6951 int err;
6952
6953 err = kstrtouint(buf, 10, &ratio);
6954 if (err)
6955 return err;
6956 if (ratio > 100)
6957 return -ERANGE;
6958
6959 s->remote_node_defrag_ratio = ratio * 10;
6960
6961 return length;
6962 }
6963 SLAB_ATTR(remote_node_defrag_ratio);
6964 #endif
6965
6966 #ifdef CONFIG_SLUB_STATS
show_stat(struct kmem_cache * s,char * buf,enum stat_item si)6967 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
6968 {
6969 unsigned long sum = 0;
6970 int cpu;
6971 int len = 0;
6972 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
6973
6974 if (!data)
6975 return -ENOMEM;
6976
6977 for_each_online_cpu(cpu) {
6978 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
6979
6980 data[cpu] = x;
6981 sum += x;
6982 }
6983
6984 len += sysfs_emit_at(buf, len, "%lu", sum);
6985
6986 #ifdef CONFIG_SMP
6987 for_each_online_cpu(cpu) {
6988 if (data[cpu])
6989 len += sysfs_emit_at(buf, len, " C%d=%u",
6990 cpu, data[cpu]);
6991 }
6992 #endif
6993 kfree(data);
6994 len += sysfs_emit_at(buf, len, "\n");
6995
6996 return len;
6997 }
6998
clear_stat(struct kmem_cache * s,enum stat_item si)6999 static void clear_stat(struct kmem_cache *s, enum stat_item si)
7000 {
7001 int cpu;
7002
7003 for_each_online_cpu(cpu)
7004 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
7005 }
7006
7007 #define STAT_ATTR(si, text) \
7008 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
7009 { \
7010 return show_stat(s, buf, si); \
7011 } \
7012 static ssize_t text##_store(struct kmem_cache *s, \
7013 const char *buf, size_t length) \
7014 { \
7015 if (buf[0] != '0') \
7016 return -EINVAL; \
7017 clear_stat(s, si); \
7018 return length; \
7019 } \
7020 SLAB_ATTR(text); \
7021
7022 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
7023 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
7024 STAT_ATTR(FREE_FASTPATH, free_fastpath);
7025 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
7026 STAT_ATTR(FREE_FROZEN, free_frozen);
7027 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
7028 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
7029 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
7030 STAT_ATTR(ALLOC_SLAB, alloc_slab);
7031 STAT_ATTR(ALLOC_REFILL, alloc_refill);
7032 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
7033 STAT_ATTR(FREE_SLAB, free_slab);
7034 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
7035 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
7036 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
7037 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
7038 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
7039 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
7040 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
7041 STAT_ATTR(ORDER_FALLBACK, order_fallback);
7042 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
7043 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
7044 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
7045 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
7046 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
7047 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
7048 #endif /* CONFIG_SLUB_STATS */
7049
7050 #ifdef CONFIG_KFENCE
skip_kfence_show(struct kmem_cache * s,char * buf)7051 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
7052 {
7053 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
7054 }
7055
skip_kfence_store(struct kmem_cache * s,const char * buf,size_t length)7056 static ssize_t skip_kfence_store(struct kmem_cache *s,
7057 const char *buf, size_t length)
7058 {
7059 int ret = length;
7060
7061 if (buf[0] == '0')
7062 s->flags &= ~SLAB_SKIP_KFENCE;
7063 else if (buf[0] == '1')
7064 s->flags |= SLAB_SKIP_KFENCE;
7065 else
7066 ret = -EINVAL;
7067
7068 return ret;
7069 }
7070 SLAB_ATTR(skip_kfence);
7071 #endif
7072
7073 static struct attribute *slab_attrs[] = {
7074 &slab_size_attr.attr,
7075 &object_size_attr.attr,
7076 &objs_per_slab_attr.attr,
7077 &order_attr.attr,
7078 &min_partial_attr.attr,
7079 &cpu_partial_attr.attr,
7080 &objects_partial_attr.attr,
