Lines Matching full:diagonal
47 * main diagonal and the first diagonal below and above it. The Hessenberg
90 …typename internal::add_const_on_value_type<typename Diagonal<const MatrixType>::RealReturnType>::t…
91 const Diagonal<const MatrixType>
95 …typename internal::add_const_on_value_type<typename Diagonal<const MatrixType, -1>::RealReturnType…
96 const Diagonal<const MatrixType, -1>
200 * - the diagonal and lower sub-diagonal represent the real tridiagonal
260 * returned by diagonal() and subDiagonal() instead of creating a new
264 * matrixQ(), packedMatrix(), diagonal(), subDiagonal()
272 /** \brief Returns the diagonal of the tridiagonal matrix T in the decomposition.
274 * \returns expression representing the diagonal of T
285 DiagonalReturnType diagonal() const;
295 * \sa diagonal() for an example, matrixT()
308 Tridiagonalization<MatrixType>::diagonal() const
311 return m_matrix.diagonal().real();
319 return m_matrix.template diagonal<-1>().real();
332 * On output, the tridiagonal selfadjoint matrix T is stored in the diagonal
333 * and lower sub-diagonal of the matrix \a matA.
394 * \param[out] diag The diagonal of the tridiagonal matrix T in the
450 diag = mat.diagonal().real();
451 subdiag = mat.template diagonal<-1>().real();
545 result.template diagonal<1>() = m_matrix.template diagonal<-1>().conjugate();
546 result.diagonal() = m_matrix.diagonal();
547 result.template diagonal<-1>() = m_matrix.template diagonal<-1>();