7081 &partial_attr.attr,
7082 &cpu_slabs_attr.attr,
7083 &ctor_attr.attr,
7084 &aliases_attr.attr,
7085 &align_attr.attr,
7086 &hwcache_align_attr.attr,
7087 &reclaim_account_attr.attr,
7088 &destroy_by_rcu_attr.attr,
7089 &shrink_attr.attr,
7090 &slabs_cpu_partial_attr.attr,
7091 #ifdef CONFIG_SLUB_DEBUG
7092 &total_objects_attr.attr,
7093 &objects_attr.attr,
7094 &slabs_attr.attr,
7095 &sanity_checks_attr.attr,
7096 &trace_attr.attr,
7097 &red_zone_attr.attr,
7098 &poison_attr.attr,
7099 &store_user_attr.attr,
7100 &validate_attr.attr,
7101 #endif
7102 #ifdef CONFIG_ZONE_DMA
7103 &cache_dma_attr.attr,
7104 #endif
7105 #ifdef CONFIG_NUMA
7106 &remote_node_defrag_ratio_attr.attr,
7107 #endif
7108 #ifdef CONFIG_SLUB_STATS
7109 &alloc_fastpath_attr.attr,
7110 &alloc_slowpath_attr.attr,
7111 &free_fastpath_attr.attr,
7112 &free_slowpath_attr.attr,
7113 &free_frozen_attr.attr,
7114 &free_add_partial_attr.attr,
7115 &free_remove_partial_attr.attr,
7116 &alloc_from_partial_attr.attr,
7117 &alloc_slab_attr.attr,
7118 &alloc_refill_attr.attr,
7119 &alloc_node_mismatch_attr.attr,
7120 &free_slab_attr.attr,
7121 &cpuslab_flush_attr.attr,
7122 &deactivate_full_attr.attr,
7123 &deactivate_empty_attr.attr,
7124 &deactivate_to_head_attr.attr,
7125 &deactivate_to_tail_attr.attr,
7126 &deactivate_remote_frees_attr.attr,
7127 &deactivate_bypass_attr.attr,
7128 &order_fallback_attr.attr,
7129 &cmpxchg_double_fail_attr.attr,
7130 &cmpxchg_double_cpu_fail_attr.attr,
7131 &cpu_partial_alloc_attr.attr,
7132 &cpu_partial_free_attr.attr,
7133 &cpu_partial_node_attr.attr,
7134 &cpu_partial_drain_attr.attr,
7135 #endif
7136 #ifdef CONFIG_FAILSLAB
7137 &failslab_attr.attr,
7138 #endif
7139 #ifdef CONFIG_HARDENED_USERCOPY
7140 &usersize_attr.attr,
7141 #endif
7142 #ifdef CONFIG_KFENCE
7143 &skip_kfence_attr.attr,
7144 #endif
7145
7146 NULL
7147 };
7148
7149 static const struct attribute_group slab_attr_group = {
7150 .attrs = slab_attrs,
7151 };
7152
slab_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)7153 static ssize_t slab_attr_show(struct kobject *kobj,
7154 struct attribute *attr,
7155 char *buf)
7156 {
7157 struct slab_attribute *attribute;
7158 struct kmem_cache *s;
7159
7160 attribute = to_slab_attr(attr);
7161 s = to_slab(kobj);
7162
7163 if (!attribute->show)
7164 return -EIO;
7165
7166 return attribute->show(s, buf);
7167 }
7168
slab_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t len)7169 static ssize_t slab_attr_store(struct kobject *kobj,
7170 struct attribute *attr,
7171 const char *buf, size_t len)
7172 {
7173 struct slab_attribute *attribute;
7174 struct kmem_cache *s;
7175
7176 attribute = to_slab_attr(attr);
7177 s = to_slab(kobj);
7178
7179 if (!attribute->store)
7180 return -EIO;
7181
7182 return attribute->store(s, buf, len);
7183 }
7184
kmem_cache_release(struct kobject * k)7185 static void kmem_cache_release(struct kobject *k)
7186 {
7187 slab_kmem_cache_release(to_slab(k));
7188 }
7189
7190 static const struct sysfs_ops slab_sysfs_ops = {
7191 .show = slab_attr_show,
7192 .store = slab_attr_store,
7193 };
7194
7195 static const struct kobj_type slab_ktype = {
7196 .sysfs_ops = &slab_sysfs_ops,
7197 .release = kmem_cache_release,
7198 };
7199
7200 static struct kset *slab_kset;
7201
cache_kset(struct kmem_cache * s)7202 static inline struct kset *cache_kset(struct kmem_cache *s)
7203 {
7204 return slab_kset;
7205 }
7206
7207 #define ID_STR_LENGTH 32
7208
7209 /* Create a unique string id for a slab cache:
7210 *
7211 * Format :[flags-]size
7212 */
create_unique_id(struct kmem_cache * s)7213 static char *create_unique_id(struct kmem_cache *s)
7214 {
7215 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
7216 char *p = name;
7217
7218 if (!name)
7219 return ERR_PTR(-ENOMEM);
7220
7221 *p++ = ':';
7222 /*
7223 * First flags affecting slabcache operations. We will only
7224 * get here for aliasable slabs so we do not need to support
7225 * too many flags. The flags here must cover all flags that
7226 * are matched during merging to guarantee that the id is
7227 * unique.
7228 */
7229 if (s->flags & SLAB_CACHE_DMA)
7230 *p++ = 'd';
7231 if (s->flags & SLAB_CACHE_DMA32)
7232 *p++ = 'D';
7233 if (s->flags & SLAB_RECLAIM_ACCOUNT)
7234 *p++ = 'a';
7235 if (s->flags & SLAB_CONSISTENCY_CHECKS)
7236 *p++ = 'F';
7237 if (s->flags & SLAB_ACCOUNT)
7238 *p++ = 'A';
7239 if (p != name + 1)
7240 *p++ = '-';
7241 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
7242
7243 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
7244 kfree(name);
7245 return ERR_PTR(-EINVAL);
7246 }
7247 kmsan_unpoison_memory(name, p - name);
7248 return name;
7249 }
7250
sysfs_slab_add(struct kmem_cache * s)7251 static int sysfs_slab_add(struct kmem_cache *s)
7252 {
7253 int err;
7254 const char *name;
7255 struct kset *kset = cache_kset(s);
7256 int unmergeable = slab_unmergeable(s);
7257
7258 if (!unmergeable && disable_higher_order_debug &&
7259 (slub_debug & DEBUG_METADATA_FLAGS))
7260 unmergeable = 1;
7261
7262 if (unmergeable) {
7263 /*
7264 * Slabcache can never be merged so we can use the name proper.
7265 * This is typically the case for debug situations. In that
7266 * case we can catch duplicate names easily.
7267 */
7268 sysfs_remove_link(&slab_kset->kobj, s->name);
7269 name = s->name;
7270 } else {
7271 /*
7272 * Create a unique name for the slab as a target
7273 * for the symlinks.
7274 */
7275 name = create_unique_id(s);
7276 if (IS_ERR(name))
7277 return PTR_ERR(name);
7278 }
7279
7280 s->kobj.kset = kset;
7281 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
7282 if (err)
7283 goto out;
7284
7285 err = sysfs_create_group(&s->kobj, &slab_attr_group);
7286 if (err)
7287 goto out_del_kobj;
7288
7289 if (!unmergeable) {
7290 /* Setup first alias */
7291 sysfs_slab_alias(s, s->name);
7292 }
7293 out:
7294 if (!unmergeable)
7295 kfree(name);
7296 return err;
7297 out_del_kobj:
7298 kobject_del(&s->kobj);
7299 goto out;
7300 }
7301
sysfs_slab_unlink(struct kmem_cache * s)7302 void sysfs_slab_unlink(struct kmem_cache *s)
7303 {
7304 if (s->kobj.state_in_sysfs)
7305 kobject_del(&s->kobj);
7306 }
7307
sysfs_slab_release(struct kmem_cache * s)7308 void sysfs_slab_release(struct kmem_cache *s)
7309 {
7310 kobject_put(&s->kobj);
7311 }
7312
7313 /*
7314 * Need to buffer aliases during bootup until sysfs becomes
7315 * available lest we lose that information.
7316 */
7317 struct saved_alias {
7318 struct kmem_cache *s;
7319 const char *name;
7320 struct saved_alias *next;
7321 };
7322
7323 static struct saved_alias *alias_list;
7324
sysfs_slab_alias(struct kmem_cache * s,const char * name)7325 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
7326 {
7327 struct saved_alias *al;
7328
7329 if (slab_state == FULL) {
7330 /*
7331 * If we have a leftover link then remove it.
7332 */
7333 sysfs_remove_link(&slab_kset->kobj, name);
7334 /*
7335 * The original cache may have failed to generate sysfs file.
7336 * In that case, sysfs_create_link() returns -ENOENT and
7337 * symbolic link creation is skipped.
7338 */
7339 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
7340 }
7341
7342 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
7343 if (!al)
7344 return -ENOMEM;
7345
7346 al->s = s;
7347 al->name = name;
7348 al->next = alias_list;
7349 alias_list = al;
7350 kmsan_unpoison_memory(al, sizeof(*al));
7351 return 0;
7352 }
7353
slab_sysfs_init(void)7354 static int __init slab_sysfs_init(void)
7355 {
7356 struct kmem_cache *s;
7357 int err;
7358
7359 mutex_lock(&slab_mutex);
7360
7361 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
7362 if (!slab_kset) {
7363 mutex_unlock(&slab_mutex);
7364 pr_err("Cannot register slab subsystem.\n");
7365 return -ENOMEM;
7366 }
7367
7368 slab_state = FULL;
7369
7370 list_for_each_entry(s, &slab_caches, list) {
7371 err = sysfs_slab_add(s);
7372 if (err)
7373 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
7374 s->name);
7375 }
7376
7377 while (alias_list) {
7378 struct saved_alias *al = alias_list;
7379
7380 alias_list = alias_list->next;
7381 err = sysfs_slab_alias(al->s, al->name);
7382 if (err)
7383 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
7384 al->name);
7385 kfree(al);
7386 }
7387
7388 mutex_unlock(&slab_mutex);
7389 return 0;
7390 }
7391 late_initcall(slab_sysfs_init);
7392 #endif /* SLAB_SUPPORTS_SYSFS */
7393
7394 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
slab_debugfs_show(struct seq_file * seq,void * v)7395 static int slab_debugfs_show(struct seq_file *seq, void *v)
7396 {
7397 struct loc_track *t = seq->private;
7398 struct location *l;
7399 unsigned long idx;
7400
7401 idx = (unsigned long) t->idx;
7402 if (idx < t->count) {
7403 l = &t->loc[idx];
7404
7405 seq_printf(seq, "%7ld ", l->count);
7406
7407 if (l->addr)
7408 seq_printf(seq, "%pS", (void *)l->addr);
7409 else
7410 seq_puts(seq, "<not-available>");
7411
7412 if (l->waste)
7413 seq_printf(seq, " waste=%lu/%lu",
7414 l->count * l->waste, l->waste);
7415
7416 if (l->sum_time != l->min_time) {
7417 seq_printf(seq, " age=%ld/%llu/%ld",
7418 l->min_time, div_u64(l->sum_time, l->count),
7419 l->max_time);
7420 } else
7421 seq_printf(seq, " age=%ld", l->min_time);
7422
7423 if (l->min_pid != l->max_pid)
7424 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
7425 else
7426 seq_printf(seq, " pid=%ld",
7427 l->min_pid);
7428
7429 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
7430 seq_printf(seq, " cpus=%*pbl",
7431 cpumask_pr_args(to_cpumask(l->cpus)));
7432
7433 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
7434 seq_printf(seq, " nodes=%*pbl",
7435 nodemask_pr_args(&l->nodes));
7436
7437 #ifdef CONFIG_STACKDEPOT
7438 {
7439 depot_stack_handle_t handle;
7440 unsigned long *entries;
7441 unsigned int nr_entries, j;
7442
7443 handle = READ_ONCE(l->handle);
7444 if (handle) {
7445 nr_entries = stack_depot_fetch(handle, &entries);
7446 seq_puts(seq, "\n");
7447 for (j = 0; j < nr_entries; j++)
7448 seq_printf(seq, " %pS\n", (void *)entries[j]);
7449 }
7450 }
7451 #endif
7452 seq_puts(seq, "\n");
7453 }
7454
7455 if (!idx && !t->count)
7456 seq_puts(seq, "No data\n");
7457
7458 return 0;
7459 }
7460
slab_debugfs_stop(struct seq_file * seq,void * v)7461 static void slab_debugfs_stop(struct seq_file *seq, void *v)
7462 {
7463 }
7464
slab_debugfs_next(struct seq_file * seq,void * v,loff_t * ppos)7465 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
7466 {
7467 struct loc_track *t = seq->private;
7468
7469 t->idx = ++(*ppos);
7470 if (*ppos <= t->count)
7471 return ppos;
7472
7473 return NULL;
7474 }
7475
cmp_loc_by_count(const void * a,const void * b,const void * data)7476 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
7477 {
7478 struct location *loc1 = (struct location *)a;
7479 struct location *loc2 = (struct location *)b;
7480
7481 if (loc1->count > loc2->count)
7482 return -1;
7483 else
7484 return 1;
7485 }
7486
slab_debugfs_start(struct seq_file * seq,loff_t * ppos)7487 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
7488 {
7489 struct loc_track *t = seq->private;
7490
7491 t->idx = *ppos;
7492 return ppos;
7493 }
7494
7495 static const struct seq_operations slab_debugfs_sops = {
7496 .start = slab_debugfs_start,
7497 .next = slab_debugfs_next,
7498 .stop = slab_debugfs_stop,
7499 .show = slab_debugfs_show,
7500 };
7501
slab_debug_trace_open(struct inode * inode,struct file * filep)7502 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
7503 {
7504
7505 struct kmem_cache_node *n;
7506 enum track_item alloc;
7507 int node;
7508 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
7509 sizeof(struct loc_track));
7510 struct kmem_cache *s = file_inode(filep)->i_private;
7511 unsigned long *obj_map;
7512
7513 if (!t)
7514 return -ENOMEM;
7515
7516 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
7517 if (!obj_map) {
7518 seq_release_private(inode, filep);
7519 return -ENOMEM;
7520 }
7521
7522 alloc = debugfs_get_aux_num(filep);
7523
7524 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
7525 bitmap_free(obj_map);
7526 seq_release_private(inode, filep);
7527 return -ENOMEM;
7528 }
7529
7530 for_each_kmem_cache_node(s, node, n) {
7531 unsigned long flags;
7532 struct slab *slab;
7533
7534 if (!node_nr_slabs(n))
7535 continue;
7536
7537 spin_lock_irqsave(&n->list_lock, flags);
7538 list_for_each_entry(slab, &n->partial, slab_list)
7539 process_slab(t, s, slab, alloc, obj_map);
7540 list_for_each_entry(slab, &n->full, slab_list)
7541 process_slab(t, s, slab, alloc, obj_map);
7542 spin_unlock_irqrestore(&n->list_lock, flags);
7543 }
7544
7545 /* Sort locations by count */
7546 sort_r(t->loc, t->count, sizeof(struct location),
7547 cmp_loc_by_count, NULL, NULL);
7548
7549 bitmap_free(obj_map);
7550 return 0;
7551 }
7552
slab_debug_trace_release(struct inode * inode,struct file * file)7553 static int slab_debug_trace_release(struct inode *inode, struct file *file)
7554 {
7555 struct seq_file *seq = file->private_data;
7556 struct loc_track *t = seq->private;
7557
7558 free_loc_track(t);
7559 return seq_release_private(inode, file);
7560 }
7561
7562 static const struct file_operations slab_debugfs_fops = {
7563 .open = slab_debug_trace_open,
7564 .read = seq_read,
7565 .llseek = seq_lseek,
7566 .release = slab_debug_trace_release,
7567 };
7568
debugfs_slab_add(struct kmem_cache * s)7569 static void debugfs_slab_add(struct kmem_cache *s)
7570 {
7571 struct dentry *slab_cache_dir;
7572
7573 if (unlikely(!slab_debugfs_root))
7574 return;
7575
7576 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
7577
7578 debugfs_create_file_aux_num("alloc_traces", 0400, slab_cache_dir, s,
7579 TRACK_ALLOC, &slab_debugfs_fops);
7580
7581 debugfs_create_file_aux_num("free_traces", 0400, slab_cache_dir, s,
7582 TRACK_FREE, &slab_debugfs_fops);
7583 }
7584
debugfs_slab_release(struct kmem_cache * s)7585 void debugfs_slab_release(struct kmem_cache *s)
7586 {
7587 debugfs_lookup_and_remove(s->name, slab_debugfs_root);
7588 }
7589
slab_debugfs_init(void)7590 static int __init slab_debugfs_init(void)
7591 {
7592 struct kmem_cache *s;
7593
7594 slab_debugfs_root = debugfs_create_dir("slab", NULL);
7595
7596 list_for_each_entry(s, &slab_caches, list)
7597 if (s->flags & SLAB_STORE_USER)
7598 debugfs_slab_add(s);
7599
7600 return 0;
7601
7602 }
7603 __initcall(slab_debugfs_init);
7604 #endif
7605 /*
7606 * The /proc/slabinfo ABI
7607 */
7608 #ifdef CONFIG_SLUB_DEBUG
get_slabinfo(struct kmem_cache * s,struct slabinfo * sinfo)7609 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
7610 {
7611 unsigned long nr_slabs = 0;
7612 unsigned long nr_objs = 0;
7613 unsigned long nr_free = 0;
7614 int node;
7615 struct kmem_cache_node *n;
7616
7617 for_each_kmem_cache_node(s, node, n) {
7618 nr_slabs += node_nr_slabs(n);
7619 nr_objs += node_nr_objs(n);
7620 nr_free += count_partial_free_approx(n);
7621 }
7622
7623 sinfo->active_objs = nr_objs - nr_free;
7624 sinfo->num_objs = nr_objs;
7625 sinfo->active_slabs = nr_slabs;
7626 sinfo->num_slabs = nr_slabs;
7627 sinfo->objects_per_slab = oo_objects(s->oo);
7628 sinfo->cache_order = oo_order(s->oo);
7629 }
7630 #endif /* CONFIG_SLUB_DEBUG */
7631